SIEMENS

SINUMERIK 802D

操作编程 铣床

 开机和回参考点
 2

 参数设定
 3

 手动控制运行
 4

 自动方式
 5

 零件编程
 6

 系统
 7

 编程
 8

 循环
 9

序言

1

适用于

控制系统 软件版本 SINUMERIK 802D 2

2003年11月

SINUMERIK® 文献

出版历史

本版本及以前各版本的简要说明列在下面。

每个版本的状态由"附注"栏中的代码指明。

在附注栏中的状态码:

A新文件

B 没有改动但以新的订货号重印

C 新状态下的修订版本

若某页的内容在上一个版本后有实质性的更改,则在该页的顶部用新版本号来指标。

版本	订货号	附注
2000.11	6FC5698-2AA10-0RP0	Α
2001.07	6FC5698-2AA10-0RP1	С
2002.10	6FC5698-2AA10-0RP2	С
2003.11	6FC5698-2AA10-0RP3	С

SIMATIC®,SIMATIC HMI®,SIMATIC NET®,SIROTEC®,SINUMERIK®,和 SIMODRIVE® 为西门子公司的注册商标。使用文献中任何商标名作为私用的第三方则侵犯了商标所有人的权利。

控制系统有可能执行本文献中未描述的某些功能,但这并不意味着,在提供系统时必须带有这些功能或为其提供有关的维修服务。

内容的更改不事先通知。

没有明确的书面许可,不得翻印,传播和使用本文献的内容,违者将负责赔偿损失,版权将包刮全部创作专利权登记注册的实用新型及设计图的权利。

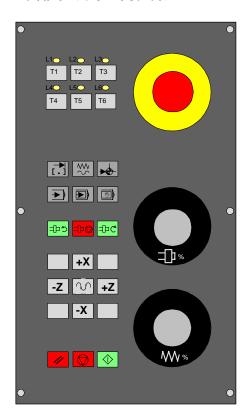
本文献内容符合硬件和软件的描述。但是,可能依然存在一些差异,因此我们不能保证它们完全一致。文献中的有 关信息会定期审核而且一些必要的修改会包含在下一版本中。欢迎提出改善建议。

©西门子股份公司版权所有 2003 年

目录

		K 802D 键符定义制面板	
1	序言.		1-1
	1.1	屏幕划分	
	1.2	操作区域	1-4
	1.3	输入操作	1-5
		1.3.1 计算器	1-5
		1.3.2 编辑中文字符	1-11
		1.3.3 热键	
	1.4	帮助系统	
	1.5	直角坐标系	1-13
2	开机和	如回参考点	2-1
3	参数证	9定	3-1
	3.1	输入刀具参数及刀具补偿参数	3-1
		3.1.1 建立新刀具	
		3.1.2 确定刀具补偿值	
		3.1.3 使用探头确定刀具补偿值	
	3.2	3.1.4 探头设定	
	3.2	分兵曲控 输入/修改零点偏置值	
	3.3	3.3.1 计算零点偏置值	
	3.4	编程设定数据—"参数"操作区	
	3.5	R参数— " 偏置/参数 " 操作区	
4		空制运行	
4	1 -4/15:	至问至1] 	
	4.1	4.1.1 手轮的选通	
	4.2	MDA运行方式(手动输入)	
	٦.۷	4.2.1 端面铣削	
5	自动方	5式	5-1
	5.1	选择和启动零件程序	5-5
	5.2	程序段搜索—"加工"操作区	5-6
	5.3	" 停止 " 、 " 中断 " 零件程序	5-7
	5.4		
	5.5	中断后重新定位	5-8
	5.6	执行外部程序(由RS232接口输入)	
6	零件组	扁程	6-1
-	6.1	→ · - 输入新程序— " 程序 " 操作区	
	6.2	零件程序的编辑—"程序"运行方式	
		- 1 into the last and the second seco	

	6.3	蓝图编和	물	6-6
	6.4	模拟		6-21
	6.5	通过RS	232接口进行数据传送	6-22
7	系统.			7-1
	7.1	使用梯牙	形图进行PLC诊断	7-22
		7.1.1		
		7.1.2		
8	编程.			8-1
	8.1	NC编程	基本原理	8-1
		8.1.1	程序名称	8-1
		8.1.2	程序结构	8-1
		8.1.3	字结构及地址	8-2
		8.1.4	程序段结构	8-3
		8.1.5	字符集	8-4
		8.1.6	指令表	8-5
	8.2	定位数排	居	8-14
		8.2.1	···· 平面选择:G17到G19	8-14
		8.2.2	绝对和增量位置数据:G90,G91,AC,IC	
		8.2.3	公制尺寸 / 英制尺寸:G71 , G70 , G710 , G700	
		8.2.4	极坐标,极点定义:G110,G111,G112	8-16
		8.2.5	可编程的零点偏置:TRANS, ATRANS	
		8.2.6	可编程旋转:ROT , AROT	8-19
		8.2.7	可编程的比例系数:SCALE, ASCALE	8-20
		8.2.8	可编程的镜像:MIRROR, AMIRROR	8-21
		8.2.9	工件装夹—可设定的零点偏置:G54到G59, G500, G53, G153	8-22
		8.2.10	编程的工作区域限制:G25, G26, WALIMON, WALIMOF	8-23
	8.3	坐标轴记		8-25
		8.3.1		
		8.3.2	带进给率的线性插补:G1	
		8.3.3	圆弧插补:G2, G3	8-26
		8.3.4	通过中间点进行圆弧插补:CIP	8-30
		8.3.5	切线过渡圆弧:CT	8-31
		8.3.6	螺旋插补:G2/G3, TURN	8-32
		8.3.7	恒螺距螺纹切削:G33	8-32
		8.3.8	带补偿夹具攻丝:G63	8-33
		8.3.9	螺纹插补:G331, G332	8-34
		8.3.10	返回固定点:G75	8-35
		8.3.11	回参考点:G74	8-35
		8.3.12	用测量头测量MEAS, MEAW	8-36
		8.3.13	进给率F	
		8.3.14	圆弧进给率修调:CFTCP, CFC	8-37
		8.3.15	准确定位/连续路径加工:G9,G60,G64	8-38
		8.3.16	加速度性能:BRISK, SOFT	8-40
		8.3.17	比例加速度补偿:ACC	8-41


	8.3.18	带先导控制功能运行:FFWON, FFWOF	
	8.3.19	第4轴	
	8.3.20	暂停:G4	
	8.3.21	移动到固定点停止	8-43
8.4	主轴运动	功	8-46
	8.4.1	主轴转速S,旋转方向	8-46
	8.4.2	主轴转速极限:G25 , G26	8-46
	8.4.3	主轴定位:SPOS	
	8.4.4	齿轮级	8-47
8.5	轮廓定义	义编程辅助	8-48
	8.5.1	倒圆,倒角	8-48
	8.5.2	轮廓定义编程	8-49
8.6	刀具和刀	刀具补偿	8-52
	8.6.1	一般说明	8-52
	8.6.2	刀具T	8-52
	8.6.3	刀具补偿号D	8-53
	8.6.4	刀尖半径补偿:G41,G42	8-56
	8.6.5	拐角特性 :G450 , G451	8-57
	8.6.6	取消刀尖半径补偿:G40	8-59
	8.6.7	刀尖半径补偿中的几个特殊情况	8-59
	8.6.8	刀尖半径补偿举例	8-61
8.7	辅助功能	能M	8-62
8.8	H功能		8-63
8.9	计算参数	数R , LUD和PLC变量	8-63
	8.9.1		
	8.9.2	局部用户数据(LUD)	
	8.9.3	PLC 变量的读和写	8-66
8.10	程序跳车	抟	8-66
	8.10.1		
	8.10.2	绝对跳转	
	8.10.3	有条件跳转	8-67
	8.10.4	程序跳转举例	8-69
8.11	子程序.		8-70
	8.11.1	概述	8-70
	8.11.2	调用加工循环	
	8.11.3	模态调用子程序	8-72
8.12	定时器和	和工件计数器	8-73
		运行时间定时器	
		工件计数器	
8.13			
0.10	8.13.1	概述:刀具监控	
	8.13.2	刀具寿命监控	
		工件计数监控	
8.14			
		自作を自 釧 - TRACYL	
O. LO	1 1 1HIT/LE	71 IIV N/I L	

	8.16	与SINUI	MERIK 802S/C—铣床等效的G功能	8-90
9	循环			9-1
	9.1	概述		9-1
	9.2		不	
	9.3		· 中图形循环支持	
	9.4		不	
	7.4	9.4.1	概述	
		9.4.2	前提条件	
		9.4.3	钻孔,中心孔-CYCLE81	
		9.4.4	中心钻孔 - CYCLE82	
		9.4.5	深孔钻孔 - CYCLE83	
		9.4.6	刚性攻丝 - CYCLE84	
		9.4.7	带补偿夹具攻丝 - CYCLE840	
		9.4.8	铰孔1(镗孔1) - CYCLE85	
		9.4.9	镗孔(镗孔2) - CYCLE86	
		9.4.10	带停止镗孔(镗孔3) - CYCLE87	
		9.4.11	带停止钻孔2(镗孔4) - CYCLE88	9-27
		9.4.12	铰孔2(镗孔5) - CYCLE89	9-28
	9.5	钻孔样式	式循环	9-30
		9.5.1	前提条件	
		9.5.2	排孔 - HOLES1	9-31
		9.5.3	圆周孔 - HOLES2	9-35
	9.6	铣削循环	不	9-38
		9.6.1	· 前提条件	
		9.6.2	螺纹铣削 - CYCLE90	
		9.6.3	圆弧槽 - LONGHOLE	9-43
		9.6.4	圆弧槽 - SLOT1	9-47
		9.6.5	圆周槽 - SLOT2	9-53
		9.6.6	矩形槽 - POCKET3	9-57
		9.6.7	圆形槽 - POCKET4	9-64
		9.6.8	端面铣削 - CYCLE71	9-67
		9.6.9	轮廓铣削 - CYCLE72	9-72
		9.6.10	矩形凸台铣削 - CYCLE76	9-80
		9.6.11	圆形凸台铣削 - CYCLE77	9-85
	9.7	故障信息	息和故障处理	9-88
		9.7.1	概述	9-88
		9.7.2	循环中的故障处理	9-88
		9.7.3	循环报警概述	9-88
		9.7.4	循环中的信息	9-90

SINUMERIK 802D 键符定义

外部机床控制面板

复位

数控停止

数控启动

主轴速度修调 (选件)

带发光二极管的用户定义键

无发光二极管的用户定义键

增量选择

点动

参考点

自动方式

单段

手动数据输入

C 中

主轴正转

中 C*

主轴反转

主轴停

快速运行叠加

X 轴点动

+Z

Z 轴点动

-Z

进给速度修调

1 序言

1.1 屏幕划分

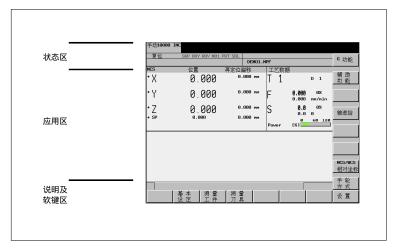


图1-1 屏幕划分

屏幕可以划分为以下几个区域:

- 状态区
- 应用区
- 说明及软键区

状态区

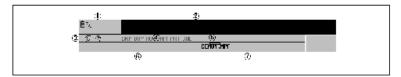


图1-2 状态区

表1-1 状态区显示单元的说明

图中元素	显示	含义
①	当前操作区 加工 JOG;JO MDA AUTOM 参数 程序 程序管理器	域,有效方式 DG 方式下增量大小 MATIC
	系统 报警 G291标记的	勺 " 外部语言 "
②	报警信息行显示以下内 1.报警号和 2.信息内容	容: 报警文本
	程序状态	
3	STOP	程序停止
	RUN	程序运行
	RESET	程序复位/基本状态
4	自动方式下程序控制	
5	保留	
6	NC信息	
7	所选择的零	件程序(主程序)

说明及软键区

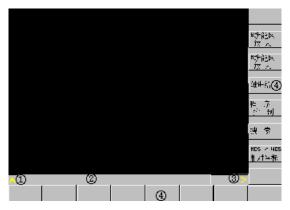


图1-3 说明及软键区

表1-2 屏幕显示单元说明

图中元素	显示	含义
		返回键
1	^	在此区域出现该符号,表明处于子菜单上。
		按返回键,返回到上一级菜单。
2		提示
		显示提示信息。
		MMC状态信息
	>	出现扩展键,表明还有其它软键功能。
3	" <u>*</u> "	大小写字符转换。
	粱	执行数据传送。
	H.	链接PLC编程工具。
4		垂直和水平软键栏。

标准软键

关闭该屏幕格式。

中断输入,退出该窗口。

中断输入,进行计算。

中断输入 ,接收输入的值。 确认

1.2 操作区域

控制器中的基本功能可以划分为以下几个操作区域:

M

加工 机床加工

OFFSET PARAM 偏移量/参数 输入补偿值和设定值

PROGRAM

程序 生成零件程序

PROGRAM MANAGER 程序管理器零件程序目录

系统 诊断和调试

报警

报警信息和信息表

通过按相应的键可以转换到其它操作区域(硬件)。

保护级

可以通过设定口令字对系统数据的输入和修改进行保护。 在下面的菜单中,输入和修改数据取决于所设定的保护级:

- 刀具补偿
- 零点偏置
- 设定数据
- RS232设定
- 程序编制/程序修改

1.3 输入操作

1.3.1 计算器

在所有的输入区都可以通过"上档键"和"="符号起动数值的计算功能,用此功能可以进行数据的四则运算,此外还可以进行正弦、余弦、平方和开方等运算。括号里的运算优先进行,括号的层数没有限制。

如果输入区已经有一值,则该值会送到计算器的输入行。

按输入键,进行计算并显示其结果。

按"确认键",将该结果接收到输入区或者零件程序当前光标所在的位置,然后自动关闭计算器。

注:

如果输入域是处在编辑公式下,则可以使用"Toggle"键重置原始状态。

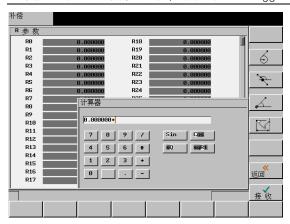


图1-4 计算器

使用符号

输入时可以使用如下符号:

- + X值加Y值
 X值减Y值
 * X值乘以Y值
 / X值除以Y值
 S 正弦函数
 取X值的正弦值
 C 余弦函数
 取X值的余弦值
- Q 平方值
 - 取X值的平方值
- R 平方根值
 - 取X值的平方根值

() 括号功能(X+Y)*Z

计算举例

计算	输入
100+(67*3)	100+67*3->301
sin(45°)	45 <u>S</u> ->0.707107
cos(45°)	45 <u>C</u> ->0.707107
4 ²	4 <u>Q</u> ->16
$\sqrt{4}$	4 <u>R</u> ->2
(34+3*2)*10	(34+3*2)*10->400

在计算轮廓上的辅助点时,计算器具有如下功能:

- 在圆弧段和直线之间计算一个切线过渡
- 在一个平面上移动一个点
- 极坐标转换为直角坐标
- 确定与一直线成一定角度的直线段的另一点

软键

6

利用此功能可以计算圆弧上的一个点,由给出方向的圆弧与给出角度的切线可以得到该点。

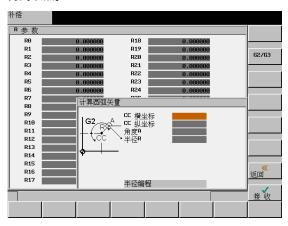


图1-5

请输入圆心、切线角度和圆弧半径。

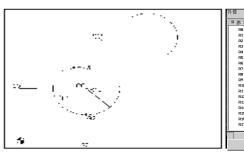
G2/G3

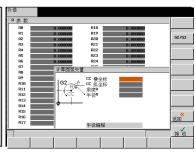
利用软键G2/G3可以确定圆弧的旋转方向。

接收

按此键,计算横坐标值和纵坐标值。平面中的第一轴为横坐标,第二轴为纵坐标。 把横坐标值输入到第一输入行,纵坐标值输入到第二输入行。如果在零件程序编

> SINUMERIK 802D/802D base line 操作编程 - 铣床 6FC5698-2AA10-0RP3 (2003.11)


辑器中调用此功能,则坐标值以所选基准平面坐标轴的名称进行存储。


举例 如果所选择的为G18平面,则横坐标为Z轴,纵坐标为X轴。

举例 计算圆弧 ① 和② 直线之间的交点。

已知: 半径:10

圆心坐标: Z20 X20 直线的连接角度: 45° 旋转方向: G2

结果: X=12.928 Y=27.071

利用此功能可以计算平面中一个点的直角坐标,该点与一直线上的一个点(PP)相连。为了计算该点的坐标,各个点之间的距离必须已知,另外,已知直线的倾斜角(A1)和新直线的倾斜角(A2)必须已知。

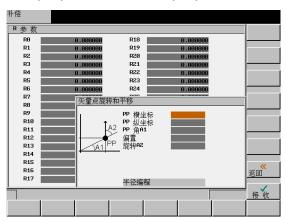


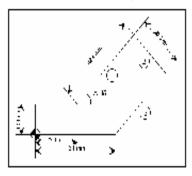
图1-6

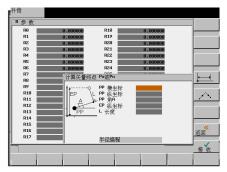
输入以下的坐标或倾斜角:

- 已知点(PP)的坐标
- 已知直线的倾斜角(A1)
- 新点到PP的距离

• 新直线与A1相关的倾斜角(A2)

接收


计算横坐标值和纵坐标值。


作为计算结果,把横坐标值拷贝到调用计算器功能的输入区,纵坐标值拷贝到下一个输入区。

如果在零件程序编辑器中调用此功能,则坐标值以所选基准平面坐标轴的名进行存储。

举例

计算直线 $^{(2)}$ 的终点。此直线在直线 $^{(1)}$ 的终点处与直线 $^{(1)}$ 相垂直 (坐标值 : X = 51.981 , Y = 43.081)。直线的长度已知。

结果: X = 68.668 Y = 26.393

A___

用此功能可以把已知的极坐标转换成直角坐标。

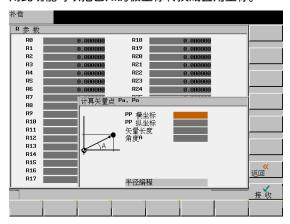
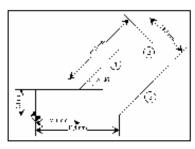


图1-7

输入参考点,直线长度和倾斜角。


计算横坐标值和纵坐标值。


作为计算结果,把横坐标值拷贝到调用计算器功能的输入区,纵坐标值拷贝到下一个输入区。

如果在零件程序编辑器中调用此功能,则坐标值以所选基准平面坐标轴的名称进行存储。

举例

计算直线 $\frac{1}{1}$ 的终点,该直线由角度A = 45° 及其长度确定。

结果: X = 51.981 Y = 43.081

利用此功能可以计算直线 - 直线轮廓中未知的两条相垂直的直线终点坐标。

已知:

直线1:起始点坐标和角度

直线2:长度和直角坐标系中的一个终点

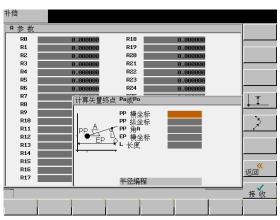
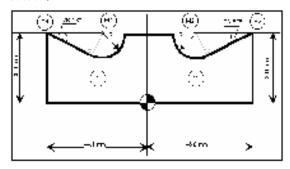


图1-8

用此键输入终点的已知坐标值。

坐标或横坐标值已知。

用此键可以与第一条直线成90°顺时针方向或逆时针方向旋转。


接收

举例

由此可以选择相应的设定。

按此键计算出未知终点的坐标值。计算器把所求得的横坐标值拷贝到调用此功能的输入区,然后把纵坐标值拷贝到下一个输入区。

如果在零件程序编辑器中调用此功能,则坐标值以所选基准平面坐标轴的名称进行存储。

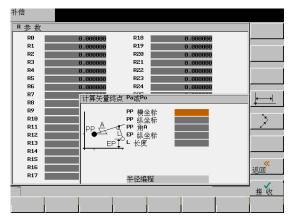
在上图中,为了计算出两个轮廓的交点位置,必须首先计算出圆弧轮廓的圆心坐标。这可以使用 功能进行,因为在轮廓的切线过渡处,半径垂直于直线。

计算轮廓1的圆心坐标M1:

在此轮廓中半径按逆时针方向旋转。

利用软键 _____ 和 进行相应的设定。

输入点P1的坐标值,直线的角度,已知的纵坐标值和作为长度的半径值。


结果: X = - 19.449

Y = 30

计算轮廓2的圆心坐标M2:

在此轮廓中半径按顺时针方向旋转。

利用软键 进行相应的设定。在屏幕格式中输入参数。

结果: X = 21.399 Y = 30

1.3.2 编辑中文字符

此功能仅在中文软件版本中生效。

系统提供一种功能,用于在程序编辑器和PLC报警文本中编辑中文字符。在激活该功能之后,在输入行中键入所查询字符的汉语拼音。此时编辑器就会按此发音提供各种不同的字符供选择,然后键入数字1到9,选择所要求的字符。

0:四1:妈2:马3:嘛4:麻5:骂6:抹7:码8:玛9:蚂 ma

图1-9 中文编辑器

ALT S 用于打开/关闭此编辑器

1.3.3 热键

该操作系统使用专门的键指令,用于选择、拷贝、剪切和删除文字。这些功能既适用于零件程序编辑器,也适用于进行操作。

CTRL	С	拷贝
CTRL	В	选择
CTRL	Χ	剪切
CTRI	V	粘切占

ALT L 用于转换大小写字符

ALT H 帮助文本

或者 帮助键

1.4 帮助系统

帮助系统通过帮助键激活。该系统针对所有重要的操作功能提供相应简要的说明。帮助系统具有以下的功能:

- 简要显示NC指令
- 循环编程
- 驱动报警说明

图1-10 帮助系统内容目录

显示

按此键显示所查询的功能。



图1-11 查询功能说明

Go to topic

按此键可以选择对照功能。对照功能通过符号">>...<<"表示。只有当应用区域中显示参照符时,该软键才可见。

Back to topic

选择参照,才会显示该软键" Back to topic "。用此键可以返回到上一个窗口。

搜 索

用查询功能可以在目录中查询某关键字。输入该关键字,然后启动查询过程。

程序编辑器中帮助

系统给每个NC指令提供一个说明。你可以把光标移到指令之后,按帮助键,可以调出帮助文本。

1.5 直角坐标系

坐标系

机床中使用顺时针方向的直角坐标系。 机床中的运动是指刀具和工件之间的相对运动。

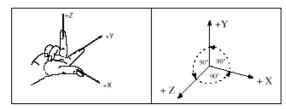


图1-12 直角坐标系中坐标方向的规定

机床坐标系(MCS) 机床中坐标系如何建立取决于机床的类型,它可以旋转到不同的位置。

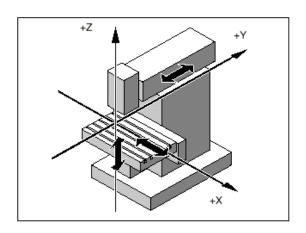


图1-13 铣床中机床坐标系/坐标轴

坐标系的原点定在机床零点,它也是所有坐标轴的零点位置。该点仅作为参考点,由机床生产厂家确定。机床开机后不需要回原点运行。 机床坐标轴可以在坐标系负值区域内运行。 工件坐标系(WCS)

上述坐标系(参见图1-12)也可用于工件编程时对工件的几何位置进行描述。 工件零点可以由编程人员自由选取,编程员无需了解机床上的实际运行,也就是 说不管是工件运动还是刀具运动。这在不同的坐标轴上可以不一样。方向始终以 工件不动而刀具运动定义。

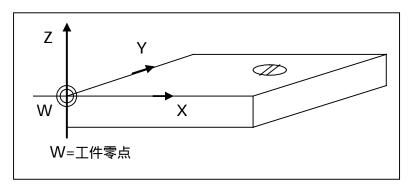


图1-14 工件坐标系

相对坐标系

除了机床坐标系和工件坐标系之外,该系统还提供一套相对坐标系。使用此坐标系可以自由设定参考点,并且对工件坐标系没有影响。屏幕上所显示的轴运动均相对于这些参考点而言。

工件装夹

加工工件时工件必须夹紧在机床上。固定工件,保证工件坐标系坐标轴平行于机床坐标系坐标轴,由此在坐标轴上产生机床零点与工件零点的坐标值偏移量,该值作为可设定的零点偏移量输入到给定的数据区。当NC程序运行时,此值就可以用一个编程的指令(比如G54)选择(参见章节"工件夹装—可设定的零点偏置")。

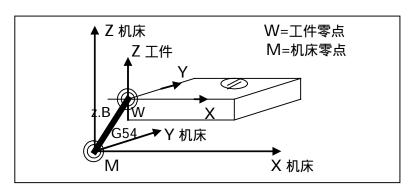


图1-15 工件在机床上

当前工件坐标系

编程时编程员可以通过TRANS指令设定一个相对于工件坐标系的零点偏置,由此产生所谓的"当前工件坐标系"(参见章节"可编程的零点偏置:TRANS")。

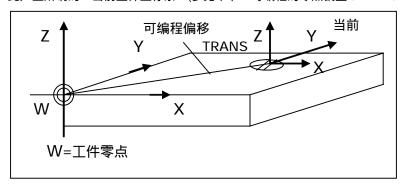


图1-16 工件坐标;当前工件坐标系

说明:

在给SINUMERIK 802D和机床通电以后,必须参照机床的操作说明,因为"开机和回参考点"这一功能与机床的关系很大。

该手册中所有的描述是以标准机床控制面板802DMCP为依据的。用户若是使用了其它的机床控制面板,则操作有可能与此描述不完全一样。

操作步骤

第一步,接通CNC和机床电源。系统启动以后进入"加工"操作区JOG运行方式。 出现"回参考点"窗口。

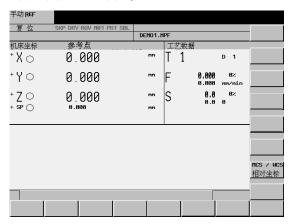


图2-1 JOG方式回参考点状态图

>

用机床控制面板上回参考点键启动"回参考点"。

在"回参考点"窗口中(图2-1)显示该坐标轴是否必须回参考点。

坐标轴未回参考点

坐标轴已经到达参考点

+X -Z

按坐标轴方向键

如果选择了错误的回参考点方向,则不会产生运动。

给每个坐标轴逐一回参考点。

通过选择另一种运行方式(如MDA、AUTO或JOG)可以结束该功能。

注意:

"回参考点"只有在JOG方式下才可以进行。

前言

在CNC进行工作之前,必须在NC上通过参数的输入和修改对机床、刀具等进行调整:

- 输入刀具参数及刀具补偿参数
- 输入/修改零点偏置
- 输入设定数据

3.1 输入刀具参数及刀具补偿参数

功能

刀具参数包括刀具几何参数、磨损量参数和刀具型号参数。

不同类型的刀具均有一个确定的参数数量,每个刀具有一个刀具号(T--号)。

参见章节8.6 "刀具和刀具补偿"。

操作步骤

OFFSET PARAM 打开刀具补偿参数窗口,显示所使用的刀具清单。可以通过光标键和"上一页"、"下一页"键选出所要求的刀具。

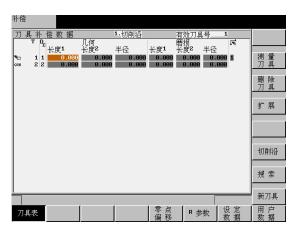


图3-1

通过以下步骤输入补偿参数:

- 在输入区定位光标
- 输入数值

♦

按输入键确认或者移动光标。对于一些特殊刀具可以使用键 , 填入全套 参数。

软键

测量刀具

定义刀具补偿数据。

手动测量

手动定义刀具补偿数据。

自动测量

半自动定义刀具补偿数据(只适用于感应探头)。

手动测量

校准探头。

删 除刀 具

此键清除刀具所有刀沿的刀具补偿参数。

扩展

按此键显示刀具的所有参数。

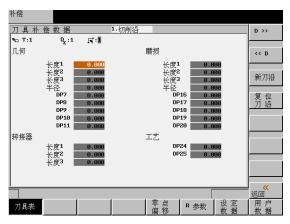


图3-2 特殊刀具的输入屏幕格式

参数含义在章节"编程"中描述。

切削沿

按此键打开一个子菜单,提供所有的功能,用于建立和显示其它的刀沿。

D >>

选择下一级较高的刀沿号。

≪ D

选择下一级较低的刀沿号。

新刀沿

按此键建立一个新刀沿。

复位刀沿

按此键复位刀沿的所有补偿参数。

改 变 类 型 改变刀具类型。使用相应的软键选择刀具类型。

搜索

输入待查找的刀具号,按确认键。如果所查找的刀具存在,则光标会自动移动到相应的行。

新刀具

使用此键建立一个新刀具的刀具补偿。

注意:

最多可以建立48个刀具。

3.1.1 建立新刀具

操作步骤

新刀具

在该功能下有两个软键供使用,分别用于选择刀具类型,填入相应的刀具号。

图3-3 新刀具窗口

刀具号输入

确认

按"确认"键确认输入。在刀具清单中自动生成数据组零。

3.1.2 确定刀具补偿值

功能 利用此功能可以计算刀具T未知的几何长度。

前提条件 换入该刀具。在JOG方式下移动该刀具,使刀尖到达一个已知坐标值的机床位置,

这可能是一个已知位置的工件。

过程 输入参考点坐标X0,Y0或者Z0。

注意:

铣刀要计算长度1和半径,车刀则仅须计算长度1。

利用F点的实际位置(机床坐标)和参考点,系统可以在所预选的坐标轴方向计算出刀具补偿值长度1或刀具半径。

说明:

可以使用一个已经计算出的零点偏置(比如G54值)作为已知的机床坐标。在这种情况下,可以使刀沿运行到工件零点。如果刀沿直接位于工件零点,则偏移值为零。

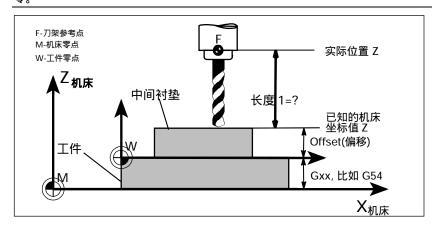


图3-4 计算钻头的长度补偿:长度1/Z - 轴

操作步骤

测 量 刀 具 用此软键打开刀具补偿值窗口,自动进入位置操作区。

刀具表

设置

设置

0.0

图3-5 选择手动或半自动测量

手 动 测 量 按此软键打开补偿值窗口。

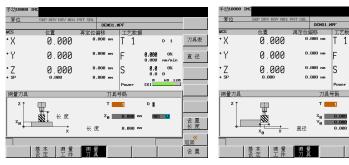


图3-6 "对刀"窗口,长度测量

刀具直径测量

- 在X0,Y0或者Z0处登记一个刀具当前所在位置的数值,该值可以是当前的机床坐标值,也可以是一个零点偏置值。如果使用了其它数值,则补偿值以此位置为准。
- 按软键"设置长度"或者"设置直径",系统根据所选择的坐标轴计算出它们相应的几何长度1或直径。所计算出的补偿值被存储。
- 如果在刀具和工件之间装有间隔物,可以在"清除"区定义它的厚度。

3.1.3 使用探头确定刀具补偿值

操作顺序

出现补偿值窗口。

打开屏幕后,在相应的输入区域出现当前有效的刀具,并且显示所需测量的加工平面。

此设定值可以在感应探头设定数据屏幕中修改。(章节3.1.4)。

注意:

创建测量程序时,需使用"设定"屏中的"安全间隙"参数和"探头数据"屏中的进给率。

如果几个轴同时移动,不能计算探头位置。

测量刀具长度

图3-7 "补偿值;长度测量"窗口

将进给轴移至感应探头。

出现"探头已激活"时,松开手动进给键直至测量过程结束。在自动测量过程中,会出现一个活动的刻度表,表示测量过程正在进行。

测量刀具直径

主轴旋转时才可以计算刀具的直径。因此,应在"探头数据"屏中输入主轴速度和旋转方向。

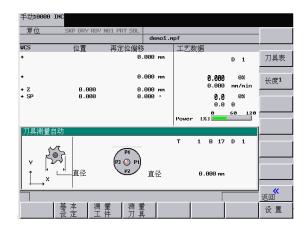


图3-8 "补偿值,直径测量"窗口

将加工平面中的任意轴移至感应探头。根据所选择的进给轴,移动点P1或P3或P2或P4。

出现"探头已激活" 时,松开手动进给键直至测量过程结束。在自动测量过程中,会出现一个活动的刻度表 ,表示测量过程正在进行。

警告

主轴将以"探头数据"中定义的速度旋转。

3.1.4 探头设定

设定 探头 数据

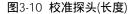
以下屏幕用来储存探头的坐标和设置自动测量过程中使用的以下参数:

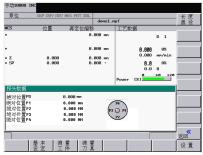
- 探头平面
- 轴进给率
- 主轴速度和旋转方向

主轴的旋转方向必须和刀具的切削方向相反。

所有的位置值参照机床坐标系。

图3-9 "探头数据"关联屏幕


表3-1 输入区含义


参数	含义
绝对位置P5	探头在Z方向的绝对位置
中心点:X	计算出的探头的中心点(机床坐标)
中心点:Y	
直径	探头圆盘的直径(校准后显示计算的直径)
厚度	探头圆盘的厚度

校准探头

校准 探头 可以在"设定"菜单或"测量刀具"菜单中校准探头。 移动探头的五个点。

(直径)

屏幕出现后,在探头的当前位置旁会显示执行状态的动画。必须使用相应的轴移动到该点。如果感应探头激活,控制系统将控制测量过程,先更换到AUTOMATIC模式,激活测量程序,然后自动运行。操作者可以短时间看到轴的反向运动。

进行测量时,会显示一个刻度盘 🔑 ,表示NC有效。

测量程序中的位置用来计算实际的探头位置。

注意

创建测量程序时,需使用"设定"屏中的"安全间隙"参数和"探头数据"屏中的进给率。

3.2 刀具监控

刀 具监 控

每个监控类型由4栏表示。

- 设定值
- 警告值
- 剩余值
- 有效性

通过第4栏可以激活/禁止监控类型。

图3-11 刀具监控

在刀具列中将提供刀具状态的信息的符号:

- △ 限位已到达预报警
- × 刀具禁止 刀具被监控

复位监控

此软键用于复位所选刀具的监控值。

图3-12

修 改 使 能 此软键用于修改所选刀具的使能。

3.3 输入/修改零点偏置值

功能

在回参考点之后实际值存储器以及实际值的显示均以机床零点为基准,而工件的加工程序则以工件零点为基准,这之间的差值就作为可设定的零点偏移量输入。

操作步骤

OFFSET PARAM 通过按"参数操作区域"键和"零点偏移"软键可以选择零点偏置。

零 点 偏 移 屏幕上显示出可设定零点偏置的情况,包括已编程的零点偏置值,有效的比例, 系数状态显示"镜相有效"以及所有的零点偏置。

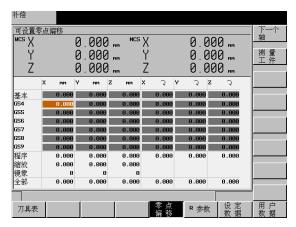
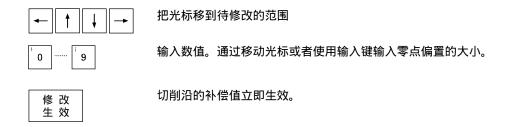



图3-13 零点偏置窗口

3.3.1 计算零点偏置值

前提条件

选择零点偏置(比如G54)窗口,确定待求零点偏置的坐标轴。

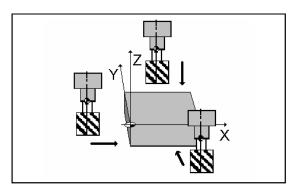


图3-14 计算零点偏置值

操作步骤

测量工件

按软键"测量工件"。控制系统转换到"加工"操作区,出现对话框用于测量零点偏置。所对应的坐标轴以背景为黑色的软键显示。

移动刀具,使其与工件相接触。在工件坐标系"设定Z位置"区域,输入所要触接的工件边沿的位置值。

如果刀具不可能触接到工件边沿,或者刀具无法到达所要求的点(比如使用了一个垫块),则在填参数"设定Z位置"时必须要考虑刀具与所要求点之间的距离。在确定X和Y方向的偏置时,必须要考虑刀具移动的方向(如果刀具已激活),没有刀具激活时,方向则隐含。

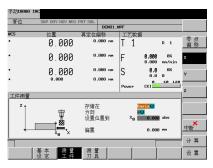


图3-15 确定X方向零点偏置

确定Z方向零点偏置

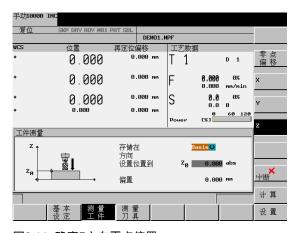


图3-16 确定Z方向零点偏置

设 定零点偏移

按此软键计算零点偏移,结果显示在零偏栏。

3.4 编程设定数据—"参数"操作区

功能

利用设定数据可以设定运行状态,并在需要时进行修改。

操作步骤

OFFSET PARAM 通过按"参数操作区域"键和"零点偏移"软键选择设定数据。

设 定数 据

在按下"设定数据"键后进入下一级菜单,在此菜单中可以对系统的各个选件进行设定。

图3-17 "设定数据"状态图

JOG--进给率

在JOG状态下的进给率

如果该进给率为零,则系统使用机床数据中存储的数值。

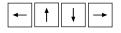
主轴

主轴转速

最小值/最大值

对主轴转速的限制(G26最大/G25最小)只可以在机床数据所规定的极限范围内)进行。

可编程主轴极限值


在恒定切削速度(G96)时可编程的最大速度(LIMS)。

空运行进给率

在自动方式中若选择空运行进给功能,则程序不按编程的进给率执行,而是执行在此输入的进给率。

螺纹切削开始角(SF)

在加工螺纹时主轴有一起始位置作为开始角,当重复进行该加工过程时,就可以通过改变此开始角切削多头螺纹。

把光标移到所要求的范围。

键入数字值。

按输入键或者移动光标确认输入。

软键

工作区

在有几何轴和附加轴时该工作区域限制有效。输入工作区限制的数值大小。使用软键"置有效"使输入的值有效/无效,该值分配给通过光标所选择的轴。

图3-18

计时器 计数器

图3-19

含义:

- 需要的零件:所需的工件数(工件数量)
- 零件总数:所加工的工件的总数(实际总数)
- 零件计算:计数器记录了从计时开始加工的工件的总数
- 运行时间:在AUTOMATIC方式下NC程序总的运行时间(单位为秒) 在AUTOMATIC方式下,计时器累计在NC启动和程序结束/复位之间,所有程序的运行时间。每次系统上电时,计时器复零。所选择的NC程序的运行时间(单位为秒)
- 循环时间:刀具作用时间(单位为秒) 计算所选程序在NC启动和程序结束/复位之间的运行时间。新的NC程序启动 时,计时器复位。
- 切削时间

快速进给无效而到家有效时,在NC启动和程序结束/复位之间的所有NC程序中,计算进给轴的运行时间。出现停顿时,计算也停止。如果出现"系统使用缺省值上电"时,计时器自动复零。

扩展

按此键屏幕显示控制系统所有设定数据的清单。该数据分为:

- 一般设定数据
- 轴专用设定数据
- 通道设定数据

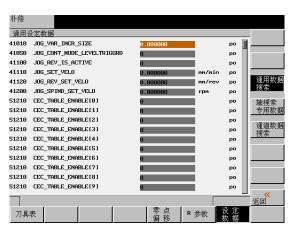


图3-20

3.5 R参数—"偏置/参数"操作区

功能

"R参数"窗口中列出了系统中所用到的所有R参数(参见章节8.9),需要时可以修改这些参数。

图3-21 R参数窗口

操作步骤

OFFSET PARAM 按"参数操作区域"键和"R参数"软键。

R 参数

把光标移到所要求的范围。输入数值。

按输入键或光标键确认。

手动控制运行 4

前言

手动控制运行指JOG方式和MDA方式。

基本设定	测量工件	测量刀具		设置
X=0				
Y=0	零点偏移	刀具表		
Z=0	Χ	长度		
	Υ			
设置关系	Z			切换 mm>ir
删除基本				
零偏				
x=y=z=0	中断	设置直径		
返回<<	计算	返回<<		返回<

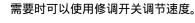
图4-1 Jog菜单树,操作区位置

基本设定			端面加工	设置
 X=0				
Y=0				
Z=0				
				
设置关系			+++	
删除基本零偏				
x=y=z=0			中断	
返回<<			确认	

图4-2 MDA菜单树,机床操作区

4.1 JOG运行方式—"加工"操作区

操作步骤


可以通过机床控制面板上的JOG键选择JOG运行方式。

操作相应的方向键X,Y或Z轴,可以使坐标轴运行。

只要相应的键一直按着,坐标轴就一直连续不断地以设定数据中规定的速度运行,如果设定数据中此值为"零",则按照机床数据中存储的值运行。

如果同时按动相应的坐标轴键和"快进"键,则坐标轴以快进速度运行。

在选择"增量选择"以步进增量方式运行时,坐标轴以所选择的步进增量行驶,步进量的大小在屏幕上显示。再按一次点动键就可以去除步进增量方式。 在"JOG"状态图上显示位置、进给值、主轴值和刀具值。

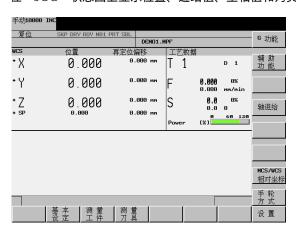


图4-3 "JOG"状态图

参数

表4-1 "JOG"状态图中参数说明

参数	说明
MCS	显示机床坐标系(MCS)中当前坐标轴地址。
Х	
Υ	
Z	
+X	坐标轴在正方向(+)或负方向(-)运行时,相应地显示正、负符号,坐
-Z	标轴到达位置之后不再显示正负符号。
实际位置(毫米)	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中坐标轴的当
	前位置。
再定位进给	如果坐标轴在"程序中断"状态下进入"JOG"方式运行,则在此区
	域显示每个轴从中断点所运行的位移。
G功能	显示重要的G功能
主轴S	显示主轴转速的实际值和给定值。
转/分	
进给率F	显示进给率的实际值和给定值。
毫米/分	
刀具	显示当前所用的刀具及其刀补号。

注意:

如果系统中装有第二主轴,工作主轴将以较小的字样显示。窗口中始终只显示一个主轴的数据。

系统显示主轴的以下方面信息:

- 主轴处于停止状态
- 主轴启动
- 如果两个主轴都有效时

显示工作主轴:

• 工作主轴启动时。

功率条指示了当前有效的主轴。

软键

基本设定

按此键,在相对坐标系中设定临时参考点和基本零偏。此功能用于设定基本零偏。

提供如下功能:

- 直接输入所要求的轴位置
 在加工窗口把光标定位到所要求的轴,输入新位置。按输入键或移动光标完成输入。
- 把所有的轴设为零 使用X=Y=Z=O功能,分别把坐标轴的当前位置设置为零。
- 设定单个轴为零 如果选择软键X=0,Y=0或者Z=0,则当前的位置值被设定为零。

按"设定坐标系"软键显示相对坐标系。以下的定义会修改此坐标系中的参考点。

说明:

一个改变了的基准零点偏置与所有其它的零点偏置无关。

测量工件

确定零点偏置(参见第3章)。

测量刀具

测量刀具偏置(参见第3章)。

设置

在该屏幕格式下,可以设定带有安全距离的退回平面,以及在MDA方式下自动执行零件程序时主轴的旋转方向(参见章节4.2.1)。此外还可以在此屏幕下设定JOG进给率和增量值。

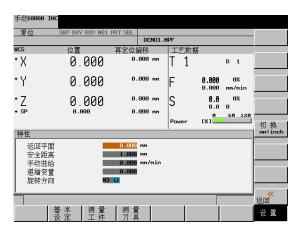


图4-4

返回平面: "端面"功能可以将刀具退回到指定的位置(位置Z)。

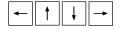
安全距离:到工件表面的安全间隙。该值定义了工件和工件表面之间的最小距

离。功能"端面"和"自动刀具测量"需使用此值。

手动进给:手动方式下的进给率值。

旋转方向:在JOG和MDA方式下,自动生成的程序中主轴的旋转方向。

切换 mm>inch 用此功能可以在公制和英制尺寸之间进行转换。


4.1.1 手轮的选通

操作步骤

在JOG运行状态出现"手轮"窗口

打开窗口,在"坐标轴"一栏显示所有的坐标轴名称,它们在软键菜单中也同时显示。视所连接的手轮数,可以通过光标移动在手轮之间进行转换。

移动光标到所选的手轮,然后按动相应坐标轴的软键。

在窗口中出现符号

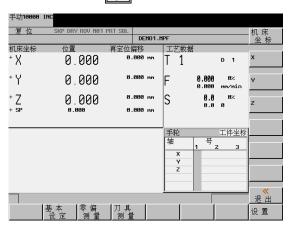


图4-5 "手轮"--窗口

机 床坐 标

用此软键"机床坐标"或"工件坐标"可以从机床坐标系或工件坐标系中选择坐标轴,用来选通手轮。所设定状态显示在"手轮"窗口中。

4.2 MDA运行方式(手动输入)

功能

在MDA运行方式下可以编制一个零件程序段加以执行。

注意:

此运行方式中所有的安全锁定功能与自动方式中一样,其它相应的前提条件也与 自动方式中一样。

操作步骤

通过机床控制面板上的MDA键可以选择MDA运行方式。

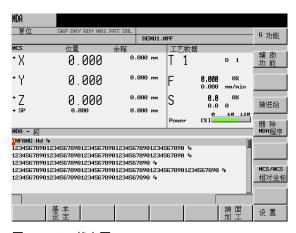


图4-6 MDA状态图

通过操作面板输入程序段。

按数控启动键执行输入的程序段。在程序执行时不可以再对程序段进行编辑。执行完毕后,输入区的内容仍保留,这样该程序段可以通过按数控启动键再次重新运行。

参数

表4-2 "MDA"窗口状态的参数说明

参数	说明
MCS	显示在机床坐标系或工件坐标系中当前的坐标轴。
X	
Υ	
Z	
+ X	坐标轴在正方向(+)或负方向(-)运行时,相应地在X、Y、Z之前显示正、
-Z	负符号。坐标轴到达位置之后不再显示正负符号。
实际位置	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中坐标轴的当前位
毫米	置。
剩余行程	在该区域显示机床坐标系(MCS)或工件坐标系(WCS)中坐标轴待运行的
	行程。
G功能	显示重要的G功能。
主轴S	显示主轴转速的实际值和给定值。
转/分	
进给率F	显示进给率的实际值和给定值,单位毫米/分钟或毫米/转。
刀具	显示当前的刀具及其刀补号(T,D)。
编辑窗口	在程序"停止"或"复位"状态有一个编辑窗口用于输入零件程序段。

注意:

如果系统中装有第二主轴,工作主轴将以较小的字样显示。窗口中始终只显示一个主轴的数据。

系统显示主轴的以下方面信息:

- 主轴处于停止状态
- 主轴启动
- 如果两个主轴都有效时

显示工作主轴:

• 工作主轴启动时。

功率条指示了当前有效的主轴。

软键

基 本设定

设定基本零点偏置(参见章节4.1)。

端 面 加 工 铣削端面(参见章节4.2.1)。

设置

参见章节4.1。

G功 能

G功能窗口中显示所有有效的G功能,每个G功能分配在一功能组下并在窗口中占有一固定位置。

通过按"光标向上键"或"光标向下键"可以显示其它的G功能。再按一次该键可以退出此窗口。

辅助功能

打开M功能窗口,显示程序段中所有有效的M功能。再按一次该键可以退出此窗口。

轴进给

按此键出现轴进给率窗口。 再按一次该键可以退出此窗口。

删除 MDA 程序 用此功能可以删除在程序窗口显示的所有程序段。

保存 MDA程序 在输入区中定义MDA程序保存的名称。或者,可以从列表中选择现有的程序名。 切换输入区和程序列表,使用TAB键。

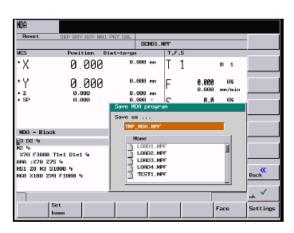


图4-7

MCS/WCS 相对坐标 实际值的显示与所选的坐标系有关。

4.2.1 端面铣削

功能

使用此功能可以为其后的加工准备好毛坯,而无需为此编写一专门的零件程序。

操作步骤

在MDA方式下使用端面键打开输入屏幕格式:

- 把坐标轴定位到起始点
- 在屏幕格式中输入参数值

在此屏幕格式中输入所有的参数,产生一个零件程序,然后按NC启动键就可以 执行此程序。此时关闭此屏幕格式,转换到加工屏幕格式,在此可以观察程序的 执行过程。

注意:

必须事先在设定参数菜单中定义退回平面和安全距离。

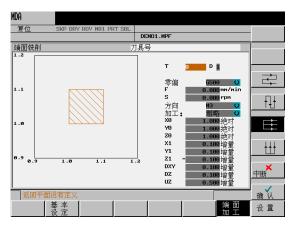


图4-8 端面铣削

表4-3 在端面铣削窗口的参数说明

参数	说明
刀具	输入所要使用的刀具。
	在加工之前换上刀具,为此调用一个用户程序,执行所有所要
	求的步骤。该用户循环由机床制造商提供(LL6)。
零偏	选择工件棱边的基准点。
进给率F	输入进给率,单位毫米/分钟或毫米/转。
主轴S	输入主轴速度。
转/分	
M3/M4	选择主轴的旋转方向。
加工	确定加工表面的质量。
	可以选择粗加工和精加工。
X0,Y0,Z0,X1,Y1毛坯	输入工件的几何尺寸。
尺寸	
Z1成品尺寸	Z轴方向成品尺寸。
DXY最大进刀量	进刀运动(X,Y)参数输入区。
DZ最大进刀量	进刀运动 (Z) 参数输入区。
UZ	粗加工余量输入区。

具有不同拉削方向定义的软键(往复/同步操作)

横坐标平行方向的加工,可以变换方向。

横坐标平行方向的加工,只在一个方向。

纵坐标平行方向的加工,可以变换方向。

纵坐标平行方向的加工,只在一个方向。

自动方式

前提条件

机床已经按照机床生产厂家的要求调整到自动运行方式。

操作步骤

按自动方式键选择自动运行方式。

屏幕上显示"自动方式"状态图,显示位置、主轴值、刀具值以及当前的程序段。

图5-1 "自动方式"状态图

T T			144.1.1	
	程序控制	程序段搜索	模拟	程序修改
	程序测试	计算轮廓	自动缩放	
	空运行进给	启动搜索	到原点	
	有条件停止	不带计算	显示	
	跳过	搜索断点	缩放 +	
	单一程序段	搜索	缩放 -	
	ROV有效		删除画面	
			光标粗/细	
	返回<<	返回<<	返回<<	返回<<

图5-2 自动方式菜单树

参数

表5-1 窗口中的参数说明

参数	说明
MCS	显示机床坐标系中或工件坐标系中当前的坐标轴。
X	
Υ	
Z	
+ X	坐标轴在正方向(+)或负方向(-)运行时,相应地在X、Y、Z之
-Z	前显示正、负符号。坐标轴到达位置之后不再显示正负符号。
实际位置	该区域显示机床坐标系(MCS)或工件坐标系(WCS)中坐标轴
毫米	的当前位置。
剩余行程	显示MCS或WCS中待运行的剩余行程。
G功能	显示重要的G功能。
主轴S	显示主轴转速的实际值和给定值。
转/分	
进给率F	显示进给率的实际值和给定值。
毫米/分	
或毫米/转	
刀具	显示当前的刀具及其刀补号(T,D)。
当前的程序段	语句区显示当前所执行零件程序的7个程序段,每行由窗口
	宽度所限制。如果程序处理速度很快,则语句区显示3个程
	序段,这样可以更好地观察程序执行情况。
	按软键 "程序顺序"可以返回到7段显示。

注意

如果系统中装有第二主轴,工作主轴将以较小的字样显示。窗口中始终只显示一个主轴的数据。

系统显示主轴的以下方面信息:

- 主轴处于停止状态
- 主轴启动
- 如果两个主轴都有效时

显示工作主轴:

• 工作主轴启动时。

功率条指示了当前有效的主轴。

软键

程序 抱

按此键显示所有用于选择程序控制方式的软键(如程序段跳跃,程序测试)。

程序测试

在程序测试方式下所有到进给轴和主轴的给定值被禁止输出,此时给定值区域显示当前运行数值。

空运行进 给

进给轴以空运行设定数据中的设定参数运行,执行空运行进给时编程指令无效。

有条件 停 止 程序在执行到有M01指令的程序段时停止运行。

跳过

前面有斜线标志的程序段在 程序运行时跳过不予执行(比如 "/N100")。

单 一 程序段 此功能生效时零件程序按如下方式逐段运行:每个程序段逐段解码,在程序段结束时有一暂停,但在没有空运行进给的螺纹程序段时为一例外,在此只有螺纹程序段运行结束后才会产生一暂停。单段功能只有处于程序复位状态时才可以选择。

ROV 有 效 按快速修调键,修调开关对于快速进给也生效。

< 返回 按退出键退出当前正在执行的窗口。

程序段 搜索

使用"程序段搜索"功能可以找到程序中任意一个位置。

计算轮廓

程序段搜索,计算照常进行。

在程序段搜索时,与正常程序方式下一样计算照常进行,但坐标轴不移动。

启 动搜 索

程序段搜索,直至程序段终点位置。

在程序段搜索时,与正常程序方式下一样计算照常进行,但坐标轴不移动。

不 带计 算

程序段搜索,不进行计算。

在程序段搜索期间不执行计算功能。

搜索

光标定位到中断点所在的主程序段,在子程序中自动设定搜索目标。

断点

搜索键提供功能"行查找"和"文本查找"。

搜索

利用线图可以显示编程的刀具轨迹(参见章节6.4)。

模 拟

程 序修 正

在此可以修改错误的程序,所有修改会立即被存储。

G功能

打开G功能窗口,显示所有有效的G功能。

G功能窗口下显示所有有效的G功能,每个G功能分配在一个功能组下并在窗口中占有一固定位置。通过操作翻页键可以显示其它的G功能。

通过"向上翻页键"或者"向下翻页键"可以显示其它的G功能。

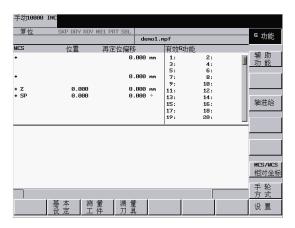


图5-3 "G功能"窗口

辅助功能

在此窗口显示所有有效的辅助功能和M功能。 再按此键,关闭窗口。

轴进给

按此键显示轴进给窗口。 再按此键,关闭窗口。

程序顺序

从7段程序转换到3段程序。

MCS/WCS 相对坐标 操作此键可以分别选择机床坐标系,工件坐标系或相对坐标系中的实际值。

外 部程 序

外部程序可以通过RS232接口传送到控制系统,然后按NC启动键后立执行。

5.1 选择和启动零件程序

功能 在启动程序之前必须要调整好系统和机床,因而在此也必须注意机床生产厂家的

安全说明。

操作步骤

执 行

程序控制

按自动方式键选择自动工作方式。

显示出系统中所有的程序。

← ↑ ↓ → 把光标移动到指定的程序上。

用"执行"键选择待加工的程序,被选择的程序名显示在屏幕区"程序名"下。

如果有必要,你可以确定程序的运行状态。

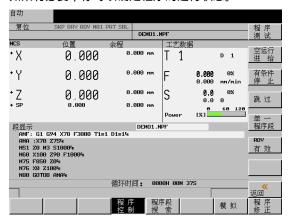


图5-4 "程序控制"窗口

按动数控启动键执行零件程序。

5.2 程序段搜索—"加工"操作区

操作步骤

前提条件: 程序已经选择(参见章节5.1), 系统处于复位状态。

程序段 搜索

使用程序段搜索功能查找所需要的零件程序。查询目标可以通过光标直接定位到程序段上。

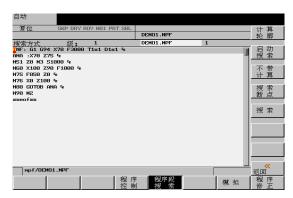


图5-5 "程序段搜索"窗口

计 算 轮 廓 程序段搜索,直至程序起始。

启 动搜 索

程序段搜索,直至程序结束。

不 带 计 算 程序段搜索,没有进行计算。

搜索断点

装载中断点

搜索

按此键显示对话框,输入查询目标。按此键显示对话框,输入待查询的行号或定义。

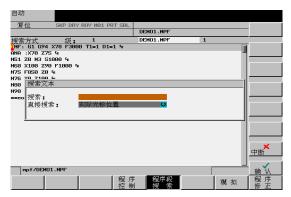


图5-6 输入待查询的目标

使用区域定义确定从哪一位置开始搜索。

搜索结果

窗口中显示所搜索到的程序段。

5.3 "停止"、"中断"零件程序

操作步骤

用数控停止键停止加工的零件程序,按数控启动键可恢复被中断了的程序运行。

用复位键中断加工的零件程序,按数控启动键重新启动,程序从头开始运行。

5.4 中断后重新返回

程序中断后(用"复位"键)可以用手动方式(JOG)从加工轮廓退出刀具。

操作步骤

选择"自动方式"。

程序段 搜索

打开搜索窗口,准备装载中断点坐标。

搜 索 断 点 装载中断点坐标。

计 算 轮 廓 起动中断点搜索,使机床回中断点。执行一个到中断程序段起始点的补偿。

按数控启动键继续加工。

5.5 中断后重新定位

程序中断后(用"数控停止"键)可以用手动方式(JOG)从加工轮廓退出刀具。控制器将中断点坐标保存,并能显示轴的路径差。

操作步骤

→}

选择"自动方式"。

按数控启动键继续加工。

注意

重新返回中断点时,所有的轴将同时移动。确保移动区域的畅通。

5.6 执行外部程序(由RS232接口输入)

功能

一个外部程序可由RS232接口输入控制系统,当按下"NC启动"键后,立即执行该程序。

当缓冲存贮器中的内容被处理后,程序被自动再装入。可以由外部设备,如一台装有PCIN数据传送软件的PC机执行该任务。

重要信息

始终当PCU和PC都断电时,才插拔RS232电缆。

操作顺序

前提:控制系统处于复位状态。

有关RS232接口的参数设定要正确(见第七章)而且此时该接口不可用于其它工作(如数据输入,数据输出,STEP7)。

外 部程 序

按这个软键。

在外部设备(PC)上使用PCIN并在数据输出栏激活程序输出。

此时程序被传送到缓冲存贮器并被自动选择且显示在程序选择栏中。

为有助于程序执行,最好等到缓冲存贮器装满为止。

用"NC启动"键开始执行程序,程序可被连续装入。 无论是程序运行结束还是按"复位"键,程序都自动从控制系统退出。

注意:

在"系统/数据I/O"区,按"错误登记"软键,你可以看到任何传送错误。 对于外部读入的程序,不可以进行程序段搜索。 零件编程

操作步骤

选择"程序"操作区

OFFSET PARAM 打开"程序"管理器,以列表形式显示零件程序或者循环目录。

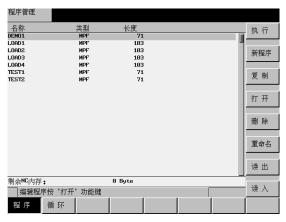


图6-1 程序管理器窗口

在程序目录中用光标键选择零件程序。为了更快地查找到程序,输入程序名的第一个字母。控制系统自动把光标定位到含有该字母的程序前。

软键

程 序

按程序键显示零件程序目录。

执 行

按下此键选择待执行的零件程序。在下次按数控启动键时启动该程序。

新程序

操作此键可以输入新的程序。

复 制

操作此键可以把所选择的程序拷贝到另一个程序中。

打 开

按此键打开待执行的程序。

删除

用此键可以删除光标定位的程序,并提示对该选择进行确认。 按下确认键执行清除功能,按返回键取消并返回。 重命名

操作此键出现一窗口,在此可以更改光标所定位的程序名称。 输入新的程序名后按确认键,完成名称更改,用返回键取消此功能。

读 出

按此键,通过RS232接口对零件程序进行保护。

读 入

按此键,通过RS232接口装载零件程序。

接口的设定请参照"系统"操作区域。零件程序必须以文本的形式进行传送。

循环

按此键显示标准循环目录。

只有当用户具有确定的权限时才可以使用此键。

删除

删除光标所在的循环,首先会出现确认提示框。

用户循环

显示"用户循环"目录表。

对应于不同的存储级,可显示"新程序,复制,打开,删除,重命名,读出和读入"软键。

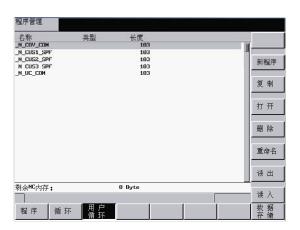


图6-2

保存数据

保存数据

该功能将非永久性存储器中的内容保存到永久性存储器中。

前提条件:当前无程序执行。 数据备份时,不要进行任何操作。

6.1 输入新程序—"程序"操作区

操作步骤

选择"程序"操作区,显示NC中已经存在的程序目录。

新程序

按动"新程序"键,出现一对话窗口,在此输入新的主程序和子程序名称。主程序扩展名.MPF可以自动输入,而子程序扩展名.SPF必须与文件名一起输入。

图6-3 新程序输入屏幕格式

Î J Z

输入新文件名。

按"确认"键接收输入,生成新程序文件。现在可以对新程序进行编辑。

用中断键中断程序的编制,并关闭此窗口。

6.2 零件程序的编辑—"程序"运行方式

功能

零件程序不处于执行状态时,可以进行编辑。 在零件程序中进行的任何修改均立即被存储。

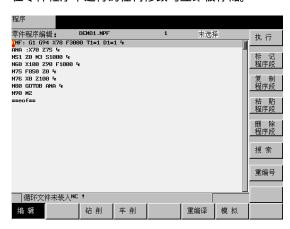


图6-4 程序编辑器窗口

菜单树

编辑	钻削	铣削	重编译	模拟	
执行	钻孔	端面铣削		自动缩放	
标志程序段		轮廓铣削		到原点	
复制程序段	沉孔钻削	矩形孔铣削		显示	
粘贴程序段	深孔钻削	圆形孔铣削		缩放 +	
删除程序段	刚性钻孔	图案铣削		缩放 -	
搜索	带补偿夹具			删除画面	
重编号	孔图形			光标粗/细	
	取消选择				
FTC					
示教					

图6-5 程序菜单树

软键

编辑

程序编辑器。

执 行

使用此键,执行所选择的文件。

标 记程序段

按此键,选择一个文本程序段,直至当前光标位置。

复 制 程序段 用此键,拷贝一程序段到剪切板。

粘 贴 程序段 用此键,把剪切板上的文本粘贴到当前的光标位置。

删 除 程序段 按此键,删除所选择的文本程序段。

搜索

用"搜索"键和"搜索下一个"键在所显示的程序中查找一字符串。 在输入窗口键入所搜索的字符,按"确认"键启动搜索过程。 按"返回"键则不进行搜索,退出窗口。 按此键继续搜索所要查询的目标文件。

重编号

使用该功能,替换当前光标位置到程序结束处之间的程序段号。

轮廓

关于轮廓编程,参见章节6.3。

钻削

参见"循环"手册。

铣削

参见"循环"手册。

模拟

参见章节6.4。

重编译

在重新编译循环时,把光标移到程序中调用循环的程序段中。使用此功能,译码循环名,并在其屏幕格式中处理相应的参数。如果所设定的参数不在有效围之内,则该功能会自动进行判别,并且恢复使用原来的缺省值。 屏幕格式关闭之后,原来的参数就被所修改的参数取代。

注意:

仅仅是自动生成的程序块/程序段才可以重新进行编译。

6.3 蓝图编程

功能

为了快速、可靠地编制零件程序,系统提供了不同的轮廓元素。编程时,只需要在屏幕格式中填入必要的参数。

利用轮廓屏幕格式可以编程如下的轮廓元素或轮廓段:

- 直线段,有终点坐标或角度大小
- 圆弧段,有圆心坐标、半径大小和终点坐标
- 直线-直线轮廓段,有角度大小和终点坐标
- 直线-圆弧轮廓段,用切线过渡:由角度、半径和终点坐标计算
- 直线-圆弧轮廓段,任意过渡:由角度、圆心和终点坐标计算
- 圆弧-直线轮廓段,用切线过渡:由角度、半径和终点坐标计算
- 圆弧-直线轮廓段,任意过渡:由角度、圆心和终点坐标计算
- 圆弧-圆弧轮廓段,用切线过渡:由圆心、半径和终点坐标计算
- 圆弧-圆弧轮廓段,任意过渡:由圆心、半径和终点坐标计算
- 圆弧-直线-圆弧轮廓段,用切线过渡
- 圆弧-圆弧-圆弧轮廓段,用切线过渡
- 直线-圆弧-直线轮廓段,用切线过渡

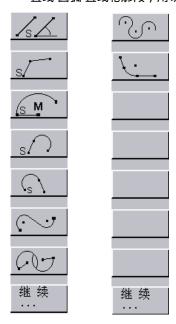


图6-6

有三种变量可用作坐标:绝对值,增量值或极坐标。

软键

使用这些软键功能可以扩展到各个轮廓元素。

首次打开轮廓屏幕时或执行一个光标动作后,必须告知系统相应轮廓段的起始 点。其它所有的动作将参考该点。

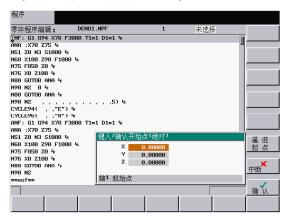


图6-7 设定起始点

"回起始点"软键功能将产生一个NC程序段,移动到定义的坐标位置。

直线段编程帮助

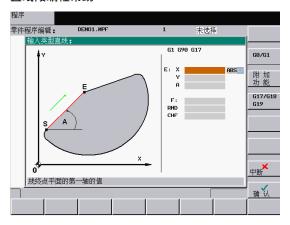


图6-8

以绝对值(ABS),增量值(INC)(相对于起始点)或者极坐标值(POL)输入直线的终点。当前的设定值在关联的屏幕中显示。

也可以通过一个坐标和轴与直线间的角度定义终点。

如果使用极坐标计算终点,还需要极点到终点(在区域1中输入)间的矢量长度,以及矢量与极点间的角度(在区域2中输入)。

前提是极点已经事先定义。该极点一直有效,直到定义了新此极点。

⊕极坐标

在出现的对话框中必须输入极点的坐标。极点需参考所选的平面。

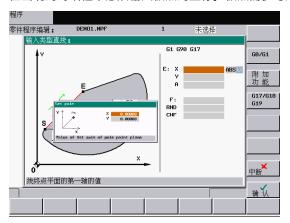


图6-9

G0/G1

如果选择了此功能,选择的程序段将以快速进给率进给,或者按照编程的进给率进给。

附加功能

必要时,可以在区域中输入附加功能。使用空格,逗号或引号将命令分开。

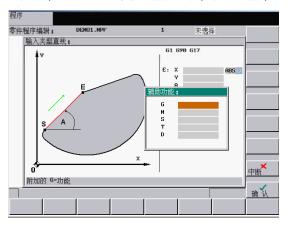


图6-10

此关联屏幕可用于所有轮廓元素。

G17/G18/G19

该功能可选择相应的加工平面G17(X-Y),G18(Z-X)或G19(Y-Z)。轴名称将根据所选的平面相应变化。

此关联屏幕可用于所有轮廓元素。

OK

按"OK"软键将接受所有定义在零件程序中的命令。 选择"退出"将不保存设定值而退出关联屏幕。

此功能用来计算两条直线间的中间点。定义第二条直线的终点坐标以及每条直线的角度。

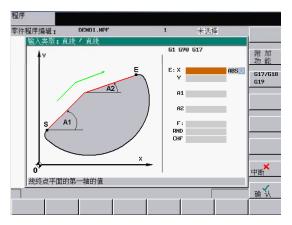


图6-11

表6-1 屏幕中的输入区域

直线2的终点	Е	输入直线2的终点坐标
直线1角度	A1	角度值在0到360度间,逆时针方向
直线2角度	A2	角度值在0到360度间,逆时针方向
进给率	F	进给率

在该关联屏幕中,使用终点和中心点坐标可以创建圆弧程序。

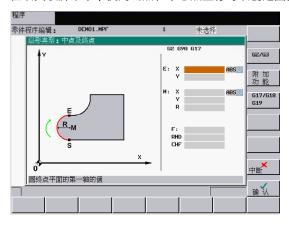


图6-12

在输入区域中输入终点和中心点坐标。不需要的输入区域被隐藏。

G2/G3

使用此软键将旋转方向从G2切换到G3。G3将显示。再次按该软键则切换回G2。

OK

按 "OK"软键将接受所有定义在零件程序中的命令。

此功能将计算直线和圆弧间的切线过渡。直线必须由起始点和角度定义。圆弧必 须由半径和终点定义。

计算任意过渡角度的中间点时,POI软键功能将显示中间点的坐标。

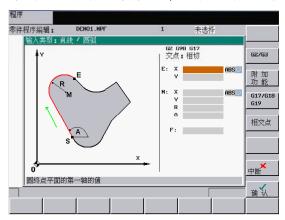


图6-13 直线 - 圆弧的切线过渡

表6-2 屏幕中的输入区域

圆弧终点	Е	输入圆弧终点坐标
直线角度	А	角度值在0到360度间,逆时针方向
圆弧半径	R	圆弧半径输入区
进给率	F	插补进给率输入区
圆弧中心点	M	如果在直线和圆弧间没有切线过渡,则必须知道圆弧的中心点。定义中心点时取决于在前一个程序段中选择的计算类型(绝对值,增量值或者极坐标)。

G2/G3

使用此软键将旋转方向从G2切换到G3。G3将显示。再次按该软键则切换回G2。 屏幕上又显示G2。

POI

你可以选择切线过渡或任意过渡。

根据你所输入的数据,屏幕上可以产生一直线和一圆弧段。

如果存在几个中间点,必须从对话框中选择所需的中间点。如果某个坐标没有输入,程序将通过现有的定义计算出该坐标值。如果有几种方法可选择,则出现选择的对话框。

此功能用于计算直线和圆弧段间的切线过渡。圆弧段必须使用参数定义起始点和 半径,直线必须使用参数定义终点和角度。

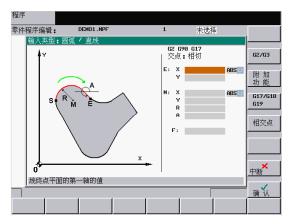


图6-14 切线过渡

表6-3 屏幕中的输入区域

直线终点	Е	以绝对值,增量值或极坐标形式定义直线终点
圆弧中心点	М	以绝对值,增量值或极坐标形式定义圆弧中心点
圆弧半径	R	圆弧半径输入区
直线1角度	А	相对于中间点,角度值在0到360度间,逆时针方 向
进给率	F	插补进给率输入区

G2/G3

使用此软键将旋转方向从G2切换到G3。G3将显示。再次按该软键则切换回G2。 屏幕上又显示G2。

POI

你可以选择切线过渡或任意过渡。

根据你所输入的数据,屏幕上可以产生一直线和一圆弧段。如果存在几个中间点,必须从对话框中选择所需的中间点。

此功能用于在两个圆弧段间的切线方向插入一直线。圆弧段由中心点和半径确 定。根据所选择的旋转方向,产生不同的切线点。

在显示的屏幕中,输入参数值定义圆弧段1的圆心和半径以及圆弧段2的终点,圆心和半径。而且,还必须选择圆弧的旋转方向。在帮助窗口中显示当前的设定值。按"OK"键,通过输入的值计算三个数据块并插入零件程序中。

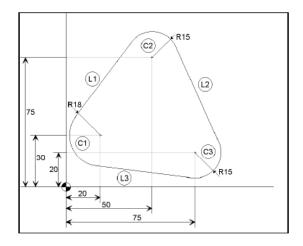


图6-15

表6-4 屏幕中的输入区域

终点	Е	平面中的第一第二几何轴。
		如果没有定义坐标,此功能计算出所插入
		的圆弧段和圆弧段2间的中间点。
圆弧1圆心	M1	平面的第一和第二几何轴(绝对值坐标)
圆弧1半径	R1	圆弧半径1输入区
圆弧2圆心	M2	平面的第一和第二几何轴(绝对值坐标)
圆弧2半径	R2	圆弧半径2输入区
进给率	F	插补进给率输入区

根据你所输入的数据,屏幕上产生一直线和两个圆弧段。


G2/G3

使用此软键定义两个圆弧段的旋转方向。有以下几种可能:

圆弧段1	圆弧段2
G2	G3
G3	G2
G2	G2
G3	G3

以绝对值,增量值或极坐标形式定义终点和圆心坐标。在关联的屏幕中显示当前的设定值。

举例

E知: R1 18mm R2 15mm R3 15mm M1 X20Y30 M2 X50Y75 M3 X75Y20

起始点:点X=2,Y=30mm为起始点坐标。

步骤:

选择"轮廓"菜单 。 出现定义起始点的关联屏幕。

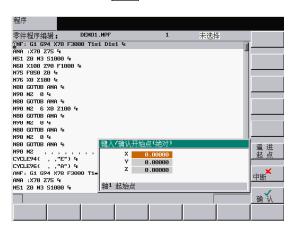


图6-16 设定起始点

按"OK"确认输入值;然后出现定义轮廓段C1-L1-C2的屏幕。使用G2/G3软键定义两个圆弧段的旋转方向,然后填入参数列表。可以不定义终点,但必须定义X50 Y90(75+R15)。

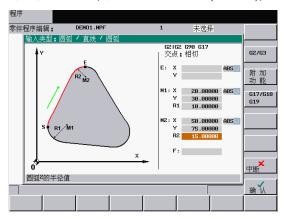


图6-17 调用屏幕

填完关联屏幕后,按"OK"退出屏幕。然后便计算中间点并产生两个程序段。

图6-18 步骤1的结果

由于未定义终点,将使用直线L1的中间点和圆弧段C2作为下一个轮廓定义的起始点。

现在,重新调用关联屏幕,计算轮廓段C2-C3。

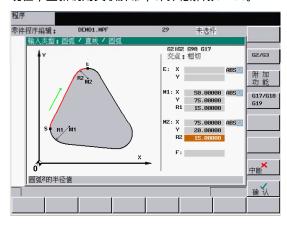


图6-19 调用屏幕

图6-20 步骤2的结果

步骤2的终点是直线L2的中间点,圆弧段为C3。然后,必须计算起始点2-圆弧段C1形成的轮廓段。

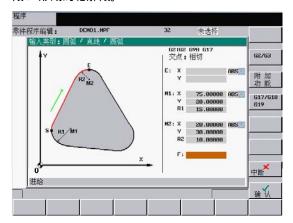


图6-21 调用屏幕

图6-22 步骤3的结果

然后连接新的终点和起始点。此时,可以使用功能。

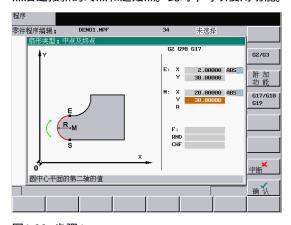


图6-23 步骤4

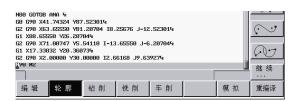


图6-24 步骤4的结果

此功能计算两个圆弧段间的切线过渡。圆弧段1必须由起始点,圆心和半径参数 定义,圆弧段2必须由终点和半径参数定义。

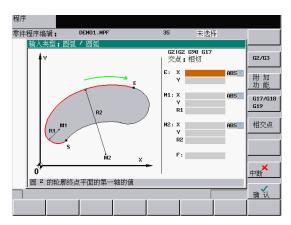


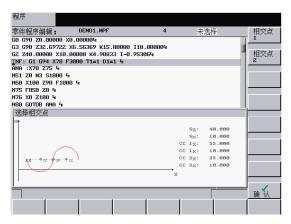
图6-25 切线过渡

表6-5 屏幕中的输入区域

圆弧2的终点	Е	平面中的第一第二几何轴。
圆弧1圆心	M1	平面的第一和第二几何轴
圆弧1半径	R1	圆弧半径1输入区
圆弧2圆心	M2	平面的第一和第二几何轴
圆弧2半径	R2	圆弧半径2输入区
进给率	F	插补进给率输入区

根据事先所选择的计算类型(绝对值,增量值或极坐标)定义点。不需要的输入区域被隐藏。如果圆心坐标值省略,则必须定义半径。

G2/G3


使用此软键将旋转方向从G2切换到G3。G3将显示。再次按该软键则切换回G2。 屏幕上又显示G2。

POI

你可以选择切线过渡或任意过渡。 根据你所输入的数据,屏幕上产生两个圆弧段。

选择中间点

如果存在几个中间点,必须在对话框中选择所需的中间点。

如6-26 选择中间点

POI 1

使用中间点1画出轮廓。

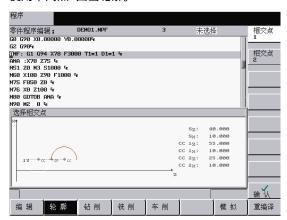


图6-27

POI 2

使用中间点2画出轮廓。

图6-28

OK

按OK键确认显示轮廓的中间点并输入零件程序中。

此功能可以在两个相邻的圆弧段间插入一个圆弧。原有的圆弧段由它们的圆心和 半径定义,插入的圆弧只由它的半径定义。

操作者可以在相应的屏幕中定义圆弧1的圆心和半径 圆弧2的终点 圆心和半径。 另外,还必须定义插入的圆弧3的半径以及旋转方向。

在帮助屏中显示了所选择的设定值。

按OK键将通过输入的值计算3个程序段屏将它们插入零件程序。

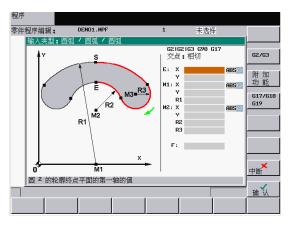
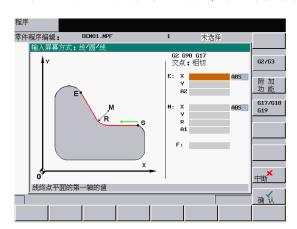


图6-29 圆弧-圆弧-圆弧轮廓段计算屏幕

终点	E	平面的第1和第2几何轴。	
		如果未输入坐标,此功能将给出插入的	
		圆弧段和圆弧段2间的中间点。	
圆弧1圆心	M1	平面的第1和第2几何轴。	
圆弧1半径	R1	半径1的输入区域	
圆弧2圆心	M2	平面的第1和第2几何轴。	
圆弧2半径	R2	半径2的输入区域	
圆弧3半径	R3	半径3的输入区域	
进给率	F	插补进给率的输入区域	

如果无法通过前面的程序段计算起始点,则在"起始点"屏幕中输入相应的坐标。使用此软键定义两个圆弧的旋转方向。有以下几种选择:

G2/G3


圆弧1	插入的圆弧	圆弧2
G2	G3	G2
G2	G2	G2
G2	G2	G3
G2	G3	G3
G3	G2	G2
G3	G3	G2
G3	G2	G3
G3	G3	G3

圆心和终点可以以绝对值,增量值或极坐标的形式定义。当前的设定值在关联的 屏幕中显示。

此功能用于在两条直线中插入一个圆弧(使用切线过渡)。圆弧由圆心和半径定义。 定义第二条直线的终点坐标,或者角度A2。第一条直线由起始点和角度A1定义。 在屏幕中可以定义以下内容:

+7.4%		<i>tt</i> : ⊢ ∪ ∪∪= <i>T</i> : ∪∪=
起始点	•	笛卡儿坐标系坐标
	•	起始点是极坐标
圆弧段	•	笛卡儿坐标系坐标和半径
	•	圆心是极坐标
终点	•	笛卡儿坐标系坐标
	•	终点是极坐标
起始点	•	笛卡儿坐标系坐标
	•	起始点是极坐标
圆弧段	•	一个是笛卡儿坐标和半径
	•	角度A1或A2
终点	•	笛卡儿坐标系坐标
	•	终点是极坐标

如果无法从前面的程序段计算起始点,则必须由操作者设置。

图6-30 直线-圆弧-直线

表6-6 屏幕中的输入区域

直线2终点	E	E 定义直线的终点	
圆弧的圆心	М	平面的第1和第2轴	
直线1角度	A1	定义的角度为逆时针方向	
直线2角度	A2	定义的角度为逆时针方向	
进给率	F	进给率输入区	

可以以绝对值,增量值或极坐标定义终点和圆心。根据所定义的数据,屏幕将产生一个圆弧和两条直线程序段。

使用此软键将旋转方向从G2切换到G3。G3将显示。再次按该软键则切换回G2。 屏幕上又显示G2。

G2/G3

6.4 模拟

功能

编程的刀具轨迹可以通过线图表示。

操作步骤

当前为自动运行方式,并且已经选择了待加工的程序(参见章节5.1)。

模 拟

屏幕显示初始状态。

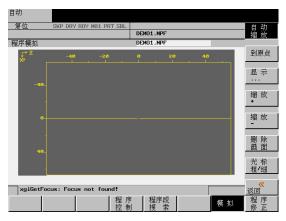


图6-31 模拟初始状态

按数控启动键开始模拟所选择的零件程序。

软键

自动缩放

操作此键可以自动缩放所记录的刀具轨迹。

到原点

按此键,可以恢复到图形的基准设定。

显示

按此键,可以显示整个工件。

缩放+

按此键,可以放大显示图形。

缩放-

按此键,可以缩小显示图形。

删除画面

按此键,可以擦除显示的图形。

光 标 粗/细 按此键,可以调整光标的步距大小。

6.5 通过RS232接口进行数据传送

功能

通过控制系统的RS232接口可以读出数据(比如零件程)并保护到外部设备中,同样也可以从那儿把数据再读入到系统中。当然,RS232接口必须首先与数据保护设备进行匹配。

文件类型

- 零件程序
 - 零件程序
 - 子程序
- 循环
 - 标准循环

操作顺序

OFFSET 程序

打开"程序管理器",进入NC程序主目录。

读 出

用此键通过RS232接口存储零件程序。

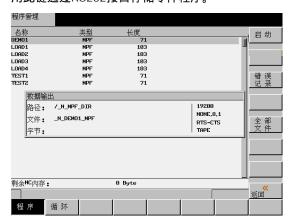


图6-32 读出程序

全部文件

使用此键选择所有的文件。

选择零件程序目录中所有的文件,并开始数据传送。

启动

用此键启动输出过程。

从零件程序目录中输出一个或几个文件。按"停止"键中断传送过程。

按此键通过RS232接口装载零件程序。

读 入

记录

错误

错误记录

所有传送的文件均列表并显示状态信息。

- 对于输出文件:
 - 文件名称
 - 故障应答
- 对于输入文件:
 - 文件名称和路径参数
 - 故障应答

传送信息:

OK	传送结束,没有出错。
ERR EOF	接收到文本结束字符,但存档文件不完整。
Time out	时间监控报警传送中断。
User Abort	通过软键 " 停止 " 键中断传送。
Error Com	端口COM1 出错。
NC/PLC Error	NC 故障报警。
Error data	数据出错
	1.文件读入时带/不带先导符
	或者
	2.穿孔带形式传送的文件没有文件名。
Error File Name	文件名不符合NC规范。

7

功能

在"系统"操作区可以使用所有的功能,用于参数设定,分析NCK和PLC。

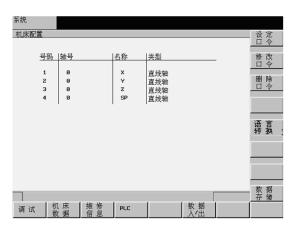


图7-1 系统初始状态

根据所选择的功能,可以在水平软键条和垂直软键条之间进行切换。下面给出的菜单树仅介绍水平功能的情况。

调试	机床数据	维修信息	PLC	数据入/出	
NC	通用数据	轴信息	Step7 连接	数据选择	
PLC	轴数据	驱动器信息	PLC状态	RS232 设置	
	其它数据	Profibus服务	状态表		
	驱动器数据				
	显示机床数据				
	伺服轨迹	伺服轨迹			
		版本	编PLC 文本		

图7-2 系统菜单树(仅水平级)

软键

调 试

启动调试

NC

选择NC上电方式 用光标选择所要求的方式。 • 正常上电

系统新启动

- 用缺省值启动
 - 用标准值新启动 (供货时的初始状态)
- 用存储值启动

用上次关机时所存储的数据新启动(参见数据保护)

PLC

PLC可以按下列方式启动:

- 冷启动
- 总复位

此外,(也可以用排故方式进行启动。

按"确认"键复位控制系统,并按所选择的方式重新启动。按"返回"键系统不执行任何动作而返回系统起始状态。

机 床数 据

机床数据

修改机床数据对机床的影响很大。

图7-3 床数据显示行的结构

生效方式	So	立即生效
	Cf	确认后生效
	Re	复位
	Po	上电

注意

参数设置错误会损坏机器。

机床数据可以分为不同的数据组。

通用数据

通用机床数据

打开通用机床数据窗口,用翻页键向前和向后翻页。

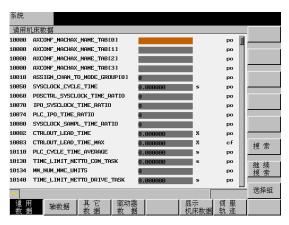


图7-4 机床数据起始状态

轴数据

轴专用机床数据

按此键可以打开轴数据窗口,用软键"轴+"和"轴-"选择相应的坐标轴。

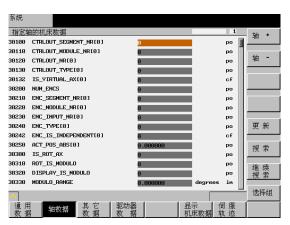


图7-5

显示X坐标轴的数据。

轴 +

按软键"轴+"或"轴-"可以在屏幕上显示下一个轴或前一个轴的机床数据区。

轴 -

搜索

搜索

继 续 搜 索 按此键继续接下去的搜索。

选择组

使用该功能可以在当前的机床数据组中选择不同的显示筛选器。以下的软键可供使用:

"专家"键: 按此键选择专家方式下供显示的所有数据组。

" 筛选器有效 " 键: 按此键激活所选择的数据组。离开该窗口后,只有所选

择的数据在机床数据画面下可见。

"选择所有数据"键: 按此键选择所有显示的数据组。

"不选所有数据"键: 所有的数据组均不选择。

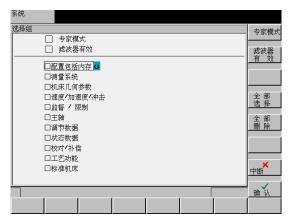


图7-6 显示筛选器

通道数据

通道专用机床数据

按此键可以打开通道专用的机床数据窗口,光标键向前翻页或向后翻页。

驱动器数据

驱动机床数据

打开驱动专用机床数据窗口,用光标键向前翻页或向后翻页。

显 示 机床数据

显示机床数据

按此键显示机床数据,用光标键向前翻页或向后翻页。

参考

有关机床数据的说明,请参考以下文献:

- "SINUMERIK 802D 安装调试"
- "SINUMERIK 802D 功能说明"。

维 修信 息

显示轴信息窗口

轴信息

该窗口显示轴驱动信息。 按软键"轴+"和"轴-"可以显示后一轴或前一轴的信息。

驱动器信息

该窗口显示数字驱动信息。

PROFIBUS 服务 该窗口显示现场总线设定信息。

伺 服 轨 迹 驱动的时候使用示波器功能,从而可以用图像显示:

- 速度给定值
- 轮廓偏差
- 滞后量
- 当前位置值
- 设定位置值
- 精准停/粗准停

可以。按不同的标准启动记录,保证与内部控制状态同步记录。必须用"信号选择"键进行设定。

对记录结果进行分析时可以使用如下功能:

- 改变横坐标和纵坐标刻度线。
- 使用水平标记线和垂直标记线测量某个值。
- 测量两个标记位置之间横坐标差值和纵坐标差值。
- 把结果作为一个文件存储到零件程序目录下。这样可以通过PCIN读出文件, 并通过MS Excel编辑图形。



图7-7 伺服轨迹初始状态

图中标题栏内有横坐标刻度和标记线差值。 上图可以用光标键在可见区域内移动。

图7-8 各区域的定义

选 择信 号

在此菜单下可以选择待测量的轴,测量时间,极限值,预触发和重新触发次数以及触发条件。

图7-9

• 坐标轴选择:在"坐标轴"区域可以选择不同的坐标轴。

• 信号类型: 滞后量

调节器差值

轮廓偏差

位置实际值

速度实际值

速度给定值

补偿值

参数组

位置给定值调节器输入端

速度给定值调节器输入端

加速度给定值调节器输入端

速度预调值

信号精准停

信号粗准停

• 状态 开 在通道中进行记录

关 通道不工作

在屏幕的下半部,可以为通道设定参数"测量时间"和"触发"类型。所有其它的通道均采用这种设定。

- 测量时间的确定:在此选项下直接给定测量时间,单位毫秒。
- 触发类型的选择:把光标移到触发类型选项上,按触发键进行选择。
 - 立即开始,即在按下开始键后就立即触发
 - 正沿触发
 - 负沿触发
 - 精准停到达
 - 粗准停到达

标 记 T-关 标 记 V-关 用软键"标志打开/标志关闭"可以打开或关闭辅助线。

固 定 T-标记 固 定 V-标记 利用标记线可以计算水平方向或垂直方向的差值大小。为此只需把刻度线定位到起始点,然后按软键"固定H-标记"或"固定T-标记"。移动标记线之后,屏幕上就会显示出起始点和当前标记位之间的差值,而软键名则转换为"释放H-标记"或"释放T-标记"。

计 时 范 围+ 此功能用于放大/缩小计时范围。

计 时 范 围 -

垂 直比 例+

此功能用于增加/降低分辨率(放大倍率)。

垂 直 比 例 -

显示轨迹

按此键打开下一个菜单,在此菜单中可以使用供显示或隐藏图形的软键。如果一个软键背景为暗,则显示所选轨迹通道的图形。

标 记 步 长 使用该功能可以定义标记线的宽度大小。

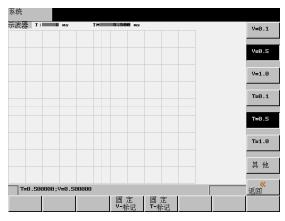


图7-10

通过移动光标键,按一个增量为一个步距移动标记线。大的步距尺寸可以通过在输入区输入数值确定,该值说明每移动一个光标标记线可以移动多少个刻度线。如果标记线移动到图形的边缘,则水平方向或垂直方向的下一个刻度线会自动跳出。

文 件 服 务 该功能用于存储或装载轨迹参数。

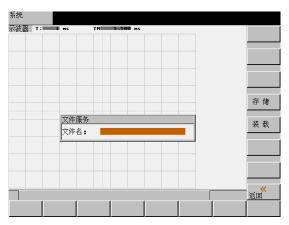


图7-11

在文件名区域填写文件名,无需扩展名。

按存储键把文件存储在零件程序目录中指定文件下。该文件可以通过RS232接口读出,并可以用 MS Excel 对数据进行编辑。

按装载键上载指定文件,并以图形方式显示出数据。

版本

在此窗口显示版本号以及各个CNC部件的产生日期。

HMI 细节

HMI细节在服务时使用并且只能通过用户密码访问。将显示操作者编程的所有程序以及它们的版本号。通过重新载入软件,版本号可以不同。

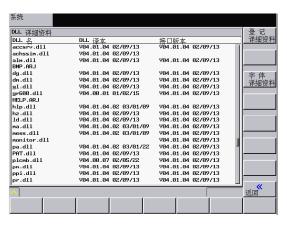


图7-12 "HMI细节"菜单

登记细节

此功能可以以列表形式显示待执行的程序的硬键(功能键"加工","偏移", "编程"…)分配情况。各列的具体含义,请参照下表。

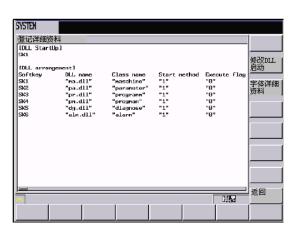


图7-13

表7-1 [DLL配置]下条目的含义

K, [Seemba] I W	
名称	含义
软键	SK1到SK7硬键配置1到7
DLL名称	待执行程序的名称
等级名称	此列定义了接收信息的标识
启动方法	程序启动后执行的功能号
执行标志	0- 程序由基本系统管理
(执行类型)	1- 基本系统启动程序,然后控制载入的程序
文本文件名称	文本文件的名称(无扩展名)
软键文本标识	保留
(SK ID)	
密码级别	程序的执行取决于密码级别
SK 等级	保留
SK 文件	保留

字体细节

此功能以列表的形式显示载入字符组的数据。

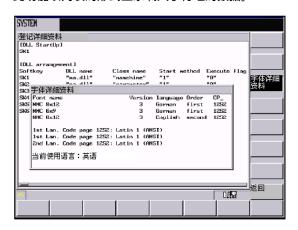


图7-14

修改 DLL 启动 定义启动程序。

系统上电以后,系统自动启动"加工"操作区(SK1)。如果需要不同的启动动作,可以使用此功能定义。

键入当系统上电后所需启动的程序号。

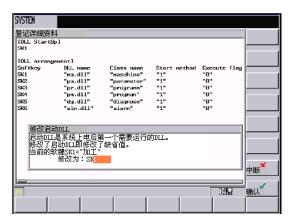


图7-15 修改DLL启动

PLC

按此键可以使用其它诊断功能,并可调试PLC。

STEP 7 连接 用此功能可以使PLC与外部S7-200编程软件包进行通讯。进行通讯时在状态栏中会显示一个符号(比较表1-2)。

如果系统上RS232接口正用于数据传送,则必须等到数据传送结束后,才可以通过此接口使系统与编程软件包进行链接。

链接起动以后,RS232接口进行初始化。

图7-16 激活/关闭用于编程工具的RS232接口

可以在转换区设定波特率。可以设定为:9600/19200/38400/57600/115200。

图7-17 modem有效时的设定

modem有效时("ON"),可以另外选择数据格式10位或11位。

● 奇偶性: "无" 采用10位格式

"偶" 采用11位格式

• 停止位:1(缺省时设定;随系统初始化时有效)

• 数据位:8(缺省时设定;随系统初始化时有效)

连 接开 启

按此键激活PC和系统之间的连接,软键名切换为"连接关闭"。

连 接 关 闭 有效状态及无效状态不受上电(POWER ON)的影响一直保持,用缺省值引导除 外

按返回键离开此窗口返回。

Modem 设定 在该区域中对Modem进行设定。 可以的modem类型有:模拟Modem ISDN机盒 移动电话

通讯双方的类型必须一致。

图7-18 模拟modem的设定值

定义一些AT字符串时,AT只能写一次。剩余的命令可以跟随其后,如,AT&FSO=1E1XO&W。如何使各个命令和它们的参数完全一致,可以参照制造商手册,因为同一个生产商的设备间也不完全一样。因此控制系统的缺省值只是最小值,而且在首次使用时,必须完全确认。出于安全考虑,也可以先将设备和PC连接,利用接口程序优化连接。

图7-19 ISDN机盒的设定值

PLC 状 态 在此菜单下显示PLC下列各个单元的瞬时状态,需要时可以进行修改。 可以同时显示16个操作地址。

输入端	1	输入字节(lbx),输入字(lwx),输入双字(ldx)
输出端	Q	输出字节(Qbx),输出字(Qwx),输出双字(QDx)
标志器	М	标志字节(Mx),标志字(Mw), 标志双字(MDx)
计时器	Т	计时器(Tx)
计数器	С	计数器(Zx)
数据	V	数据字节(Vbx),数据字(Vwx),数据双字(VDx)
格式	В	二进制
	Н	十六进制
	D	十进制
		在双字方式中不可以使用二进制。计数器和计时器使用十
		进制。

在相应的输入区输入符号名称或者操作地址。

在屏幕格式定义以后,屏幕显示当前的运算值。该值可以连续更新。

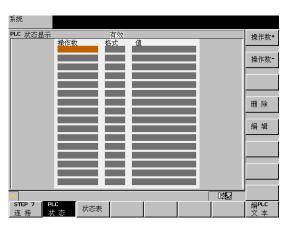


图7-20 PLC状态显示

有下面的PLC软键可供使用。

操作数+

操作地址每次增加1。

操作数-

操作地址每次减少1。

删除

所有的操作地址被删除。

编辑

中断数值循环更新过程,可以修改操作地址数值。

状态表

用此功能可以很快查找到PLC信号,并可进行观察和修改。可以提供3个表:

输入端(缺省设定); 左表标志(缺省设定); 中间表输出端(缺省设定); 右表

● 变量

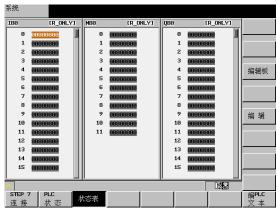


图7-21 PLC状态表主画面

编辑

按此键修改变量值。

编辑板

使用此键可以给当前编辑板分配一个新的区域。在此屏幕格式下有4个区域可供选择。每个区域可以分配一个起始地址,起始地址必须在相应的输入框中输入。在退出屏幕格式后,该设定被自动存储。

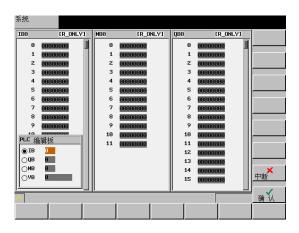


图7-22 数据类型屏幕格式

使用光标键和向前翻页键/向后翻页键可以定位在不同的列。

PLC 程序

使用梯形图进行的PLC诊断(参见章节7.1)。

程序列表

可以使用PLC选择零件程序并通过PLC运行它们。为此,PLC用户程序将程序号写入PLC接口,然后根据程序列表转换为程序名称。最大可以管理255个程序。

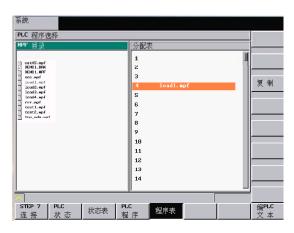


图7-23

屏幕中显示CUS目录下的所有文件以及它们的分配情况以列表(PLCPROG.LST)的形式列出。可以使用TAB键在两列之间切换。对于具体的文本,会显示"复制","插入"和"删除"的软键功能。如果光标位于左侧,只能使用"复制"功能。在屏幕的右侧,可以使用"插入"和"删除"功能修改对照表。

复制

...将所选的文件名写入粘贴板。

插入

...将文件名粘贴到当前光标位置。

删除

...将所选的文件名从列表中删除。

对照表结构(PLCPROG.LST文件): 它分为三个区域:

程序号	区域	保护级
1100	用户区	用户
101200	机床制造商	机床制造商
201255	西门子	西门子

每个程序都有相应的注释行。每行分为两列,必须用TAB,空格或"¹"隔开。 在第一列定义PLC的参考号,第二列为文件名。

举例: 1 Welle.mpf

2 Kegel.mpf

编辑 PLC 报警文本 使用此功能可以插入或修改PLC报警信息。移动光标选择所要求的报警号,此时在输入行中显示当前的报警文本。

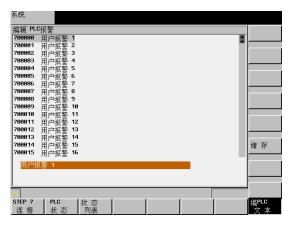


图7-24 PLC报警文本

在输入行输入新的文本。按"输入"键确认输入,然后按"存储"键进行存储。 有关符号的规定请参见安装调试手册。

数 据 入/出 在此窗口中屏幕格式分为两列,在左列可以选择数据组,在右列可以选择不同的用于传送的数据。如果光标位于左列,则按"读出"键输出所有的数据组。如果光标位于右列,则仅传送单个文件。

图7-25

在"NC卡"选择区,设定的接口参数无效。当此"NC卡"读入数据时,首先必须选择所需的区域。

读入以下某个区域时:

- PLC Sel. 或者
- PC报警文本
- PC调试数据,PLC应用程序PC或者显示机床数据PC
- "特殊功能"的设定值在内部转换为二进制格式。

注意

如果选择菜单"零件程序到NC卡"或"零件程序此NC卡到NC",现有的文件将被覆盖而没有任何确认提示。

数 据选 择

选择待传送的数据。按"读出"键启动到外部的数据传送。

按"读入"键从外部设备中读入数据。在读入数据时不需要选择数据组,因为传送目标已经由数据流确定。

RS232 设置 按此键显示当前所选择的接口参数。使用合适的软键功能可以在二进制传送和文本文件传送之间进行转换。

同时可以直接在此窗口中设定参数。

图7-26

在存取权限允许的情况下可以对参数进行修改。

按"存储"键可以存储所进行的设定。

"缺省数据"软键将所有的设定值复位到它们的缺省值状态。

设定口令

口令设定

在控制系统中有3个口令字级别,由它们规定不同的存取权限:

- 专家口令字
- 制造厂商口令字
- 用户口令字

对应着不同的存取权限(参见"技术手册"),可以处理相应的数据。

图7-27 输入口令字

输入口令字。

如果你不知道口令字,则表明你不具备该存取权限。设定口令字,按"确认"键结束。

按"中止"键返回到系统主画面而不进行任何动作。

修 改 口 令

修改口令

图7-28 修改口令

在不同的存取权限下,软键栏提供不同的方法用于修改口令字。 按软键选择口令字。输入新的口令字,按"确认"键结束输入。 然后窗口提示你再次输入新口令字予以确认。

按"确认"键完成口令字修改。

按"中止"键返回调试主画面,不进行任何动作。

删除口令

按此键删除口令字,复位存取权限。

语言转换

语言转换

按此键,在两种语言版本之间进行转换。

数 据 存 储

数据存储

按此键把动态存储器中的内容存储到永久存储器中。

前提条件:没有程序正在执行。

在数据进行存储时,不得执行任何动作。

接口参数

表7-2 接口参数

参数	说明
设备	● XON/XOFF 使用控制符XON(DC1,DEVICE CONTROL1)和XOFF(D EVICE CONTROL2)可以控制传送过程。如果外围设备缓冲器已经存满,给出控制符XOFF;一旦又可以接受数据,则给控制符XON。 ● RTS/CTS 信号RTS(请求发送)控制数据传送设备的传送过程。信号激活:进行数据传送。 信号不激活:待所传送的数据发送结束后停止传送过程。 CTS信号用作RTS的应答信号,表明数据传送设备已经做好运行准备。
XON	是开始传送的标志符号,只适用于使用XON/XOFF的设备。
XOFF	是传送结束的标志符号。
传送结束	表示文本文件传送结束。
符EOF	但在传送二进制数据时,特殊功能"遇EOF停止"处于不激活状态。
波特率	可以调节的接口速度: 300 波特 600 波特 1200 波特 2400 波特 4800 波特 9600 波特 19200 波特 38400 波特 57600 波特

参数	说明	
数据位	异步传送时的数据位数。 输入: 7个数据位 8个数据位(预设定)	
停止位	异步传送时的停止位数。 输入: 1个停止位(预设定) 2个停止位	
奇偶校验	利用奇偶校验可以判别是否出错,它附加到编码的符号上,使"1"的位数为奇数个或偶数个。 输入: 没有奇偶性(预设定) 奇偶性为偶 奇偶性为奇	

特殊功能

表7-3 特殊功能

	K, 0 147/49380					
功能	有效	无效				
XON后开始	发送器收到数据流中XON 信号后开始传送。	传送的开始与否与XON信 号无关。				
覆盖,带"确认" 符号	在读入时检查文件是否已 经在NC中存在。	文件不经询问就进行覆盖。				
CRLF程序段结束	在以穿孔带格式输出时插 入CR符号(十六进制0d)。	不插入附加的符号。				
遇EOF停止	传送结束符有效。	传送结束符无效。				
测DSR信号	缺少DSR信号时中断传送 过程。	DSR信号无效。				
前后引导	接受数据时不读前引导符;输出数据时产生一个120*0h的前引导符。	前引导符和后引导符一起读 入;输出数据时不产生前引导符。				
纸带格式	读入零件程序。	按SINUMERIK存储格式读 入归档文件。				
时间监视	在传送出现故障5秒钟后 中断传送过程。	不中断传送。				

7.1 使用梯形图进行PLC诊断

功能

PLC用户程序中包含了大量的逻辑运算来实现安全功能和支持加工步骤。这些螺距运算包括各种触点和继电器的连接。原则上,每个触点或继电器故障会导致整个系统/安装的失效。

为了找到故障/错误或程序的错误,在"系统"操作区中提供了各种诊断功能。

注意

这儿无法对程序进行编辑。

操作步骤

在"系统"操作区选择PLC软键。将出现PLC的主屏幕。

PLC 程 序 打开存储在永久存储器中的项目。

7.1.1 屏幕结构

在用户手册的1.1章节中详细说明了屏幕的各个分区。以下介绍了关于PLC诊断的所有偏差和修改。

图7-29 屏幕结构

控制区	显示	含义	
1	应用程序区		
2	支持的PLC编程语言		
3	有效的程序段名称		
	表示法:符号名称(绝对值名称)		
	程序状态		
	RUN	程序运行	
4	STOP	程序停止	
应用程序区状态			
	Sym	符号表示法	
	abs	绝对值表示法	
5	G	有效键显示	
6	焦点		
	执行光标选中的任务		
7	注释行		
	包含用于搜索的注释		

7.1.2 操作选项

组合键

除了软键和方向键,还提供了更多的键的组合。 光标键在PLC用户程序中移动。当到达窗口边界时,它会自动滚动。

表7-4 组合键

₹/		
或 CTRL —	到达行的开端	
END 或 CTRL -	到达行的结尾	
75	翻至上一屏	
	翻至下一屏	
←	左移一个区域	
-	右移一个区域	
t	上移一个区域	
1	下移一个区域	

CTRL SU CTRL	到达第一个网络的第一个区域
CTRL END 或CTRL ↓	到达第一个网络的最后一个区域
CTRL T	在同一个窗口中打开下一个程序段
ETHL ME	在同一个窗口中打开上一个程序段
Name T	在表格中显示完整文本行使用网络标题时,显示网络注释使用命令时,显示完整运算符
₩	使用命令时,显示包含注释的所有的运算 符信息

软键

PLC 信息 "PLC信息"菜单显示了PLC类型,PLC系统版本,循环时间和PLC用户程序运行时间。

图7-30 PLC信息

复位 程序时间 使用此软键刷新窗口中的数据。

PLC 状态 (参见"操作和编程,车床",p.7-72) 执行程序时,可以在PLC状态菜单中读,写和监控一些变量。现有的功能有效。

图7-31 PLC 状态显示

状态表

使用 " PLC状态表 " 功能 , 你可以快速地找到 , 监控屏修改PLC信号。(参见 " 操作和编程 , 车床 " , p.7-73)。

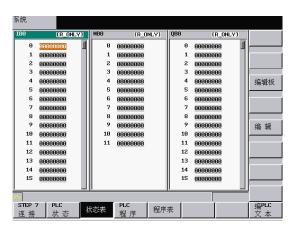


图7-32 状态表

窗口1

此窗口显示了相关程序段中,正在运行的PLC程序的所有的逻辑和图形信息。 LAD(梯形图)中的逻辑被清晰地分成程序段和当前的路径,称为网络。通常,以 LAD编写的程序表示使用各种逻辑运算形成的电流图。

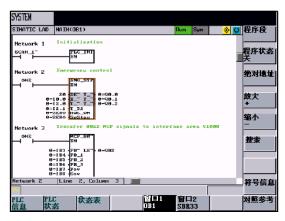


图7-33 窗口1

此窗口显示了相关程序段中,正在运行的PLC程序的所有的逻辑和图形信息。 LAD(梯形图)中的逻辑被清晰地分成程序段和当前的路径,称为网络。通常,以 LAD编写的程序表示使用各种逻辑运算形成的电流图。

在此菜单中,可以切换运算的符号表示法和绝对值表示法。而且,可以使用不同的分辨率查看所需的程序段以及搜索某个运算符。

此软键可以显示PLC程序段的列表。使用光标上/光标下或者页码上/页码下键选择想要打开的PLC程序段。当前的程序段显示在列表的信号栏中。

程序段

图7-34 PLC程序段的选择

特 性

按此软键可以显示所选程序段的说明,该说明在建立PLC项目时即被存储。

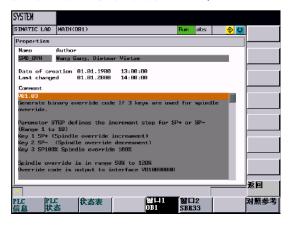


图7-35 所选PLC程序段的特性

局 部变 量

按此软键显示了所选程序段的局部变量表。 有两种类型的程序段。

- OB1 只是临时的局部变量
- SBRxx 输入,输入-输出,输出和临时局部变量

每个程序段有一个变量表。

图7-36 所选程序段的局部变量表

如果文本长度超出列宽,将被分割成几个表,并以"~"连接。在这种情况下,在此表格中存在更高级的文本区域,其中可以显示当前光标位置的文本。如果使用"~"分割的文本,它将和在高级文本区域中相同的颜色显示。对于更长的文本,通过按"SELECT"键可以显示整个文本。

打 开

按此键可以打开所选的程序段;程序名称(绝对值)将显示在"窗口1/2"软键上。

程序 状态开 使用此软键可以激活/取消程序状态的显示。此处可以查看从PLC循环末尾开始的 当前网络状态。在"程序状态"梯形图中显示了所有运算符的状态。该LAD获得 在几个PLC循环中显示状态的值,然后刷新状态显示。

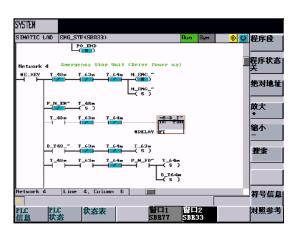


图7-37 "程序状态"开-符号表示法

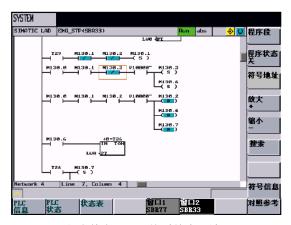


图7-38 "程序状态"开-绝对值表示法

符号地址

使用此软键可以切换运算符的绝对值表示法和符号表示法。运算符按照所选的表示法类型显示。

绝对值 地 址 如果变量不存在符号,它将自动以绝对值显示。

放大

应用区的表示法可以逐步放大和缩小。可以提供以下放大级别:

20%(缺省值),60%,100%和300%

放 大

查 找

可用来搜索以符号或绝对值表示的运算符。

在显示的对话框中可以选择各种搜索条件。使用绝对值/符号地址软键,可以在 PLC窗口中搜索符合此条件的操作符。搜索时,不考虑大小写字母。

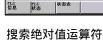
在上面的转换区中选择:

- 查找常量(只为绝对值)
- 查找绝对值和符号运算符
- 查找网络号
- 查找SBR命令

其它搜索条件:

- 向下查找(从当前)
- 整个程序段(从程序开端)
- 在一个程序段中
- 在所有的程序段中

可以使用完整字(名称)来搜索运算符和常量。


根据设定的运算符的显示,可以选择适合于符号表示法或绝对值表示法的搜索方法。

按OK软键开始搜索。查找到的目标以焦点突出。如果未找到任何目标,将会出现相应的错误信息。

SIMATIC LAD

使用"终止"软键退出对话框;不进行任何查找。

搜索全部 在所有的程序段中

图7-39 搜索符号运算符

如果找到搜索目标,使用"继续查找"软键继续搜索。

确认

对照参考

曽口1 曽口2 0B1 SBR0 符号信息

按此软键可以显示在所选网络中所有的符号名称。

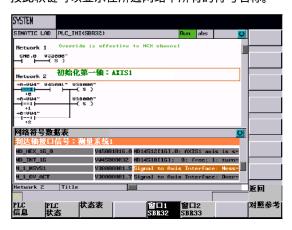


图7-40 网络符号

参 考信 息

使用该软键可以显示参考对照表。显示在PLC项目中使用的所有的运算符。 此表说明了各个输入,输出,标志等使用在哪个网络中。

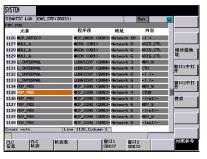


图7-41 "参考对照"主菜单(绝对值) (符号)

另外,根据所选的运算符或符号,使用"打开"功能可以在窗口1/2中迅速跳到 所需的程序位置。

符 号地 址

根据有效的表示法类型,以绝对值名称或符号名称显示元素。

绝对值 地 址 如果名称不存在符号形式,它将自动以绝对值显示。 在状态栏中显示了名称的表示法类型。缺省时为绝对值表示法。 窗口 1 打 开 在对照表中选择的运算符在相应的窗口中打开。

窗口 2 打 开

举例:

如果你想在程序段OB1,网络1中查看绝对值运算符M251.0的逻辑关系。 在对照表中选中相关的运算符,然后按"窗口1打开"软键,则在窗口1中显示。

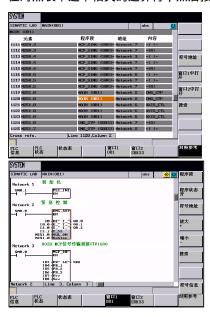


图7-42 光标"M251.0在OB1, 网络2中"窗口1中的M251.0在OB1, 网络2中

查 找

用于在对照表中查找运算符。

可以以整字(名称)搜索运算符。搜索时,不考虑大小写字母。

搜索选项:

搜索绝对值和符号运算符

• 搜索行

搜索条件:

- 向下(从当前光标位置起)
- 整个程序段(从程序开端)

图7-43 在对照表中搜索运算符

查找的文本出现在注释行中。如果未找到文本,将出现相应的错误信息,必须用OK键确认。

如果找到搜索目标,使用"继续查找"软键继续搜索。

编程

8.1 NC 编程基本原理

8.1.1 程序名称

每个程序均有一个程序名。在编制程序时可以按以下规则确定程序名:

- 开始的两个符号必须是字母
- 其后的符号可以是字母,数字或下划线
- 最多为 16 个字符
- 不得使用分隔符 (参见章节"字符集")

举例: RAHMEN52

8.1.2 程序结构

结构和内容

NC 程序由各个程序段组成 (参见表 8-1)。

每一个程序段执行一个加工步骤。

程序段由若干个字组成。

最后一个程序段包含程序结束符:M2。

表 8-1 NC 程序结构

程序段	字	字	字	 ;注释
程序段	N10	G0	X20	 ;第一程序段
程序段	N20	G2	Z37	 ;第二程序段
程序段	N30	G91		 ;
程序段	N40			
程序段	N50	M2		;程序结束

8.1.3 字结构及地址

功能/结构 字是组成程序段的元素,由字构成控制器的指令。

字由以下几部分组成:

- 地址符 地址符一般是一字母。
- 数值
 数值是一个数字串,它可以带正负号和小数点。
 正号可以省略不写。

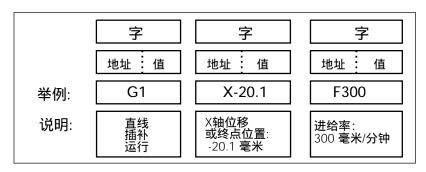


图 8-1 字结构

多个地址符 一个字可以包含多个字母,数值与字母之间用符号"="隔开。

举例: CR=5.23

此外, G 功能也可以通过一个符号名进行调用(参见章节"指令表")。

举例: SCALE ;打开比例系数

扩展地址 对于如下地址:

 R
 计算参数

 H
 H 功能

Ⅰ, J, K 插补参数/中间点

地址可以通过1到4个数字进行地址扩展。在这种情况下,其数值可以通过"="进行赋值(参见章节"指令表")。

举例:R10=6.234 H5=12.1 I1=32.67

8.1.4 程序段结构

功能

一个程序段中含有执行一个工序所需的全部数据。

程序段由若干个字和段结束符"LF"组成。在程序编写过程中进行换行时或按输入键时可以自动产生段结束符。

/ N... __ 字1 __ 字2 __ ... __ 字 ;注释 __ L_F

其中:

/ 表示 在运行中可以被跳跃过去的程序段

N... 表示 程序段号, 主程序段中可以由字符 ":" 取代地址符 "N"

___ 表示 中间空格 字 1... 表示 程序段指令

:注释 表示 对程序段进行说明,位于最后,用";"分开

L_F 表示 程序段结束,不可见。

图 8-2 程序段格式

字顺序 程序段中有很多指令时建议按如下顺序:

N... G... X... Y... Z... F... S... T... D... M... H...

程序段号说明 以5或10为间隔选择程序段号,以便以后插入程序段时不会改变程序段号的顺序。

跳跃程序段 那些不需在每次运行中都执行的程序段可以被跳跃过去,为此应在这样的程序段

的段号字之前输入斜线符"/"。通过操作机床控制面板或者通过 PLC 接口控制信号可以使跳跃程序段功能生效。

几个连续的程序段可以通过在其所有的程序段段号之前输入斜线符"/"被跳跃

过去。

在程序运行过程中,一旦跳跃程序段功能生效,则所有带"/"符的程序段都不予

执行,当然这些程序段中的指令也不予考虑。

程序从下一个没带斜线符的程序段开始执行。

注释 利用加注释的方法可在程序中对程序段进行说明。注释以";"符号开始,和程

序段一起结束。注释及剩余程序都显示在当前的程序段中。

信息 信息编程在一个独立的程序段中。信息显示在专门的区域 , 并且一直有效 , 除非

被一个新的信息所替代,或者程序结束。一个信息最多可以显示 65 个字符。

一个空的信息会清除以前的信息。

MSG(这是信息文本)。

编程举例 N10 ;G&S 公司订货号 12A71

N20 ; 泵部件 17, 图纸号: 123 677 N30 ; 程序编制员 H.Adam, 部门 TV4

N40 MSG("ROUGH UNMACHINED PART")

:50 G17 G54 G94 F470 S20 D2 M3 ;**主程序**

N60 G0 G90 X100 Y200

N70 G1 Y185.6 N80 X112

/N90 X118 Y180 ;程序段可以被跳跃

N100 X118 Y120 N110 G0 G90 X200

N120 M2 ;程序结束

8.1.5 字符集

在编程中可以使用以下字符,它们按一定的规则进行编译。

字母 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z。

大写字母和小写字母没有区别。

数字 0,1,2,3,4,5,6,7,8,9。

可打印的特殊字符

(圆括号开

圆括号闭方括号开方括号闭

< 小于 > 大于

: 主程序,标志符结束 赋值,相等部分

/ 除号,跳跃符

* 乘号

+ 加号,正号 - 减号,负号

" 引号

_ 字母下划线(与字母联系在一起)

. 小数点

不可打印的特殊字符 L_F 程序段结束符

空格 字之间的分隔符,空白字

制表键 预定,没用

8.1.6 指令表

地址	含义	赋值	说明	编程
D	刀具补偿号	09 整数,不带符号	用于某个刀具 Т的补偿参数;	D
			DO 表示补偿值=0 一个刀具最	
			多有 9 个 D 号	
F	进给率	0.00199 999.999	刀具/工件的进给速度,对应	F
			G94 或 G95,单位分别为毫米/ 分钟或毫米/转	
F	`#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.001 00.000.000		G4F:单独程序段
	进给率(与G4一起可以编程停留时间)	0.00199 999.999	停留时间,单位秒 	1947;半强往分段
G		仅为整数,已事先规	G 功能按 G 功能组划分 ,一个程	G
	字)	定	序段中只能有一个 G 功能组中	
			的一个G功能指令。G功能按模	
			态有效(直到被同组中其它功能	
			替代),或者以程序段方式有效。	
C0	州油移 売		G 功能组:	COV V 7 ・古色Wたる
G0	快速移动		1:运动指令	G0 XYZ;直角坐标系 在极坐标系中:
				GO AP=RP
				或者:
				G0 AP=RP=Z;
				例如用 G17
G1*	直线插补		(插补方式)	G1 XYZF
				在极坐标系中:
				G1 AP=RPF
				或者:
				G1 AP=RP=ZF; 例如用 G17
G2	│			G2 XYIJF
32	也可以螺旋插补 - >			
		•		G2 XYCR=F
				;半径和终点
				G2 AR=IJF
				:张角和圆心
				G2 AR=XYF
				·张角和终点 在极坐标系中:
				G2 AP=RPF
				或者:
				G2 AP=RP=ZF;
				例如用 G17
G3	-	虑第 3 轴和 TURN=		G3;其它同 G2
	也可以螺旋插补 - > 4	参见 TURN)		
CIP	中间点圆弧插补			CIP XYZI1=
C22	后侧贴的栅分扣			K1=F
G33	恒螺距的螺纹切 削		模态有效	SM;主轴速度,方向 G33ZK;带有补偿夹具的锥螺纹切削,比如
	133			在 2 轴方向
G331	螺纹插补			N10 SPOS=
				主轴处于位置调节状态
				N20 G331 ZK S
				;在 Z 轴方向不带补偿夹具攻丝
				右旋螺纹或左旋螺纹通过螺距的
				符号(比如 K+) 确定:
				+: 同M3
				-: 同 M4

地址	含义 赋值	说明	编程
G332	不带补偿夹具切削内螺纹— 退刀		G332 Z K
			;不带补偿夹具切削螺纹— Z 退刀
			;螺距符号同 G331
CT	带切线过渡的圆弧插补		N10
			N20 CT Z X F ;圆弧 , 与前一段轮廓为
			切线过渡;
G4	暂停时间	2:特殊运行,程序段方式有效。	G4 F或 G4 S;
			单独程序段
G63	带补偿夹具攻丝		G63 ZFSM
G74	回参考点		G74X1=0 Y1=0 Z1=0;单独程序段(机床轴名
			称)
G75	回固定点		G75X1=0Y1=0 Z1=0;单独程序段(机床轴名
			称)
G147	SAR-沿直线进给		G147 G41 DISR=DISCLFAD
			=FXYZ
G148	SAR-沿直线后退		G148 G40 DISR=DISCLFAD
			=FXYZ
G247	SAR-沿四分之一圆弧进给		G247 G41 DISR=DISCLFAD
			=FXYZ
G248	SAR-沿四分之一圆弧进给		G248 G40 DISR=DISCLFAD
			=FXYZ
G347	SAR-沿半圆进给		G347 G41 DISR=DISCLFAD
			=FXYZ
G348	SAR-沿半圆进给		G348 G40 DISR=DISCLFAD
			=FXYZ
TRANS	可编程偏置	3:写存储器,程序段方式有效。	TRANS X Y Z ; 单独程序段
ROT	可编程旋转		ROT RPL=:在当前的平面中旋转 G17 到 G19
SCALE	可编程比例系数		SCALE XYZ:在所给定轴方向的比例系
00,122	3 -700 1 - 200 1/3/3/3/		数;单独程序段
MIRROR			MIRROR X0;改变方向的坐标轴;单独程序段
ATRANS	附加的编程偏置		ATRANS XYZ;单独程序段
AROT	附加的可编程旋转		AROT RPL=;在当前的平面中附加旋转 G17
AKOI	N377日12.57 21444 王 77℃ 4.4		到 G19;单独程序段
ASCALE	附加的可编程比例系数		ASCALE XY Z
ASCALL	PI3カロロットJ 3両7主にしたJカスマス		;在所给定轴方向的比例系数 ;单独程序段
AMIRROR			AMIRROR XO:改变方向的坐标轴;单独程序段
G25	主轴转速下限或工作区域下限		G25S;单独程序段
G25	土抽种逐下吸线工作区域下限		G25 X Y Z ;单独程序段
G26			G26S;单独程序段
020	ᅩᆐᆟᄼᆇᅩᆘᄊ조ᅩᆝᅡᅜᄶᇪᅩᆘ		G26 X Y Z ;单独程序段
G110	极点尺寸,相对于上次编程的设定位置	=	G110XY;极点尺寸,直角坐标,比如带 G17
3110	728点にリカロリュー人/網径以及た以里		G110RP=AP=极点尺寸,极坐标;单独程序
			段
G111	■	-	G111XY:极点尺寸,直角坐标,比如带 G17
3111	温参いの第二日上記日日 「「い日」「「・ハル・ス」		G111RP=AP=极点尺寸,极坐标;单独程序
			段
G112	极点尺寸,相对于上次有效的极点		G112XY:极点尺寸,直角坐标,比如带 G17
0112	NOWA THETT TWENTHAM		G112RP=AP=极点尺寸,极坐标;单独程序
			段
G17*	X/Y 平面	6:平面选择	G17;该平面上的垂直轴为刀具长度补偿轴
			○:/,以下四工四半旦和27/13只及下压和
G18	Z/X 平面	模态有效 	
G19	Y/Z 平面		

地址	含义 赋值	说明	编程
G40*	刀尖半径补偿方式的取消	7:刀尖半径补偿	
G41	调用刀尖半径补偿,刀具在轮廓左侧移动	模态有效	
G42	调用刀尖半径补偿, 刀具在轮廓右侧移动		
G500*	取消可设定零点偏置	8:可设定零点偏置	
G54	第一可设定零点偏置	模态有效	
G55	第二可设定零点偏置		
G56	第三可设定零点偏置		
G57	第四可设定零点偏置		
G58	第五可设定零点偏置		
G59	第六可设定零点偏置		
G53	按程序段方式取消可设定零点偏置	9:取消可设定零点偏置	
G153	按程序段方式取消可设定零点偏置,包括基本框架	1	
G60*	准确定位	10:定位性能	
G64	连续路径方式	模态有效	
G9	准确定位,单程序段有效	11:程序段方式准停 段方式有效	
G601*	在 G60, G9 方式下精准确定位	12:准停窗口	参见章节 8.3.15 "精确停/连续路径方式…"
G602	在 G60, G9 方式下粗准确定位	模态有效	
G70	英制尺寸	13;英制/公制尺寸	
G71*	公制尺寸	模态有效	
G700	英制尺寸,也用于进给率 F		
G710	公制尺寸,也用于进给率 F		
G90*	绝对尺寸	14:绝对尺寸/增量尺寸	
G91	增量尺寸	模态有效	
G94	进给率 F , 单位毫米/分	15;进给/主轴	
G95*	主轴进给率 F , 单位毫米/转	模态有效	
CFC*	圆弧加工时打开进给率修调	16:进给率修调	参见章节 8.3.13 " 进给率 F "
CFTCP	关闭进给率修调	模态有效	
G450*	圆弧过渡	18: 刀尖半径补偿时拐角特性	
G451	等距线的交点,刀具在工件转角处不切削	模态有效	
BRISK*	轨迹跳跃加速	21:加速度特性	
SOFT	轨迹平滑加速	模态有效	
FFWOF*	预控关闭	24:预控	
FFWON	预控打开	模态有效	
G340*	在空闲处进给和后退(SAR)	44:SAR 模态有效时行程分割	
G341	在平面中进给和后退(SAR)		
WALIMON*	工作区域限制生效	28:工作区域限制	适用于所有轴,通过设定数据激活;值通过
WALIMOF	工作区域限制取消	模态有效	G25,G26 设置
G290*	西门子方式	47: 其它 NC 语言	
G291	其它方式	模态有效	
带* 的功能在程序	, 字启动时生效(如果没有另外编程则为铣床版 ^z	z)°	

地址	含义	赋值	说明	编程
Н	H功能	±0.00000019999	用于传送到 PLC 的数值,其定义由	Н0= Н9999=
H0=		99 99(8 个十进制数	机床制造厂家确定。	e.g.: H7=23.456
То		据位)或使用指数形		
H9999		式:±(10 ⁻³⁰⁰ 10 ⁺³⁰⁰)		
I	插补参数	±0.00199 999.999	X 轴尺寸,在 G2和 G3中为圆心坐	参见 G2,G3,G331 和 G332
		螺纹:	标;在 G33,G331,G332 中则表示螺	
		0.0012000.000	距大小	
J	插补参数	±0.00199 999.999	Y 轴尺寸,在 G2 和 G3 中为圆心坐	参见 G2,G3,G331 和 G332
		螺纹:	标;在 G33,G331,G332 中则表示螺	
		0.0012000.000	距大小	
K	插补参数	±0.00199 999.999	Z 轴尺寸,在 G2 和 G3 中为圆心坐	参见 G2,G3 和 G33
		螺纹:	标;在 G33 中则表示螺距大小	
		0.0012000.000		4.7
11=	圆弧插补的中间点	±0.00199 999.999	属于 X 轴;用 CIP 进行圆弧插补的	参见 CIP
la.	同项托列的中间上	10.001 00.000.000	参数	# II OID
J1=	圆弧插补的中间点	±0.00199 999.999	属于Y轴;用CIP进行圆弧插补的参数	参见 CIP
K1=	圆弧插补的中间点	±0.00199 999.999	属于 Z 轴;用 CIP 进行圆弧插补的	参见 CIP
K1=	四十四十四十四元	10.00199 999.999	参数	多允 CIF
L		7 位十进制整数 ,无符	可以选择 L1L9999999:子程序调	
_	1 1至/1/ 口次 1 1至/1/ 時/71	号	用需要一个独立的程序段。	,—DA1±/J/PX
			注意: L0001 不等于 L1。	
М	辅助功能	099 整数,无符号	用于进行开关操作,如"打开"冷	M
			却液,一个程序段中最多有5个M	
			功能	
MO	程序停止	•	用 M0 停止程序的执行;按"启动"	
			键加工继续执行。	
M1	程序有条件停止		与 MO 一样,但仅在出现专门信号后	
			才生效。	
M2	程序结束		在程序的最后一段被写入	
M30	-		预定,没用	
M17	-		预定,没用	
M3	主轴顺时针旋转			
M4	主轴逆时针旋转			
M5	主轴停			
M6	更换刀具		在机床数据有效时用 M6 更换刀具,	
			其它情况下直接用⊺指令进行。	
M40	自动变换齿轮级			
M41	齿轮级1到齿轮级5			
到 M45				
M70,M19	-		预定,没用	
M	其它的 M 功能		这些 M 功能没有定义,可由机床生	
		 	产厂家自由设定。	
N	副程序段	09999 9999 整数,	与程序段段号一起标识程序段,N	比如: N20
		无符号	位于程序段开始	

地址	含义	赋值	说明	编程
R0 到	计算参数	±0.00000019999		
R299		9999(8 位)或带指数		
		±(10 ⁻³⁰⁰ 10 ⁺³⁰⁰)		
计算功能			除了+ - * / 四则运算外还有以下计	
			算功能:	
SIN()	正弦	单位是度		比如:
				R1=SIN(17.35)
COS()	余弦	单位是度		比如:R2=COS(R3)
TAN()	正切	单位是度		比如:R4=TAN(R5)
ACINI/)	E T T			R10=ASIN(0.35);
ASIN()	反正弦			R10:20.487 度
10000	反余弦			R20=ACOS(R2);
ACOS()	及赤弦			R20: 度
			矢量和的角度是由两个垂直矢量计	
ATAN2(,)	反正切 2		算得出的。定义的第 2 矢量始终用	R40=ATAN2(30.5,80.1);
7 (17 (1 12 (1)	XE 97 2		作角度参考。角度范围为:-180 到	R40:20.8455 度
			+ 180 度	
SQRT()	平方根			比如:R6=SQRT(R7)
POT()	平方值			比如:
				R12=POT(R13)
ABS()	绝对值			比如:R8=ABS(R9)
TRUNC()	取整			比如:
				R10=TRUNC(R11)
RET	子程序结束		代替 M2 使用,保证路径连续运行	RET;单独程序段
S	主轴转速	0.00199 999.999	主轴转速单位是转/分 ,G4 中作为暂	S
	+ 0, 4:00=0+1/60	0.004 00.000.000	停时间	
S	在 G4 的程序段中为停留	0.00199 999.999	主轴旋转停留时间	G4 S 单独程序段
Т	时间	132000 整数 ,无符	 可以用 T 指令直接更换刀具,也可	工
1	刀具写	号 号	由 M6 进行.这可由机床数据设定	1
X	坐标轴	±0.00199999.999	位移信息	X
Y	坐标轴	±0.00199999.999	位移信息	Y
Z	坐标轴	±0.00199999.999	位移信息	Z
AC	绝对坐标	-	对于某个进给轴,其终点或中心点	
	-0/3-19		可以按程序段方式输入,可以不同	;X-增量尺寸
			于在 G90/G91 中的定义。	Z-绝对尺寸
ACC[轴]	加速度补偿值的百分数	1200,整数	进给轴或主轴加速度的补偿值,以	N10 ACC[X]=80
			百分数表示	N20 ACC[S]=50
				;X 轴 80%
				主轴 50%
ACP	绝对坐标,在正方向靠近	-	对于回转轴 ,带 ACP()的终点坐标	N10 A=ACP(45.3)
	(用于回转轴和主轴)		的尺寸可以不同于 G90/G91;同样	在正方向逼近绝对位置
			也可以用于主轴的定位。	N20 SPOS=ACP(33.1)
				定位主轴
ACN	绝对坐标,在负方向靠近	-	对于回转轴 ,带 ACP()的终点坐标	N10 A=ACN(45.3)
	(用于回转轴和主轴)		的尺寸可以不同于 G90/G91;同样	;在负方向逼近绝对位置
			也可以用于主轴的定位。	N20 SPOS=ACN(33.1)
				定位主轴

地址	含义	赋值	说明	编程
ANG	在轮廓中定义直线的角度	±0.0001359.99999	单位为度;在G0或G1中定义直线	
			的一种方法;平面中只有一个终点	
			坐标已知,或者在几个程序段表示	
			的轮廓中最后的终点坐标已知。	
AP	极坐标	0±359.99999	单位为度;以极坐标移动;极点定	参见 G0,G2,G3,
			义;此外:RP 极坐标半径。	G110,G111,G112
AR	圆弧插补张角	0.00001359.99999	单位是度,用于在 G2/G3 中确定圆弧大小。	参见 G2;G3
CALL	循环调用	-	347 (3 0	N10 CALL CYCLE(1.78,8,)
CHF	倒角,一般使用	0.00199 999.999	在两个轮廓之间插入给定长度的倒	N10 XYCHF=
			角	N11 XY
CHR	倒角,轮廓连线	0.00199 999.999	在两个轮廓之间插入给定边长的倒	N10 XYCHR=
			角	N11 XY
CR	圆弧插补半径	0.01099 999.999	在 G2/G3 中确定圆弧	参见 G2;G3
		大于半圆的圆弧带负		2,0 = ,==
		号 " - "		
CYCLE	加工循环	仅为给定值	 调用加工循环时要求一个独立的程	
HOLES	NH T NH NI.	人为和定值	序段;事先给定的参数必须要赋值	
POCKET			(参见章节"循环")。	
SLOT				
CYCLE81	钻削、中心钻孔			N5 RTP=110 RFP
CICLEGI	HHM TOTHIC			=100:赋值
				N1O CYCLE81(RTP,
				RFP);单独程序段
CYCLE82	中心钻孔			N5 RTP=110 RFP
CICLEOZ	中心怕九			
				=100;赋值
				N1O CYCLE81(RTP,
	20071 61 361			RFP,); 单独程序段
CYCLE83	深孔钻削			N10 CALL CYCLE83()
				单独程序段
CYCLE840	带补偿夹具攻丝			N10 CALL CYCLE840() 单独程序段
CYCLE84	刚性攻丝			N10 CALL CYCLE84()
CICLL04	州江攻些			単独程序段
CYCLE85	绞孔			N10 CALL CYCLE85()
OTOLLOS	-XJL			单独程序段
CYCLE86	型 镗孔			N10 CALL CYCLE86()
OTOLE00	1至3し			NIO CALL CYCLE80() 单独程序段
CVCI E07	(労工) つ			
CYCLE87	镗孔 3			N10 CALL CYCLE87()
CVCL FOO	たトフ! □→/高 : L			单独程序段
CYCLE88	钻孔时停止			N10 CALL CYCLE88()
01/01/5	b# 71 =			单独程序段
CYCLE89	镗孔 5			N10 CALL CYCLE89() 单独程序段
CVCI EOO				
CYCLE90	螺纹铣削			N10 CALL CYCLE90()
1101 501	た 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			单独程序段
HOLES1	钻削直线排列的孔			N10 CALL HOLES1()
				单独程序段
HOLES2	钻削圆弧排列的孔			N10 CALL HOLES2()
				单独程序段

地址	含义	赋值	说明	编程
SLOT1	铣槽			N10 CALL SLOT1()
				单独程序段
SLOT2	铣圆形槽			N10 CALL SLOT1()
				单独程序段
POCKET3	矩形箱			N10 CALL POCKET3()
				单独程序段
POCKET4	圆形箱			N10 CALL POCKET4()
				单独程序段
CYCLE71	端面铣			N10 CALL CYCLE71()
				单独程序段
CYCLE72	轮廓铣			N10 CALL CYCLE72()
				单独程序段
LONGHOLE	加长孔			N10 LONGHOLE()
				单独程序段
DC	绝对坐标,直接逼近位置	-	对于回转轴,带 DC()的终点坐标	NC10 A=DC(45.3)
	(用于回转轴和主轴)		的单位可以不同于 G90/G91;同样	;直接逼近轴 A 位置
			也可以用于主轴的定位。	NC20 SPOS=DC(33.1)
				;主轴定位
DEF	定义指令		在程序的开端,定义	DEF INT VARI1=24,VARI2;INT 类型
			BOOL,CHAR,INT,REAL 类型的局部	的2个变量;名称由用户定义
			用户变量	
DISCL	到加工平面的进给/后退		进给时,速度改变所需的安全间隙;	参见 G147,G148,G247,G248,G347,
	位移		参照:G340,G341	G348
DISR	进给/后退位移或半径	=	G147/G148:切削沿从轮廓起始点到	参见 G147,G148,G247,G248,G347,
	(SAR)		终点的位移	G348
			G247,G347/G248,G348:	
			刀具中心点位移的半径	
FAD	进给时速度(SAR)	-	进给时,到达安全间隙后,速度生	参见 G147,G148,G247,G248,G347,
			效;	G348
EVC[++]	제무호 타효다	4 . \#+\	参考:G340,G341	NO. 04 V40 705
FXS[轴]	到固定点停止	=1:选择	轴:使用机床轴名称 	N20 G1 X10 Z25
		=0:取消		FXS[Z1]=1 FXST[Z1]=12.3 FXSW[Z1]=2 F
FXST[轴]	夹紧扭距,到固定点停止	>0.0100.0		N30 FXST[Z1]=12.3
A31[4四]	大泉江起,到回足点行正	>0.0100.0	值的	N301 X31[21]=12.3
			100%,轴:使用机床轴名称	
FXSW[轴]	监控窗口,到固定点停止	>0.0	测量值单位为毫米或度,进给轴专	N40 FXSW[Z1]=2.4
			用,轴:使用机床轴名称	
GOTOB	向后跳转指令	-	与跳转标志符一起,表示跳转到所	比如: N20 GOTOB
			标志的程序段,跳转方向向前。	MARKE 1
GOTOF	向前跳转指令		与跳转标志符一起,表示跳转到所	比如: N20 GOTOF
			标志的程序段,跳转方向向后。	MARKE 2
IC	增量坐标	-	对于某个进给轴,其终点或中心点	N10 G90 X10 Z=IC(20)
			可以按程序段方式输入,可以不同	;Z - 增量尺寸
			于在 G90/G91 中的定义。	X - 绝对尺寸
MEAW	测量,不删除剩余行程	+1	=+1:测量输入端1,上升沿	N10 MEAW=-1 G1 XYZF
		-1	= -1:测量输入端 1 , 下降沿	

地址	含义	赋值	说明	编程
\$A_DBB[n]	数据字节		PLC 变量的读和写	N10 \$A_DBR(5)=16.3
\$A_DBW[n]	数据字			 :写实数变量
\$A_DBD[n]	数据双字			∵偏移位置 5
\$A_DBR[n]	实数数据			
				;(NC 和 PLC 间的位置,类型和含义一致)
\$A_MONIF-ACT	刀具寿命监控系数	>0.0	初始化值: 1.0	N10\$A_MONIFACT=5.0
				;刀具寿命缩短 5 倍
\$AA_FXS[轴]	状态,到固定点停止	-	值:05	N10 IF \$AA_FXS[X1]
			轴:机床轴名称	==1 GOTOF
\$AA_MM[acis]	在机床坐标系中一轴的测量结果	-	运行中所测量轴的标识符(X,Y,Z,)	N10 R1=\$AA_MM[X]
\$AA_MW[acis]	在工件坐标系中一轴的测量结果	-	运行中所测量轴的标识符(X,Y,Z,)	N10 R2=\$AA_MW[X]
\$ATIME	运行时间定时器:	0.010+300	系统变量,	N10 IF
	\$AN_SETUP_TIME	分钟(只读值)	自控制系统上次启动以后的时间	\$AC_CYCLE_TIME==50.5
	\$AN_POWERON_TIME	分钟(只读值)	自控制系统上次正常启动以后的时	
	\$AC_OPERATING_TIME		间	
	\$AC_CYCLE_TIME	秒		
	\$AC_CUTTING_TIME		NC 程序总的运行时间	
		秒		
		秒	NC 程序运行时间 (仅指所选择的程	
		-	序)	
			刀具切削时间	
\$AC PARTS	工件计数器:	0999 999 999,整数	系统变量,	N10 IF
	\$AC_TOTAL_PARTS		实际总数量	\$AC ACTUAL PARTS==15
	\$AC_REQUIRED_PARTS		工件设定数量	
	\$AC_ACTUAL_PARTS			
	\$AC_SPECIAL_PARTS		当前实际数量	
			田中中以的新星	
¢ A C N 4 E A [1]	测是江化业大	_	用户定义的数量	NIO IE CAC MEACIAL A
\$AC_MEA[1]	测量订货状态	-	供货状态 ○・初始状态 剛昊》 表接通	N10 IF \$AC_MEAS[1]==1
			0:初始状态,测量头未接通	GOTOF
*D TOO! NO	<i>+</i> ****		1:测量头已接通	;测量头接通后程序继续
\$P_TOOLNO	有效的刀具⊤号	-	只读	N10 IF \$P_TOOLNO== 12
4D TOO!	**********		D'+	GOTOF
\$P_TOOL	有效刀具的有效 D 号		只读	N10 IF \$P_TOOL==1 GOTOF
\$TC_MOP1[t,d]	刀具寿命预警告极限	0.0	分钟为单位,读或写刀具t,D号d	
ATO 140777	7844A+A		的值	GOTOF
\$TC_MOP2[t,d]	刀具的剩余寿命	0.0	分钟为单位,读或写刀具t,D号d	N10 IF \$TC_MOP2[13 ,1]<15.8
ATO 140001 13	\\ #L 00 7F #h +h 17 70		的值	GOTOF
\$TC_MOP3[t,d]	计数器预警告极限	0999 999 999,整	读或写刀具 t , D 号 d 的值	N10 IF \$TC_MOP3[13 ,1]<15
ATO 1405411 12	51 A \ 1 #b	数 200 000 000 軟	'++'C76'	GOTOF
\$TC_MOP4[t,d]	剩余计数	0999 999 999,整	读或写刀具 t , D 号 d 的值	N10 IF \$TC_MOP4[13 ,1]<8
		数		GOTOF
\$TC_MOP11[t,d]	设定刀具寿命	0.0	│ 分钟为单位,读或写刀具 t , D 号 d	N10 IF \$TC_MOP11 [13 ,1] = 247.5
			的值	
\$TC_MOP13[t,d]	要求的记数	0999 999 999,整	读或写刀具 t , D 号 d 的值	N10 IF \$TC_MOP13 [13 ,1] = 715
		数		

地址	含义	赋值	说明	编程
\$TC_TP8[t]	刀具状态	-	缺省状态-通过位编码刀具 t(位 0	N10 IF\$TC_TP8[1]== 1 GOTOF
			到位4)	
\$TC_TP9[t]	刀具监控类型	02	刀具 t 的监控类型, 读或写 0: 不监	N10 IF\$TC_TP9[1]=2
			控,1:刀具寿命,2:记数	;选择记数监控
MCALL	模态子程序调用	-	当后面的程序段带轨迹运行时,则	N10 MCALL CYCLE82();单独程
			在有 MCALL 指令的程序段自动调	序段,钻孔循环
			用子程序。该调用一直有效,直至	N20 HOLES1();
			下一个 MCALL。	线性孔
			应用举例:孔钻削	N30 MCALL;
				单独程序段,模态调用 CYCLE82()
1400()	在		<u></u>	结束
MSG()	信息	最多 65 个字符	文本位于双引号中	N10 MSG(" MESSAGE
				TEXT");单独程序段
				N150 MSG();
OFFN	存田 TDAOVI 叶的捷 安		ㅁᅔ피티포경기생 C41 C42 左하다	删除上一条信息
OFFN	使用 TRACYL 时的槽宽, 其它情况下为工件允差定	-	只在刀具半径补偿 G41,G42 有效时 才起作用	N10 OFFN=12.4
	(共) 以上けれるとは、		才起IF用	
RND	倒圆	0.01099 999.999		N10 XY RND=
KND	NE	0.010777777777	的圆弧切线过渡	N11 X Y
RP	极坐标半径	0.00199 999.999	极坐标运行;极点定义;此外:AP	参见 G0,G1,G2,G3,G110,G111,G112
	W		极坐标角度	2,6 = 5/0 - 1/0 = 1
RPL	ROT 和 AROT 的旋转角	±0.00001359.9999	角度为度:在当前平面中G17到G19	参见 ROT,AROT
			可编程的旋转角	
SET(,,,)	设定变量区域的值		SET:不同值 ,从定义的元素到:取决	DEF REAL VAR2[12] =REP(4.5);所
REP()			于值的数量	有元素值 4.5 N10 R10=SET
			REP:相同值,从定义的元素到区域	(1.1,2.3,4.4);
			终点	R10=1.1,R11=2.3,R4=4.4
SF	用 G33 时的螺纹起始角	0.001359.999	单位为度;在 G33 时螺纹起始点偏	参见 G33
			移所给定的值。	
SPI(n)	将主轴号 n 转换为坐标轴		N=1 或 n=2	
	名称		坐标轴名称:如 " SP1 " 或 " C "	
SPOS	主轴位置	0.0000359.9999	单位为度;主轴停止在设定位置(必	SPOS=
			须以技术要求为准)	
STOPRE	程序段搜索停止	-	特殊功能 :只有当程序段在 STOPRE	STOPRE
			之前完成之后,下一个程序段才可	;单独程序段
			以译码。	
TRACYL(d)	外表面铣削	D:1.00099 999.999	动态转换(只在相关的选项具备时	
			才可用;需要配置)	径:20.4mm
TDAFOOF	** IF TD A CVI		林上に方かき大体	TRACYL(20.4,1);允许
TRAFOOF	禁止TRACYL	- 000	禁止所有的动态转换	TRAFOOF;单独程序段
TURN	螺旋插补中附加的圆循环	0999	在平面 G17 到 G19 中使用圆弧插补	N10 G0 G17 X20 Y5 Z3
	数量		G2/G3 ,同时在其垂直方向有进刀运 动	N20 G1 Z-5 F50
			<i>[</i> 4 <i>j</i>]	N30 G3 X20 Y5 Z-20 I0 J7.5
				TURN=2;共有 3 个整圆

8.2 定位数据

8.2.1 平面选择:G17 到 G19

功能

在计算刀具长度补偿和刀具半径补偿时必须首先确定一个平面,即确定一个两坐标轴的坐标平面,在此平面中可以进行刀具半径补偿。

对于钻头和铣刀,长度补偿的坐标轴为所选平面的垂直坐标轴(参见章节 8.6 " 刀具和刀具补偿")。特殊情况也可以使用三维长度补偿。

平面选择的作用在相应的部分进行了描述(比如章节8.5 "倒圆,倒角")。

同样,平面选择的不同也影响圆弧插补时圆弧方向的定义:顺时针和逆时针。在圆弧插补的平面中规定横坐标和纵坐标,由此也就确定了顺时针和逆时针旋转方向。也可以在非当前平面 G17 至 G19 的平面中运行圆弧插补(参见章节 8.3 "坐标轴运动")。

可以有下面几种平面:

表 8-2 平面及坐标轴

G 功能	平面(横坐标/纵坐标)	垂直坐标轴(在钻削/ 铣削时的长度补偿轴)
G17	X/Y	Z
G18	Z/X	Υ
G19	Y/Z	Х

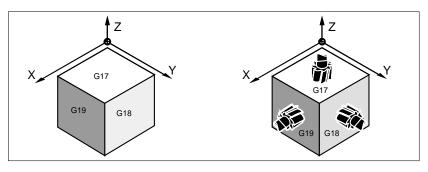


图 8-3 钻削/铣削时的平面和坐标轴布置

编程举例 N10 G17 T...D...... :选择 X/Y 平面

N20 ... X....Y... Z... ;Z 轴方向上刀具长度补偿

8.2.2 绝对和增量位置数据:G90,G91,AC,IC

功能 G90 和 G91 指令分别对应着绝对位置数据输入和增量位置数据输入。其中 G90

表示坐标系中目标点的坐标尺寸, G91表示待运行的位移量。 G90/G91 适用于

所有坐标轴。

在位置数据不同于 G90/G91 的设定时,可以在程序段中通过 AC/IC 以绝对尺寸/相对尺寸方式进行设定。

这两个指令不决定到达终点位置的轨迹,轨迹由 G 功能组中的其它 G 功能指令决定(G0,G1,G2,G3,...参见章节 8.3 "坐标轴运动")。

编程 G90 ;绝对尺寸

G91 ;增量尺寸

X=AC(...) ;某轴以绝对尺寸输入,程序段方式 X=IC(...) ;某轴以相对尺寸输入,程序段方式

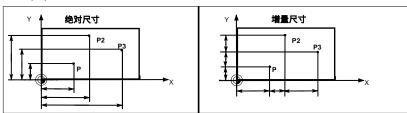


图 8-4 图纸中不同的数据尺寸

绝对位置数据输入 G90 在绝对位置数据输入中尺寸取决于当前坐标系(工件坐标系或机床坐标系的零点

位置。零点偏置有以下几种情况:可编程零点偏置,可设定零点偏置或者没有零点偏置。

程序启动后 G90 适用于所有坐标轴,并且一直有效,直到在后面的程序段中由 G91(增量位置数据输入)替代为止(模态有效)。

增量位置数据输入 G91 在增量位置数据输入中,尺寸表示待运行的轴位移。移动的方向由符号决定。

G91 适用于所有坐标轴,并且可以在后面的程序段中由 G90(绝对位置数据输入)

替换。

用=AC(...),=IC(...)定义 赋值时必须要有一个等于符号。数值要写在圆括号中。

圆心坐标也可以以绝对尺寸用=AC(...)定义。

G90 和 **G91** 编程举例 N10 G90 X20 Z90 :绝对尺寸

N20 X75 Z=IC(-32) ;X 仍然是绝对尺寸, Z 是增量尺寸

. . .

N180 G91 X40 Z20 :转换为增量尺寸

N190 X-12 Z=AC(17) ;X 仍然是增量尺寸, Z 是绝对尺寸

8.2.3 公制尺寸/英制尺寸:G71,G70,G710,G700

功能 工件所标注尺寸的尺寸系统可能不同于系统设定的尺寸系统(英制或公制),但

这些尺寸可以直接输入到程序中,系统会完成尺寸的转换工作。

编程 G70 英制尺寸

G71 ;公制尺寸

编程举例 N10 G70 X10 Z30 ;英制尺寸

N20 X40 Z50 ;G70 继续生效

. . .

N80 G71 X19 Z17.3;开始公制尺寸

. . .

说明 系统根据所设定的状态把所有的几何值转换为公制尺寸或英制尺寸(这里刀具补偿值和可设定零点偏置值也作为几何尺寸)。同样,进给率 F 的单位分别为毫米/分或英寸/分。

基本状态可以通过机床数据设定。

本说明中所给出的例子均以基本状态为公制尺寸作为前提条件。

用 G70 或 G71 编程所有与工件直接相关的几何数据,比如:

- ◆ 在 G0,G1,G2,G3,G33,CIP,CT 功能下的位置数据 X,Y,Z
- 插补参数 I,J,K(也包括螺距)
- 圆弧半径 CR
- 可编程的零点偏置(TRANS,ATRANS)
- 极坐标半径 RP

所有其它与工件没有直接关系的几何数值,诸如进给率,刀具补偿,可设定的零点偏置,它们与 G70/G71 的编程无关。

但是 G700/G710 用于设定进给率 F 的尺寸系统 (英寸/分钟 , 英寸/转或者毫米/分钟 , 毫米/转)。

8.2.4 极坐标,极点定义:G110,G111,G112

功能 通常情况下一般使用直角坐标系(X,Y,Z),但工件上的点也可以用极坐标定

义。如果一个工件或一个部件,当其尺寸以到一个固定点(极点)的半径和角度

来设定时,往往就使用极坐标系。

平面 极坐标同样以所使用的平面 G17 至 G19 为基准平面。

也可以设定垂直于该平面的第3根轴的坐标值,在此情况下,可以作为柱面坐标

系编程3维的坐标尺寸。

极坐标半径 RP=...

极坐标半径定义该点到极点的距离。该值一直保存,只有当极点发生变化或平面 更改后才需重新编程。

极坐标角度 AP...

极角是指与所在平面中的横坐标轴之间的夹角 (比如 G17 中 X 轴)。该角度可以是正角,也可以是负角。

该值一直保存,只有当极点发生变化或平面更改后才需重新编程。

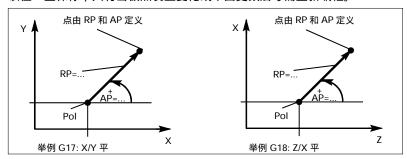


图 8-5 在不同平面中正方向的极坐标半径和极角

极点定义和编程

G110 ;极点定义,相对于上次编程的设定位置(在平面中,比如 G17)。

G111 ;极点定义,相对于当前工件坐标系的零点(在平面中,比如 G17)。

G112 ;极点定义,相对于最后有效的极点,平面不变。

说明

• 当一个极点已经存在时,极点也可以用极坐标定义。

如果没有定义极点,则当前工件坐标系的零点就作为极点使用

编程举例

N10 G17 :X/Y 平面

N20 G111 X17 Y36 :在当前工件坐标系中的极点坐标

N80 G112 AP=45 RP=27.8 ;新的极点,相对于上一个极点,作为一个极

坐标

N90...AP=12.5 RP=47.679 :极坐标

N100...AP=26.3 RP=7.344 Z4 ;极坐标和 Z 轴 (= 柱面坐标)

在极坐标中运行

可以把用极坐标编程的位置作为用直角坐标编程的位置运行:

• G0 - 快速移动线性插补

• G1 - 带进给率线性插补

• G2 - 顺时针圆弧插补

• G3 - 逆时针圆弧插补

(参见章节"轴运动")

8.2.5 可编程的零点偏置:TRANS, ATRANS

功能 如果工件上在不同的位置有重复出现的形状或结构;或者选用了一个新的参考

点,在这种情况下就需要使用可编程零点偏置。由此就产生一个当前工件坐标系,

新输入的尺寸均是在该坐标系中的数据尺寸。

可以在所有坐标轴中进行零点偏移。

编程 TRANS X...Y...Z... 可编程的偏移

清除所有有关偏移、旋转、比例系数、镜像的指令

ATRANS X...Y...Z... ;可编程的偏移

附加于当前的指令

TRANS ;不带数值

清除所有有关偏移、旋转、比例系数、镜像的指令 TRANS/ATRANS 指令要求一个独立的程序段。

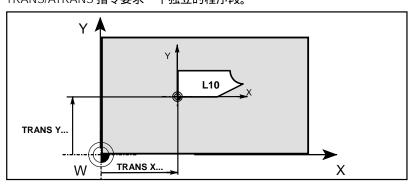


图 8-6 可编程零点偏移举例

编程举例 N20 TRANS X20 Y15... ;可编程零点偏移

N30 L10 ;子程序调用,其中包含待偏移的几何量

. . .

N70 TRANS : 取消偏移

. . .

子程序调用参见章节8.11"子程序"。

8.2.6 可编程旋转:ROT, AROT

功能 在当前的平面 G17 或 G18 或 G19 中执行旋转,值为 RPL=...,单位是度。

编程 ROT RPL=... ;可编程旋转,删除以前的偏移,旋转,比例系数和镜像指令

AROT RPL=... ;可编程旋转,附加于当前的指令

ROT 没有设定值:删除以前的偏移,旋转,比例系数和镜像

ROT/AROT 指令要求一个独立的程序段。

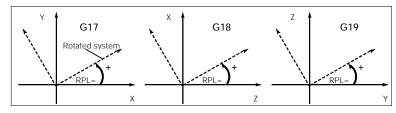


图 8-7 在不同的平面中旋转角正方向的定义

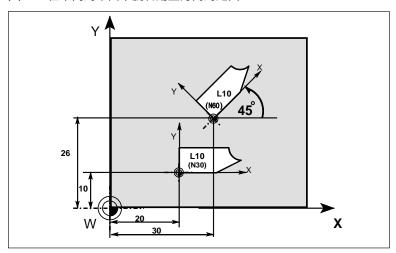


图 8-8 可编程的偏移和旋转编程举例

编程举例 N10 G17... ;X/Y 平面

N20 Trans X20 Y10 ;可编程的偏置

N30 L10 ;子程序调用,含有待偏移的几何量

N40TRANS X30Y26 ;新的偏移

 N50 AROT RPL=45
 ;附加旋转 45 度

 N60 L10
 ;子程序调用

 N70 TRANS
 ;删除偏移和旋转

子程序调用 - 参见章节 8.11 " 子程序技术 "

8.2.7 可编程的比例系数:SCALE, ASCALE

功能 用 SCALE, ASCALE 可以为所有坐标轴编程一个比例系数,按此比例使所给定的

轴放大或缩小。

当前设定的坐标系用作比例缩放的参照标准。

编程 SCALE X...Y... Z... ;可编程的比例系数,清除所有有关偏移、旋转、比

例系数、镜像的指令

ASCALE X...Y... Z... ;可编程的比例系数,附加于当前的指令

SCALE :不带数值:清除所有有关偏移、旋转、比例系数、

镜像的指令

SCALE, ASCALE 指令要求一个独立的程序段。

说明 • 图形为圆时,两个轴的比例系数必须一致。

● 如果在 SCALE/ASCALE 有效时编程 ATRANS,则偏移量也同样被比例缩放。

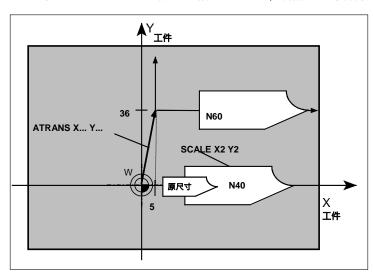


图 8-9 比例和偏置(举例)

编程举例 N10 G17 :X/Y 平面

N20 L10 ;编程的轮廓 - 原尺寸

N30 SCALE X2Y2

N40 L10 ;X 轴和 Y 轴方向的轮廓放大 2 倍

N50 ATRANS X2.5 Y18;值也按比例!N60 L10;轮廓放大和偏置子程序调用 - 参见章节 8.11 " 子程序"。

SINUMERIK 802D/802D base line 操作编程 - 铣床 6FC5698-2AA10-0RP3 (2003.11)

8.2.8 可编程的镜像:MIRROR, AMIRROR

功能 用 MIRROR 和 AMIRROR 可以以坐标轴镜像工件的几何尺寸。编程了镜像功能

的坐标轴,其所有运动都以反向运行。

编程 MIRROR X0 Y0 Z0 河编程的镜像功能,清除所有有关偏移、旋转、比例

系数、镜像的指令

AMIRROR X0 Y0 Z0 ;可编程的镜像功能,附加于当前的指令

MIRROR ;不带数值:清除所有有关偏移、旋转、比例系数、镜

像的指令

MIRROR/AMIRROR 指令要求一个独立的程序段。坐标轴的数值没有影响,但必须要定义一个数值。

须安定又一个数值

说明

- 在镜像功能有效时已经使能的刀具半径补偿(G41/G42)自动反向。

- 在镜像功能有效时旋转方向 G2/G3 自动反向。

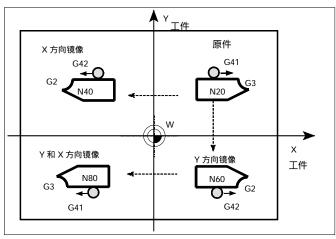


图 8-10 镜像功能举例

编程举例 在不同的坐标轴中镜像功能对使能的刀具半径补偿和 G2/G3 的影响:

. . .

N10 G17 ;X/Y 平面, Z - 垂直于该平面

 N20 L10
 ;编程的轮廓,带 G41

 N30 MIRROR X0
 ;在 X 轴改变方向

 N40L10
 ;镜像的轮廓

 N50 MIRROR Y0
 ;在 Y 轴改变方向

N60 L10

N70 AMIRROR X0 ;再次镜像,又回到 X 方向

N80L10 ;轮廓镜像两次 N90 MIRROR ;取消镜像功能

··· 子程序调用 - 参见章节"子程序"。

SINUMERIK 802D/802D base line 操作编程 - 铣床 6FC5698-2AA10-0RP3 (2003.11)

工件装夹—可设定的零点偏置: G54 到 G59, G500, G53, G153 8.2.9

功能

可设定的零点偏置给出工件零点在机床坐标系中的位置 (工件零点以机床零点 为基准偏移)。当工件装夹到机床上后求出偏移量,并通过操作面板输入到规定 的数据区。程序可以通过选择相应的 G 功能 G54...G59 激活此值。

说明:

G59

可以通过对某机床轴设定一个旋转角,使工件成一角度夹装。该旋转角可以在 G54 到 G59 激活时同时有效。

操作请参见章节"输入/修改零点偏置"

Ŀ	۵	10
Z	画	不士

- G54 :第一可设定零点偏置 G55 :第二可设定零点偏置 G56 第三可设定零点偏置 G57 :第四可设定零点偏置 G58 :第五可设定零点偏置
- 第六可设定零点偏置 ;取消可设定 零点偏置—模态有效 G500
- ;取消可设定零点偏置—程序段方式有效。 G53

可编程的零点偏置也一起取消。

;如同 G53, 取消附加的基本框架 G153

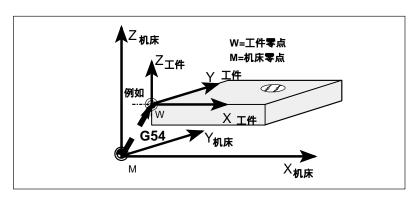


图 8-11 可设定的零点偏置

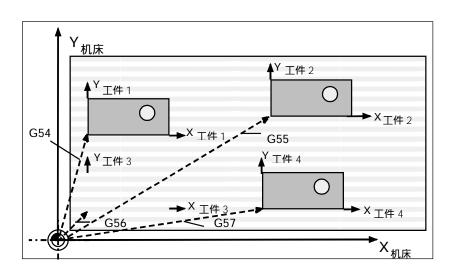


图 8-12 在钻削/铣削时几个可能的夹紧方式

编程举例 N10 G54... ;调用第一可设定零点偏置

N20 L47:加工工件 1 , 在此作为 L47N30 G55...:调用第二可设定零点偏置N40 L47:加工工件 2 , 在此作为 L47N50 G56...:调用第三可设定零点偏置N60 L47:加工工件 3 , 在此作为 L47N70 G57...:调用第四可设定零点偏置N80 L47:加工工件 4 , 在此作为 L47

子程序调用 - 参见章节"子程序"。

N90 G500 G0 X... 取消可设定零点偏置

8.2.10 编程的工作区域限制:G25,G26,WALIMON,WALIMOF

功能

可以用 G25/26 定义所有轴的工作区域,规定哪些区域可以运行,哪些区域不可以运行。当刀具长度补偿有效时,指刀尖必须要在此区域内;否则,刀架参考点必须在此区域内。坐标值以机床为参照系。

可以在设定参数中分别规定每个轴和每个方向其工作区域限制的有效性。

除了通过 G25/G26 在程序中编程这些值之外,另外也可以通过操作面板在设定数据中输入这些值。

为了使能或取消各个轴和方向的工作区域限制,可以使用可编程的指令组 WALIMON/WALIMOF。 编程

 G25 X...Y...Z...
 ;工作区域下限

 G26 X...Y...Z...
 ;工作区域上限

 WALIMON
 ;工作区域限制使能

 WALIMOF
 ;工作区域限制取消

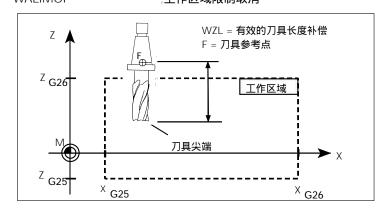


图 8-13 可编程的工作区域限制,2个尺寸举例

说明

- 使用 G25,G26 加工时,必须通过机床数据 20080:AXCONF_CHANAX_NAME_ TAB 定义通道轴名称。这些名称可以和 MD20060:AXCONF_GEOAX _NAME_TAB 中定义的几何轴不同。
- G25/G26 可以与地址 S 一起 ,用于限定主轴转速(参见章节: 主轴转速限制 ")。
- 坐标轴只有在回参考点之后工作区域限制才有效。

编程举例

 N10 G25 X10 Y-20 Z30
 :工作区域限制下限值

 N20 G26 X100 Y110 Z300
 :工作区域限制上限值

N30T1 M6

N40 G0 X90 Y100 Z180

N50 WALIMON ;工作区域限制使能

.. ;仅在工作区域内

N90 WALIMOF ;工作区域限制取消

8.3 坐标轴运动

8.3.1 快速直线移动:G0

功能

轴快速移动 GO 用于快速定位刀具,没有对工件进行加工。可以在几个轴上同时执行快速移动,由此产生一线性轨迹。

机床数据中规定每个坐标轴快速移动速度的最大值,一个坐标轴运行时就以此速度快速移动。如果快速移动同时在两个轴上执行,则移动速度为考虑所有参与轴的情况下所能达到的最大速度。

用 G0 快速移动时在地址 F 下编程的进给率无效。 G0 一直有效 , 直到被 G 功能组中其它的指令(G1,G2,G3,...)取代为止。

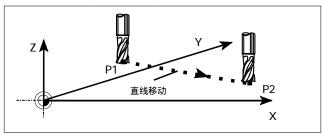


图 8-14 P1 到 P2 快速移动

编程举例 N10 G0 X100 Y150 Z65 ;**直角坐标系**

N50 G0 RP=16.78 AP=45 :极坐标系

说明 G 功能组中还有其它的 G 指令用于定位功能(参见章节 8.3.15 "准确定位/连续 路径方式: G60, G64")。在用 G60准确定位时, 可以在窗口下选择不同的精度。

另外,用于准确定位还有一个程序段方式有效的指令:G9。

在进行准确定位时请注意对几种方式的选择。

8.3.2 带进给率的线性插补:G1

功能 刀具以直线从起始点移动到目标位置,以地址 F 下编程的进给速度运行。所有的

坐标轴可以同时运行。

G1 一直有效,直到被 G 功能组中其它的指令(G0,G2,G3,...)取代为止。

编程 G1 X... Y... Z... F... ;直角坐标系

G1 AP=...RP=...F... ;极坐标系

G1 AP=...RP=...Z...F... ;柱面坐标系(3维)

说明:

另外还可以使用角度 ANG=...进行线性编程 (参见章节 8.5.2 "轮廓编程")。

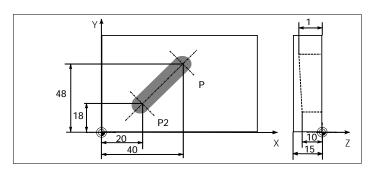


图 8-15 3 个轴方向进行线性插补,举例:加工一个槽

编程举例 N05 G0 G90 X40 Y48 Z2 S500 M3 ;刀具快速移动到 P1 ,3 轴同时运动 ,

主轴转速=500 转/分,顺时针旋转

N10 G1 Z-12 F100 ;进刀到 Z-12 ,进给率 100 毫米/分钟

N15 X20 Y18 Z-10 ;刀具在空中沿直线运行到 P2

N20 G0 Z100 ;快速移动空运行

N25 X-20 Y80

N30 M2 ;程序结束

加工一个工件时,必须要求主轴转速 S...和方向 M3/M4(参见章节"主轴运动")。

8.3.3 圆弧插补:G2, G3

功能 刀具沿圆弧轮廓从起始点运行到终点。运行方向由 G 功能定义:

- G2---顺时针方向
- G3---逆时针方向

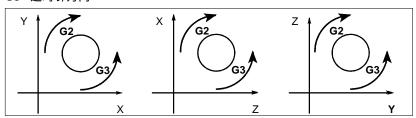


图 8-16 圆弧插补 G2/G3 在 3 个平面中的方向规定

所要求的圆弧可以以不同的方式进行描述:

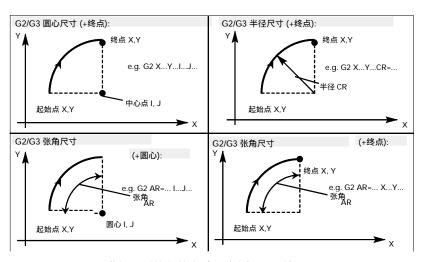


图 8-17 用 G2/G3 进行圆弧编程的方法(举例:X/Y 轴)

G2/G3 一直有效,直到被 G 功能组中其它的指令 (G0,G1,...) 取代为止。进给速度由编程的进给率字决定。

编程 G2/G3 X...Y...I...J... ;圆心和终点

 G2/G3 CR=...X...Y...
 ;半径和终点

 G2/G3 AR=...I...J...
 ;张角和圆心

 G2/G3 AR=...X...Y...
 ;张角和终点

G2/G3 AP=...RP=... ;极坐标和极点圆弧

说明 其它的圆弧编程方法有:

CT - 圆弧用切线连接

CIP - 通过中间点的圆弧 (参见后面的章节)

圆弧的输入公差 系统仅能接收一定范围之内的公差。比较圆弧的起始点和终点,如果差值在公差

之内,则可以精确地设定圆心,否则发出报警。

公差值可以通过机床数据调整。

说明 只有用圆心和终点定义的程序段才可以编程整圆!

在用半径定义的圆弧中,CR=...的符号用于选择正确的圆弧。使用同样的起始点,终点,半径和相同的方向,可以编程2个不同的圆弧。CR=-...中的负号说明圆

弧段大于半圆;否则,圆弧段小于或等于半圆:

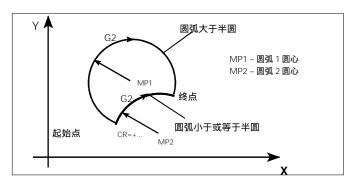


图 8-18 在使用半径定义的程序段中,使用 CR=的符号选择正确的圆弧

圆心和终点定义的编程举例:

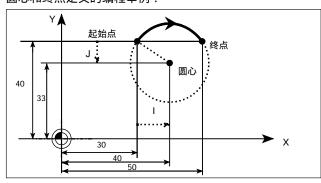


图 8-19 圆心和终点坐标定义

N5 G90 X30 Y40 ;N10 圆弧的起始点

N10 G2 X50 Y40 I10 J-7 ;终点和圆心

说明:

圆心值与圆弧起始点相关。

终点和半径定义的编程举例:

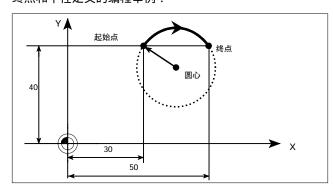


图 8-20 终点和半径的定义

N5 G90 X30 Y40 ;N10 圆弧的起始点

N10 G2 X50 Y40 CR=12.207 ;终点和半径

说明:

CR=-...中的负号会选择一个大于半圆的圆弧段。

终点和张角定义的编程举例:

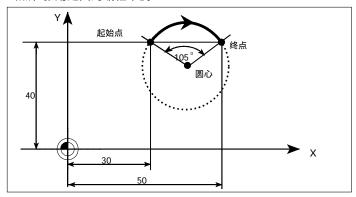


图 8-21 终点和张角的定义

N5 G90 X30 Y40 ;N10 圆弧的起始点

圆心和张角定义的编程举例:

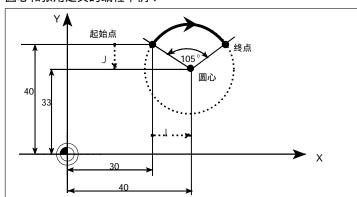


图 8-22 终点和张角的定义

N5 G90 X30 Y40 ;N10 圆弧的起始点

N10 G2 I10 J-7 AR=105 ;圆心和张角

说明:

CR=-...中的负号会选择一个大于半圆的圆弧段。

极坐标编程举例:

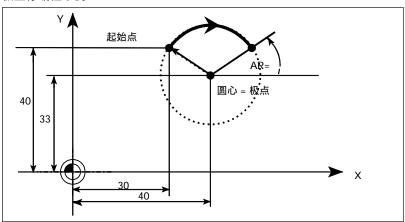


图 8-23 极坐标系中的圆弧

N1 G17 :X/Y 平面

N5 G90 G0 X30 Y40 ;N10 圆弧的起始点

N10 G111 X40 Y33 ;极点 = 圆心

N20 G2 RP=12.207 AP=21 ;极坐标

8.3.4 通过中间点进行圆弧插补:CIP

功能

如果已经知道圆弧轮廓上 3 个点而不知道圆弧的圆心,半径和张角,则建议使用功能 CIP。

在此,圆弧方向由中间点的位置确定(中间点位于起始点和终点之间)。

对应着不同的坐标轴,中间点定义如下:

l1=...用于 X 轴 , J1=...用于 Y 轴 , K1=...用于 C 轴

CIP 一直有效,直到被 G 功能组中其它的指令(G0,G1,G2,...)取代为止。

说明:

可设定的位置数据输入 G90 或 G91 指令对终点和中间点有效。

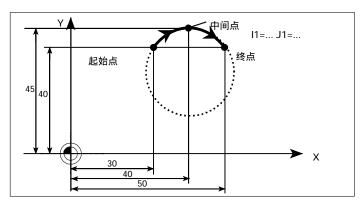


图 8-24 已知终点和中间点的圆弧插补 (用 G90)

编程举例 N5 G90 X30 Y40 ;用于 N10 的圆弧起始点

N10 CIP X50 Y40 I1=40 J1=45 ;终点和中间点

8.3.5 切线过渡圆弧:CT

功能 在当前平面 G17 至 G19 中,使用 CT 和编程的终点可以使圆弧与前面的轨迹(圆 弧或直线)进行切向连接。

圆弧的半径和圆心可以从前面的轨迹与编程的圆弧终点之间的几何关系中得出。

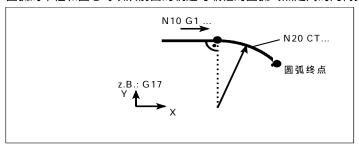


图 8-25 圆弧与前面的轨迹切向连接

编程举例 N20 G1 X20 F300 :直线

N20 CT X...Y... ;切向连接的圆弧

8.3.6 螺旋插补:G2/G3, TURN

功能 螺旋插补是由两种运动组成:

- 在 G17, G18 或 G19 平面中进行的圆弧运动

- 垂直该平面的直线运动

此外用指令 TURN=...编程整圆循环的个数;这将附加到圆弧编程中。

螺旋插补可以用于铣削螺纹,或者在油缸的润滑槽加工中。

编程 G2/G3 X...Y...I...J... TURN=... : 圆心和终点

G2/G3 CR=...X...Y...TURN=... ; 圆半径和终点 G2/G3 AR=...I...J...TURN=... ; 张角和圆心 G2/G3 AR=...X...Y...TURN=... : 张角和终点

G2/G3 AP=...RP=...TURN=... ; 极坐标系; 极点圆弧

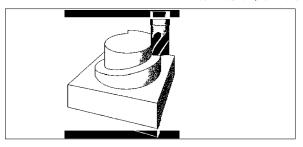


图 8-26 螺旋插补

编程举例 N10 G17 ;X/Y 平面, Z - 垂直于该平面

N20...Z...

N30 G1 X0 Y50 F300 ;回起始点 N40 G3 X0 Y0 Z33 I0 J-25 TURN=3 ;螺旋

. . .

8.3.7 恒螺距螺纹切削:G33

功能 该功能要求主轴有位置测量系统。

该功能 G33 可以用来加工带恒定螺距的螺纹,如果刀具合适,则可以使用带补偿求量的环络

偿夹具的攻丝。

在这种情况下,补偿夹具补偿一定范围内出现的位移差值。

钻削深度由坐标轴 X, Y或 Z定义,螺距由相应的 I, J或 K值决定。

G33 一直保持有效,直到被 G组中其它的指令取代为止(G0,G1,G2,G3,...)。

RH 或 LH 螺纹

RH 或 LH 螺纹由主轴的旋转方向确定 (M3 - 顺时针旋转 , M4 - 逆时针旋转 , 参见章节 8.4 " 主轴运动 ")。这就要求在地址 S 下编程速度值 , 或者设定一个速度值。

说明

标准循环 CYCLE840 提供一个完整的带补偿夹具的攻丝循环(参见章节"循环")。

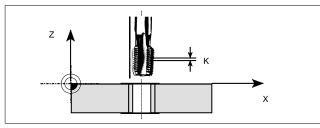


图 8-27 用 G33 攻丝

编程举例

公制螺纹5,

螺距见表:0.8毫米/转,钻孔已经准备好:

N10 G54 G0 G90 X10 Y10 Z5 S600 M3 ;回起始点,主轴顺时针旋转

 N20 G33 Z-25 K0.8
 ;攻丝,终点-25 毫米

 N40 Z5 K0.8 M4
 ;后退,主轴逆时针旋转

N50 G0 X...Y...Z...

轴速度

用 G33 编程螺纹,加工螺纹的轴速度由主轴速度和螺距决定。进给率 F 不起作用。但是,该进给率仍保持存储状态,同时在机床数据中定义的轴速度的最大值不可以超出。

注意:

- 保证在加工螺纹期间主轴速度调节开关不得改变;
- 在此程序段中进给修调开关不起作用。

8.3.8 带补偿夹具攻丝:G63

功能

G63 可以用于带补偿夹具的螺纹加工,编程的进给率 F 必须与主轴速度 (S 编程 或速度设定) 和螺距相匹配:

F[毫米/分钟]=S[转/分钟]x 螺距[毫米/转]

在这种情况下,用补偿夹具补偿在一定的范围之内所出现的位移差值。

也用 G63 指令退出钻削,但主轴运行方向相反 M3<->M4。

G63 以程序段方式有效,在 G63 之后的程序段中,以前的插补 G 指令(G0,G1, G2,...) 再次生效。

RH 或 LH 螺纹

由主轴的旋转方向确定(M3-顺时针旋转,M4-逆时针旋转,参见章节8.4"主

轴运动")。

说明

标准循环 CYCLE840 提供一个完整的带补偿夹具的攻丝循环(参见章节)循环")。

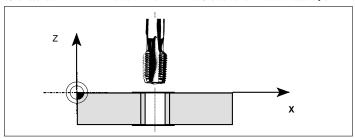


图 8-28 用 G63 攻丝

编程举例

公制螺纹 5,螺距见表:0.8毫米/转,钻孔已经准备好:

N10 G54 G0 G90 X10 Y10 Z5 S600 M3 ;回起始点,主轴顺时针旋转

 N20 G63 Z-25 F480
 ;攻丝,终点-25 毫米

 N40 G63 Z5 M4
 ;后退,主轴逆时针旋转

N50 G0 X...Y...Z...

8.3.9 螺纹插补:G331, G332

功能

要求主轴必须是位置控制的主轴,且具有位置测量系统。

如果主轴和坐标轴的动态性能许可,可以用 G331/G332 进行不带补偿夹具的螺纹切削。

如果在这种情况下还是使用了补偿夹具,则由补偿夹具接受的位移差会减少,从而可以进行高速主轴攻丝。

用 G331 加工螺纹,用 G332 退刀。

攻丝深度由一个轴指令 X, Y 或 Z 轴定义;螺距则由相应的 I, J 或 K 指令定义。在 G332 中编程的螺距与在 G331 中编程的螺距一样,主轴自动反向。

主轴转速用 S 编程,不带 M3/M4。

在攻丝之前,必须用 SPOS=...指令使主轴处于位置控制运行状态(参见章节8.4.3"主轴定位")。

右旋螺纹或左旋螺纹

螺距的符号确定主轴方向:

正:右旋(同 M3) 负:左旋(同 M4)

注释:

LCYC84 标准循环提供了一个完整的带螺纹插补的攻丝循环(参见章节"循环")。

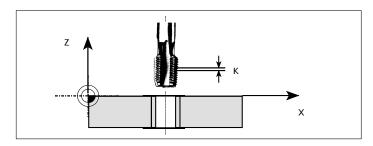


图 8-29 用 G331/G332 攻丝

坐标轴速度 G331/G332 中在加工螺纹时坐标轴速度由主轴转速和螺距确定,而与进给率 F

则没有关系,进给率 F 处于存储状态。在此,机床数据中规定的最大轴速度(快

速移动速度)不允许超过。否则会产生一报警。

编程举例 公制螺纹 5,螺距:0.8毫米/转,孔已经预制:

N5 G54 G0 G90 X10 Y10 Z5 ;回起始点

N10 SPOS=0 ;主轴处于位置控制状态

N20 G331 Z-25 K0.8 S600 ; 攻丝, K 为正, 表示主轴右旋,

终点-25 毫米

N40 G332 Z5 K0.8 ;退刀

N50 G0 X...Y... Z...

8.3.10 返回固定点:G75

功能 用 G75 可以返回到机床中某个固定点,比如换刀点。固定点位置固定地存储在

机床数据中,它不会产生偏移。

每个轴的返回速度就是其快速移动速度。...

G75 需要一独立程序段,并按程序段方式有效。机床坐标轴的名称必须要编程!在 G75 之后的程序段中原先"插补方式"组中的 G 指令(G0,G1,G2,...)将再次

生效。

编程举例 N10 G75 X1=0Y1=0 Z1=0

注释:程序段中 X1, Y1 和 Z1 下编程的数值(这里为 0) 不识别。

8.3.11 回参考点:G74

功能 用 G74 指令实现 NC 程序中回参考点功能,每个轴的方向和速度存储在机床数据中。

G74 需要一独立程序段,并按程序段方式有效。机床坐标轴的名称必须要编程!

在 G74 之后的程序段中原先 "插补方式"组中的 G指令(G0,G1,G2,...)将再次生效。

编程举例 N10 G74 X1 = 0 Y1 = 0 Z1 = 0

注释:程序段中 X1, Y1和 Z1(在此=0)下编程的数值不识别,必须写入。

8.3.12 用测量头测量 MEAS, MEAW

功能 如果在轴运行的一个程序段中有指令 MEAS=...或者 MEAW=...,则在所连接测

量头的开关边沿处采集运行轴的位置并存储。每个轴的测量结果在程序中可读。 指令为 MEAS 时,当所选择的测量头的开关边沿到达后,则制动正在运行的坐

标轴,并且其剩余的行程将会清除。

编程 MEAS=1 G1 X...Y... Z... F... ;测量头上升沿时测量;删除待运行行程

 MEAS=-1 G1 X... Y... Z... F...
 :测量头下降沿时测量;删除待运行行程

 MEAW=1G1 X... Y... Z... F...
 :测量头上升沿时测量;不删除待运行行程

 MEAW=-1G1 X... Y... Z... F...
 :测量头下降沿时测量;不删除待运行行程

若测量头已经打开,则在测量记录之后变量\$AC_MEA[1]的值为1;否则值为0。

IVICAVV=-101 A...Y... Z...F... //则里大个呼点的则里,个删除付这1J1J任

启动测量记录时该变量设定为 0。

测量结果 测量头打开并记录之后,其通过下面变量记录的测量结果供运行的坐标轴使用:

 在机床坐标系中:
 \$AA_MM[轴]

 在工件坐标系中:
 \$AA_MW[轴]

编程举例 N10 MESA=1 G1 X300 Z-40 F4000 :上升沿测量,清除剩余行程

N20 IF \$AC_MEA[1]==0 GOTOF MEASERR ;测量出错? N30 R5=\$AA_MW[X] R6=\$AA_MW[Z] ;处理测量值

N100 MEASERR: M0 :测量出错

说明:

IF 指令 - 参见章节 " 有条件程序跳转 "

8.3.13 进给率 F

测量任务状态

功能 进给率 F 是刀具轨迹速度,它是所有移动坐标轴速度的矢量和。

坐标轴速度是刀具轨迹速度在坐标轴上的分量。

进给率 F 在 G1,G2,G3,CIP,CT 插补方式中生效,并且一直有效,直到被一个新的

地址F取代为止。

编程 F...

注释:在取整数值方式下可以取消小数点后面的数据,如 F300

SINUMERIK 802D/802D base line 操作编程 - 铣床 6FC5698-2AA10-0RP3 (2003.11) 进给率 F 的单位 地址 F 的单位由 G 功能确定:

G94 和 G95 • G94 直线进给率 毫米/分钟

• G95 旋转进给率 毫米/转(只有主轴旋转才有意义!)

注释:这些数值以公制尺寸给出,根据章节"公制和英制尺寸"中的说明,这里

也可以采用英制。

编程举例 N10 G94 F310 ;进给量毫米/分钟

. . .

 N110 S200 M3
 ;主轴旋转

 N120 G95 F15.5
 ;进给量毫米/转

注释: G94 和 G95 更换时要求写入一个新的地址 F。

8.3.14 圆弧进给率修调:CFTCP, CFC

功能 如果刀具半径补偿(G41/G42,参见章节 8.6.4)和圆弧编程已经使能,则若使

编程的进给 F 在圆弧轮廓处生效,就必须对刀具中心点处的进给率进行修调。如果该修调功能已经激活,则会自动考虑圆弧的内外加工,以及当前的刀具半径。对于直线轮廓的加工则无需进行进给率的修调。此时,刀具中心的进给率与所编程轮廓处的进给率相同。

如果要求所编程的进给率在刀具中心有效,则必须关闭进给率修调。使用模态有效的指令CFTCP/CFC(G功能)关闭该功能。

编程 CFTCP ;关闭进给率修调(编程的进给率在刀具中心有效)

CFC : 开启圆弧进给率修调

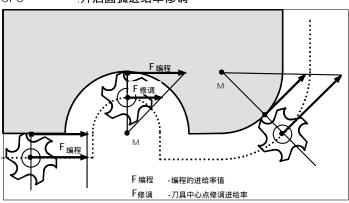


图 8-30 用干内部/外部加工的进给率修调 G901

修调的讲给率 - 外部圆弧加工: F 條调 = F 編程 (r 於廊 + r 刀具) /r 於廊

- 内部圆弧加工: F_{修调} = F_{编程} (r_{轮廓} - r_{刀具})/r_{轮廓}

r_{轮®}:圆弧轮廓半径 r л 및 : 刀具半径

编程举例 N10 G42... :开启刀具半径补偿

> N20 CFC... :开启圆弧进给率修调 N30 G2 X... Y... I... J... F350 进给率值在轮廓处有效 N40 G3 X...Y...I... J... 进给率值在轮廓处有效

;关闭进给率修调,编程的进给率在刀具中 N70 CFTCP

心有效

8.3.15 准确定位/连续路径加工:G9 , G60 , G64

功能 针对程序段转换时不同的性能要求,802D提供一组G功能用于进行最佳匹配的

选择。比如,有时要求坐标轴快速定位;有时要求按轮廓编程对几个程序段进行

连续路径加工。

编程 G60 ;准确定位--模态有效

> G64 连续路径加工

G9 ;准确定位--单程序段有效

G601 :精准确定位窗口 G602 :粗准确定位窗口

准确定位 G60,G9

G60 或 G9 功能生效时, 当到达定位精度后, 移动轴的进给速度减小到零。

如果一个程序段的轴位移结束并开始执行下一个程序段,则可以设定下一个模态

有效的 G 功能:

• G601 精准确定位窗口

> 所有的坐标轴都到达"精准确定位窗口"(机床数据中设定值)后,开始进行 程序段转换。

• G602 粗准确定位窗口

当所有的坐标轴都到达"粗准确定位窗口"(机床数据中设定值)后,开始进

行程序段转换。

在执行多次定位过程时,"准确定位窗口"如何选择将对加工运行总 时间影响很大。精确调整需要较多时间。

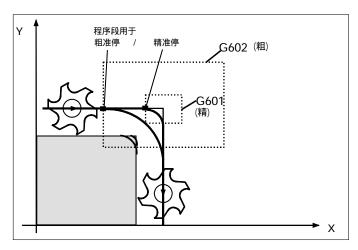


图 8-31 G60/G9 生效时粗准确定位窗口和精准确定位窗口说明

编程举例 N5 G602 :粗准确定位窗口

N10 G0 G60 Z... ;准确定位,模态方式

N20 X...Y... ;G60 继续有效

. . .

N50 G1 G601 ... ;精准确定位窗口

N80 G64 Z... ;转换到连续路径方式

. . .

N100 G0 G9 Z... ;准确定位,单程序段有效

N111...:: 仍为连续路径方式

. . .

注释:指令 G9 仅对单独程序段有效,而 G60 准确定位一直有效,直到被 G64 取代为止。

连续路径加工 G64

连续路径加工方式的目的就是在一个程序段到下一个程序段转换过程中避免进给停顿,并使其尽可能以相同的轨迹速度(切线过渡)转换到下一个程序段,并以可预见的速度过渡执行下一个程序段的功能。

在有拐角的轨迹过渡时(非切线过渡)有时必须降低速度,从而保证程序段转换时不发生速度的突然变化,或者加速度的改变受到限制(如果SOFT有效)。

编程举例 N10 G64 G1 X... F... ;连续路径加工

N20 Y.. :继续

. . .

N180 G60... ;转换到准确定位

速度预览 (Look Ahead 功能)

在 G64 连续路径加工方式下,控制系统预先自动确定几个 NC 程序段的速度。在接近切线过渡的情况下,可以连续几个程序段进行加速或减速。若加工路径由几个较短的位移组成,则使用预览功能可以达到更高的速度。

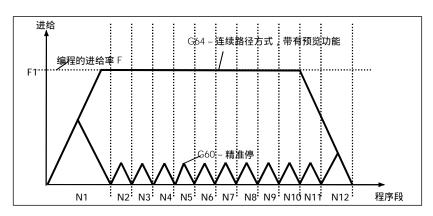


图 8-32 G60 和 G64 速度性能比较(短行程程序段)

8.3.16 加速度性能:BRISK, SOFT

BRISK 机床坐标轴按最大加速度的轨迹运行,直至达到所要求的进给率。提供时间最优

化的加工过程,从而可以在很短时间之内就可以达到设定速度,但必须注意到在

加速过程中会出现一些跳动。

SOFT 机床坐标轴按上升的加速度的轨迹运行,直至达到所要求的进给率。SO FT 加速性能避免了加速度的突变,从而使产生的轨迹精度更高,并减轻对机床的负担。

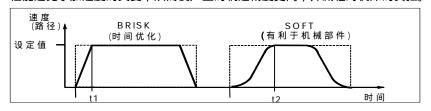


图 8-33 BRISK/SOFT 加速特性时的轨迹速度图形

编程 BRISK 沒有跳动的轨迹加速度

SOFT :跳动受到限制的轨迹加速度

编程举例 N10 SOFT G1 X30 Z84 F650 ;跳动受到限制的轨迹加速度

. . .

N90 BRISK X87 Z104 ; 以有跳动的轨迹加速度继续

8.3.17 比例加速度补偿:ACC

功能 在某些程序段,有时必须对机床数据中设定的进给轴或主轴的加速度进行修改。

这种可编程的加速度就是一种比例加速度补偿。

对于每个进给轴(比如 \times 轴)或主轴 (\times) 可以编程一个 \times 0-200%的比例值。在这种情况下,轴就以这种比例加速度进行插补。基准值(100%)为用于加速度的有效机床数据值(取决于进给轴或主轴,若是主轴则还与齿轮级和定位方式或

速度方式相关)。

编程 ACC[轴名称]=百分值 ;用于进给轴

ACC[S]=百分值 ;用于主轴

编程举例 N10 ACC[X]=80 ;X 轴为 80%的加速度值

N20 ACC[S]=50 ;主轴为 50%的加速度值

. .

N100 ACC[X]=100 ;取消 X 轴的加速度补偿

有效性 极限值的限制适用于自动方式和 MDA 方式下各种插补方式,但对 JOG 方式和

回参考点方式不适用。

ACC[...]=100 时取消加速度的补偿;用复位方式及程序结束也同样取消加速度的

补偿。

在空运行时编程的补偿也一样有效。

注释:只有当驱动具有相应的驱动能力时编程值大干100%才可以执行-否则将

发出报警。

8.3.18 带先导控制功能运行:FFWON, FFWOF

功能 通过先导控制功能可以把轨迹运行时速度相关的随动距离减少为零。利用先导控

制功能,可以使轨迹运行精度更精确,从而使加工结果更令人满意。

编程 FFWON : 先导控制功能接通

FFWOF : 先导控制功能关闭

编程举例 N10 FFWON ;先导控制功能接通

N20 G1 X...Y...Z... F900

. . .

N80 FFWOF ;先导控制功能关闭

8.3.19 第4轴

功能 取决于机床的结构设计,有时必须要有一个第4轴,比如用于回转工作台,旋转

工作台。该轴可以设计成直线轴,也可以设计成回转轴。这些轴的名称必须要相应地设计,比如:U或C或A等等。若为回转轴,则设计的运行范围在0...<360

度之间(取模特性)。

如果机床做相应的设计,则第4轴可以作为线性轴与原先的进给轴(剩余轴)一起运行。如果该轴与剩余轴一起在一个程序段中,并且含有G1或G2/G3指令,则它不具有一个独立的进给率F,而是取决于进给轴X,Y和Z的进给率,并且

与剩余轴一起开始和结束。但是,该速度值不能大于所规定的极限值。

如果该轴用指令 G1 编程在一个独立的程序段中,则它以有效的进给率 F 运行。如果是一回转轴,则用 G94 时单位是度/分钟,用 G95 时为度/转。该轴可以设定

偏移量(G54...G57)并且进行编程(TRANS,ATRANS)。

编程举例 假设第 4 轴为一个旋转轴, 名称为 A:

N5 G94 ;F 单位为毫米/分钟 或者度/分钟

 N10 G0 X10 Y20 Z30 A45
 ;快速移动所有轴

 N20 G1 X12 Y21 Z33 A60 F400
 ;所有轴以 G1 运行

N30 G1 A90 F3000 ;仅轴 A 以进给率 3000 度/分钟的进给率运

行到 90 度位置

回转轴中使用的 比如在回转轴 A:

特殊指令: A=DC(...) ;绝对数据输入,直接回到位置(使用最短距离)

DC,ACP,CAN A=ACP(...) ;绝对数据输入,在正方向逼近位置

A=ACN(...) ;绝对数据输入,在负方向逼近位置

举例:

N10 A=ACP(55.7) ;在正方向逼近位置 55.7 度

8.3.20 暂停:G4

功能 通过在两个程序段之间插入一个 G4 程序段,可以使加工中断给定的时间,比如

退刀槽切削。

G4 程序段(含地址 F 或 S)只对单独程序段有效,并暂停所给定的时间。在此

之前程编的进给量下和主轴转速S保持存储状态。

编程 G4 F... ;暂停时间(秒)

G4 S... ;暂停主轴转数

编程举例 N5 G1 F200 Z-50 S300 M3 ;进给率 F,主轴速度 S

N10 G4 F2.5 ;暂停 2.5 秒

N20 Z70

N30 G4 S30 ;主轴暂停 30 转,相当于在 S=300 转/分钟

和转速修调 100%时暂停 t=0.1 分钟

N40 X... : 进给率和主轴转速继续有效

注释:G4 S...只有在受控主轴情况下才有效(当转速给定值同样通过 S...编程

时)。

8.3.21 移动到固定点停止

功能 此功能作为一选项适用于软件版本 2.0。

使用此功能"移动到固定点停止" (FXS = 固定点停止), 可以获得夹紧工件所需的作用力,如主轴和夹具所需的作用力。而且,此功能还可以用于回机械参考点。

随着扭矩尽可能地减少,无需使用探头就可以进行简单的测量。

编程 FXS[轴]=1 ;选择移动到固定点停止

FXS[轴]=0 ; 取消移动到固定点停止

FXST[轴]=... ; 夹紧扭距,定义值是驱动器最大扭距值的百分比

FXSW[轴]=... ; 监控移动到固定点停止的窗口宽度,单位是毫米/度。

注意:定义坐标轴名称时优先使用机床轴名称,如:X1。如果没有旋转动作且

该轴直接分配给机床轴,则允许使用通道轴名称(如:X)。

这些命令是模态有效的。剩余行程和功能 FXS[轴] = 1 的选择必须编程在单独的

程序段中。

编程举例 - 选择 N10 G1 G94...

N100 X250 Z100 F100 FXS[Z1]=1 FXST[Z1]=12.3 FXSW[Z1]=2;

机床轴 Z1 选择了 FXS 功能,夹紧扭距是 12.3%,监控窗口的宽度是 2 毫米。

● 扭距(FXST[])和窗口宽度(FXSW[])可以选择定义。如果没有定义它们,将使用现有的设定数据的值。如果已定义,则使用定义的值。首先,载入的设定数据的值来自于机床数据。FXST[]=...或FXSW[]=...可以在程序中随时更改。

这些修改在程序中编程的进给动作前生效。

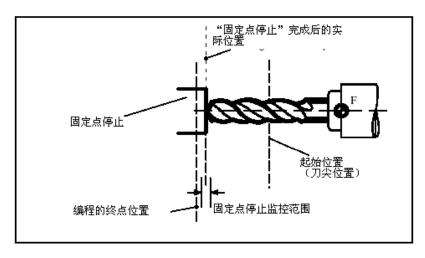


图 8-34 移动到固定点停止举例:刀具离开停止点

其它编程举例

N10 G1 G94...

N20 X250 Z100 F100 FXS[X1]=1;机床轴 X1 选择了 FXS , 夹紧扭距和窗口宽度 采用设定数据中的值

N20 Y250 Z100 F100 FXS[X1]=1 FXST[X1]=12.3;机床轴 X1 选择了 FXS,夹紧扭 距为 12.3%,窗口宽度使用设定数据值

N20 X250 Y100 F100 FXS[X1] FXST[X1]=2;机床轴 X1 选择了 FXS,夹紧扭距为 12.3%,窗口宽度为 12.3毫米

N20 Y250 Z100 F100 FXS[X1]=1 FXSW[X1]=2;机床轴 X1 选择了 FXS ,夹紧扭距使用设定数据值,窗口宽度为 2 毫米

到达固定停止点

到达固定停止点后,

- 删除剩余行程,修改位置设定值
- 驱动扭距增加至编程的极限值 FXST[]=...或编程的设定数据值 ,然后保持恒量
- 在窗口宽度范围内的固定点停止监控生效(FXSW[]=...或 SD 中的设定值)。

取消功能

取消该功能会导致预处理停止。具有 FXS[X1]=0 的程序段必须包含进给动作。 举例:

N200 G1 G94 X200 Y400 F200 FXS[X1]=0;X1 退回到 X=200mm 位置。

重要信息

到返回位置的进给动作必须远离固定停止点;否则,会损坏固定停止点或机床。

到达返回位置后更改程序段。如果未定义返回位置,则在扭距极限值禁止后立即进行程序段更改。

其它说明

- 不能在同一个程序段中同时编程"测量时删除剩余行程"("MEAS"指令)和"移动到固定点停止"。
- 在"移动到固定点停止"过程中不执行轴相关轮廓监控。
- 如果扭距极限值减少的过多,轴将不再按照设定值定义,位置控制器将激活极限值功能且轮廓偏差增加。此时,由于扭距极限值的增加,会产生意外动作。为了确保轴仍然按照设定值定义,不要让轮廓偏差大于使用不受限制的扭距情况下的偏差。
- 提供了一些机床数据用来定义新的扭距极限值,以防意外地设定扭距极限值(如主轴压到工件时)。

该状态系统变量:\$AA_FXS[轴]

此系统变量表达了指定轴的"移动到固定点停止"的状态:

值=0:轴未到达停止点

1:成功到达停止点(轴位于固定停止监控窗口)

2:未成功到达固定停止点(轴不在停止点)

3:激活了移动到固定点停止

4: 停止被识别

5:将取消移动到固定点停止。取消动作还未完成。

零件程序中系统变量的问号触发了一个预处理停止。

对于 SINUMERIK 802D,只要求功能选择/取消前处于静止状态。

报警抑制

通过机床数据,可以抑制以下报警的输出:

• 20091 "未到达固定点停止"

• 20094 "固定停止点破坏"

参考: "功能说明",章节"移动到固定点停止"。

8.4 主轴运动

8.4.1 主轴转速 S, 旋转方向

功能 当机床具有受控主轴时,主轴的转速可以编程在地址 S 下,单位转/分钟。旋转

方向和主轴运动起始点和终点通过 M 指令规定 (参见章节 8.7 "辅助功能 M")。

 M3
 主轴正转

 M4
 主轴反转

 M5
 主轴停止

注释:在S值取整情况下可以去除小数点后面的数据,比如S270。

说明 如果在程序段中不仅有 M3 或 M4 指令,而且还写有坐标轴运行指令,则 M 指

令在坐标轴运行之前生效。

缺省设定:当主轴运行之后(M3,M4),坐标轴才开始运行。同样 M5 也在坐标轴运行之前给出。但主轴停止无需等待,坐标轴在主轴停止之前就开始运动。可以通过程序结束或复位停止主轴。程序开始时主轴转速零(S0)有效。

注释:其它的设定可以通过机床数据进行。

编程举例 N10 G1 X70 Z20 F300 S270 M3 ;在 X,Z 轴运行之前 ,主轴以 270 转/分启动 ,

方向顺时针

. . .

N80 S450 ... ;改变转速

. . .

N170 G0 Z180 M5 ;Z 轴运行,主轴停止

8.4.2 主轴转速极限:G25,G26

功能 通过在程序中写入 G25 或 G26 指令和地址 S 下的转速,可以限制特定情况下主

轴的极限值范围。与此同时原来设定数据中的数据被覆盖。

G25 或 G26 指令均要求一独立的程序段.原先编程的转速 S 保持存储状态。

编程 G25 S... ;主轴转速下限

G26 S... ; 主轴转速上限

说明 主轴转速的最高极限值在机床数据中设定。通过面板操作可以激活用于其它极限

情况的设定参数。

编程举例 N10 G25 S12 ;主轴转速下限:12 转/分钟

N20 G26 S700 ;主轴转速上限:700 转/分钟

说明 使用 G25/G26,同时给出轴地址可以限制工作区域(参见章节"工作区域限制")。

SINUMERIK 802D/802D base line 操作编程 - 铣床 6FC5698-2AA10-0RP3 (2003.11)

8.4.3 主轴定位:SPOS

功能 前提条件:主轴必须设计成可以进行位置控制运行。

利用功能 SPOS 可以把主轴定位到一个确定的转角位置,然后主轴通过位置控制

保持在这一位置。

定位运行速度在机床数据中规定。

从主轴旋转状态(顺时针旋转/逆时针旋转)进行定位时定位运行方向保持不变; 从静止状态进行定位时定位运行按最短位移进行,方向从起始点 位置到终点位 置。

例外的情况是:主轴首次运行,也就是说测量系统还没有进行同步。 此种情况下定位运行方向在机床数据中规定。

用 SPOS=ACP(...),SPOS=ACN(...),...设定的主轴其它运行指令同样适用于回转 坐标轴(参见章节"第3轴和第4轴")。

主轴定位运行可以与同一程序段中的坐标轴运行同时发生。 当两种运行都结束以后,此程序段才结束。

编程 SPOS=... ;绝对位置:0...<360 度

 SPOS=ACP(...)
 ;绝对数据输入,在正方向逼近位置

 SPOS=ACN(...)
 ;绝对数据输入,在正方向逼近位置

 SPOS=IC(...)
 ;增量数据输入,符号规定运行方向

SPOS=DC(...) :绝对数据输入,直接回到位置(使用最短行程)

编程举例 N10 SPOS=14.3 :主轴位置 14.3 度

. . .

N80 G0 X89 Z300 SPOS=25.6 :主轴定位与坐标轴运行同时进行。所有运行都

结束以后,程序段才结束。

N81 X200 Z300 ;N80 中主轴位置到达以后才开始执行 N81 程

序段。

8.4.4 齿轮级

功能 最多可为主轴配置 5 个齿轮级来调节速度/扭距。齿轮级通过程序中的 M 指令来选择(参见章节 8.7 " 辅助功能 M "):

M40 ; 自动齿轮级换档M41到 M45; 齿轮级 1 到 5

8.5 轮廓定义编程辅助

8.5.1 倒圆,倒角

功能 在一个轮廓拐角处可以插入倒角或倒圆 ,指令 CHF=...或者 RND=...与加工拐角

的轴运动指令一起写入到程序段中。

编程 CHF=... ;插入倒角,数值:倒角长度

RND=... ;插入倒圆,数值:倒圆半径

信息 在当前的平面 G17 到 G19 中执行倒角/倒圆功能。

说明:

在程序段中若轮廓长度不够,则会自动地削减倒角和倒圆的编程值。

在下列情况下,不插入倒角/倒圆:

- 如果连续编程的程序段超过3段没有运行指令;

- 如果更换平面。

倒角 CHF=

直线轮廓之间、圆弧轮廓之间以及直线轮廓和圆弧轮廓之间切入一直线并倒去棱角。

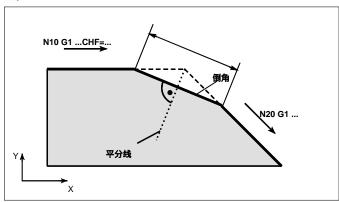


图 8-35 两段直线之间倒角举例

编程举例 N10 G1 X... CHF=5 ; 倒角 5 毫米

N20 X...Y...

倒圆 RND= 直线轮廓之间、圆弧轮廓之间以及直线轮廓和圆弧轮廓之间切入一圆弧,圆弧与

轮廓进行切线过渡。

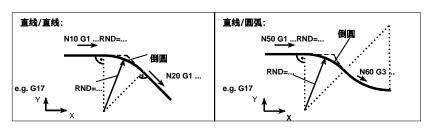


图 8-36 倒圆举例

倒圆编程举例 N10 G1 X... RND=8 :倒圆,半径 8 毫米

N20 X...Y...

. . .

N50 G1 X... RND=7.3 ;倒圆,半径 7.3 毫米

N60 G3 X...Y...

8.5.2 轮廓定义编程

功能 如果从图纸中无法看出轮廓终点坐标,则可以用角度确定一条直线。在任何一个

轮廓拐角都可以插入倒圆和倒角。在拐角程序段中写入相应的指令 CHR=...或者

RND=....

可以在含有 G0 或 G1 的程序段中使用轮廓定义编程。

理论上讲,你可以使任意多的直线程序段发生关联,并且在其之间插入倒圆或倒

角。在这种情况下,每条直线必须通过点和/或角度参数明确定义。

编程 ANG=... 定义直线的角度参数

 CHR=...
 ;插入倒角;值:倒角边长

 RND=...
 ;插入倒圆;值:圆角半径

角度 ANG=

如果在平面中一条直线只给出一终点坐标,或者几个程序段确定的轮廓仅给出其最终终点坐标,则可以通过一个角度参数来明确地定义该直线。该角度始终指与 Z 轴的夹角(一般情况下在平面 G18 中)。角度以逆时针方向为正方向。

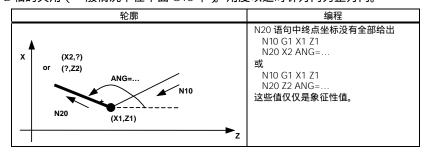


图 8-37 在 G17 平面中定义直线的角度参数

倒角 CHR=

在拐角处的两段直线之间插入一段直线,编程值就是倒角的直角边长。

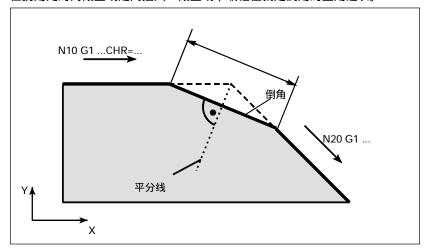


图 8-38 用 CHR 插入一个倒角

编程 N20 中终点未知 N10 G1 X1 Y1

N20 X2 ANG=...

或:

N10 G1 X1 Y1 N20 Y2 ANG=...

倒圆 RND= 在拐角处的两段直线之间插入一个圆弧,并使它们切线相连。

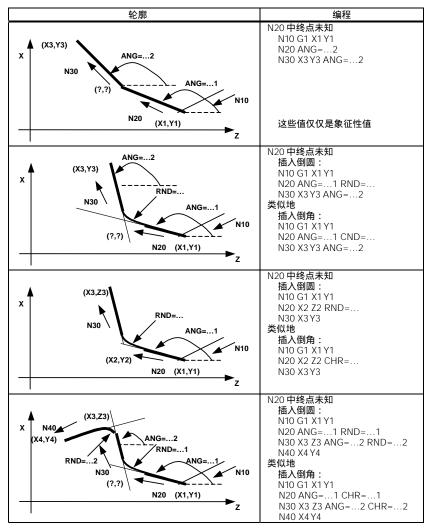


图 8 - 39 G17 平面中多程序段轮廓举例

说明

在当前的平面 G17 到 G19 中执行"轮廓定义编程"功能,在该功能有效时不可以改变平面。

注意:

- 如果在一个程序段中同时编程了半径和倒角,则不管编程的顺序如何,而是 仅插入半径。
- 除了轮廓定义编程之外,另外还有用 CHF=定义的倒角定义。在这种情况下, 该值为倒角斜边长度,而非用 CHR=定义的倒角直角边长。

8.6 刀具和刀具补偿

8.6.1 一般说明

功能

在对工件的加工进行编程时,你无需考虑刀具长度或切削半径。你可以直接根据 图纸对工件尺寸进行编程。

刀具参数单独输入到一专门的数据区。在程序中你只要调用所需的刀具号及其补偿参数,控制器利用这些参数执行所要求的轨迹补偿,从而加工出所要求的工件。

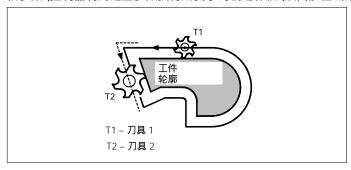


图 8-40 用不同半径的刀具加工工件

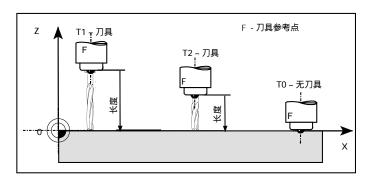


图 8-41 返回工件位置 ZO - 不同的长度补偿

8.6.2 刀具 T

功能

编程 \top 指令可以选择刀具。在此,是用 \top 指令直接更换刀具还是仅仅进行刀具的 预选,这必须要在机床数据中确定:

- 用 ⊤指令直接更换刀具(比如:车床中常用的刀具转塔刀架),
 或者
- 仅用 T 指令预选刀具,另外还要用 M6 指令才可进行刀具的更换(参见章节8.7 "辅助功能 M")。

注意:

如果已经激活一个刀具,则它一直保持有效,不管程序是否结束以及电源开/关。如果要手动更换一个刀具,则必须把更换的刀具输入到控制系统,并且确定系统已经识别正确的刀具。比如,你可以在 MDA 方式下使用一个新的 T 字。

编程 T... ;刀具号:1...32000,T0-没有刀具

说明 系统中最多同时存储 32 把刀具。

编程举例 不用 M6 更换刀具:

N10T1 ;刀具 1

. . .

N70T588 ;刀具 588

用 M6 更换刀具:

N10 T14 ; **预选**刀具 14

. . .

N15 M6 ;执行刀具更换;然后 T14 有效

8.6.3 刀具补偿号 D

功能 一个刀具可以匹配从1到9几个不同补偿的数据组(用于多个切削刃)。用D及

其相应的序号可以编程一个专门的切削刃。 如果没有编写 D 指令,则 D1 自动生效。 如果编程 D0,则刀具补偿值无效。

说明 系统中最多可以同时存储 64 个刀具补偿数据组。

编程 D... ;刀具补偿号:1...9,

D0 ;没有补偿值有效!

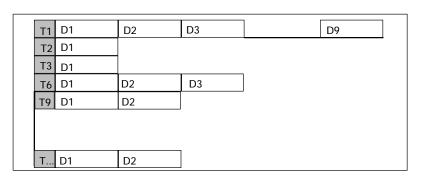


图 8-42 刀具中刀具补偿号匹配举例

说明

刀具调用后,刀具长度补偿立即生效;如果没有编程 D 号,则 D1 值自动生效。 先编程的长度补偿先执行,对应的坐标轴也先运行。

具半径补偿必须与 G41/G42 一起执行。

编程举例

不用 M6 更换刀具(只用 T):

N5 G17;确定待补偿的轴N10T1;刀具 1D1 值生效

N11 G0 Z... ;在 G17 平面中, Z 是刀具长度补偿, 长度补

偿在此覆盖

. . .

N70 G0 Z... D1 ;刀具 4 中 D1 值生效,在此仅更换切削刃

用 M6 更换刀具:

N5 G17 ;确定待补偿的轴

N10 T1 ; 预选刀具

. . .

N15 M6 ;更换刀具, T1 中 D1 值生效

N16 G0 Z... ;在 G17 平面中 ,Z 是刀具长度补偿 ,长度补

偿在此覆盖

. . .

N20 G0 Z... D2 ;刀具 1 中 D2 值生效, D1 - >D2 长度补偿

的差值在此覆盖

N50 T4 ;刀具预选 T4 , 注意: T1 中 D2 仍然有效!

. .

. . .

补偿存储器内容

在补偿存储器中有如下内容:

几何尺寸:长度,半径几何尺寸由许多分量组成:基本尺寸和磨损尺寸。控制器处理这些分量,计算并得到最后尺寸(比如:总和长度,总和半径)。
 在激活补偿存储器时这些最终尺寸有效。

由刀具类型指令和 G17, G18 和 G19 指令确定如何在坐标轴中计算出 这些尺寸值(参见下面图表)。

• 刀具类型

由刀具类型可以确定:需要哪些几何参数以及怎样进行计算(钻头或车刀)。

刀具的特殊情况

在刀具型号铣刀和钻头中,长度 2 和长度 3 的参数仅用于特殊情况(比如弯头结构的多尺寸长度补偿)。

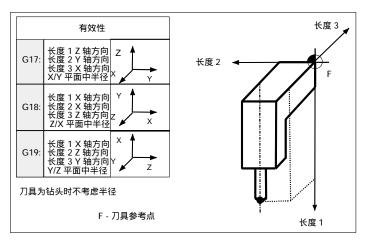


图 8-43 3 维刀具长度补偿有效 (特殊情况)

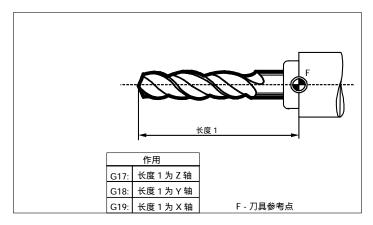


图 8-44 钻头举例说明所要求的补偿参数

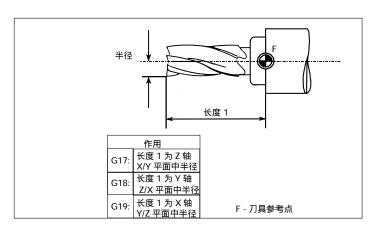


图 8-45 铣刀举例说明所要求的补偿参

8.6.4 刀尖半径补偿:G41,G42

功能

刀具在所选择的平面 G17 到 G19 平面中带刀具半径补偿工作。刀具必须有相应的 D号才能有效。刀尖半径补偿通过 G41/G42 生效。控制器自动计算出当前刀具运行所产生的、与编程轮廓等距离的刀具轨迹。

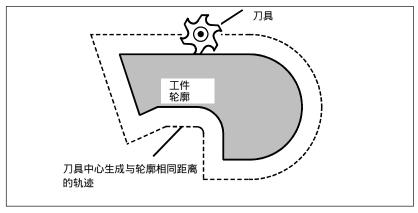


图 8-46 刀尖半径补偿(切削刃半径补偿)

编程

G41 X... Y... :在工件轮廓左边刀补有效 G42 X... Y... :在工件轮廓右边刀补有效

注释:只有在线性插补时(G0,G1)才可以进行 G41/G42 的选择。编程两个坐标轴 (比如 G17:X,Y)。如果你只给出一个坐标轴的尺寸,则第二个坐标轴自动地以最后编程的尺寸赋值。

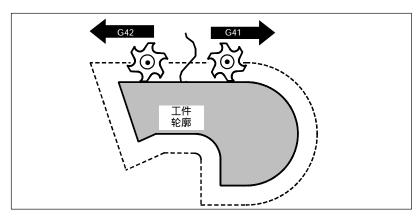


图 8-47 工件轮廓左边/右边补偿

进行补偿

刀具以直线回轮廓,并在轮廓起始点处与轨迹切向垂直。正确选择起始点,保证刀具运行不发生碰撞。

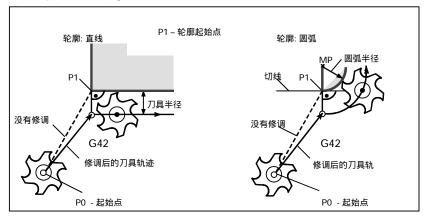


图 8-48 举例:G42,刀尖位置 3 时进行刀尖半径补偿

说明

在通常情况下,在 G41/G42 程序段之后紧接着工件轮廓的第一个程序段。但轮廓描述可以由其中 5 个没有轮廓位移定义(比如只有 M 指令或进给动作)的程序段中断。

编程举例

N10 T...

N20 G17 D2 F300 ;补偿 2 号刀沿,进给率 300mm/min

N25 X... Y... ;P0 -起始点

 N30 G1 G42 X...Y...
 ;工件轮廓右边补偿,P1

 N31 X...Y...
 ;起始轮廓,圆弧或直线

在选择补偿方式之后也可以执行带进刀量的或 M 指令的程序段:

N20 G1 G41 X... Y... ;选择工件轮廓左边补偿

N21 Z... ;进刀运动

N22 X...Y... ;起始轮廓,圆弧或直线

8.6.5 拐角特性:G450, G451

功能 在 G41/G42 有效的情况下,一段轮廓到另一段轮廓以不连续的拐角过渡时可以

通过 G450 和 G451 功能调节拐角特性。

控制器自动识别内角和外角。对于内角必须要回到轨迹等距线交点。

编程 G450 ;圆弧过渡

G451 ;交点

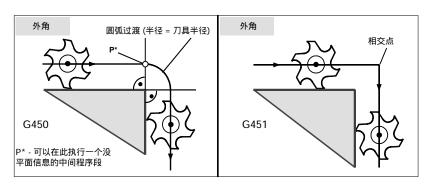


图 8-49 外角的角度特性

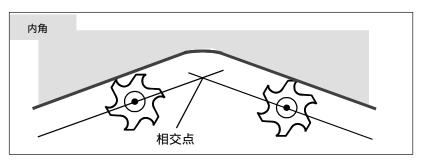


图 8-50 内角的角度特性

圆弧过渡 G450

刀具中心轨迹为一个圆弧,其起点为前一曲线的终点,终点为后一曲线的起点, 半径等于刀具半径。

圆弧过渡在运行下一个、带运行指令的程序段时才有效;比如有关进给值。

交点 G451

回刀具中心轨迹交点…以刀具半径为距离的等距线交点(圆弧或直线)。 在轮廓有尖角时可能会产生多余的空行程,其大小与刀具的半径相关。 当达到所设定的角度值(100度)时,控制系统在此自动转换到过渡圆弧。

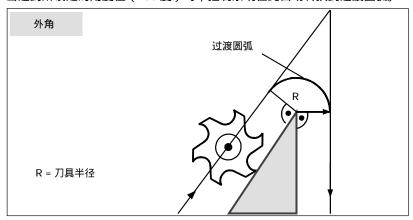


图 8-51 尖角并转换到过渡圆弧

8.6.6 取消刀尖半径补偿:G40

功能 用 G40 取消刀尖半径补偿,此状态也是编程开始时所处的状态。

G40 指令之前的程序段刀具以正常方式结束(结束时补偿矢量垂直于轨迹终点处

切线);与起始角无关。

在运行 G40 程序段之后, 刀尖到达编程终点。

在选择 G40 程序段编程终点时要始终确保运行不会发生碰撞。

编程 G40 X... Y... ;取消刀尖半径补偿

注释:只有在线性插补(G0,G1)情况下才可以取消补偿运行。

编程两个坐标轴(比如在 G17:X,Y)。如果你只给出一个坐标轴的尺寸,则第二个坐标轴自动地以在此之前最后编程的尺寸赋值。

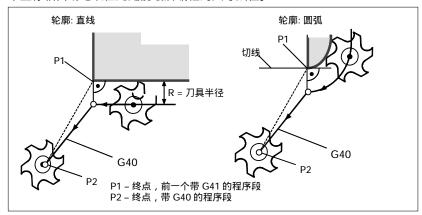


图 8-52 举例: 结束刀尖半径补偿

编程举例 ...

N100 X... Y... ;最后程序段轮廓,圆弧或直线, P1

N110 G40 G1 X...Y... ;取消刀尖半径补偿, P2

8.6.7 刀尖半径补偿中的几个特殊情况

重复执行补偿 重复执行相同的补偿方式时可以直接进行新的编程而无需在其中写入 G40 指令。

新补偿调用之前的程序段在其轨迹终点处按补偿矢量的正常状态结束,然后开始

新的补偿(性能与"变换补偿方向"一样)。

变换补偿号 D 可以在补偿运行过程中变换补偿号 D。补偿号变换后,在新补偿号程序段的段起

始处新刀具半径就已经生效,但整个变化需等到程序段结束才能发生。这些修改

值由整个程序段连续执行;在圆弧插补时也一样。

变换补偿方向

补偿方向指令 G41 和 G42 可以相互变换,无需在其中再写入 G40 指令。 原补偿方向的程序段在其轨迹终点处按补偿矢量的正常状态结束,然后在在新的

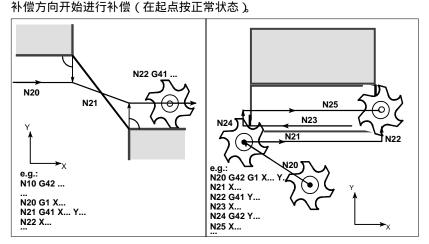


图 8-53 更换补偿方向

通过 M2 结束补偿

如果通过 M2 (程序结束), 而不是用 G40 指令结束补偿运行,则最后的程序段以补偿矢量正常位置坐标结束。不进行补偿移动,程序以此刀具位结束。

临界加工情况

在编程时特别要注意下列情况:内角过渡时轮廓位移小于刀具半径;在两个相连内角处轮廓位移小于刀具直径。

避免出现这种情况!

检查多个程序段,使在轮廓中不要含有"瓶颈"。在进行测试或空运行时,请选用可供选择的最大的刀具半径。

轮廓尖角

如果在指令 G451 有效时出现尖角(外角<=10°),则控制系统会自动转换到圆弧过渡。由此可以避免出现较长的空行程(参见图 8-50)。

8.6.8 刀尖半径补偿举例

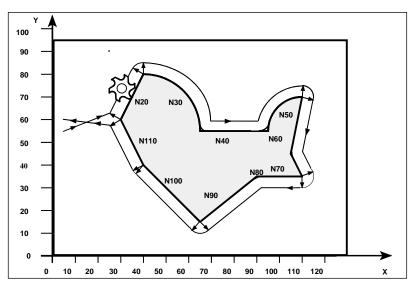


图 8-54 刀尖半径补偿举例

编程举例

N1T1

;刀具 1 补偿号 D1

N5 G0 G17 G90 X5 Y55 Z50

;回起始点

N6 G1 Z0 F200 S80 M3

N10 G41 G450 X30 Y60 F400

;轮廓左边补偿,过渡圆弧

N20 X40 Y80

N30 G2 X65 Y55 I0 J-25

N40 G1 X95

N50 G2 X110 Y70 I15 J0

N60 G1 X105 Y45

N70 X110 Y35

N80 X90

N100 X65 Y15

N110 X40 Y40

N120 G40 X5 Y60

退出补偿方式

N130 G0 Z50 M2

8.7 辅助功能 M

功能 利用辅助功能 M 可以设定一些开关操作,如"打开/关闭冷却液"等等。

除少数 M 功能被数控系统生产厂家固定地设定了某些功能之外,其余部分均可

供机床生产厂家自由设定。

在一个程序段中最多可以有 5 个 M 功能。

注意:

控制系统中所使用和预留的辅助功能 M 参见章节 8.1..6 " 指令表 "。

编程 Μ...

作用 M 功能在坐标轴运行程序段中的作用情况:

如果 M0,M1,M2 功能位于一个有坐标轴运行指令的程序段中,则只有在坐标轴

运行之后这些功能才会有效。

对于 M3,M4,M5 功能 ,则在坐标轴运行之前信号就传送到内部的接口控制器中。 只有当受控主轴按 M3 或 M4 启动之后 , 才开始坐标轴运行。在执行 M5 指令时

并不等待主轴停止,坐标轴已经在主轴停止之前开始运动。

其它 M 功能信号与坐标轴运行信号一起输出到内部接口控制器上。

如果你有意在坐标轴运行之前或之后编程一个 M 功能,则你须插入一个独立的

M 功能程序段。

注意:

此程序段会中断 G64 路径连续运行方式并产生停止状态!

编程举例 N10 S...

N20 X... M3 ;M 功能在有坐标轴运行的程序段中

主轴在 X 轴运行之前启动运行

N180 M78 M67 M10 M12 M37 ;程序段中最多有 5 个 M 功能

注释:除了 M 功能和 H 功能之外, T、D 和 S 功能也可以传送到 PLC。每个程

序段中最多可以写入10个这样的功能指令。

8.8 H功能

功能 用 H 功能可以把浮点数据由程序传送到 PLC(型式与计算参数类似,参见章节

" 计算参数 R ")。

H功能数值的含义由机床制造厂定义。一个NC程序段最多可以编程3个H功能。

编程 HO=...

到

R9999=...

编程举例 N10 H1=1.987 H2=978.123 H3=4 ;每个程序段最多 3 个 H 功能

N20 G0 X71.3 H99=-8978.234 ;程序段中有轴运行指令

N30 H5 ;H0=5.0

注释 除了 M 功能和 H 功能之外,T、D 和 S 功能也可以传送到 PLC。每个程序段中

最多可以写入 10 个这样的功能指令。

8.9 计算参数 R, LUD 和 PLC 变量

8.9.1 计算参数 R

功能 要使一个NC程序不仅仅适用于特定数值下的一次加工。或者必须要计算出数值,

这两种情况均可以使用计算参数。你可以在程序运行时由控制器计算或设定所需要的数值;也可以通过操作面板设定参数数值。如果参数已经赋值,则它们可以

在程序中对由变量确定的地址进行赋值。

编程 R0=...到 R299=...

赋值 你可以在以下数值范围内给计算参数赋值:

±(0.000 0001 ... 9999 9999) (8 位.带符号和小数点)

在取整数值时可以去除小数点。正号可以一直省去。

举例:

R0=3.5678 R1=-37.3 R2=2 R3=-7 R4=-45678.1234

用指数表示法可以赋值更大的数值范围:

 $\pm (10^{-300}...10^{+300})_{0}$

指数值写在 EX 符号之后:最大符号数:10(包括符号和小数点).

EX 值范围:-300 到+300

举例:

R0=-0.1EX-5 ;意义:R0=-0.000 001 R1=1.874EX8 ;意义:R1=187 400 000 注释:一个程序段中可以有多个赋值语句;也可以用计算表达式赋值。 给其它的地址赋值

参数的计算

通过给其它的 NC 地址分配计算参数或参数表达式 ,可以增加 NC 程序的通用性。可以用数值、算术表达式或 R 参数对任意 NC 地址赋值。但对地址 N、G 和 L 例

外。 赋值时在地址符之后写入符号"="。

赋值语句也可以赋值一负号。

给坐标轴地址(运行指令)赋值时,要求有一独立的程序段。

举例:

N10 G0 X=R2 ;给 X 轴赋值

在计算参数时也遵循通常的数学运算规则。圆括号内的运算优先进行。另外,乘

法和除法运算优先于加法和减法运算。

角度计算单位为度。 允许的算术运算:参见章节"语句说明"。

编程举例:R 参数 N10 R1=R1+1 :由原来的 R1 加上 1 后得到新的 R1

N20 R1=R2+R3 R4=R5-R6 R7=R8*R9 R10=R11/R12

N30 R13=SIN(25.3) ;R13 等于正弦 25.3 度

N40 R14=R1*R2+R3 :乘法和除法运算优先于加法和减法运算

R14=(R1*R2)+R3

N50 R14=R3+R2*R1 ;与 N40 一样

N60 R15=SQRT(R1*R1+R2*R2) ;意义:R15=√R1²

编程举例: 坐标轴赋值 N10 G1 G91 X=R1 Z=R2 F300

N20 Z=R3 N30 X=-R4 N40 Z=-R5

8.9.2 局部用户数据(LUD)

功能

用户/编程人员可以在程序中定义自己的不同数据类型的变量(LUD)。这些变量只出现在定义它们的出现中。这些变量在程序的开头定义且可以为它们赋值。它们的初始值为零。

用户可以定义变量名称。命名时应遵守以下规则:

- 最大长度为 32 个字符
- 起始的两个字符必须是字母;其它的字符可以是字母,下划线或数字。
- 系统中已经使用的名字不能再使用(NC 地址,关键字,程序名,子程序名)。

编程 DEF BOOL 变量名 1; 布尔类型,值:TRUE(=1), FALSE(=0)

DEF CHAR 变量名 2; 字符串类型, ASCII 码中的 1 个字符: "a", "b", ...

代码数值:0...255

DEF INT 变量名 3; 整形值,32 位范围值:

-2 147 483 648 到 + 2 147 483 648(十进制)

DEF REAL 变量名 4; 实数类型,自然数(用于计算参数 R),

范围值:±(0.000 0001...9999 9999) (8 位小数,带符号和小数点)或

指数表示法:±(10-300...10+300)

每种类型要求单独的程序行。但是,在同一行中可以定义具有相同类型的几个变量。

举例:

DEF INT PVAR1,PVAR2,PVAR3=12,PVAR4; INT 类型的 4 个变量

域 除了单个变量,还可以定义这些数据类型变量的一维或二维的域:

DEF INT PVAR5[n]; INT 类型的一维域, n:整数
DEF INT PVAR6[n,m]; INT 类型的二维域, n,m:整数

举例:

DEF INT PVAR7[3]; 域中包含 INT 类型的 3 个元素

通过域索引,可以读取各个域元素;每个域元素可以作为单独的变量来处理。域

索引范围为"0到元素数量减去1"。

举例:

N10 PVAR7[2]=24; 第三个域元素(索引 2)的值为 24。

包含 SET 语句的域的赋值:

N20 PVAR5[2]=SET(1,2,3);从第三个域元素起,定义不同的值。

包含 REP 语句的域的赋值:

N20 PVAR7[4]=REP(2); 从域元素[4]起,所有的元素具有相同的值,此处是 2。

LUD 的数量 对于 SINUMERIK802D,可最多定义 200 个 LUD。请注意:SIEMENS 的标志循

环中也使用 LUD,这些 LUD 的数量也包含在内。使用这些循环时始终保证有足够

的 LUD 可用。

有关 LUD 显示说明 LUD 没有特定的显示。它们可以在程序运行时看到。

出于测试目的,创建程序时,可以将 LUD 赋值给计算参数 R, 因此能在计算参

数显示中看见,但它们已转换为 REAL 类型。

另一个显示的方法可以在程序的 STOP 状态,输出信息:

MSG(值 VAR1:" << PVAR1< < 值 VAR2:":" << PVAR2); PVAR1, PVAR2, MO 的值。

8.9.3 PLC 变量的读和写

功能 为了在 NC 和 PLC 之间进行快速的数据交换,在 PLC 用户接口提供了一个特殊

的数据区,该区域容量为 512 字节。在此区域中, PLC 数据具有相同的数据类型和位置偏移量。这些一致的变量可以在 NC 程序中读写。为此,需提供特殊的系

统变量:

\$A_DBB(n); 数据字节(8 位值) \$A_DBW(n); 数据字(16 位值) \$A_DBD(n); 数据双字(32 位值) \$A_DBR(n): REAL 数据(32 位值)

n表示位置偏移量(从数据区的起始到变量的起始),单位字节。

举例:

R1=\$A_DBR(5); 读取 REAL 值,偏移量 5(从区域的字节 5 处开始)

注释 ● 读取变量时,会产生预处理停止(内部 STOPRE)。

• 在一个程序段中可同时编程最多3个变量。

8.10 程序跳转

8.10.1 标记符—程序跳转目标

功能 标记符或程序段号用于标记程序中所跳转的目标程序段 ,用跳转功能可以实现程

序运行分支。

标记符可以自由选取,但必须由2-8个字母或数字组成,其中开始两个符号必须

是字母或下划线。

跳转目标程序段中标记符后面必须为冒号。标记符位于程序段段首。如果程序段

有段号,则标记符紧跟着段号。

在一个程序段中,标记符不能含有其它意义。

程序举例 N10 MARKE1:G1 X20 ;MARKE1 为标记符,跳转目标程序段

. . .

TR789:G0 X10 Z20 :TR789 为标记符, 跳转目标程序段没有段号

N100... :程序段号可以是跳转目标

8.10.2 绝对跳转

功能 NC 程序在运行时以写入时的顺序执行程序段。

程序在运行时可以通过插入程序跳转指令改变执行顺序。

跳转目标只能是有标记符的程序段。此程序段必须位于该程序之内。

绝对跳转指令必须占用一个独立的程序段。

编程 GOTOF Label ;向前跳转

GOTOB Label ;向后跳转

AWL	说明	
GOTOF	向前跳转(向程序结束的方向跳转)	
GOTOB	向后跳转(向程序开始的方向跳转)	
Label	所选的字符串用于标记符或程序段号	

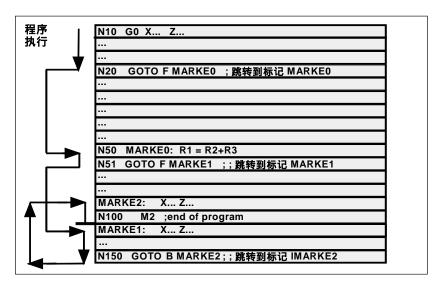


图 8-55 绝对跳转举例

8.10.3 有条件跳转

功能

用 IF-条件语句表示有条件跳转。如果满足跳转条件(也就是值不等于零),则进行跳转。跳转目标只能是有标记符的程序段。该程序段必须在此程序之内。

有条件跳转指令要求一个独立的程序段。在一个程序段中可以有许多个条件跳转 指令。

使用了条件跳转后有时会使程序得到明显的简化。

编程

IF 条件 GOTOF Label ;向前跳转 IF 条件 GOTOB Label ;向后跳转

AWL	说明	
GOTOF	向前跳转 (向程序结束的方向跳转)	
GOTOB	向后跳转 (向程序开始的方向跳转)	
Label	所选的字符串用于标记符或程序段号	
IF	跳转条件导入符	
条件	作为条件的计算参数,计算表达式	

比较运算

运算符	意义
= =	等于
< >	不等
>	大于
<	小于
> =	大于或等于
< =	小于或等于

用上述比较运算表示跳转条件,计算表达式也可用于比较运算。

比较运算的结果有两种,一种为"满足",另一种为"不满足"。"不满足"时,该运算结果值为零。

比较运算编程举例

R1>1 ;R1 大于 1

1<R1 ;1 小于 R1

R1<R2+R3 ;R1 小于 R2 加 R3

R6>=SIN(R7*R7) ;R6 大于或等于 SIN(R7)²

编程举例

N10 IF R1 GOTOF MARKE1

;R1 不等于零时, 跳转到

MARKE1 程序段

. . .

N100 IF R1>1 GOTOF MARKE2 ;R1 大于 1 时,跳转到

MARKE2 程序段

. . .

N1000 IF R45==R7+1 GOTOB MARKE3 ;R45 等于 R7 加 1 时,跳转到

MARKE3 程序段

. . .

一个程序段中有多个条件跳转:

. .

N20 IF R1==1 GOTOB MA1 IF R1==2 GOTOF MA2 ...

. . .

注释:第一个条件实现后就进行跳转。

8.10.4 程序跳转举例

任务 圆弧上点的移动:

已知:	起始角:	30°	R1
	圆弧半径:	32mm	R2
	位置间隔:	10°	R3
	点数:	11	R4
	圆心位置, Z 轴方向:	50mm	R5
	圆心位置,X 轴方向:	20mm	R6

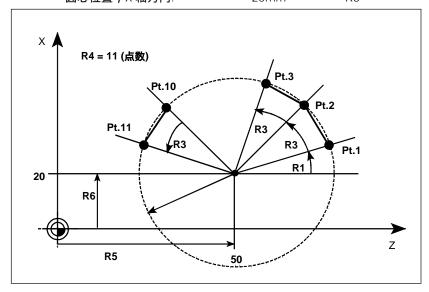


图 8-56 圆弧上点的移动

编程举例 N10 R1=30 R2=32 R3=10 R4=11 R5=50 R6=20 ;赋初始值

N20 MA1:G0 Z=R2*COS(R1)+R5 X=R2*SIN(R1)+R6 ; 坐标轴地址的计算及赋值

N30 R1=R1+R3 R4=R4-1 N40 IF R4>0 GOTOB MA1

N50 M2

说明 在程序段 N10 中给相应的计算参数赋值。在 N20 中进行坐标轴 X 和 Z 的数值计

算并进行赋值。

在程序段 N30 中 R1 增加 R3 角度; R4 减小数值 1。 如果 R4>0,则重新执行 N20,否则运行 N50。

8.11 子程序

8.11.1 概述

应用

原则上讲主程序和子程序之间并没有区别。

用子程序编写经常重复进行的加工,比如某一确定的轮廓形状。子程序位于主程序中适当的地方,在需要时进行调用、运行。

子程序的一种型式就是加工循环,加工循环包含一般通用的加工工序,诸如螺纹切削,坯料切削加工等等。通过给规定的计算参数赋值就可以实现各种具体的加工。(参见章节"加工循环")

图 8-57 一个工件加工中 4 次使用子程序

结构

子程序的结构与主程序的结构一样 (参见章节 8.1.1 "程序结构"), 在子程序中也是在最后一个程序段中用 M2 结束子程序运行。子程序结束后返回主程序。

程序结束

除了用 M2 指令外,还可以用 RET 指令结束子程序。

RET 要求占用一个独立的程序段。

用 RET 指令结束子程序、返回主程序时不会中断 G64 连续路径运行方式,用 M2 指令则会中断 G64 运行方式,并进入停止状态。

图 8-58 举例:两次调用子程序

子程序程序名

为了方便地选择某一子程序,必须给子程序取一个程序名。程序名可以自由选取,但必须符合以下规定:

- 开始两个符号必须是字母
- 其它符号为字母,数字或下划线
- 最多 16 个字符
- 没有分隔符(参见章节"字符集")

其方法与主程序中程序名的选取方法一样。

举例: FRAME7

另外,在子程序中还可以使用地址字 L...,其后的值可以有 7 位 (只能为整数)。

注意:

地址字 L 之后的每个零均有意义,不可省略。

举例: L128 并非 L0128 或 L00128!

以上表示 3 个不同的子程序。

注释:

子程序名 LL6 专门用于刀具更换。

子程序调用

在一个程序中(主程序或子程序)可以直接用程序名调用子程序。子程序调用要求占用一个独立的程序段。

举例:

 N10 L785
 ;调用子程序 L785

 N20 LFRAME7
 ;调用子程序 LFRAME7

程序重复调用次数 P...

如果要求多次连续地执行某一子程序,则在编程时必须在所调用子程序的程序名后地址 P 下写入调用次数,最大次数可以为 9999(P1...P9999)。

举例:

N10 L785 P3 ;调用子程序 L785,运行 3次

嵌套深度

子程序不仅可以从主程序中调用,也可以从其它子程序中调用,这个过程称为子程序的嵌套。子程序的嵌套深度可以为8层,也就是四级程序界面(包括主程序界面)。

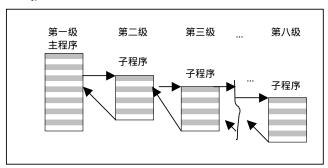


图 8-59 8 级程序界面运行过程

说明 在子程序中可以改变模态有效的 G 功能 , 比如 G90 到 G91 的变换。在返回调用

程序时请注意检查一下所有模态有效的功能指令,并按照要求进行调整。

对于R参数也需同样注意不要无意识地用上级程序界面中所使用的计算参数来

修改下级程序界面的计算参数。 西门子循环要求最多 4 级程序。

8.11.2 调用加工循环

功能 循环是指用于特定加工过程的工艺子程序,比如用于钻削、坯料切削或螺纹切削

等。循环在用于各种具体加工过程时只要改变参数就可以。

程序举例 N10 CYCLE83(110,90,...) 调用循环 83;单独程序段

. . .

 N40 RTP=100 RFP=95.5
 ;设置循环 82 的传送参数

 N50 CYCLE82(RTP,RFP,...)
 ;调用循环 82 ,单独程序段

8.11.3 模态调用子程序

功能 在有 MCALL 指令的程序段中调用子程序,如果其后的程序段中含有轨迹运行,

则子程序会自动调用。该调用一直有效,直到调用下一个程序段。

用MCALL指令模态调用子程序的程序段以及模态调用结束指令均需要一个独立

的程序段。

比如可以使用 MCALL 指令来方便地加工各种排列形状的孔。

编程举例 应用举例:行孔钻削

N10 MCALL CYCLE82(...) ;钻削循环 82

N20 HOLES1(...) ;行孔循环,在每次到达孔位置之

后,使用传送参数执行 CYCLE82(...)循环

N30 MCALL ;结束 CYCLE82(...)的模态调用

8.12 定时器和工件计数器

8.12.1 运行时间定时器

功能

用定时器作为系统变量(\$A...),用于监控程序中的工艺过程,或者仅用于显示。 这些定时器只能读出时间,其中有些定时器一直有效,而其它定时器则须通过机 床数据才可激活。

常有效定时器

• 自从上次 " CNC 用缺省值引导 " 后的时间 (分钟): \$AN SETUP TIME (只读) 当控制系统用缺省值引导时,定时器自动复位到零。

• 自从上次 " CNC 引导 " 后的时间 (分钟):

\$AN POWERON TIME

(只读)

当控制系统引导时,定时器自动复位到零。

必须激活的定时器

以下列出的计时器必须通过机床数据激活。不同的定时器启动不一样。在程序状 杰不处于"程序运行"时,或者进给修调为零时,则每次有效的运行时间测量就 会自动中断。

可以通过机床数据确定处于空运行时和程序测试时有效时间测量的性能:

在自动方式下 NC 程序运行的总时间(单位秒):

\$AC_OPERATING_TIME

在自动方式下,加上所有程序在起始和结束/复位之间的运行时间。控制系统 每次启动时定时器置为零。

• 所选 NC 程序的运行时间 (单位秒):

SAC CYCLE TIME

测量所选 NC 程序在起始和结束/复位之间的运行时间。启动一个新程序时 , 定时器被清除。

• 刀具干涉时间(单位秒)

\$AC CUTTING TIME

刀具有效时在所有 NC 程序中程序启动和结束/复位之间轨迹轴(没有快速运 行)的运行时间测量。

在停留时间生效时,测量过程被中断。控制系统每次启动时,定时器自动复 位到零。

编程举例

N10 IF\$AC_CUTTING_TIME>=R10 GOTOF WZZEIT ;刀具干涉时间极限值

N80 WZZEIT:

N() MSG ("刀具干涉时间:到达极限值")

N100 M0

显示

系统变量内容显示在屏幕上操作区域"偏置/参数" 软键"设定数据"(第2页):

运行时间 = \$AC_OPERATING_TIME

循环时间 = \$AC_CYCLE_TIME

切削时间 = \$AC CUTTING TIME

安装时间 = \$AN_SETUP_TIME

上电时间 = \$AN_POWERON_TIME

此外,在自动方式下,在操作区域"位置"中提示行下显示"循环时间"。

8.12.2 工件计数器

功能

使用该功能可以计数加工工件数量。作为系统变量,可以通过程序或操作(注意写保护级!)进行读写存取。

可以通过机床数据控制计数器生效、复位到零的时间和计算规则。

计数器

• 要求的工件数(工件设定值)

\$AC_REQUIRED_PARTS

可以定义工件的数量,当达到该数值时,当前工件数\$AC_ACTUAL_PARTS置为零。

可以通过机床数据激活显示报警 21800 "达到所要求的数量"。

• 所有生产工件的数量(总数):

\$AC_TOTAL_PARTS

计数器显示所有自开始生产起的工件数量。当控制系统启动时,计数器自动 复位到零。

• 当前工件的数量(工件实际值):

\$AC_ACTUAL_PARTS

计数器计数所有自开始生产起的工件数量。当达到所要求的数量时,计数器自动复位到零(\$AC REQUIRED PARTS,值大于零)。

• 用户定义的工件数:

\$AC_SPECIAL_PARTS

用这种计数器用户可以按照自己的定义进行工件计数。当达到所要求的数量时(\$AC_REQUIRED_PARTS)也可以定义一个报警输出。用户必须自己把计数器复位到零。

编程举例

N10 IF\$AC_TOTAL_PARTS==R15 GOTOF SIST

;达到工件数?

• • •

N80 SIST:

N90 MSG ("达到所要求的工件数")

N100 M0

显示 系统变量内容显示 (激活之后)在屏幕操作区域 "偏置/参数"中 软键"设定参

数"(第二页):

工件总数=\$AC_TOTAL_PARTS要求的工件数=\$AC_REQUIRED_PARTS工件计数=\$AC_ACTUAL_PARTS

\$AC_SPECIAL_PARTS 不显示。

此外,在自动方式下,在操作区域"位置中提示行下显示循环时间"。

8.13 刀具监控的语言指令

8.13.1 概述:刀具监控

功能 该功能作为一选项,适用于SW2.0。

刀具监控可以通过机床数据激活。 可以监控有效刀具刀沿的以下方面:

• 刀具寿命监控

• 工件计数监控

以上的监控功能可以同时生效。

优先通过操作实现刀具监控的控制/数据输入。另外,也可以编程这些功能。

监控计数器

每个监控功能都有监控计数器。监控计数器在设定值大于零到零的范围中运行。如果监控计数器值小于等于零时,则被认为已到达极限值。将产生报警并输出接口信号。

监控类型和状态的系统变量

• \$TC_TP8[t]-刀具号为 t 的刀具状态

位 0 = 1: 刀具有效

=0: 刀具未激活

位 1=1: 刀具已激活

=0: 刀具未激活

位 2=1: 刀具已取消

=0: 刀具未取消

位 3: 保留

位 4 = 1: 到达警示极限值

=0: 未到达

• \$TC_TP9[t]-刀具号为 t 的刀具监控功能类型:

=0:无监控

=1:被监控刀具的寿命

= 2:被监控刀具的计数

这些系统变量可以在 NC 程序中读/写。

表 8-3 刀具监控数据

名称	含义	数据类型	缺省值
\$TC_MOP1[t,d]	预警示极限值,刀具寿命以分计算	REAL	0.0
\$TC_MOP2[t,d]	刀具寿命剩余时间	REAL	0.0
\$TC_MOP3[t,d]	计数预警示极限值	INT	0
\$TC_MOP4[t,d]	计数剩余	INT	0
\$TC_MOP11[t,d]	所需刀具寿命	REAL	0.0
\$TC_MOP13[t,d]	所需计数 REAL 0.0		
t用于刀具号T,d用于D号。			

有效刀具的系统变量

通过系统变量可以在 NC 程序中读取以下内容:

- \$P_TOOLNO-有效刀具号 T
- \$P_TOOL-有效刀具的有效 D 号

8.13.2 刀具寿命监控

监控当前有效的刀沿的寿命(当前有效刀具的有效刀沿)。

一旦轨迹轴移动(G1,G2,G3,...但不使用 G0),此刀沿的剩余寿命(\$TC_MOP2[t,d])即被更新。如果在加工过程中,刀沿的剩余寿命由"刀具寿命预警示极限值"(\$TC_MOP1[t,d])管理。同时设置接口信号到 PLC。

如果刀具剩余寿命小于等于零,则输出报警,同时设置另一个接口信号。然后,刀具状态变成"无效"且不能再次编程,直到"无效"状态被取消。因此,操作人员需采取措施,更换刀具或确保可用于加工的刀具存在。

\$A_MONIFACT 系统变量

使用\$A_MONIFACT 系统变量(REAL 数据类型)可以让监控时钟变慢或变快。可以在刀具使用前设定此系数,如根据使用的工件材料考虑不同的磨损量。系统上电后,复位/程序结束,\$A_MONIFACT 系数是 1.0;实际时间有效。系统变量举例:

 \$A_MONIFACT = 1
 实际时间 1 分钟 = 刀具寿命减少 1 分钟

 \$A_MONIFACT = 0.1
 实际时间 1 分钟 = 刀具寿命减少 0.1 分钟

 \$A_MONIFACT = 5
 实际时间 1 分钟 = 刀具寿命减少 5 分钟

使用 RESETMON()更新设定值

功能 RESETMON(状态, t,d,mon)将实际值设为给定值:

- 用于某个刀具的所有刀沿或只对于一个刀沿
- 用于所有的监控类型或只对于某一个监控类型

传输参数:

INT	状态	指令执行状态
	= 0	成功执行
	= - 1	定义为 D 号的刀沿不存在
	= - 2	定义为⊺号的刀具不存在
	= - 3	指定的刀具 t 不提供监控功能
	= - 4	监控功能未激活,即指令不执行
INT	t	内部⊤号
	= 0	用于所有刀具
	<>0	用于此刀具(t<0:生成绝对值/t/)
INT	d	选项:刀具号为 t 的刀具的 D 号
	>0	用于此 D 号
	没有 d/=0	刀具 t 的所有刀沿
INT mon		选项:用于监控类型的位译码参数(值等于
		\$TC_TP9):
	= 1 :	寿命时间
	= 2:	计数
	没有监控或=0:	: 所有有效的监控功能的实际值被设为给定值。

注意:

- 接口信号"程序测试有效"设置时, RESETMON()无效。
- 必须使用 DEF 语句,在程序的开端定义用于状态反馈信息的变量:

DEF INT 状态

也可以给变量定义不同的名称(不是"state",必须至少有 15 个字符, 起始使用 2 个字母)。变量只存在于它所编程的程序中。这也适用于 mon.如果需要定义,可以直接作为数字来转化(1 或 2)。

8.13.3 工件计数监控

监控当前有效刀具的有效刀沿的工件计数。

工件计数监控包括对制造工件时使用的所有刀沿的监控。如果由于定义导致计数 改变, 自上次工件计数有效的所有刀沿的监控数据将相应调整。

通过操作或 SETPIECE()修改计数

工件计数可以通过操作(HMI)或在 NC 程序中使用 SETPIECE()语言指令修改。

使用 SETPIECE 功能,用户可以修改在加工过程中所使用刀具的计数监控数据。 自上次 SETPIECE 激活后所有有效的刀具要求有相应的 D 号。如果刀具是在 SETPIECE 调用时激活的,该刀具也在此范围内。

一旦在 SETPIECE()后编程了包含轨迹轴动作的程序段,下次调用 SETPIECE 时 将考虑该刀具。

SETPIECE(X):

自上次 SETPIECE 功能执行以来所制造的工件数。剩余计 X := 1...32000

数(\$TC MOP4[t,d])将减去该值。

取消用于在加工中刀具/D号的所有剩余计数(\$TC_MOP4 x := 0

[t,d])的计数器。

作为选择,建议通过操作(HMI)复位计数器。

编程举例

N10 G0 X100

N20... N30T1

N40 M6 D2

N50 SETPIECE(2); \$TC_MOP4[1,2](T1,D2)减少 2

N60 X...Y... N100T2 N110 M6 D1

N120 SETPIECE(4);

\$TC_MOP4[2,1](T2,D1)和\$TC_MOP4[1,2]减少 4

N130 X...Y...

N200T3

N210 M6 D2

N220 SETPIECE(6): \$TC_MOP4[3,2] (T3,D2)和\$TC_MOP4[2,1](T2,D1)

和\$TC_MOP4[1,2]减少 6

N230 X...Y...

N300 SETPIECE(0);

删除以上所有\$TC_MOP4[t,d]

N400 M2

注意:

- 程序段搜索时,SETPIECE()指令无效。
- 建议只在简单程序中直接编程\$TC_MOP4[t,d]。这需要编程一个包含 STOPRE 指令的程序段。

修改给定值

修 改 给 定 值 , 即 将 剩 余 计 数 ($TC_MOP4[t,d]$) 修 改 成 所 需 的 数 量 ($TC_MOP13[t,d]$),通常由操作(HMI)实现。这也可以通过 RESETMON 功能 ($State_t,t_d,mon$)来实现,正如在刀具寿命监控中所介绍的。

举例:

DEF INT 状态; 在程序开端,定义状态反馈信息的变量。

. . .

N100 RESETMON(状态, 12, 1, 2); T12, D1...工件计数器给定值修改

. . .

编程举例

DEF INT 状态; 定义 RESETMON()状态反馈的变量

;

G0 X...; 返回

T7; 装入新刀具,可以通过 M6

\$TC_MOP3[\$P_TOOLNO,\$P_TOOL]=100; 警示极限值 100 个

\$TC_MOP4[\$P_TOOLNO,\$P_TOOL]=700; 剩余记数 \$TC_MOP13[\$P_TOOLNO,\$P_TOOL]=700; 记数设定值

;设定后激活:

\$TC TP9[\$P TOOLNO,\$P TOOL]=2; 激活记数监控,有效刀具

STOPRE

ANF:

BEARBEIT: 工件加工的子程序

SETPIECE(1); 修改计数器

MO; 下一个工件;按 NC START 键继续

IF(\$TC_MOP4[\$P_TOOLNO,\$P_TOOL]>1) GOTOB ANF

MSG("刀具 T7 已磨损 - 请更换")

MO; 刀具更换后,按NC START 键继续

RESETMON(状态,71,2); 修改工件计数器设定值

IF(状态<>0) GOTOF ALARM

GOTOB ANF

ALARM:; 显示出错:

MSG("出错 RESETMON:"<<状态)

M0 M2

8.14 平滑进给和返回

功能

此功能适用于软件版本 2.0 以及更高。

"平滑进给和返回"(SPR)功能用来平滑接近轮廓切线方向的开端,最大程度上独立于起始点的位置。控制系统将计算中间点屏产生所需的进给程序段。此功能优先和刀具半径补偿(TRC)一起使用。指令 G41,G42 计算接近/返回到轮廓左边或右边的方向(参见章节 8.6.4 "选择刀具半径补偿:G41,G42")。

使用一组 G 指令选择解决/返回路径(直线,四分之一圆或半圆)。设置路径参数(圆弧半径,长度,进给直线)时,可以使用特定的地址。这也适用于进给动作。另外,进给动作也可以通过其它 G 功能组控制。

编程 G147 ;沿直线进给

G148 : 沿直线返回

G247 ;沿四分之一圆进给

G248 ;沿四分之一圆返回

G347 ; 沿半圆进给

G348 ; 沿半圆返回

G340 ;在空余处进给和返回(缺省时)

G341 :在平面内进给和返回

DISR=...;沿直线进给和返回(G147/G148):

从轮廓的起始点或终点到刀沿的距离

;沿圆弧进给和返回(G247,G347/G248,G348):

刀具中心点半径

DISCL=...;从加工平面到快速进给动作的终点的距离(安全间隙)

FAD=... ;慢速进给速率

G 功能组 15(进给率: G94,G95)指令有效时,编程值才生效

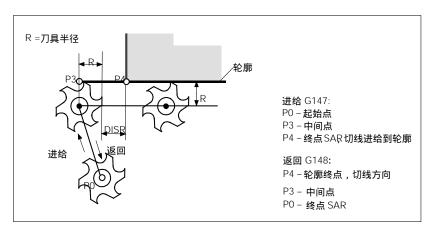


图 8-60 使用 G42 沿直线进给,用 G41 返回并使用 G40 结束

编程举例:平面内沿直线进给/返回

N10T1...G17 ;激活刀具, X/Y 平面

N20 G0 X...Y... ;接近 P0

N30 G42 G147 DISR=8 F600 X4 Y4 ;**进给,编程的** P4

N40 G1 X40 ;轮廓中继续

. . .

N100 G41...

 N110 X4 Y4
 ;P4-轮廓的终点

 N120 G40 G148 DISR=8 F700 X...Y...
 ;**返回**;编程的 P0 点

. . .

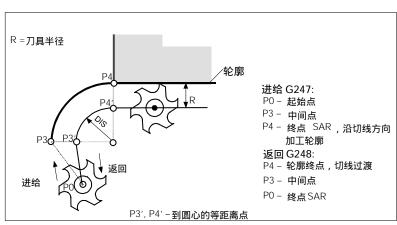


图 8-61 使用 G42 沿四分之一圆进给,用 G41 返回并使用 G40 结束

编程举例:平面中沿四分之一圆进给/返回

N10 T1...G17 ;激活刀具, X/Y 平面

N20 G0 X... Y... ;接近 P0

N30 G42 G247 DISR=20 F600 X4 Y4 ;**进给,编程的** P4 N40 G1 X40 ;**轮**廓中继续

0 01 740

N100 G41...

 N110 X4 Y4
 ;P4-轮廓的终点

 N120 G40 G248 DISR=20 F700 X...Y...
 ;返回;编程的 P0 点

. . .

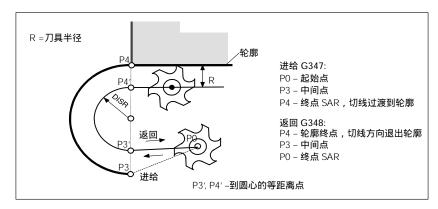


图 8-62 使用 G42 沿半圆进给,用 G41 返回并使用 G40 结束

注意

确保定义的刀具半径值为正。否则, G41,G42的方向将改变。

使用 DISCL 和 G340,G341 控制进给动作

DISCL=…定义了 P2 点到加工平面的距离(参见图 8-59)。

如果 DISCL=0,则出现以下情况:

- 使用 G340 时:整个进给动作只包含两个程序(P1,P2 和 P3 相同)。轮廓产生于 P3 到 P4。
- 使用 G341 时:整个进给动作只包含三个程序(P2 和 P3 相同)。如果 P0 和 P4 位于同一个平面,只执行两个程序段(P1 到 P3 间无进给动作)。

监控 P1 和 P3 之间的由 DISCL 定义的点,即对于所有的加工动作,监控垂直于加工平面进给的动作,该动作必须具有相同的符号。如果发现方向相反,允许由 0.01mm 的公差。

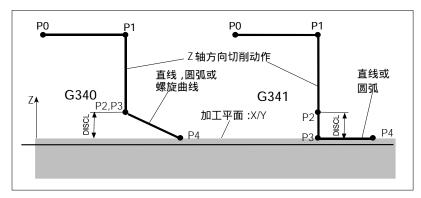


图 8-63 根据 G340/G341 的进给动作的顺序(使用 G17 示例)

编程举例:沿半圆进给 N10 T1... G17 G90 G94 ; 激活刀具; X/Y 平面

N20 G0 X0 Y0 Z30 ;接近 P0 N30 G41 G347 G340 DISCL=3 DISR=13 Z0 F500

;沿半圆进给,半径:13mm,到平

面的安全间隙:3mm

N40 G1 X40 Y-10

. . .

或者 N30/N40:

N30 G41 G347 G340 DISCL=3 DISR=13 X40 Y-10 Z0 F500

或.

N30 G41 G347 G340 DISCL=3 DISR=13 F500

N40 G1 X40 Y-10 Z0

N30/N40 说明:

使用 GO(N20 行) ,移动 P1(半圆的起始点 ,由刀具半径修改)到平面中的 Z=30 处 ,然后降低到深度(P2,P3),Z=3(DISCL)。然后沿螺旋曲线 ,进给率为 500 毫米/分到 达轮廓点 X40 Y-10,Z=0(P4)位置。

进给和返回速率

• 前一个程序段速率(如 G0):

从 P0 到 P2 的所有的动作都按此速度执行,即与加工平面平行运行的动作并形成了进给动作的一部分,直到出现安全间隙。

• 编程的进给率 F

如果未编程 FAD,该进给率值从 P3 到 P2 时有效。如果在 SAR 程序段中未编程 F 字,将采用前一个程序段中的速率值。

编程 FAD:

在以下情况下定义进给率

- G341: 从 P2 到 P3 垂直于加工平面的进给动作
- G340: 从 P2 或 P3 到 P4

如果未编程 FAD,并且在 SAR 中未编程 F字,则使用前一个程序中模态有效的速率进给此段轮廓。

• 返回过程中,前一个程序中模态有效的进给率以及在 SAR 中编程的进给率的作用变化,即使用原来的进给率进给实际的返回轮廓,并且从 P2 到 P0 使用以 F 字编程的新的进给率。

编程举例:沿四分之一圆接近,使用 G341 和 FAD 进给

N10T1... G17 G90 G94

:激活刀具; X/Y 平面

N20 G0 X0 Y0 Z30

:接近 PO

N30 G41 G341 G247 DISCL=5 DISR=13 FAD=500 X40 Y-10 Z0 F800

N40 G1 X40 Y-10

. . .

N30 说明:

中间程序段

不移动几何轴,可以在SAR程序段和下一个进给程序段间插入最多5个程序段。

信息

返回时编程:

- 如果在 SAR 程序段中编程了几何轴时,轮廓在 P2 处结束。形成了加工平面的轴上的位置取决于返回轮廓。垂直于平面的轴元素由 DISCL 定义。当 DISCL=0 时,动作完全在平面内执行。
- 如果在 SAR 程序段中只编程了垂直于加工平面的轴时,轮廓在 P1 处结束。
 轴上的位置和上面一样。如果 SAR 程序段也是 TRC 禁止程序段,则插入从 P1 到 P0 的附加路径,导致当禁止 TRC 时,在轮廓的终点无任何动作。
- 如果只编程了一个轴,则模态增加第二个丢失轴,它的位置来自前一个程序 段中的最后位置。

8.15 柱面铣削 - TRACYL

对于 SINUMERIK802D , 此功能作为一个选项适用于软件版本 2.0 及更高版本。

● 动态转换功能 TRACYL 用于铣削圆柱体的外表面,可以生成各种形状并且在任何方向上加工。

• 以一定的圆柱直径将柱面展开并编程了平面中铣削槽的过程。

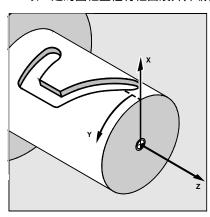


图 8-64 TRACYL 编程时的笛卡儿坐标系 X,Y,Z

- 控制系统将编程的笛卡儿坐标系中的进给动作转换为实际机床轴的动作。要求使用旋转轴(旋转工作台)。
- 必须使用特定的机床数据配置 TRACYL。同时也定义了在旋转轴的什么位置 发现 Y=0。
- 铣床具有一个实际的机床轴 Y(YM)。可以为铣床配置一个扩展的 TRACYL 变量。这样就可以加工槽,使用槽壁修正:槽壁与槽底相互垂直,即使刀沿直径小于槽宽。否则,只能完全匹配的刀沿。

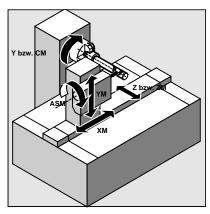


图 8-65 具有机床 Y 轴的机床运动(YM)

功能

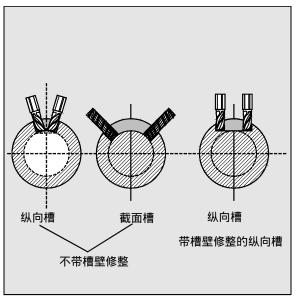


图 8-66 各种槽(截面视图)

编程 TRACYL(d) ;激活 TRACYL(单独程序段)

TRAFOOF ;取消(单独程序段)

d - 圆柱加工直径,单位毫米

TRAFOOF 将取消任何有效的转换功能。

OFFN 地址 槽壁到所编程的路径的距离。

通常,需编程槽中心线。使用刀具半径补偿时(G41,G42),OFFN 定义槽宽(一半)。

编程 OFFN=... ; 距离, 毫米

注意:

槽加工好以后,设定 OFFN=0。除了 TRACYL,OFFN 也用于编程使用 G41,G42 时的毛坯允差。

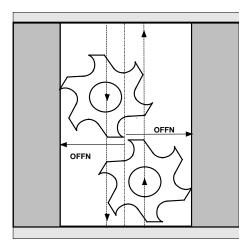


图 8-67 使用 OFFN 定义槽宽

编程说明

为了可以使用 TRACYL 铣削槽,应在零件程序中编程槽中心线,定义坐标,并且通过 OFFN 编程槽宽(一半)。

OFFN 只在刀具半径补偿选择后才生效。而且,必须保证 OFFN 不小于刀具半径,以避免损坏槽壁。

通常,槽铣削的零件程序中包含以下内容:

- 1. 的选择
- 2. TRACYL 的选择
- 3. 相应零点偏移的选择
- 4. 定位
- 5. OFFN 编程
- 6. TRC **的选择**
- 7. 进给程序段(进给到槽壁,考虑 TRC)
- 8. 通过槽中心线编程槽加工
- 9. **取消** TRC
- 10. 返回程序段(从槽壁返回,考虑TRC)
- 11. 定位
- 12. 选择 OFFN
- 13. TRAFOOF(取消 TRACYL)
- 14. 重新选择原来的零点偏移

(参见以下的编程举例)

信息

• 使用和槽宽完全匹配的刀具直径,可以加工准确的槽。刀具半径补偿(TRC)需一直有效。

使用 TRACYL 时,也可以用小于槽宽的刀具直径来加工槽。在这种情况下,需充分利用刀具半径补偿(G41,G42)和 OFFN。

- 为了避免精度的问题,刀具直径只可略小于槽宽。
- 使用带槽壁修整的TRACYL时,用于修整的轴(YM)应位于旋转轴的旋转中心。 这样,加工的槽是以编程的中心线为槽中心的。
- 选择刀具半径补偿(TRC):

TRC 作用于编程的槽中心线,在槽壁上体现。为了使刀具移动到槽壁的左侧(槽中心线的右侧),输入 G42。相应地,如果要使刀具移向槽壁的右侧(槽中心线的左侧),必须输入 G41。

如果要修改 G41<->G42,可以在 OFFN 中定义负的槽宽。

- TRC 有效时,如果不使用 TRACYL,但考虑 OFFN,在 TRAFOOF 之后,OFFN 应复位到零。使用与不使用 TRAYCL 下的 OFFN 的作用不同。
- 在零件程序中不能修改 OFFN。这样可以修改实际的中心线。 参考:功能说明,章节"动态转换"。

编程举例

加工钩型槽

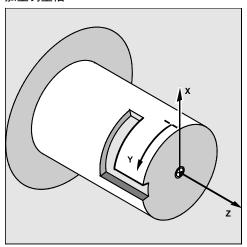


图 8-68 槽加工举例

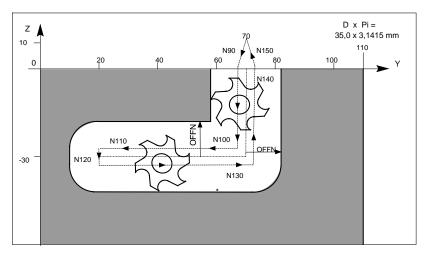


图 8-69 槽编程;槽底的值

槽底的圆柱加工直径:35mm,所需的槽宽:24.8mm,刀具使用时的半径:10.123mm。

N10 T1 F400 G94 G54

N15 G153 Y60

N30 G0 X25 Z50 C120 N40 TRACYL (35.0) N50 G55 G19

N60 S800 M3

N70 G0 Y70 Z10

N80 G1 X17.5 N70 OFFN=12.4 N90 G1 Y70 Z1 G42

N100 Z-30 N110 Y20

N120 G42 G1 Y20 Z-30

N130 Y70 F600

N140 Z1

N150 Y70 Z10 G40 N160 G0 X25 N170 M5 OFFN=0

N180 TRAFOOF

N200 G54 G17 G0 X25 Z50 C120

N210 M2

: 铣刀, 进给率, 进给率类型, 零点偏移

;移动 Y 轴到 C 轴的旋转中心

接近起始位置

; 使能 TRACYL, 加工直径 35,0 mm ; 零点偏移,选择平面: Y/Z 平面

; 启动主轴 ; 起始位置 Y / Z,

; 当前 Y 轴是外表面的几何轴

刀具进给至槽底

; 槽壁到槽中心线距离 12,4 mm

; 使能 TRC,接近槽壁; 槽平行于圆柱轴; 槽平行于圆周

重新启动 TRC ,接近另一槽壁

;槽壁到槽中心线距离保持 12,4 mm ;槽平行于圆周 ;槽平行于圆柱轴

;取消 TRC :刀县返回

;停止主轴,删除槽壁位移

;取消 TRACYL ;接近起始位置

8.16 与 SINUMERIK 802S/C—铣床中相当的 G 功能

SINUMERIK 802S	SINUMERIK 802D
G5	CIP
G158	TRANS
G258	AROT
G259	AROT
G900	CFTCP
G901	CFC

其它的 G 功能在 802S/C 和 802D 中有相同的含义 (所使用的)。

循环

9.1 概述

循环是指用于特定加工过程的工艺子程序,比如用于攻丝或凹槽铣削等。循环在用于各种具体加工过程时只要改变参数就可以。

本章介绍的循环和SINUMERIK840D/810D中的相同。

钻孔循环,钻孔样式循环和铣削循环

SINUMERIK 802D 控制系统中可以使用以下循环:

• 钻孔循环

CYCLE81 钻孔,中心钻孔 CYCLE82 中心钻孔 深度钻孔. CYCLE83 刚性攻丝 CYCLE84 CYCLE840 带补偿卡盘攻丝 CYCLE85 铰孔1(镗孔1) CYCLE86 镗孔(镗孔2) CYCLE87 铰孔2(镗孔3) 镗孔时可以停止1(镗孔4) CYCLE88 CYCLE89 镗孔时可以停止2(镗孔5)

在SINUMERIK840D中,镗孔循环CYCLE85...CYCLE89称为镗孔1...镗孔5,但它们的功能与SINUMERIK802D的完全相同。

• 钻孔样式循环

HOLES1	加工一排孔
HOLES2	加工一圈孔

• 铣削循环

CYCLE71端面铣削CYCLE72轮廓铣削CYCLE76矩形过渡铣削CYCLE77圆弧过渡铣削

LONGHOLE 槽

SLOT1 圆上切槽 SLOT2 圆周切槽 POCKET3 矩形凹槽 POCKET4 圆形凹槽 CYCLE90 螺纹铣削

这些循环由工具盒提供。当控制系统启动时,循环程序通过RS232接口载入零件 程序存储器中。

辅助循环子程序

循环包中包含以下辅助子程序:

- cyclesm.spf
- steigung.spf and
- meldung.spf

这些子程序必须始终载入系统中。

编程循环 9.2

调用/返回条件

G功能和可编程偏移在循环调用前后一直有效。

循环调用前,必须定义加工平面(G17,G18,G19)。在当前平面中,循环使用以 下轴运行:

- 平面的第一轴(横坐标)
- 平面的第二轴(纵坐标)
- 钻孔轴/进给轴,垂直于平面的第三轴(applicate)

对于钻孔循环,钻孔操作由垂直于当前平面的坐标轴来完成。铣削时,深度进给 也由该轴完成。

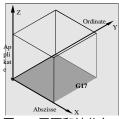
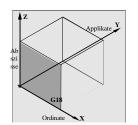



图9-1 平面和轴分布

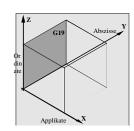


表9-1 平面和轴分布

命令	平面	垂直进给轴
G17	X/Y	Z
G18	Z/X	Υ
G19	Y/Z	X

循环执行时的信息输出。在一些循环过程中,系统屏幕上会出现表示加工状态的信息。

这些信息不会影响程序执行并将持续显示直至下一条信息出现。

信息内容和含义与它所表示的循环列在一起。

9.7.4节中列出了所有相关信息的概要。

循环执行时显示程序块 循环执行时当前程序块中显示循环调用。

循环调用和参数列表

调用循环时,有关循环的定义参数可以通过参数列表传输。

注意:

循环调用必须始终编程在单独的程序块中。

标准循环参数赋值的基本说明

编程说明中介绍了每个循环的参数列表的

- 顺序和
- 类型

必须遵守参数定义的顺序。

一个循环的每个定义参数具有特定的数据类型。当循环调用时,必须定义需要使 用的参数。在参数列表中,可以传输

- R参数(只允许数字值)
- 恒量

如果在参数列表中使用了R参数,这些参数必须在调用程序中最先赋值。循环调 用可以通过

- 使用不完整的参数列表
- 忽略参数

如果要排除必须写入调用程序中的最后的传输参数,可以使用")"预先终止参 数列表。如果要在程序中省略参数,使用逗号"…,,…"来占有空间。

除非循环产生错误响应,否则无需使用规定范围值来检查参数值。

调用循环时,如果参数表中包含比循环中定义的参数数量多的条目,会显示通用 NC报警"过多参数"且不执行循环。

循环调用

每个循环的编写方法显示在各个循环的编程示例中。

循环模拟

模拟时可以先测试具有循环调用的程序。 模拟时,在屏幕上可以看见循环的运动过程。

编程器中图形循环支持 9.3

系统中的编程器可以帮助在程序中添加调用循环以及输入参数。

功能

循环支持包括三个部分:

- 1. 循环选择
- 参数赋值的输入屏幕格式 2.
- 每个循环的帮助显示

所需文件概述

以下文件构成了循环支持的基础:

- sc.com
- cov.com

注意:

这些文件在系统启动时载入并且必须始终载入。

循环选择的操作

如果在程序中添加循环调用,依次执行以下步骤:

- 在水平软键区域,使用软键"Drilling"或"Milling"可以获得各个循环。
- 使用垂直键直至出现具有正确帮助信息的输入屏幕格式,然后选择循环。
 然后输入参数值。参数值即可以直接输入(数字值)或间接输入(R参数,如,R27,或是包含R参数的表达式,如R27+10)。如果输入的是数字值,则会检查该值是否在允许范围内。
- 使用触发键选择一些仅有几个值可供选择的参数。
- 对于钻孔循环,也可以使用垂直软键"Modal Call"在模式上调用循环。 如果要取消选择模式调用,在列表中选择用于钻孔循环的"Deselect modal"。
- 按 "OK"确认(或出错时按"Abort")。

重新编译

程序代码的重新编译是使用循环支持对现有的程序进行修改。 将光标置于需修改的行,然后按软键"Recompile"。 这将重新打开创建程序的输入屏幕格式,然后可以修改它的值。

9.4 钻孔循环

9.4.1 概述

钻孔循环是用于钻孔, 镗孔, 攻丝的按照DIN66025定义的动作顺序。这些循环以具有定义的名称和参数表的子程序的形式来调用。用于镗孔的循环有三个。它们包括不同的技术程序, 因此具有不同的参数值。

表9-2

镗孔循环		特殊的参数特性
铰孔1	CYCLE85	按不同进给率镗孔和返回
镗孔	CYCLE86	定位主轴停止,返回路径定义,按快速进给率返
		回,主轴旋转方向定义
铰孔 2	CYCLE87	到达钻孔深度时主轴停止M5且程序停止M0; 按NC START继续,快速返回,定义主轴的旋转 方向
可停止镗孔1	CYCLE88	与CYCLE87相同,增加到钻孔深度的停顿时间
可停止镗孔2	CYCLE89	按相同进给率镗孔和返回

钻孔循环可以是模态的,即在包含动作命令的每个程序块的末尾执行这些循环。 用户写的其它循环也可以按模态调用。

有两种类型的参数:

- 几何参数和
- 加工参数

用于所有的钻孔循环,钻孔样式循环和铣削循环的几何参数是一样的。它们定义参考平面和返回平面,以及安全间隙和绝对或相对的最后钻孔深度。在首次钻孔循环CYCLE82中几何参数只赋值一次。

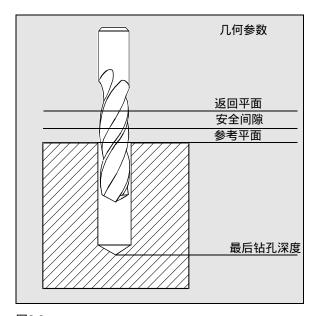


图9-2

加工参数在各个循环中具有不同的含义和作用。因此它们在每个循环中单独编程。

9.4.2 前提条件

调用和返回条件

钻孔循环是独立于实际轴名称而编程的。循环调用之前,在前部程序必须使之到达钻孔位置。

如果在钻孔循环中没有定义进给率,主轴速度和主轴旋转方向的值,则必须在零件程序中给定。

循环调用之前,有效的G功能和当前数据记录在循环之后仍然有效。

平面定义

钻孔循环时,通常通过选择平面G17,G18或G19并激活可编程的偏移来定义进行加工的当前的工件坐标系。钻孔轴始终是垂直于当前平面的坐标系的轴。

循环调用前必须选择刀具长度补偿。它的作用是始终与所选平面垂直并保持有效,即使在循环结束后。

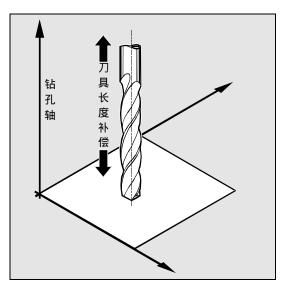


图9-3

停顿时间编程

钻孔循环中的停顿时间参数始终分配给F字且值必须为秒。任何不同于此程序的偏差必须明确说明。

9.4.3 钻孔,中心孔-CYCLE81

编程 CYCLE81(RTP, RFP, SDIS, DP, DPR)

表9-3 CYCLE81参数

RTP	Real	后退平面(绝对)
RFP	Real	参考平面(绝对)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对)
DPR	Real	相当于参考平面的最后钻孔深度(无符号输入)

功能 刀具按照编程的主轴速度和进给率钻孔直至到达输入的最后的钻孔深度。

操作顺序 循环执行前已到达位置:

钻孔位置是所选平面的两个坐标轴中的位置。

循环形成以下的运动顺序:

- 使用G0回到安全间隙之前的参考平面。
- 按循环调用前所编程的进给率(G1)移动到最后的钻孔深度。
- 使用G0返回到退回平面。

参数说明

RFP和RTP(参考平面和返回平面)

通常,参考平面(RFP)和返回平面(RTP)具有不同的值。在循环中,返回平面定义在参考平面之前。这说明从返回平面到最后钻孔深度的距离大于参考平面到最后钻孔深度间的距离。

SDIS(安全间隙)

安全间隙作用于参考平面。参考平面由安全间隙产生。安全间隙作用的方向由循环自动决定。

DP和DPR(最后钻孔深度)

最后钻孔深度可以定义成参考平面的绝对值或相对值。 如果是相对值定义,循环会采用参考平面和返回平面的位置自动计算相应的深 度。

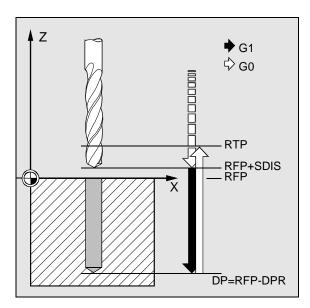


图9-4

其它说明

如果一个值同时输入给DP和DPR,最后钻孔深度则来自DPR。如果该值不同于由DP编程的绝对值深度,在信息栏会出现"深度:符合相对深度值"。如果参考平面和返回平面的值相同,不允许深度的相对值定义。将输出错误信息61101"参考平面定义不正确"且不执行循环。如果返回平面在参考平面后,即到最后钻孔深度的距离更小时,也会输出此错误信息。

编程举例:钻孔,中心孔

使用此钻孔循环可以钻3个孔。可使用不同的参数调用它。钻孔轴始终为Z轴。

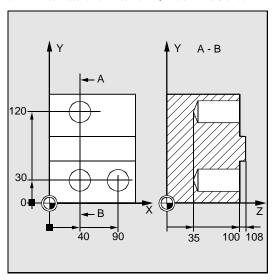


图9-5

N10 G0 G17 G90 F200 S300 M3	技术值定义
N20 D3 T3 Z110	接近返回平面
N30 X40 Y120	接近初始钻孔位置
N40 CYCLE81(110, 100, 2, 35)	使用绝对最后钻孔深度,安全间隙以及不完整 的参数表调用循环
N50 Y30	移到下一个钻孔位置
N60 CYCLE81(110 , 102 , , 35)	无安全间隙调用循环
N70 G0 G90 F180 S300 M03	技术值定义
N80 X90	移到下一个位置
N90 CYCLE81(110 , 100 , 2 , , 65)	使用相对最后钻孔深度,安全间隙调用循环
N100 M02	程序结束

9.4.4 中心钻孔 - CYCLE82

编程 CYCLE82(RTP, RFP, SDIS, DP, DPR, DTB)

参数 表9-4 CYCLE82参数

RTP	Real	后退平面(绝对)
RFP	Real	参考平面(绝对)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对)
DPR	Real	相当于参考平面的最后钻孔深度(无符号输入)
DTB	Real	最后钻孔深度时的停顿时间(断屑)

功能

刀具按照编程的主轴速度和进给率钻孔直至到达输入的最后的钻孔深度。到达最后钻孔深度时允许停顿时间。

操作顺序

循环执行前已到达位置:

钻孔位置是所选平面的两个坐标轴中的位置。

循环形成以下的运动顺序:

- 使用G0回到安全间隙之前的参考平面。
- 按循环调用前所编程的进给率(G1)移动到最后的钻孔深度。
- 在最后钻孔深度处的停顿时间。
- 使用G0返回到退回平面。

参数说明

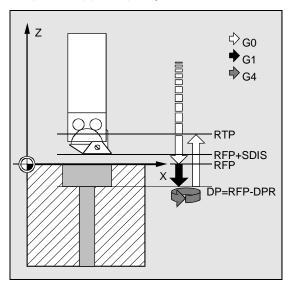


图9-6

DTB(停顿时间)

DTB编程了到达最后钻孔深度的停顿时间(断屑),单位为秒。

注意:

如果一个值同时输入给DP和DPR,最后钻孔深度则来自DPR。如果该值不同于由DP编程的绝对值深度,在信息栏会出现"深度:符合相对深度值"。

如果参考平面和返回平面的值相同,不允许深度的相对值定义。将输出错误信息 61101"参考平面定义不正确"且不执行循环。如果返回平面在参考平面后,即 到最后钻孔深度的距离更小时,也会输出此错误信息。

编程举例:中心钻孔

使用CYCLE82,程序在XY平面中的X24 Y15处加工一个深27mm的单孔。编程的停顿时间是2秒,钻孔轴Z轴的安全间隙是4mm。

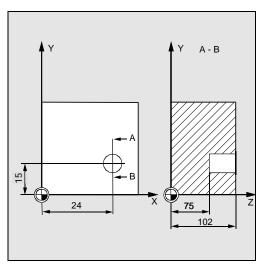


图9-7 举例

N10 G0 G17 G90 F200 S300 M3	技术值的定义
N20 D1 T10 Z110	回到返回平面
N30 X24 Y15	回到钻孔位置
N40 CYCLE82(110 , 102 , 4 , 75 , , 2)	具有最后钻孔深度绝对值和安全间隙的循环 调用
N50 M30	程序结束

9.4.5 深孔钻孔 - CYCLE83

编程

 $\mbox{CYCLE83}(\mbox{RTP}\mbox{ , RFP}\mbox{ , SDIS}\mbox{ , DP , DPR , FDEP , FDPR , DAM , DTB , DTS , FRF , VARI)$

参数

表9-5 CYCLE83的参数

RTP	Real	返回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
FDEP	Real	起始钻孔深度(绝对值)
FDPR	Real	相当于参考平面的起始钻孔深度(无符号输入)
DAM	Real	递减量(无符号输入)
DTB	Real	最后钻孔深度时的停顿时间(断屑)
DTS	Real	起始点处和用于排屑的停顿时间
FRF	Real	起始钻孔深度的进给率系数(无符号输入)
		值范围:0.0011
VARI	Int	加工类型:
		断屑=0
		排屑=1

功能

刀具以编程的主轴速度和进给率开始钻孔直至定义的最后钻孔深度。

深孔钻削是通过多次执行最大可定义的深度并逐步增加直至到达最后钻孔深度 来实现的。

钻头可以在每次进给深度完以后退回到参考平面+安全间隙用于排屑,或者每次退回1mm用于断屑。

操作顺序

循环启动前到达位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

深孔钻削排屑时(VARI=1):

- 使用G0回到由安全间隙之前的参考平面。
- 使用G1移动到起始钻孔深度,进给率来自程序调用中的进给率,它取决于参数FRF(进给率系数)。
- 在最后钻孔深度处的停顿时间(参数DTB)。
- 使用G0返回到由安全间隙之前的参考平面,用于排屑。
- 起始点的停顿时间(参数DTS)。
- 使用G0回到上次到达的钻孔深度,并保持预留量距离。
- 使用G1钻削到下一个钻孔深度(持续动作顺序直至到达最后钻孔深度)。
- 使用G0返回到退回平面。

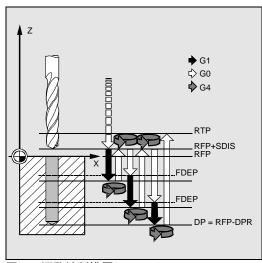


图9-8 深孔钻削排屑(VARI=1)

深孔钻削断屑时(VARI=0):

- 用G0返回到安全间隙之前的参考平面。
- 用G1钻孔到起始深度,进给率来自程序调用中的进给率,它取决于参数 FRF(进给率系数)。
- 最后钻孔深度的停顿时间(参数DTB)。

- 使用G1从当前钻孔深度后退1mm,采用调用程序中的编程的进给率(用于断屑)。
- 用G1按所编程的进给率执行下一次钻孔切削(该过程一直进行下去,直至到达最终钻削深度)。
- 用GO返回到退回平面。

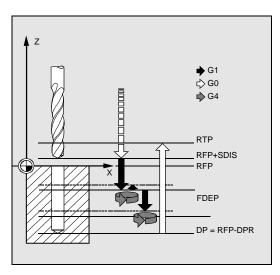


图9-9 深孔钻削排屑(VARI=0)

参数说明 对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE82。

参数DP(或DPR), FDEP(或FDPR)和DAM

中央钻孔深度是以最后钻孔深度,首次钻孔深度和递减量为基础,在循环中按如下方法计算出来的:

- 首先,进行首次钻深,只要不超出总的钻孔深度。
- 从第二次钻深开始,冲程由上一次钻深减去递减量获得的,但要求钻深大于 所编程的递减量。
- 当剩余量大于两倍的递减量时,以后的钻削量等于递减量。
- 最终的两次钻削行程被平分,所以始终大于一半的递减量。
- 如果第一次的钻深值和总钻深不符,则输出错误信息61107"首次钻深定义错误"而且不执行循环程序。

参数FDPR和DPR在循环中有相同的作用。如果参考平面和返回平面的值相等, 首次钻深则可以定义为相对值。

DTB(停顿时间) DTB编程了到达最终钻深的停顿时间(断屑),单位为秒。

DTS(停顿时间) 起始点的停顿时间只在VARI=1(排屑)时执行。

FRF(进给率系数)

对于此参数,可以输入一个有效进给率的缩减系数,该系数只适用于循环中的首次钻孔深度。

VARI(加工类型)

如果参数VARI=0,钻头在每次到达钻深后退回1mm用于断屑。如果VARI=1(用于排屑),钻头每次移动到安全间隙之前的参考平面。

注意:

预期量的大小由循环内部计算所得:

- 如果钻深为30mm,预期量的值始终是0.6mm。
- 对于更大钻深,使用公式钻深/50(最大值7mm)。

编程举例-深孔钻削

在XY平面中的位置X80 Y120和X80 Y60处程序执行循环CYCLE83。首次钻孔时,停顿时间为零且加工类型为断屑。最后钻深和首次钻深的值为绝对值。第二次循环调用中编程的停顿时间为1秒,选择的加工类型是排屑,最后钻孔深度相对于参考平面。这两种加工下的钻孔轴都是Z轴。

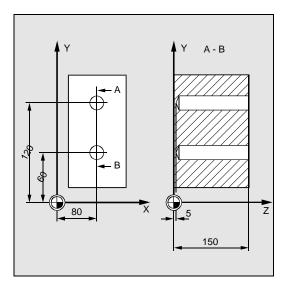


图9-10

N10 G0 G17 G90 F50 S500 M4	技术值的定义
N20 D1 T12	接近返回平面
N30 Z155	
N40 X80 Y120	返回首次钻孔位置
N50 CYCLE83 (155, 150, 1, 5, 0, 100, , 20, 0, 0, 1, 0)	调用循环,深度参数的值为绝对值
N60 X80 Y60	回到下一次钻孔位置
N70 CYCLE83 (155 , 150 , 1 , , 145 , , 50 , 20 , 1 , 1 , 0.5 , 1)	调用含最后钻孔深度和首次钻孔深度定义的循环. 安全间隙为1mm,进给率系数0.5
N80 M30	程序结束

9.4.6 刚性攻丝 - CYCLE84

编程 CYCLE84(RTP, RFP, SDIS, DP, DPR, DTB, SDAC, MPIT, PIT, POSS,

SST, SST1)

参数 表9-6 CYCLE84的参数

DTD	Daal	\CD#\T/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
RTP	Real	返回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	螺纹深度时的停顿时间(断屑)
SDAC	Int	循环结束后的旋转方向
		值:3,4,或5(用于M3,M4或M5)
MPIT	Real	螺距由螺纹尺寸决定(有符号)
		数值范围3(用于M3)48(用于M48) /符号决定了在螺纹
		中的旋转方向
PIT	Real	螺距由数值决定(有符号)
		数值范围:0.0012000.000mm;符号决定了在螺纹中
		的旋转方向
POSS	Real	循环中定位主轴的位置(以度为单位)
SST	Real	攻丝速度
SST1	Real	退回速度

功能

刀具以编程的主轴速度和进给率进行钻削直至定义的最终螺纹深度。 CYCLE84可以用于刚性攻丝。对于带补偿夹具的攻丝,可以使用另外的循环 CYCLE840。

注意:

只有用于镗孔操作的主轴在技术上可以进行位置控制,才能使用CYCLE84。

操作顺序

循环启动前到达位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

- 使用G0回到安全间隙前的参考平面。
- 定位主轴停止(值在参数POSS中)以及将主轴转换为进给轴模式。
- 攻丝至最终钻孔深度,速度为SST。
- 螺纹深度处的停顿时间(参数DTB)。
- 退回到安全间隙前的参考平面,速度为SST1且方向相反。
- 使用GO退回到退回平面;通过在循环调用前重新编程有效的主轴速度以及 SDAC下编程的旋转方向,从而改变主轴模式。

参数说明

对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE82。

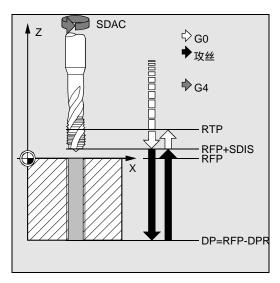


图9-11

DTB(停顿时间) 停顿时间以秒编程。钻螺纹孔时,建议忽略停顿时间。

SDAC(循环结束后的旋转方向)

在SDAC下编程了循环结束后的旋转方向。 在循环内部自动执行攻丝时的反方向。

MPIT和PIT(作为螺纹大小和值)

可以将螺纹螺距的值定义为螺纹大小(公称螺纹只在M3和M48之间)或一个值(螺纹之间的距离作为数值)。不需要的参数在调用中省略或赋值为零。

RH或LH螺纹由螺距参数符号定义:

- 正值→ RH(用于M3)
- 负值→ LH(用于M4)

如果两个螺纹螺距参数的值有冲突,循环将产生报警61001"螺纹螺距错误"且循环终止。

POSS(主轴位置) 攻丝前,使用命令SPOS使主轴停止在循环中定义的位置并转换成位置控制。 POSS设定主轴的停止位置。

SST(速度) 参数SST包含了用于攻丝程序G331的主轴速度。

SST1(退回速度) 在SST1下编程了从已钻孔处退回的速度。如果该参数的值为零,则按照SST下编程的速度退回。

注意:

循环中攻丝时的旋转方向始终自动颠倒。

编程举例:刚性攻丝

在XY平面中的位置X30 Y35处进行不带补偿夹具的刚性攻丝;攻丝轴是Z轴。未编程停顿时间;编程的深度值为相对值。必须给旋转方向参数和螺距参数赋值。被加工螺纹公称直径为M5。

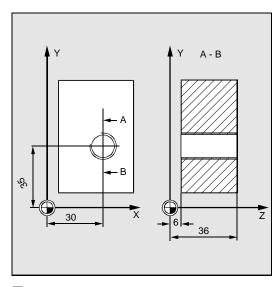


图9-12

N10 G0 G90 T11 D1	技术值的定义
N20 G17 X30 Y35 Z40	接近钻孔位置
N30 CYCLE84 (40 ,36 ,2 , , 30 , , 3 , 5 , , 90 , 200 , 500)	循环调用;已忽略PIT参数;未给绝对深度或停顿时间输入数值;主轴在90度位置停止;攻丝速度是200,退回速度是500
N40 M30	程序结束

9.4.7 带补偿夹具攻丝 - CYCLE840

编程

 $\mbox{\sc CYCLE840(RTP\sc , RFP\sc , SDIS\sc , DP\sc , DPR\sc , DTB\sc , SDR\sc , SDAC\sc , ENC\sc , MPIT\sc , PIT)$

参数

表9-7 CYCLE840的参数

RTP	Real	返回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	螺纹深度时的停顿时间(断屑)
SDR	Int	退回时的旋转方向
		值:0(旋转方向自动颠倒)

		3 或 4(用于M3或M4)
SDAC	Int	循环结束后的旋转方向
		值:3 , 4或5(用于M3 , M4或M5)
ENC	Int	带/不带编码器攻丝
		值: 0=带编码器
		1=不带编码器
MPIT	Real	螺距由螺纹尺寸定义(有符号)
		数值范围3(用于M3)48(用于M48)
PIT	Real	螺距由数值定义(有符号)
		数值范围:0.0012000.000mm;

功能

刀具以编程的主轴速度和进给率钻孔,直至到达所定义的最后螺纹深度。 使用此循环,可以进行带补偿夹具的攻丝

- 无编码器和
- 有编码器

操作顺序:无编码器带补偿夹具攻丝

循环启动前到达位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

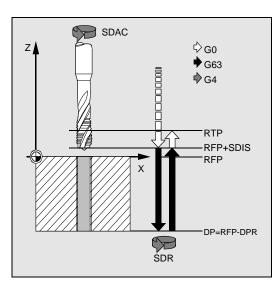


图9-13

- 使用G0回到安全间隙前的参考平面。
- 攻丝至最终钻孔深度。
- 螺纹深度处的停顿时间(参数DTB)。
- 退回到安全间隙前的参考平面。
- 使用G0退回到退回平面。

操作顺序:有编码器带补偿夹具的攻丝

循环启动前到达位置: 钻孔位置在所选平面的两个进给轴中。 循环形成以下动作顺序:

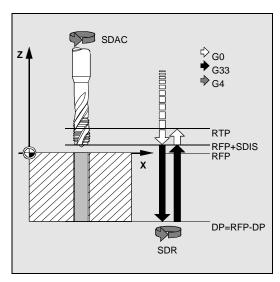


图9-14

- 使用G0回到安全间隙前的参考平面。
- 攻丝至最终钻孔深度。
- 螺纹深度处的停顿时间(参数DTB)。
- 退回到安全间隙前的参考平面。
- 使用G0退回到退回平面。

参数说明

对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE82。

DTB(停顿时间)

停顿时间以秒编程。这只在无编码器攻丝时有效。

SDR(退回时的旋转方向) 如果要使主轴方向自动颠倒,必须设置SDR=0。

如果机床数据定义成无编码器(机床数据MD30200NUM_ENCS为0),参数值必须定义为3或4;否则,将输出报警61202"主轴方向未编程"且循环终止。

SDAC(旋转方向)

因为循环可以模式调用(参见9.1.3),所以需要一个旋转方向用于钻削更多的螺纹孔。参数SDAC下编程了此方向,该方向和首次调用前在前部程序中编程的旋转方向一致。如果SDR=0,SDAC的值在循环中没有意义,可以在参数化时忽略。

ENC(攻丝)

尽管有编码器存在,如果要进行无编码器攻丝,参数ENC的值必须设为1。 如果没有安装编码器且参数值为0,循环中不考虑编码器。

MPIT和PIT(以公称螺纹直径为值和以数为值)

如果带编码器进行攻丝,丝杠螺距参数只是相对的。循环通过主轴速度和丝杠螺距计算出进给率。

可以将螺距的值定义成螺纹尺寸(只用于介于M3和M48间的公制螺纹),或者定义为一个数值(某一螺纹到下一螺纹之间的距离)。不需要的参数可以在调用中忽略或将它的值设为零。

如果两个螺距参数的值有冲突,循环会产生报警61001"螺距错误"且循环终止。

添加说明 根据机床数据MD30200 NUM_ENCS中的设定,循环可以选择攻丝时带或不带编码器。

丝杠的旋转方向必须在循环调用之前用M3或M4编程。

在带有G63的螺纹程序块中,进给率修调开关和主轴速度修调开关的值都被限制为100%。

无编码器攻丝时通常需要更长的补偿夹具。

编程举例: 在XY平面中的位置X35 Y35处进行无编码器攻丝;攻丝轴是Z轴。必须给旋转方

无编码器攻丝 向参数SDR和SDAC赋值;参数ENC的值为1,深度的值是绝对值。可以忽略螺 距参数PIT。加工时使用补偿夹具。

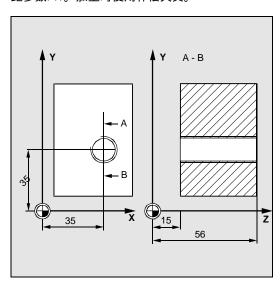


图9-15

N10 G90 G0 T11 D1 S500 M3	技术值的定义
N20 G17 X35 Y35 Z60	接近钻孔位置
N30 G1 F200	决定路径进给率
N40 CYCLE840(59, 56, , 15, 0, 1, 4, 3, 1, ,)	循环调用;停顿时间1秒,退回旋转方向M4,循环后旋转方向M3,无安全间隙,已忽略MPIT和PIT参数;
N50 M30	程序结束

举例:带编码器攻丝

此程序用于在XY平面中的位置X35 Y35处的带编码器攻丝。攻丝轴是Z轴。必须 定义螺距参数,旋转方向自动颠倒已编程。加工时使用补偿夹具。

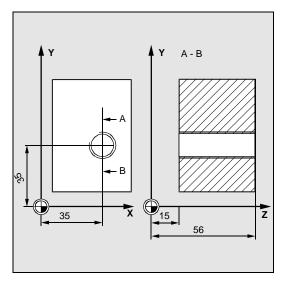


图9-16

N10 G90 G0 T11 D1 S500 M4	技术值的定义
N20 G17 X35 Y35 Z60	接近钻孔位置
N30 CYCLE840(59, 56, , 15, 0, 0, 4, 3, 0, 0, 3.5)	循环调用;无安全间隙,绝对深度值 已定义
N40 M30	程序结束

9.4.8 铰孔1(镗孔1) - CYCLE85

编程 CYCLE85(RTP, RFP, SDIS, DP, DPR, DTB, FFR, RFF)

参数 表9-8 CYCLE85的参数

	XX	
RTP	Real	退回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	最后钻孔深度时的停顿时间(断屑)
FFR	Real	进给率
RFF	Real	退回进给率

功能

刀具按编程的主轴速度和进给率钻孔直至到达定义的最后钻孔深度。

向内向外移动的进给率分别是参数FFR和RFF的值。

操作顺序

循环启动前到达位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

- 使用G0回到安全间隙前的参考平面。
- 使用G1并且按参数FFR所编程的进给率钻削至最终钻孔深度。
- 最后钻孔深度时的停顿时间。
- 使用G1返回到安全间隙前的参考平面,进给率是参数RFF中的编程值。
- 使用G0退回到退回平面。

参数说明

对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE81。

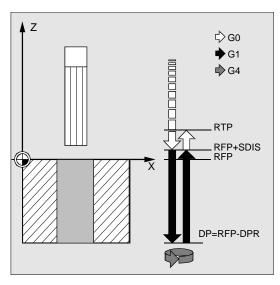


图9-17

DTB(停顿时间)

DTB以秒为单位设定最后钻孔深度时的停顿时间。

FFR(进给率)

钻孔时FFR下编程的进给率值有效。

RFF(退回进给率)

从孔底退回到参考平面+安全间隙时, RFF下编程的进给率值有效。

编程举例:铰孔

CYCLE85在ZX平面中的Z70 X50处调用。铰孔轴是Y轴。循环调用中最后钻孔深度的值是作为相对值来编程的;未编程停顿时间。工件的上沿在Y102处。

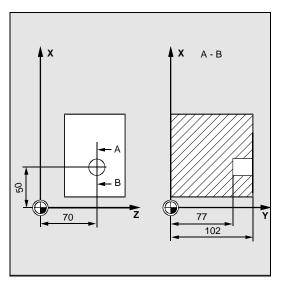


图9-18

N10 T11 D1	
N20 G18 Z70 X50 Y105	接近钻孔位置
N30 CYCLE85(105 , 102 , 2 , , 25 , , 300 , 450)	循环调用:未编程停顿时间
N40 M30	程序结束

9.4.9 镗孔(镗孔2) - CYCLE86

编程

 $\mbox{\sc CYCLE86(RTP\ , RFP\ , SDIS\ , DP\ , DPR\ , DTB\ , SDIR\ , RPA\ , RPO\ , RPAP\ , POSS)}$

参数

表9-9 CYCLE86的参数

RTP	Real	返回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	到达最后钻孔深度处的停顿时间(断屑)
SDIR	Int	旋转方向
		值: 3(用于M3)
		4(用于M4)
RPA	Real	平面中第一轴上的返回路径(增量,带符号输入)
RPO	Real	平面中第二轴上的返回路径(增量,带符号输入)
RPAP	Real	镗孔轴上的返回路径(增量,带符号输入)
POSS	Real	循环中定位主轴停止的位置(以度为单位)

功能

此循环可以用来使用镗杆进行镗孔。

面快速回到编程的返回位置。

操作顺序

循环启动前的到达的位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

- 使用G0回到安全间隙前的参考平面。
- 循环调用前使用G1及所编程的进给率移到最终钻孔深度处。
- 最后钻孔深度处的停顿时间。
- 定位主轴停止在POSS下编程的位置。
- 使用G0在三个轴方向上返回。
- 使用G0在镗孔轴方向返回到安全间隙前的参考平面。
- 使用GO退回到退回平面(平面的两个轴方向上的初始钻孔位置)。

参数说明

对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE81

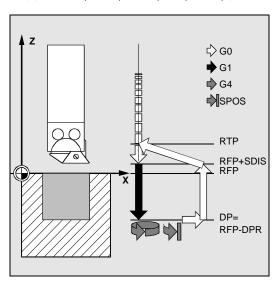


图9-19

DTB(停顿时间)

DTB以秒为单位编程了到最后钻孔深度时(断屑)的停顿时间。

SDIR(旋转方向)

使用此参数,可以定义循环中进行镗孔时的旋转方向。如果参数的值不是3或4(M3/M4),则产生报警61102"未编程主轴方向"且不执行循环。

RPA(第一轴上的返回路径)

使用此参数定义在第一轴上(横坐标)的返回路径,当到达最后钻孔深度并执行了定位主轴停止功能后执行此返回路径。

RPO(第二轴上的返回路径)

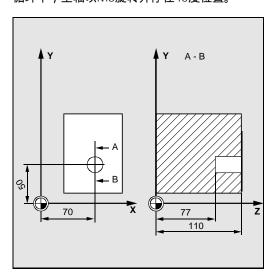
使用此参数定义在第二轴上(纵坐标)的返回路径,当到达最后钻孔深度并执行了定位主轴停止功能后执行此返回路径。

RPAP(镗孔轴上的返回路径)

使用此参数定义在镗孔轴上的返回路径,当到达最后钻孔深度并执行了定位主轴停止功能后执行此返回路径。

POSS(主轴位置)

使用POSS编程定位主轴停止的位置,单位为度,该功能在到达最后钻孔深度后执行。


注意:

可以使当前有效的主轴停止在某个方向。使用转换参数编程角度值。

如果用于镗孔的主轴在技术上能够进行位置可控制操作,则可以使用CYCLE86.

编程举例:镗孔

在ZX平面中的X70 Y50处调用CYCLE86。编程的最后钻孔深度值为绝对值。未定义安全间隙。在最后钻孔深度处的停顿时间是2秒。工件的上沿在Z110处。在此循环中,主轴以M3旋转并停在45度位置。

图9-20

N10 G0 G17 G90 F200 S300 M3	技术值的定义
N20 T11 D1 Z112	回到返回平面
N30 X70 Y50	回到钻孔位置
N40 CYCLE86 (112, 110, , 77, 0, 2, 3,	使用绝对钻孔深度调用循环
-1 , -1 , 1 , 45)	
N50 M30	程序结束

9.4.10 带停止镗孔(镗孔3) - CYCLE87

编程 CYCLE87(RTP, RFP, SDIS, DP, DPR, DTB, SDIR)

参数 表9-10 CYCLE87的参数

RTP	Real	返回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	到达最后钻孔深度处的停顿时间(断屑)
SDIR	Int	旋转方向
		值:3(用于M3)
		4(用于M4)

功能 刀具按照编程的主轴速度和进给率进行钻孔,直至达到最后钻孔深度。

带停止镗孔时,一旦到达钻孔深度,便激活了不定位主轴停止功能M5和编程的

停止。按NC START键继续快速返回直至到达返回平面。

操作顺序 循环启动前的到达的位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

- 使用G0回到安全间隙前的参考平面。
- 循环调用前使用G1及所编程的进给率移到最终钻孔深度处。
- 最后钻孔深度处的停顿时间。
- 主轴停止和程序停止M5 M0。程序停止后,按NC START 继续。
- 使用G0退回到返回平面。

参数说明 对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE81

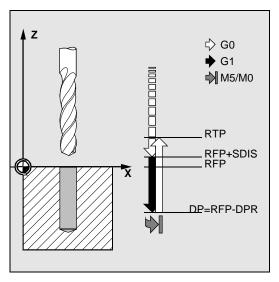


图9-21

SDIR(旋转方向)

编程的旋转方向用于进给到最后钻孔深度。

如果参数的值不是3或4(M3/M4),则产生报警61102 " 未编程主轴方向 " 且不执行循环。

编程举例:绞孔2

在XY平面中的X70Y50处调用CYCLE87。镗孔轴是Z轴。最后钻孔深度以绝对值定义。安全间隙为2mm。在循环中M4有效。

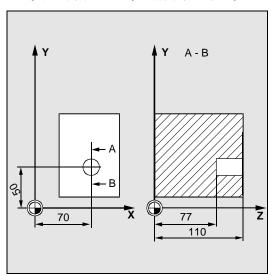


图9-22

DEF REAL DP, SDIS	参数定义
N10 DP=77 SDIS=2	定义值
N20 G0 G17 G90 F200 S300	技术值定义
N30 D3 T3 Z113	接近返回平面
N40 X70 Y50	接近钻孔位置
N50 CYCLE87 (113, 110, SDIS, DP,, 3)	使用编程的主轴旋转方向 M3 调用循环
N60 M02	程序结束

9.4.11 带停止钻孔2(镗孔4) - CYCLE88

编程 CYCLE88(RTP, RFP, SDIS, DP, DPR, DTB, SDIR)

参数 表9-11 CYCLE88的参数

RTP	Real	退回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	最后钻孔深度时的停顿时间(断屑)
SDIR	Int	旋转方向
		值: 3(用于M3)
		4(用于M4)

功能

刀具按编程的主轴速度和进给率钻孔直至到达定义的最后钻孔深度。带停止钻孔时,到达最后钻孔深度时会产生无方向M5的主轴停止和已编程的停止。按NC START键在快速移动时持续退回动作,直到到达退回平面。

操作顺序

循环启动前到达位置:

钻孔位置在所选平面的两个进给轴中。 循环形成以下动作顺序:

- 使用G0回到安全间隙前的参考平面。
- 循环调用前,使用G1和编程的进给率移到最终钻孔深度。
- 最后钻孔深度处的停顿时间。
- 使用M5 M0主轴和程序停止.程序停止后,按NC START键。
- 使用G0退回到退回平面。

参数说明

对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE81。

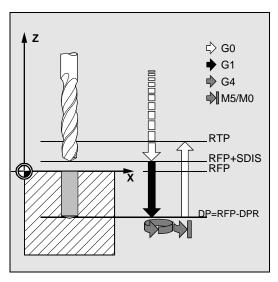


图9-23

DTB(停顿时间) 参数DTB以秒为单位编程了到达最后钻孔深度的停顿时间(断屑)。

SDIR(旋转方向) 所编程的旋转方向对于到最后钻孔深度的距离有效。

如果产生的值非3或4(M3/M4),则会产生报警61102"未编程主轴方向"及循环

终止。

编程举例:带停止镗孔1 在XY平面中的X80 Y90处调用CYCLE88。镗孔轴是Z轴。安全距离编程值是3mm;

最后钻孔深度定义为参考平面的相对值。

M4在循环中有效。

N10 G17 G90 F100 S450	技术值的定义
N20 G0 X80 Y90 Z105	回到钻孔位置
N30 CYCLE88(105,102,3,,72,3,4)	使用编程的主轴旋转方向M4调用循环
N40 M02	程序结束

9.4.12 铰孔2(镗孔5) - CYCLE89

编程 CYCLE89(RTP, RFP, SDIS, DP, DPR, DTB)

参数

表9-12 CYCLE89的参数

RTP	Real	退回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DTB	Real	最后钻孔深度时的停顿时间(断屑)

功能

刀具按编程的主轴速度和进给率钻孔直至到达定义的最后钻孔深度。如果到达了最后的钻孔深度,可以编程停顿时间。

操作顺序

循环启动前到达位置:

钻孔位置在所选平面的两个进给轴中。

循环形成以下动作顺序:

- 使用G0回到安全间隙前的参考平面。
- 循环调用前,使用G1和编程的进给率移到最终钻孔深度。
- 最后钻孔深度处的停顿时间。
- 使用G1和相同的进给率退回到安全间隙前的参考平面。
- 使用G0退回到返回平面。

参数说明

对于参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE81。

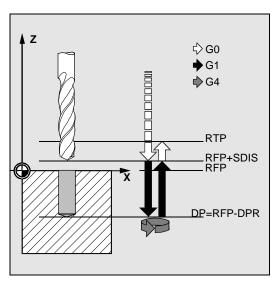


图9-24

DTB(停顿时间)

参数DTB以秒为单位编程了到达最后钻孔深度的停顿时间(断屑)。

编程举例:带停止钻孔2 在XY平面的X80 Y90处,调用钻孔循环CYCLE89。安全间隙为5mm,最后钻孔 深度定义为绝对值。钻孔轴为Z轴。

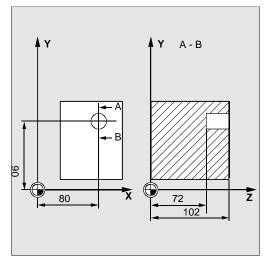


图9-25

DEF REAL RFP, RTP, DP, DTB	参数定义
RFP=102 RTP=107 DP=72 DTB=3	定义值
N10 G90 G17 F100 S450 M4	技术值定义
N20 G0 X80 Y90 Z107	接近钻孔位置
N30 CYCLE89(RTP, RFP, 5, DP, , DTB)	调用循环
N40 M02	程序结束

9.5 钻孔样式循环

钻孔样式循环介绍了所钻孔在平面中的几何分布。在钻孔循环编程之前,通过模式调用此钻孔循环可以建立一个钻孔过程。

9.5.1 前提条件

无钻孔循环调用的钻孔样式循环

钻孔样式循环也可以用于其它用途而不首次调用最先的钻孔循环,因为钻孔样式循环可以实施不参考已使用的钻孔循环的参数化设置。

如果在调用钻孔样式循环之前没有模式调用子程序,则出现错误信息62100 " 无有效的钻孔循环 " 。

可以通过按错误响应键来应答此错误信息并按NC START键继续执行程序。然后 钻孔样式循环将依次回到由输入数据计算出的每个位置而不在这些点上调用子 程序。

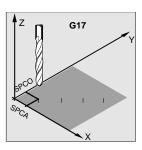
数量参数为零时的动作 必须定义在钻孔样式中孔的数量。如果在循环调用时的数量参数值为零(或者参 数列表中无此参数),则发出报警61103"孔的数量是零"并且循环终止。

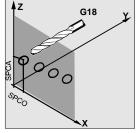
检查有限范围的输入值 通常,必须仔细检查钻孔样式循环中的参数的定义值。

9.5.2 排孔 - HOLES1

编程 HOLES1(SPCA, SPCO, STA1, FDIS, DBH, NUM)

参数 表9-13 HOLES1的参数


SPCA	Real	直线(绝对值)上一参考点的平面的第一坐标轴 (横坐标)
SPCO	Real	此参考点(绝对值)平面的第二坐标轴(纵坐标)
STA1	Real	与平面第一坐标轴(横坐标)的角度
		-180 <sta1<=180度</sta1<=180
FDIS	Real	第一个孔到参考点的距离(无符号输入)
DBH	Real	孔间距(无符号输入)
NUM	Int	孔的数量


功能

此循环可以用来铣削一排孔。即,沿直线分布的一些孔,或网格孔。孔的类型由 已被调用的钻孔循环决定。

操作顺序

为了避免不必要的行程,通过平面轴的实际位置和此排孔的几何分布,循环计算 出是从第一孔或是最后一孔开始加工。随后依次快速到达钻孔位置。

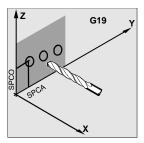


图9-26

参数说明

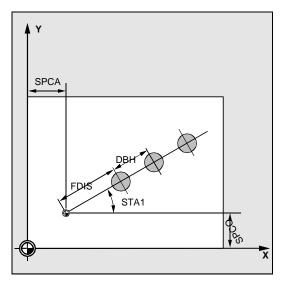


图9-27

SPCA和SPCO(平面的第一坐标轴和第二坐标轴的参考点)

排孔形成的直线上的某一点定义成参考点,用于计算孔之间的距离。定义了从这

一点到第一个孔的距离。

STA1(角度) 直线可以是平面中的任何位置。它是由SPCA和SPCO定义的点以及直线和循环

调用时有效的工件坐标系平面中的第一坐标轴间形成的角度来确定的。角度值以

度数输入STA1下。

FDIS和DBH(距离) 使用FDIS来编程第一孔和由SPCA和SPCO定义的参考点间的距离。参数DBH定

义了任何两孔间的距离。

NUM(数量) 参数NUM用来定义孔的数量。

编程举例:排孔 使用此程序可以用来加工平行于ZX平面中Z轴的5个螺纹孔并且孔间距是20mm

的排孔。排孔的起始点位于Z20 X30处,第一孔距离此点10mm。循环HOLES1中介绍了该排孔的几何分布。首先,使用CYCLE82进行钻孔,然后使用CYCLE84(无补偿夹具攻丝)执行攻丝。孔深为80mm(参考平面和最后钻孔深度间的距离)。

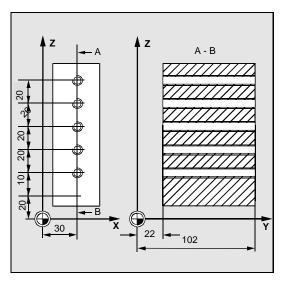


图9-28

N10 G90 F30 S500 M3 T10 D1	加工步骤的技术值的定义
N20 G17 G90 X20 Z105 Y30	回到起始位置
N30 MCALL CYCLE82(105 ,102 , 2 , 22 , 0 , 1)	钻孔循环的形式调用
N40 HOLES1(20, 30, 0, 10, 20, 5)	调用排孔循环;循环从第一孔开始加工; 此循环中只回到钻孔位置
N50 MCALL	取消形式调用
	换刀
N60 G90 G0 X30 Z110 Y105	移到第5孔的下一个位置
N70 MCALL CYCLE84 (105, 102, 2, 22, 0, , 3, , 4.2, , 300,)	形式调用攻丝循环
N80 HOLES1(20, 30, 0, 10, 20, 5)	从第5孔开始调用排孔循环
N90 MCALL	取消调用
N100 M30	程序结束

编程举例:网格孔

使用此程序来加工网格孔,包括5行,每行5个孔,分布在XY平面中,孔间距为 10mm。

网格的起始点在X30 Y20处。 此程序使用R参数作为循环的转换参数。

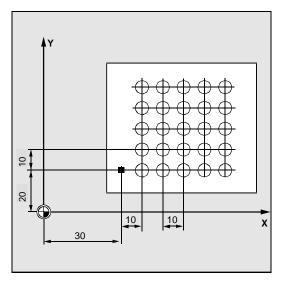


图9-29

R10=102	参考平面
R11=105	返回平面
R12=2	安全间隙
R13=75	钻孔深度
R14=30	参考点:平面第一坐标轴的排孔
R15=20	参考点:平面第二坐标轴的排孔
R16=0	起始角
R17=10	第一孔到参考点的距离
R18=10	孔间距
R19=5	每行孔的数量
R20=5	行数
R21=0	行计数
R22=10	行间距
N10 G90 F300 S500 M3 T10 D1	技术值的定义
N20 G17 G0 X=R15 Z105	回到起始位置
N30 MCALL CYCLE82(R11, R10, R12, R13,	钻孔循环的形式调用
0,1)	
N40 LABEL1:	调用排孔循环
N41 HOLES1(R14 ,R15 ,R16 ,R17 ,R18 ,R19)	
N50 R15=R15+R22	计算下一行的Y值
N60 R21=R21+1	增量行计数
N70 IF R21 <r20 gotob="" label1<="" td=""><td>如果条件满足,返回LABEL1</td></r20>	如果条件满足,返回LABEL1
N80 MCALL	取消调用
N90 G90 G0 X30 Y20 Z105	回到起始位置
N100 M30	程序结束

9.5.3 圆周孔 - HOLES2

编程 HOLES2(CPA, CPO, RAD, STA1, INDA, NUM)

参数 表9-14 HOLES2**的**参数

Real	圆周孔的中心点(绝对值) ,平面的第一坐标轴
Real	圆周孔的中心点(绝对值) ,平面的第二坐标轴
Real	圆周孔的半径(无符号输入)
Real	起始角 范围值:-180 <sta1<=180度< td=""></sta1<=180度<>
Real	増量角
Int	1. 4 重
	Real Real Real

功能 使用此循环可以加工圆周孔。加工平面必须在循环调用前定义。 孔的类型由已经调用的钻孔循环决定。

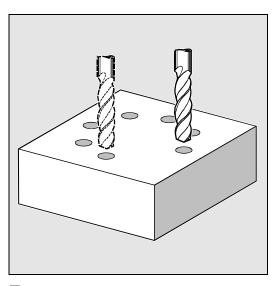


图9-30

操作顺序 在循环中,使用GO依次回到平面中的钻孔位置。

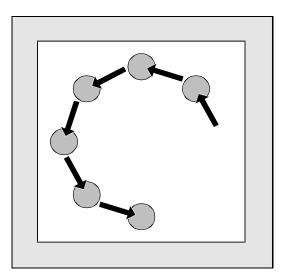


图9-31

参数说明

CPA, CPO和RAD(中心点位置和半径)

加工平面中的圆周孔位置是由中心点(参数CPA和CPO)和半径(参数RAD)决定的。

半径的值只允许为正。

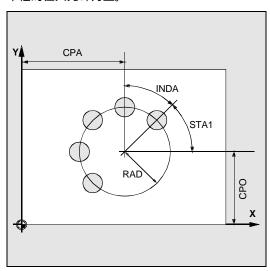


图9-32

STA1和INDA

这些参数定义孔的分布。

(起始角和增量角)

参数STA1定义了循环调用前有效的工件坐标系中第一坐标轴的正方向(横坐标) 与第一孔之间的旋转角。参数INDA定义了从一个孔到下一个孔的旋转角。

如果参数INDA的值为零,循环则会根据孔的数量内部算出所需的角度。

NUM(数量)

参数NUM定义了孔的数量。

编程举例:圆周孔

该程序使用CYCLE82来加工4个孔,孔深为30mm。最后钻孔深度定义成参考平 面的相对值。圆周由平面中的中心点X70 Y60和半径42mm决定。起始角是33度。 钻孔轴Z的安全间隙是2mm。

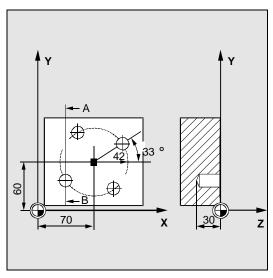


图9-33

N10 G90 F140 S170 M3 T10 D1	技术值的定义
N20 G17 G0 X50 Y45 Z2	回到起始位置
N30 MCALL CYCLE82(2,0,2,, 30,0)	钻孔循环的形式调用,无停顿 时间,未 编程DP
N40 HOLES2(70, 60, 42, 33, 0, 4)	调用圆周孔循环:由于省略了参数INDA, 增量角在循环中自动计算
N50 MCALL	取消形式调用
N60 M30	程序结束

9.6 铣削循环

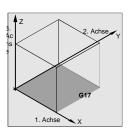
9.6.1 前提条件

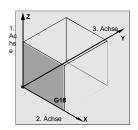
铣削循环是配置文件setup_M.cnf的一部分,该文件已经载入系统的用户存储器中。

调用和返回条件

铣削循环是独立于特定的坐标轴名而编程的。

调用铣削循环之间,必须激活一刀具补偿。


如果在铣削循环中未提供某些参数,必须在零件程序中编程进给率,主轴速度和主轴旋转方向的值。


用于铣削样式或待加工凹槽的中心点坐标编程在矩形坐标系中。

循环调用前有效的G功能和当前编程的框架在循环过程中一直有效。

平面定义

铣削循环假定当前的坐标系是通过选择某一平面G17,G18或G19和激活一已编程的框架(如果需要的话)来获得当前坐标系。进给轴始终是该坐标系统的第三轴。

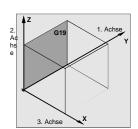


图9-34 平面和轴分布

有关加工状态的信息

执行铣削循环时,平面上会显示表示加工状态的不同的信息。有以下可能信息:

- "加深孔<号>第一画面正在加工"
- "槽<号>另一画面正在加工"
- "圆周槽<号>最后画面正在加工"

信息文本中的<号>始终表示当前正在加工的画面号。

这些信息不会中断程序运行并且持续显示直到出现下一条信息或循环结束。

9.6.2 螺纹铣削 - CYCLE90

编程

CYCLE90(RTP, RFP, SDIS, DP, DPR, DIATH, KDIAM, PIT, FFR, CDIR, TYPTH, CPA, CPO)

参数

表9-15 CYCLE90的参数

RTP	Real	退回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	最后钻孔深度(绝对值)
DPR	Real	相对于参考平面的最后钻孔深度(无符号输入)
DIATH	Real	额定直径,螺纹外直径
KDIAM	Real	中心直径,螺纹内直径
PIT	Real	螺纹螺距;范围值:0.001…2000.000mm
FFR	Real	螺纹铣削进给率(无符号输入)
CDIR	int	螺纹铣削时的旋转方向
		值: 2(使用G2铣削螺纹)
		3(使用 G3铣削螺纹)
TYPTH	int	螺纹类型
		值: 0=内螺纹
		1 = 外螺纹
CPA	Real	圆心,平面的第一轴(绝对值)
CPO	Real	圆心,平面的第二轴(绝对值)

功能

使用CYCLE90,可以加工内螺纹或外螺纹。铣削螺纹的路径需要螺旋插补。加工时,需使用循环调用前定义的当前平面中的三个几何轴。

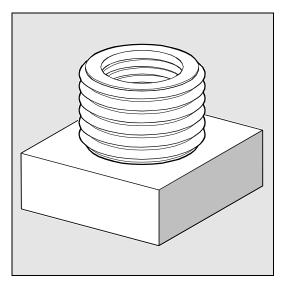


图9-35

加工外螺纹的顺序

循环启动前到达的位置:

起始点位置可以是任何位置,只要该起始点位于高度为返回平面的螺纹的外直径上,并且能无碰撞地到达。

使用G2铣削螺纹时,起始位置位于当前平面中正的横坐标和正的纵坐标内(即在坐标系的第一象限中)。

使用G3铣削螺纹时,起始位置位移正的横坐标和负的纵坐标内(即在坐标系的第四象限中)。

距离螺纹直径的位移取决于螺纹的大小以及使用的刀具半径。

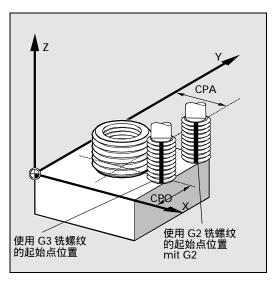


图9-36

循环形成以下动作顺序:

- 使用GO将起始位置定位在当前平面中的返回平面的顶点。
- 使用G0进给到安全间隙前的参考平面用于清除碎屑。
- 按照CDIR下编程的G2/G3的反方向,沿圆弧路径移动到螺纹直径。
- 使用G2/G3以及FFR的进给率沿螺旋路径铣削螺纹。
- 按照G2/G3的反方向以及降低的FFR进给率沿圆弧路径返回。
- 使用GO退回到返回平面。

加工内螺纹时的操作顺序

循环启动前到达的位置:

起始位置可以是任何位置,只要能够无碰撞地到达在返回平面顶点的螺纹圆心。 循环形成以下动作顺序:

- 使用G0定位在当前平面中位于返回平面顶点的中心点。
- 使用GO进给到安全间隙前的参考平面用于清除碎屑。
- 使用G1和降低的进给率FFR移动到循环内部计算的圆弧。
- 按照CDIR下编程的G2/G3方向,沿圆弧路径移动到螺纹直径。
- 使用G2/G3以及FFR的进给率沿螺旋路径铣削螺纹。
- 按照相同的旋转方向以及降低的FFR进给率沿圆弧路径返回。
- 使用G0退回到螺纹的中心点。
- 使用GO退回到返回平面。

至下而上的螺纹

从技术上考虑,也可以加工出至下而上的螺纹。此时,返回平面RTP将位于螺纹深度DP后。

可以进行此加工,但是深度必须定义成绝对值,并且必须在循环调用前移到返回平面,或者移动到返回平面后的位置。

编程举例(至下而上螺纹)

螺纹的螺距为3mm,起始点为-20,终点为0。返回平面位于8。

N10 G17 X100 Y100 S300 M3 T1 D1 F1000
N20 Z8
N30 CYCLE90(8 , -20 , 0 , -60 , 0 , 46 , 40 , 3 , 800 , 3 , 0 , 50 , 50)
N40 M2

钻孔深度必须至少为-21.5(一半螺距)。

螺纹长度超出

铣螺纹时,钻进/钻出动作在三个轴上完成。这会在钻出时导致沿垂直轴方向的 附加行程,因此超出了编程的螺纹深度。

按以下方法计算超出的行程:

$$p = \frac{p}{4} * \frac{2*WR + RDIFF}{DIATH}$$

 $\Delta z =$ 超出行程,内部
 $p =$ 螺纹螺距
WR 刀具半径
DIATH 螺纹外直径
RDIFF 返回圆的半径差
对于内螺纹,RDIFF=DIATH/2-WR
对于外螺纹,RDIFF=DIATH/2+WR

参数说明

参数RTP, RFP, SDIS, DP, DPR, 参见CYCLE81

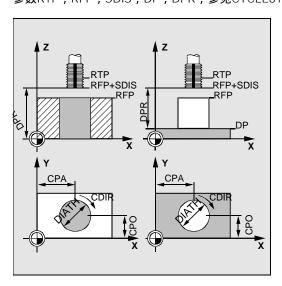


图9-37

DIATH, KDIAM和PIT(额定/中心直径和螺纹螺距)

这些参数用于定义螺纹的额定直径,中心直径和螺距。DIATH参数定义螺纹的外直径,KDIAM定义螺纹的内直径。根据这些参数的定义,在循环内部产生钻进/

钻出动作。

FFR(进给率) FFR参数中定义的值为当前螺纹铣削的进给率值。铣螺旋式螺纹时,该进给率值

仍然有效。

钻进/钻出时,该值会降低。螺旋路径完成后,使用G0返回。

CDIR(旋转方向) 此参数用于定义螺纹的加工方向。

如果该参数的值无效,则给出以下信息: "铣削方向错误;G3当前有效"。

此时,继续执行循环,G3自动有效。

TYPTH(螺纹类型) 此参数用于定义加工内螺纹或外螺纹。

CPA和CPO(中心点) 这些参数用于定义所钻孔的中心点或是螺纹所在的龙头的中心点。

其它说明 在循环内部计算刀具半径。因此,循环调用之前必须编程刀具补偿。否则,将出

现报警61000 "无有效的刀具补偿"且循环终止。

如果刀具半径=0或为负,仍然出现该报警且循环终止。

如果加工内螺纹,则监控刀具半径并出现报警61105"刀具半径太大"且循环终

止。

编程举例:内螺纹 使用该程序,可以在G17平面内的点X60 Y50处加工一个内螺纹。

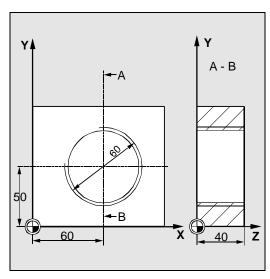


图9-38

DEF REAL RTP=48 , RFP=40 , SDIS=5 , DPR=40 , DIATH=60 , KDIAM=50 DEF REAL PIT=2 , FFR=500 , CPA=60 , CPO=50 DEF INT CDIR=2 , TYPTH=0	文重中7/44旧
N10 G90 G0 G17 X0 Y0 Z80 S200 M3	移动到起始位置
N20 T5 D1	技术值定义
N30 CYCLE90(RTP ,RFP ,SDIS ,DP ,DPR ,DIATH , KDIAM , PIT , FFR , CDIR , TYPTH , CPA CPO)	循环调用
N40 G0 G90 Z100	循环结束后到达的位置
N50 M02	程序结束

9.6.3 圆弧槽 - LONGHOLE

编程

LONGHOLE(RTP, RFP, SDIS, DP, DPR, NUM, LENG, CPA, CPO, RAD, STA1, INDA, FFD, FFP1, MID)

参数

表9-16 LONGHOLE的参数

RTP	Real	退回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	槽深(绝对值)
DPR	Real	相对于参考平面的槽深(无符号输入)
NUM	integer	槽的数量
LENG	real	槽长(无符号输入)
CPA	real	圆弧圆心(绝对值),平面的第一轴
CPO	real	圆弧圆心(绝对值),平面的第二轴
RAD	real	圆弧半径(无符号输入)
STA1	real	起始角度
INDA	real	增量角度
FFD	real	深度切削进给率
FFP1	real	表面加工进给率
MID	real	每次进给时的进给深度(无符号输入)

重要信息

该循环要求使用带"端面齿"的铣刀(DIN844)。

功能

使用此循环可以加工按圆弧排列的槽。槽的纵向轴按轴向调准。

和凹槽相比,该槽的宽度由刀具直径确定。

在循环内部,会计算出最优化的刀具的进给路径,排除不必要的停顿。如果加工一个槽需要几次深度切削,则在终点交替进行切削。沿槽的纵向轴的进给的路径在每次切削后改变它的方向。进行下一个槽的切削时,循环会搜索最短的路径。

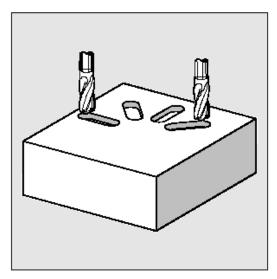


图9-39

操作顺序

循环启动前到达的位置:

起始位置可以是任何位置,只要刀具能够到达每个槽而不发生碰撞。

循环形成以下动作顺序:

- 使用GO到达循环中的起始点位置。在轴形成的当前平面中,移动到高度为返回平面的待加工的第一个槽的下一个终点,然后移动到安全间隙前的参考平面。
- 每个槽以来回动作铣削。使用G1和FFP1下编程的进给率在平面中加工。在 每个反向点,使用G1和进给率切削到下一个加工深度,直到到达最后的加工 深度。
- 使用G0退回到返回平面,然后按最短的路径移动到下一个槽的位置。
- 最后的槽加工完以后,刀具按G0移动到加工平面中的位置,该位置是最后到 达的位置并在下图中定义,然后循环结束。

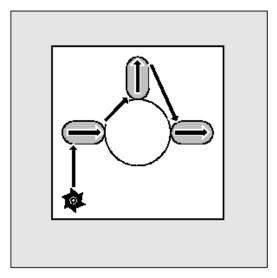


图9-40

参数说明

关于参数RTP, RFP, SDIS, 参见CYCLE81。

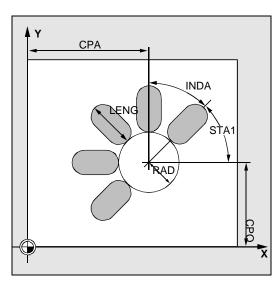


图9-41

DP和DPR(槽深)

槽深可以定义成相对于参考平面的绝对值(DP)和相对值(DPR)。 相对值定义时,循环将使用参考平面和返回平面的位置自动计算出深度。 NUM(数量) 此参数用于定义槽的数量。

LENG(槽长) 此参数可以定义槽的长度。

如果循环发现槽的长度小于铣刀的直径,则循环终止并产生报警61105"铣刀半

径太大"。

MID(切削深度) 此参数可以定义最大的切削深度。

循环以相同的切削步骤切削深度。

使用MID和总深度,循环自动计算出位于一半的最大切削深度和最大切削深度间的一个切削值。按照最小可能的切削数量为基础。MID=0表示一次切削完成槽深

切削。

深度切削从安全间隙前的参考平面开始(根据_ZSD[1])。

FFD 和 FFP1(深度进给率和表面进给率)

FFP1适用于平面中粗加工时的所有动作。FFD用于垂直于此平面的切削。

CPA, CPO和RAD(圆心和半径)

加工平面中槽的位置由圆心(CPA, CPO)和半径(RAD)决定。半径值只允许为正。

STA1和INDA(起始角和增量角)

这些参数定义圆弧槽的分布。

如果INDA=0,则根据槽的数量计算增量角,以便使槽在圆弧上平均分布。

其它说明 循环调用前必须定义刀具补偿。否则,循环将终止并出现报警61000"无有效的

刀具补偿"。

如果由于确定槽的分布和大小的参数值定义不正确,而导致槽轮廓相互碰撞,循

环将不会执行加工。循环终止并出现错误信息61104 "槽轮廓碰撞"。

循环执行过程中,工件坐标系偏移并旋转。工件坐标系中显示的实际值表示刚加

工的槽的纵向轴为当前加工平面的第一轴。

循环结束后,工件坐标系又回到循环调用前的位置。

编程举例:加工槽 利用此程序可以加工4个长为30mm的槽,相对深度为23mm(槽底到参考平面的

距离),这些槽分布在圆心点为Z45 Y40,半径20mm的YZ平面的圆上。 起始角是45度,相邻角为90度。最大切削深度为6mm,安全间隙1mm。

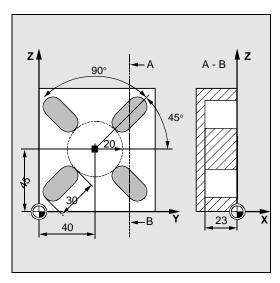


图9-42

N10 G19 G90 D9 T10 S600 M3	技术值定义
N20 G0 Y50 Z25 X5	移动到起始位置
N30 LONGHOLE(5, 0, 1, , 23, 4, 30, 40, 45, 20, 45,	循环调用
90 , 100 , 320 , 6)	
N40 M02	循环结束

9.6.4 圆弧槽 - SLOT1

编程

SLOT1(RTP, RFP, SDIS, DP, DPR, NUM, LENG, WID, CPA, CPO, RAD, STA1, INDA, FFD, FFP1, MID, CDIR, FAL, VARI, MIDF, FFP2, SSF)

参数

表9-17 SLOT1的参数

	14752	
RTP	Real	返回平面(绝对值)
RFP	Real	参考平面(绝对值)
SDIS	Real	安全间隙(无符号输入)
DP	Real	槽深(绝对值)
DPR	Real	相当于参考平面的槽深(无符号输入)
NUM	Integer	槽的数量
LENG	Real	槽长(无符号输入)
WID	Real	槽宽(无符号输入)
CPA	Real	圆弧中心点(绝对值),平面的第一轴
СРО	Real	圆弧中心点(绝对值),平面的第二轴
RAD	Real	圆弧半径(无符号输入)
STA1	Real	起始角
INDA	Real	增量角
FFD	Real	深度进给进给率

FFP1	Real	端面加工进给率
MID	Real	一次进给最大深度(无符号输入)
CDIR	Integer	加工槽的铣削方向
		值: 2(用于G2)
		3(用于G3)
FAL	Real	槽边缘的精加工余量(无符号输入)
VARI	Integer	加工类型
		值: 0=完整加工
		1=粗加工
		2=精加工
MIDF	Real	精加工时的最大进给深度
FFP2	Real	精加工进给率
SSF	Real	精加工速度

注意:

循环要求铣刀带端面齿,刀刃超过刀具中心(DIN844)。

功能

SLOT1循环是一个综合的粗加工和精加工循环。

使用此循环可以加工环形排列槽。槽的纵向轴按放射状排列。和加长孔不同,定义了槽宽的值。

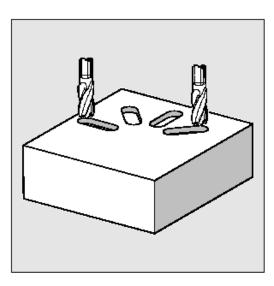


图9-43

操作顺序 循环启动前到达的位置:

起始位置可以是任何位置,只要刀具能够到达每个槽而不发生碰撞。

循环形成以下动作顺序:

- 循环起始时,使用G0回到图中的右边位置。
- 以下步骤完成了槽的加工:
 - 使用G0回到安全间隙前的参考平面
 - 使用G1以及FFD中的进给率值进给至下一加工深度
 - 使用FFP1中的进给率值在槽边缘上进行连续加工直到精加工余量。然后使用FFP2的进给率值和主轴速度SSF并按CDIR下编程的加工方向沿轮廓进行精加工。
 - 始终在加工平面中的相同位置进行深度进给,直至到达槽的底部。
- 将刀具退回到返回平面并使用G0移到下一个槽。
- 加工完最后的槽后,使用GO将刀具移到加工平面中的末端位置,如下图所示,则循环结束。

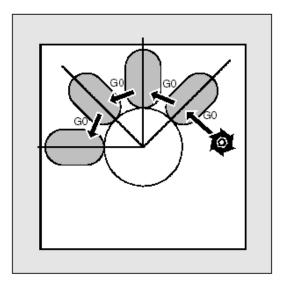


图9-44

参数说明 对于参数RTP, RFP, SDIS, 参见CYCLE81。

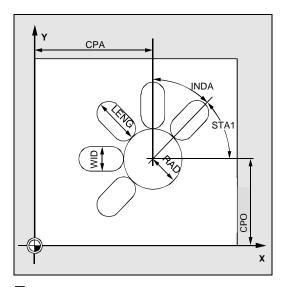


图9-45

DP和DPR(槽深)

槽深可以定义为参考平面的绝对值(DP)或相对值(DPR)。如果定义的是相对值, 循环会使用参考平面和返回平面的位置自动算出余下的深度。

NUM(数量)

此参数用于定义槽的数量。

LENG和WID(槽长和槽宽)

使用参数LENG和WID定义平面中的槽的形状。铣刀直径必须小于槽宽。否则,会产生报警61105"刀具半径太大"且循环终止。 铣刀直径不能小于槽宽的一半。系统不检测此项。

CPA, CPO和RAD(中心点和半径)

圆形孔在加工平面中的位置是通过中心点(CPA, CPO)和半径(RAD)来决定的。 半径只允许是正值。

STA1和INDA(起始角和增量角)

这些参数定义了槽在圆周上的分布。

STA1定义了在循环调用前有效工件坐标系中第一轴(横坐标)的正方向与第一槽间的角度。参数INDA定义了槽和槽之间的角度。

如果INDA=0,增量角可以通过槽的数量来得出,因为它们是平均分布在圆弧上的。

FFD和FFP1(深度和端面的进给率)

进给率FFD用于所有垂直于加工平面的进给动作。

进给率FFP1用于平面中所有在粗加工时使用此进给率的动作。

此参数用于定义最大的进给深度。 MID(进给深度)

循环将进给深度分成相同大的步骤来执行。

使用MID和整个深度,循环自动计算出位于0.5倍的最大进给深度和最大进给深 度间的进给量。最小允许的进给数作为基数。MID=0表示一次切削到槽深。

进给深度在安全间隙前的参考平面处作用。

此参数用来定义槽的加工方向。允许值有: CDIR(铣削方向)

- "2"用于G2
- " 3 " 用于G3

如果参数值不正确,对话栏中将显示信息"铣削方向错误,将执行G3"。此时, 循环继续且G3自动生效。

FAL(精加工余量) 此参数用来编程槽边缘的精加工余量。FAL不影响进给深度。

> 如果FAL的值大于槽宽和铣刀所允许的值, FAL的值将自动降低到最大允许值。 粗加工时,在槽的两个末端进行来回铣削和深度进给。

VARI, MIDF, FFP2和SSF(加工类型,进给深度,进给率和速度)

参数VARI用来定义加工类型。

允许值有:

- 0=完整加工分成两部分
 - 按照循环调用前所编程的主轴速度及进给率FFP1进行连续槽加工 (SLOT1, SLOT2)直至精加工余量。MID定义了进给深度。
 - 按照SSF定义的主轴速度和进给率FFP2连续加工剩余余量。MIDF定义 了横切深度。如果MIDF=0,进给深度等于最后深度。
 - 如果未编程FFP2, 进给率FFP1有效。如果SSF没有编程,即循环有效前 编程的速度,进给率FFP1仍然有效。
- 1=粗加工

按照循环调用前,所编程的速度和进给率FFP1对槽进行连续加工直至精加工 余量。MID编程了进给深度。

2=精加丁

循环要求槽(SLOT1, SLOT2)已经加工至剩余的精加工余量而且只需要加工 最后的精加工余量。如果未编程FFP2和SSF,进给率FFP1或编程的速度在 循环调用前有效。MIDF中定义了进给深度。

如果参数VARI编程了不同的值,就会产生报警61102"加工类型定义不正确"且 循环终止。

更多说明 循环调用前必须编程刀具补偿。否则,循环终止并产生报警61000 "无有效的刀 具补偿"。

> 如果给决定槽分布和大小的参数定义了不正确的值并因此而导致槽之间的轮廓 碰撞,循环不会启动。在产生错误信息61104"槽/加长孔的轮廓碰撞"后循环终

> 循环运行过程中,工件坐标系偏置并旋转。显示在实际值区域的工件坐标系的值 表示已加工的槽的纵向轴和当前加工平面的第一轴相符。

循环结束后,工件坐标系又重新位于循环调用前的相同位置。

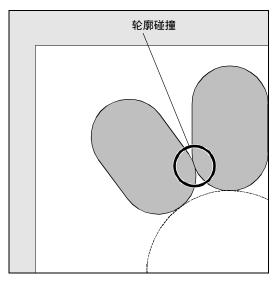


图9-46

编程举例:圆形槽

共加工4个槽。

这些槽具有以下尺寸:长30mm,宽15mm和深23mm。安全间隙是1mm,精加工余量是0.5mm,铣削方向是G2,最大进给深度是6mm。即将完整加工这些槽并在进行精加工时进给至槽深及使用相同的进给率和速度。

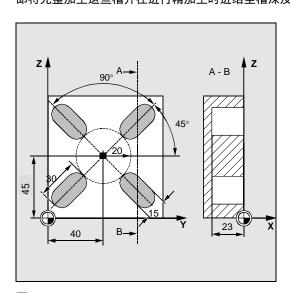


图9-47

N10 G17 G90 T1 D1 S600 M3	技术值的定义
N20 G0 X20 Y50 Z5	回到起始位置
N30 SLOT1 (5, 0, 1, -23, , 4, 30, 15, 40, 45, 20, 45, 90, 100, 320, 6, 2, 0.5, 0, , 0,)	循环调用,参数VARI,MIDF, FFP2和SSF省略
N60 M30	程序结束

9.6.5 圆周槽 - SLOT2

编程

 ${\sf SLOT2}({\sf RTP}$, ${\sf RFP}$, ${\sf SDIS}$, ${\sf DP}$, ${\sf DPR}$, ${\sf NUM}$, ${\sf AFSL}$, ${\sf WID}$, ${\sf CPA}$, ${\sf CPO}$, ${\sf RAD}$, ${\sf STA1}$, ${\sf INDA}$, ${\sf FFD}$, ${\sf FFP1}$, ${\sf MID}$, ${\sf CDIR}$, ${\sf FAL}$, ${\sf VARI}$, ${\sf MIDF}$, ${\sf FFP2}$, ${\sf SSF})$

参数

表9-18 SLOT1的参数

T THIS XX	
Real	返回平面(绝对值)
Real	参考平面(绝对值)
Real	安全间隙(无符号输入)
Real	槽深(绝对值)
Real	相当于参考平面的槽深(无符号输入)
Integer	槽的数量
Real	槽长的角度(无符号输入)
Real	圆周槽宽(无符号输入)
Real	圆中心点(绝对值),平面的第一轴
Real	圆中心点(绝对值),平面的第二轴
Real	圆半径(无符号输入)
Real	起始角
Real	增量角
Real	深度进给进给率
Real	端面加工进给率
Real	最大进给深度(无符号输入)
Integer	加工圆周槽的铣削方向
	值: 2(用于G2)
	3(用于G3)
Real	槽边缘的精加工余量(无符号输入)
Integer	加工类型
	值: 0=完整加工
	1=粗加工
	2=精加工
Real	精加工时的最大进给深度
Real	精加工进给率
Real	精加工速度
	Real Real Real Integer Real Real Real Real Real Real Real Real

注意:

循环要求铣刀带端面齿,刀刃超过刀具中心(DIN844)。

功能

SLOT2循环是一个综合的粗加工和精加工循环。 使用此循环可以加工分布在圆上的圆周槽。

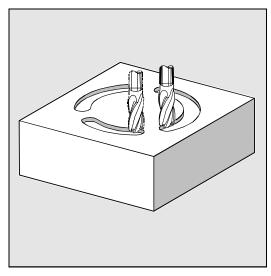


图9-48

操作顺序

循环运行前到达的位置:

起始位置可以是任何位置,只要刀具能够到达每个槽而不发生碰撞。

循环形成以下动作顺序:

- 循环运行时,使用GO靠近下图中指定的位置。
- 加工圆周槽的步骤和加工加长孔的步骤相同。
- 完整地加工完一个圆周槽后,刀具退回到返回平面并使用G0接着加工下一槽。
- 加工完所有的槽后,刀具使用GO移至加工平面中的终点位置,此位置在下图中指定,然后循环结束。

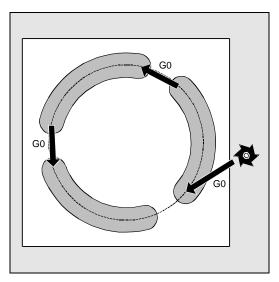


图9-49

参数说明

对于参数RTP, RFP, SDIS,参见CYCLE82。 对于参数DP, DPR, FFD, FFP1, MID, CDIR, FAL, VARI, MIDF, FFP2, SSF,参见SLOT1。

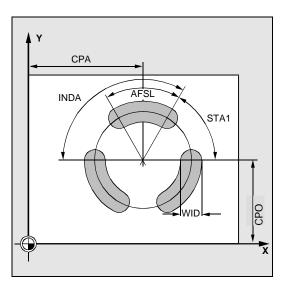


图9-50

NUM(数量) 使用参数NUM可以定义槽的数量。

AFSL和WID(角度和圆周槽宽度)

使用参数AFSL和WID可以定义平面中槽的形状。循环会检查槽宽是否会与有效 刀具发生碰撞。如果会发生碰撞,则产生报警61105 "铣刀半径太大"且循环终 止。

CPA, CPO和RAD(中心点和半径)

加工平面中圆周孔圆的位置是由中心点(CPA, CPO)和半径(RAD)来定义的。半径值只允许为正。

STA1和INDA(起始角和增量角)

圆周槽的分布是通过这些参数来定义的。

STA1定义了在循环调用前有效工件坐标系中第一轴(横坐标)的正方向与第一圆周槽间的角度。参数INDA定义了槽和槽之间的角度。

如果INDA=0,增量角可以通过槽的数量来得出,因为它们是平均分布在圆弧上的。

更多说明

循环调用前必须编程刀具补偿。否则,循环终止并产生报警61000 " 无有效的刀 具补偿 "。

如果给决定槽分布和大小的参数定义了不正确的值并因此而导致槽之间的轮廓碰撞,循环不会启动。在产生错误信息61104"槽/加长孔的轮廓碰撞"后循环终止。

循环运行过程中,工件坐标系偏置并旋转。显示在实际值区域的工件坐标系的值表示刚加工的圆周槽从当前加工平面的第一轴开始而且工件坐标系的零点位于圆的中心点。

循环结束后,工件坐标系又重新位于循环调用前的相同位置。

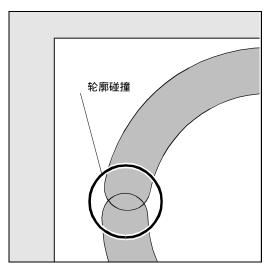


图9-51

编程举例:圆周槽

此程序可以用来加工分布在圆周上的3个圆周槽,该圆周在XY平面中的中心点是X60Y60,半径是42mm。圆周槽具有以下尺寸:宽15mm,槽长角度为70度,深23mm。起始角是0度,增量角是120度。精加工余量是0.5mm,进给轴Z的安全间隙是2mm,最大深度进给为6mm。完整加工这些槽。精加工时的速度和进给率相同。执行精加工时的进给至槽深。

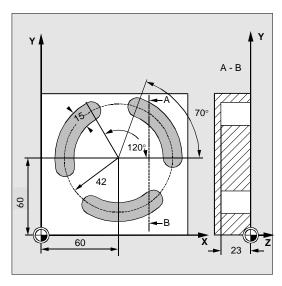


图9-52

N10 G17 G90 T1 D1 S600 M3	技术值的定义
N20 G0 X60 Y60 Z5	回到起始位置
N30 SLOT2 (2, 0, 2, -23, , 3, 70, 15, 60, 65, 42, , 120, 100, 300, 6, 2, 0.5, 0, , 0,)	循环调用参考平面+SDIS=返回平面含义:使用GO进给进给轴回到参考平面+SDIS不再适用,参数VARI,MIDF,FFP2和SSF省略
N60 M30	程序结束

9.6.6 矩形槽 - POCKET3

编程

POCKET3(_RTP , _RFP , _SDIS , _DP , _LENG , _WID , _CRAD , _PA , _PO , _STA , _MID , FAL , FALD , _FFP1 , _FFD , _CDIR , _VARI , _MIDA , _AP1 , _AP2 , _AD , _RAD1 , _DP1)

参数

表9-19 POCKET3的参数

DC, 17 1 G G I C I G I G I G I G I G I G I G I G		
_RTP	Real	返回平面(绝对值)
_RFP	Real	参考平面(绝对值)
_SDIS	Real	安全间隙(无符号输入)
_DP	Real	槽深(绝对值)
_LENG	Real	槽长,带符号从拐角测量
_WID	Real	槽宽,带符号从拐角测量

	I	1815 E 1117 E - 12 2 1
_CRAD	Real	槽拐角半径(无符号输入)
_PA	Real	槽参考点(绝对值),平面的第一轴
_PO	Real	槽参考点(绝对值),平面的第二轴
_STA	Real	槽纵向轴和平面第一轴间的角度(无符号输入)
		范围值: 0°≤_STA<180°
_MID	Real	最大进给深度(无符号输入)
_FAL	Real	槽边缘的精加工余量(无符号输入)
_FALD	Real	槽底的精加工余量(无符号输入)
_FFP1	Real	端面加工进给率
_FFD	Real	深度进给进给率
_CDIR	Integer	铣削方向(无符号输入)
		值: 0顺铣(主轴方向)
		1逆铣
		2用于G2(独立于主轴方向)
		3 用于 G3
_VARI	Integer	加工类型
		UNITS DIGIT
		值: 1粗加工
		2精加工
		TENS DIGIT
		值: 0使用G0垂直于槽中心
		1使用G1垂直于槽中心
		2沿螺旋状
		3沿槽纵向轴摆动
_MIDA	Real	在平面的连续加工中作为数值的最大进给宽度
_AP1	Real	槽长的空白尺寸
_AP2	Real	槽宽的空白尺寸
_AD	Real	距离参考平面的空白槽深尺寸
_RAD1	Real	插入时螺旋路径的半径(相当于刀具中心点路径)或者
		摆动时的最大插入角
_DP1	Real	沿螺旋路径插入时每转(360°)的插入深度

其它参数可以作为选项选择。这些参数定义了用于连续加工的插入方式和重叠 (无符号输入)。

此循环可以用于粗加工和精加工。精加工时,要求使用带端面齿的铣刀。 深度进给始终从槽中心点开始并在垂直方向上执行。这样才能在此位置完成预铣 削。

- 铣削方向可以通过G命令(G2/G3)来定义,或者顺铣或逆铣方向由主轴方向决定。
- 对于连续加工,可以编程在平面中的最大进给宽度。
- 精加工余量始终用于槽底。
- 有三种不同的插入方式:
 - 垂直于槽的中心
 - 沿围绕槽中心的螺旋路径
 - 在槽中心轴上摆动
- 平面中用于精加工的更短路径。
- 考虑平面中的空白轮廓和槽底的空白尺寸(允许最佳的槽加工)。

功能

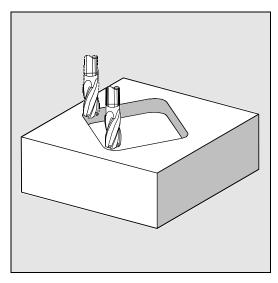


图9-53

操作顺序

循环运行前到达的位置:

起始位置可以是任意位置,只需从该位置出发可以无碰撞地回到返回平面的槽中心点。

粗加工时的动作顺序:

使用G0回到返回平面的槽中心点,然后再同样以G0回到安全间隙前的参考平面。随后根据所选的插入方式并考虑已编程的空白尺寸对槽进行加工。

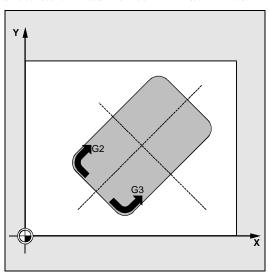


图9-54

精加工时的动作顺序

从槽边缘开始精加工,直到到达槽底的精加工余量,然后对槽底进行精加工。如果其中某个精加工余量为零,则跳过此部分的精加工过程。

• 槽边缘精加工

精加工槽边缘时,刀具只沿槽轮廓切削一次。 精加工槽边缘时,路径包括一个到达拐角半径的四分之一圆。此路径的半径通常为2mm,但如果空间较小,半径等于拐角半径和铣刀半径的差。如果在边缘上的精加工余量大于2mm,则应相应增加接近半径。 使用GO朝槽中央执行深度进给,同时使用GO到达接近路径的起始点。

• 槽底精加工

精加工槽底时,机床朝槽中央执行G0功能直至到达距离等于槽深+精加工余量+安全间隙处。从该点起,刀具始终垂直进行深度进给(因为具有副切削刃的刀具用于槽底的精加工),底端面只加工一次。

插入方式:

- 垂直于槽中央插入表示在循环内部计算出的当前的进给深度(小于等于_MID 下编程的最大进给深度)在包含GO或G1的程序块中执行。
- 螺旋状路径插入表示刀具中心点沿着由半径_RAD1和每转深度_DP1确定的 螺旋状路径进给。进给率为_FFD的编程值。此螺旋路径的旋转方向和槽加工 的旋转方向一致。

_DP1下编程的插入深度被认为是最大深度并始终作为螺旋路径转数的整数值计算。

如果已到达进给所需的当前深度(可以是螺旋路径上的几转),仍需加工一个完整的圆来消除插入的倾斜路径。然后在此平面上对槽进行连续加工直至精加工余量。

螺旋状路径的起始点位于槽的纵向轴的正方向上并使用G1回到该起始点。

 使用槽中央轴的摆动插入表示刀具中心点插入一直线来回摆动直至到达下一 当前深度。_RAD1下编程了最大的插入角,在循环中计算出摆动行程的长度。 如果到达了当前深度,再一次执行行程而不进行深度进给,以便可以消除倾 斜的插入路径._FFD下编程了进给率。

考虑空白尺寸

连续加工槽时,可以考虑空白尺寸(如加工预制的零件时)。

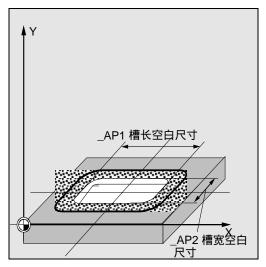


图9-55

长度和宽度的空白尺寸(_AP1和_AP2)为无符号编程且通过计算被循环对称地置于槽中心点周围。你可以定义不再进行连续加工的槽的部分。深度的空白尺寸(_AD)也是无符号编程的并由参考平面在槽深方向考虑。

考虑空白尺寸时,根据编程的类型(螺旋,摆动,垂直)进行深度进给。如果循环发现由于已有的空白轮廓和有效的刀具半径,在槽中央有足够的空间,只要在开口处无需进给过多插入路径,则进行垂直于槽中心的进给。 从上至下对槽进行连续加工。

参数说明

对于参数_RTP,_RFP,_SDIS,参见CYCLE81。 对于参数_DP,参见POCKET3。

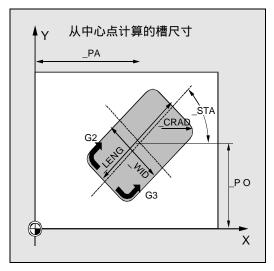


图9-56

LENG, WID和_CRAD(槽长,槽宽和拐角半径)

使用参数_LENG,_WID和_CRAD可以定义平面中槽的形状。

槽的测量始终从中心开始。

如果由于半径太大而使用有效的刀具不能进给编程的拐角半径,则使待加工槽的

拐角半径和刀具半径一致。

如果铣刀半径大于槽长或槽宽的一半,循环将被终止并产生报警61105 "刀具半

径太大"。

_PA,_PO(参考点) 使用参数_PA和_PO定义平面轴中槽的参考点。这是槽的中心点。

_MID(进给深度) 此参数用来定义粗加工时的最大进给深度。

深度进给由循环按相同大小的进给步来执行。

使用_MID和整个深度,循环自动计算出进给量。使用最少可能的进给数做为基础。

_MID=0表示一次切削至槽深。

_FAL(槽边缘的精加工余量)

此精加工余量只影响平面中槽边缘的加工。

如果精加工余量大于等于刀具直径,则不能保证槽完整连续的加工,并出现信息"警告:精加工余量大于等于刀具直径",但循环仍然继续。

_FALD(槽底的精加工余量)

粗加工时,在槽底需考虑单独的精加工余量。

_FFD和 _FFP1(深度和端面进给率)

进给率_FFD在进入工件中时有效。

进给率FFP1对于平面中所有的动作都有效,粗加工时使用此进给率。

_CDIR(铣削方向) 使用此参数定义槽的加工方向。

使用此参数_CDIR,铣削方向

- 可以直接使用 "2用干G2"和 "3用干G3"编程
- 或者, "同步操作"或"反转"。

同步操作或反转根据循环调用前有效的主轴方向在循环内部决定。

同步操作 **反转** M3→G3 M3→G2

 $M4\rightarrow G2$ $M4\rightarrow G3$

_VARI(加工类型) 此参数用来定义加工类型。

可能的值为:

Units digit:

- 1=粗加工
- 2=精加工

Tens digit(进给)

- 0=使用G0垂直干槽中心
- 1=使用G1垂直于槽中心
- 2=沿螺旋路径
- 3=槽长轴摆动

如果参数_VARI编程了其它值,将输出报警61002 "加工类型定义不正确"且循环终止。

_MIDA(最大进给宽度)

此参数可以用来定义在平面中连续加工时的最大进给宽度。类似于已知的计算进给深度的方法(使用最大可能的值平均划分总深度),使用_MIDA下编程的最大值平均划分宽度。

如果此参数末编程或编程值为零,循环内部将使用铣刀直径的80%作为最大进给深度。

更多说明

到达最大槽深时,如果要重新计算已计算的用于边缘加工的进给宽度,此参数适用。否则最初计算的进给宽度适用于整个循环。

_AP1, _AP2, _AD(空白尺寸)

使用参数_AP1,_AP2,_AD用来定义槽在平面中和深度方向的空白尺寸(增量)。

_RAD1(半径)

此参数用来定义螺旋路径的半径(参考刀具中心点路径)或用于摆动动作的最大插入角。

DP1(插入深度)

此参数用来定义插入螺旋路径时的进给深度。

循环调用前必须编程刀具补偿。否则,循环将终止而且报警61000 " 无有效的刀 具补偿 " 输出。

在循环内部,使用了一个影响实际值显示的新的当前工件坐标系。此坐标系的零点位于槽中心点。在循环结束时,原来的坐标系重新有效。

编程举例:矩形槽

此程序可以加工一个在XY平面中的矩形槽,深度为60mm,宽40mm,拐角半径是8mm且深度为17.5mm。该槽和X轴的角度为零。槽边缘的精加工余量是0.75mm,槽底的精加工余量为0.2mm,添加于参考平面的Z轴的安全间隙为0.5mm。槽中心点位于X60,Y40,最大进给深度4mm。

加工方向取决于在顺铣过程中的主轴的旋转方向。使用半径为5mm的铣刀。 只进行一次粗加工。

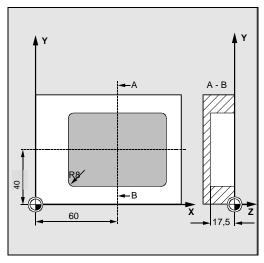


图9-57

N10 G90 T1 D1 S600 M4	技术值的定义
N20 G17 G0 X60 Y40 Z5	回到起始位置
N30 POCKET3 (5, 0, 0.5, -17.5, 60, 40, 8, 60, 40, 0, 4, 0.75, 0.2, 1000, 750, 0, 11, 5, , , ,)	循环调用
N40 M30	程序结束

9.6.7 圆形槽 - POCKET4

编程

POCKET4(_RTP , _RFP , _SDIS , _DP , _PRAD , _PA , _PO , _MID , _FAL , _FALD , _FFP1 , _FFD , _CDIR , _VARI , _MIDA , _AP1 , _AD , _RAD1 , _DP1)

参数

表9-20 POCKET4的参数

_RTP	Real	返回平面(绝对值)
_RFP	Real	参考平面(绝对值)
_SDIS	Real	安全间隙(添加到参考平面:无符号输入)
_DP	Real	槽深(绝对值)
_PRAD	Real	槽半径
_PA	Real	槽中心点(绝对值),平面的第一轴
_PO	Real	槽中心点(绝对值),平面的第二轴
_MID	Real	最大进给深度(无符号输入)
_FAL	Real	槽边缘的精加工余量(无符号输入)
_FALD	Real	槽底的精加工余量(无符号输入)
_FFP1	Real	端面加工进给率
_FFD	Real	深度进给进给率
_CDIR	Integer	铣削方向(无符号输入)
		值: O顺铣(主轴方向)
		1逆铣
		2用于G2(独立于主轴方向)
		3用于G3
_VARI	Integer	加工类型
		UNITS DIGIT
		值: 1粗加工
		2精加工
		TENS DIGIT
		值: 0使用G0垂直于槽中心
		1使用G1垂直于槽中心
		2沿螺旋状
_MIDA	Real	在平面的连续加工中作为数值的最大进给宽度
_AP1	Real	槽半径的空白尺寸
_AD	Real	距离参考平面的空白槽深尺寸
_RAD1	Real	插入时螺旋路径的半径(相当于刀具中心点路径)
_DP1	Real	沿螺旋路径插入时每转(360°)的插入深度

其它参数可以作为选项选择。这些参数定义了用于连续加工的插入方式和重叠 (无符号输入)

功能

此循环用于加工在平面中的圆形槽。精加工时,需使用带端面齿的铣刀。

深度进给始终从槽中心点开始并垂直执行;这样可以在此位置适当地进行预钻削。

- 铣削方向可以通过G命令(G2/G3)来定义,或者顺铣或逆铣方向由主轴方向决定。
- 对于连续加工,可以编程在平面中的最大进给宽度。
- 精加工余量也用于槽底。
- 有两种不同的插入方式:
 - 垂直于槽的中心
 - 沿围绕槽中心的螺旋路径
- 平面中用于精加丁的更短路径。
- 考虑平面中的空白轮廓和槽底的空白尺寸(允许最佳的槽加工)。
- 边缘加工时重新计算 MIDA。

操作顺序

循环启动前到达的位置:

起始位置可以是任意位置,只需从该位置出发可以无碰撞地回到返回平面的槽中心点。

粗加工时的动作顺序:

使用G0回到返回平面的槽中心点,然后再同样以G0回到安全间隙前的参考平面。 随后根据所选的插入方式并考虑已编程的空白尺寸对槽进行加工。

精加工时的动作顺序

从槽边缘开始精加工,直到到达槽底的精加工余量,然后对槽底进行精加工。如果其中某个精加工余量为零,则跳过此部分的精加工过程。

• 槽边缘精加工

精加工槽边缘时,刀具只沿槽轮廓切削一次。

精加工槽边缘时,路径包括一个到达拐角半径的四分之一圆。此路径的半径最大为2mm,但如果空间较小,半径等于槽半径和铣刀半径的差。

使用G0在槽开口处朝槽中央执行深度进给 同时使用G0到达接近路径的起始 点。

• 槽底精加工

精加工槽底时,机床朝槽中央执行GO功能直至到达距离等于槽深+精加工余量+安全间隙处。从该点起,刀具始终垂直进行深度进给(因为具有副切削刃的刀具用于槽底的精加工)。

槽底端面只加工一次。

插入方式

参见"POCKET3"

考虑空白尺寸

连续加工槽时,可以考虑空白尺寸(如加工预制的零件时)

对于圆形槽,_AP1空白尺寸也是圆(半径小于槽半径)。

参见POCKET3,获得更多说明。

参数说明

对于参数_RTP,_RFP,_SDIS,参见CYCLE82。

对于参数_DP,_MID,_FAL,_FALD,_FFP1,_FFD,_CDIR,_MIDA,_AP1, _AD,_RAD1,_DP1,参见POCKET3。

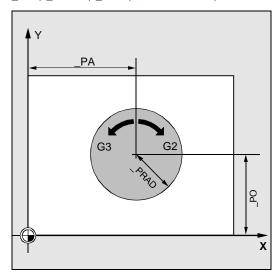


图9-58

_PRAD(槽半径)

圆形槽的形状只是由半径决定的。

如果此半径小于有效刀具的刀具半径,循环将终止并且产生报警61105 " 刀具半径太大 "。

_PA , _PO(槽中心点)

这些参数用来定义槽的中心点。圆形槽始终经过中心点测量。

_VARI(加工类型)

此参数用于定义加工类型。

可能的值为:

Units digit:

- 1=粗加工
- 2=精加工

Tens digit(进给)

- 0=使用G0垂直于槽中心
- 1=使用G1垂直于槽中心
- 2=沿螺旋路径

如果参数_VARI编程了其它值,将输出报警61002"加工类型定义不正确"且循环终止。

更多说明

循环调用前必须编程刀具补偿。否则,循环将终止而且报警61000 "无有效的刀具补偿"输出。

在循环内部,使用了一个影响实际值显示的新的当前工件坐标系。此坐标系的零点位于槽中心点。

在循环结束时,原来的坐标系重新有效。

编程举例:圆形槽

使用此程序可以在YZ平面中加工一个圆形槽。中心点为Y50 Z50。深度的进给轴是X轴。未定义精加工余量和安全间隙。采用通常的铣削方式(逆铣)加工槽。沿螺旋路径进行进给。

使用半径为10mm的铣刀。

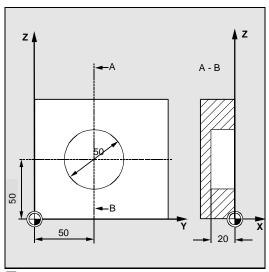


图9-59

N10 G17 G90 G0 S650 M3 T1 D1	技术值的定义
N20 X50 Y50	回到起始位置
N30 POCKET4 (3,0,0,-20,25,50,	循环调用
60,6,0,0,200,100,1,	省略参数_FAL , _FALD
21,0,0,0,2,3)	
N40 M30	程序结束

9.6.8 端面铣削 - CYCLE71

编程

CYCLE71(_RTP , _RFP , _SDIS , _DP , _PA , _PO , _LENG , _WID , _STA , _MID , _MIDA , _FDP , _FALD , _FFP1 , _VARI , _FDP1)

参数

表9-21 CYCLE71的参数

1X9-21 CTC	LL / IDJ 多数	
_RTP	Real	返回平面(绝对值)
_RFP	Real	参考平面(绝对值)
_SDIS	Real	安全间隙(添加到参考平面:无符号输入)
_DP	Real	深度(绝对值)
_PA	Real	起始点(绝对值),平面的第一轴
_PO	Real	起始点(绝对值),平面的第二轴
_LENG	Real	第一轴上的矩形长度,增量。尺寸的起始角由符号 产生。

	r =		
_WID	Real	第二轴上的矩形长度,增量。尺寸的起始角由符号	
		产生。	
_STA	Real	纵向轴和平面的第一轴间的角度(无符号输入)	
		范围值:0°≤_STA<180°	
_MID	Real	最大进给深度(无符号输入)	
_MIDA	Real	平面中连续加工时作为数值的最大进给宽度	
		(无符号输入)	
_FDP	Real	精加工方向上的返回行程(增量,无符号输入)	
_FALD	Real	深度的精加工大小(增量,无符号输入)	
_FFP1	Real	端面加工进给率	
_VARI	Integer	加工类型(无符号输入)	
		UNIT DIGIT	
		值: 1粗加工	
		2精加工	
		TENS DIGIT	
		值: 1在一个方向平行于平面的第一轴	
		2在一个方向平行于平面的第二轴	
		3平行于平面的第一轴	
		4平行于平面的第二轴,方向可交替	
FDP1	Real	在平面的进给方向上越程(增量 , 无符号输入)	

功能

使用CYCLE71可以切削任何矩形端面。循环识别粗加工(分步连续加工端面直至精加工)和精加工(端面的最后一步加工)。可以定义最大宽度和深度进给量。循环运行时不带刀具半径补偿。深度进给在开口处进行。

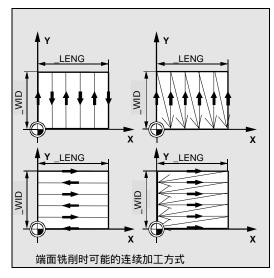


图9-60

操作顺序

循环启动前到达的位置:

起始位置可以是任意位置 ,只需从该位置出发可以无碰撞地回到返回平面的槽中 心点。

循环形成了以下的动作顺序:

- 使用G0回到当前位置高度的进给点 然后从该位置仍然使用G0回到安全间隙前的参考平面。可以使用G0,因为在开口处可以进行进给。可以采用不同的连续加工方式(在轴的一个方向或来回摆动)。
- 粗加工时的动作顺序:

根据参数_DP __MID和_FALD的编程值 ,可以在不同的平面中进行端面切削。 从上而下进行加工 ,即每次切除一平面后在开口处进行下一个深度进给(参数 FDP)。平面中连续加工的进给路径取决于参数_LENG __WID __MIDA __FDP , __FDP1的值和有效刀具的半径。

加工最初路径时,应始终保证进给深度和_MIDA的值完全一致,以便进给宽度不大于最大允许值。这样刀具中心点不会始终在边缘上进给(仅当_MIDA=刀具半径时)。刀具进给时超出边缘的尺寸始终等于刀具半径 - _MIDA的值,即使只进行一次端面切削,即端面宽度+越程-_MIDA。内部计算宽度进给的其它路径以便能够获得统一的路径宽度(<=_MIDA。

• 精加工时的动作顺序:

精加工时,端面只在平面中切削一次。这表示在粗加工时必须选择精加工余量,以便剩余深度可以使用精加工刀具一次加工完成。

每次端面切削后,刀具将退回。返回行程编程在参数_FDP中。

在一个方向加工时,刀具将在一个方向的返回行程为精加工余量+安全间隙, 并快速回到下一起始点。

在一个方向粗加工时,刀具将返回到计算的进给+安全间隙位置。深度进给也在粗加工中相同的位置进行。

精加工结束后,刀具将返回到上次到达位置的返回平面_RTP。

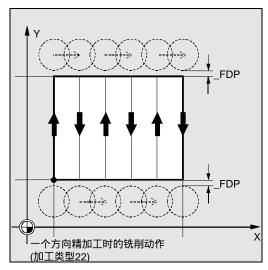


图9-61

参数说明

对于参数_RTP,_RFP,_SDIS,参见CYCLE82。 对于参数_STA,_MID,_FFP1,参见POCKET3。

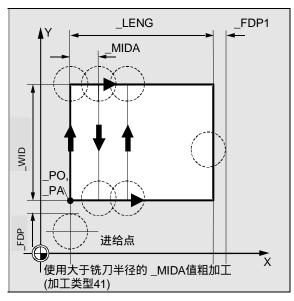
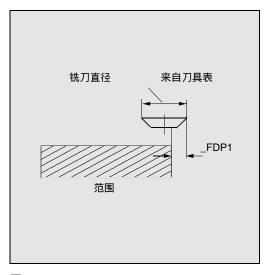


图9-62

_DP(深度) 可以将深度定义为到参考平面的绝对值(_DP)。

_PA, _PO(起始点) 使用参数_PA和_PO定义在平面的轴中的起始点。


_LENG , _WID(长度) 使用此参数可以定义平面中矩形的长和宽。参照_PA和_PO的矩形位置来自符号。

_MIDA(最大进给宽度) 此参数可以用来定义在平面中连续加工时的最大进给宽度。类似于已知的计算进 给深度的方法(使用最大可能的值平均划分总深度),使用_MIDA下编程的最大值 平均划分宽度。

如果此参数未编程或编程值为零,循环内部将使用铣刀直径的80%作为最大进给深度。

_FDP(返回行程) 此参数用于定义在平面中返回行程的大小。此参数的值必须始终大于零。

_FDP1(超出行程) 此参数可以定义在平面的进给方向(_MIDA)上的超出行程。这样可以补偿当前刀 具半径和刀尖半径(如刀具半径或在某一角度的刀尖)。这样最后的刀具中心点路 径始终为_LENG(或_WID)+_FDP1-刀具半径(来自补偿表)。

图9-63

_FALD(精加工余量)

粗加工时,应考虑此参数下编程的在深度方向的精加工余量。

作为精加工余量的剩余部分必须始终定义要求精加工,确保刀具能够返回并无碰撞的进给到下一起始点。

_VARI(加工类型)

此参数用来定义加工类型。

允许的值为:

Units digit:

1=粗加工到精加工余量

2=精加工

Tens digit:

1=平行于平面的第一轴,在一个方向

2=平行于平面的第二轴,在一个方向

3=平行于平面的第一轴,在两个方向交替

4=平行于平面的第二轴,在两个方向交替

如果参数_VARI编程了其它的值,循环终止并产生报警61002"加工类型定义不正确"。

更多说明

循环调用前必须编程刀具补偿。否则,循环终止并产生报警61000 " 无有效的刀 具补偿 "。

编程举例:端面切削

循环调用的参数:

返回平面: 10mm
 参考平面: 0mm
 安全间隙: 2mm
 铣削深度: -11mm
 矩形起始点 X=100mm

● 矩形尺寸 X=+60mm

Y = +40mm

平面中的旋转角度
 最大进给深度
 最大进给宽度
 铣削路径结束时的返回行程
 5mm

无精加工余量

● 端面加工进给率 4000mm/min

• 加工类型:粗加工,平行于X轴,方向可交替

• 由于刀刃的几何结构导致在最后切削时的超程 2mm

使用的铣刀半径为10mm。

N10 T2 D2	
N20 G17 G0 G90 G54 G94 F2000 X0 Y0 Z20	回到起始位置
N30 CYCLE71 (10,0,2,-11,100,100,60,40,10,60,10,60,10,60,10,6,10,5,0,4000,31,2)	循环调用
N40 G0 G90 X0 Y0	
N50 M30	程序结束

9.6.9 轮廓铣削 - CYCLE72

编程

CYCLE72(_KNAME ,_RTP ,_RFP ,_SDIS ,_DP ,_MID ,_FAL ,_FALD ,_FFP1 , _FFD , _VARI , RL , _AS1 , _LP1 , _FF3 , _AS2 , _LP2)

参数

表9-22 CYCL F72的参数

127-22 CICLI	_/	
_KNAME	String	轮廓子程序名称
_RTP	Real	返回平面(绝对值)
_RFP	Real	参考平面(绝对值)
_SDIS	Real	安全间隙(添加到参考平面;无符号输入)
_DP	Real	深度(绝对值)
_MID	Real	最大进给深度(增量,无符号输入)
_FAL	Real	边缘轮廓的精加工余量(增量,无符号输入)
_FALD	Real	槽底的精加工余量(增量,无符号输入)
_FFD	Real	深度进给率(无符号输入)
_VARI	Integer	加工类型(无符号输入)
		UNIT DIGIT
		值: 1粗加工
		2精加工
		TENS DIGIT
		值: 0使用G0的中间路径
		1使用G1的中间路径
	1	

		HUNDREDS DIGIT 值: 0在轮廓末端返回_RTP 1在轮廓末端返回_RFP+_SDIS 2在轮廓末端返回_SDIS 3在轮廓末端不返回
_RL	Integer	沿轮廓中心,向右或向左进给(使用G40,G41或G42;无符号输入) 值: 40G40(接近和返回-只有一条线) 41G41 42G42
_AS1	Integer	接近方向/接近路径的定义:(无符号输入) units digit: 值: 1直线切线
_LP1	Real	接近路径的长度(使用直线)或接近圆弧的半径(使用圆)(无符号输入)

其它参数用作选项。

_FF3	Real	返回进给率和平面中中间位置的进给率(在开口处)	
_AS2	Integer	返回方向/返回路径的定义:(无符号输入)	
		units digit:	
		值: 1直线切线	
		2四分之一圆	
		3半圆	
		tens digit:	
		值: 0从平面中的轮廓返回	
		1沿空间路径的轮廓返回	
_LP2	Real	返回路径的长度(使用直线)或返回圆弧的半径(使	
		用圆)(无符号输入)	

功能

使用CYCLE72可以铣削定义在子程序中的任何轮廓。循环运行时可以有或没有 刀具半径补偿。

不要求轮廓一定是封闭的;通过刀具半径补偿的位置(轮廓中央,左或右)来定义内部或外部加工。

轮廓的编程方向必须是它的加工方向而且必须包含至少两个轮廓程序块(起始点和终点),因为轮廓子程序直接在循环内部调用。

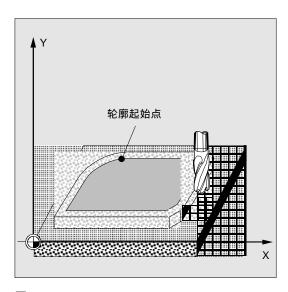


图9-64

循环的功能

- 选择粗加工(平行于轮廓的单通道进给,考虑精加工余量,必要时,分几步进给直至到达精加工余量)与精加工(沿最后的轮廓单通道进给,必要时,分几步进给)。
- 在切线方向或半径方向(四分之一圆或半圆)平稳接近轮廓或从轮廓返回。
- 可编程的深度进给。

按快速进给率或进给率执行中间动作。

操作顺序

循环启动前到达的位置:

起始位置可以是任意位置,只需从该位置出发可以无碰撞地回到返回平面的轮廓起始点。

粗加工时循环形成以下动作顺序:

使用参数定义的最大允许值平均划分进给深度。

- 首次铣削时使用G0/G1(和_FF3)移动到起始点。该起始点在系统内部计算并 取决于以下方面
 - 轮廓起始点(子程序中的第一点)
 - 在起始点的轮廓方向
 - 接近方式和参数以及
 - 刀具半径。

在此程序中,激活了刀具半径补偿。

- 使用G0/G1进行深度进给至首次或第二次加工深度加上安全间隙。首次的加工深度为
 - 总深度
 - 精加工余量和
 - 最大允许的深度进给

- 使用深度进给垂直接近轮廓,然后在平面中以编程的进给率或具有参数_FAD 下编程的进给率的3D根据编程进行平稳进给。
- 使用G40/G41/G42沿轮廓铣削。
- 使用G1从轮廓平稳返回并始终以端面加工的进给率返回。
- 使用G0/G1返回(和用于中间路径的进给率_FF3),取决于编程。
- 使用G0/G1(FF3)返回到深度进给点
- 在下一个加工平面中重复此动作顺序直至到达深度方向的精加工余量。 粗加工结束时,刀具位于在返回平面的轮廓返回点(系统内部计算得出)的上方。 精加工时循环形成以下动作顺序:

精加工时,沿轮廓的底部按相应的进给率进行铣削直至到达最后的尺寸。 按现有的参数进行平稳接近和返回轮廓。

循环结束时,刀具位于返回平面的轮廓返回点。

有关轮廓编程的更多说明

轮廓编程时,请遵守以下内容:

- 在最初位置编程前不能在子程序中选择可编程偏移。
- 轮廓子程序中的第一段程序为包含G90,G0或G90,G1并定义了轮廓的起始点。
- 轮廓的起始点是加工平面中的第一个位置,该起始点编程在轮廓程序中。
- 通过更高级的循环选择/不选择刀具半径补偿;因此,在轮廓子程序中不能编程G40,G41,G42。

参数说明

对于参数_RTP,_RFP,_SDIS,参见CYCLE82。 对于参数_MID,_FAL,_FALD,_FFP1,_FFD,_DP,参见POCKET3。

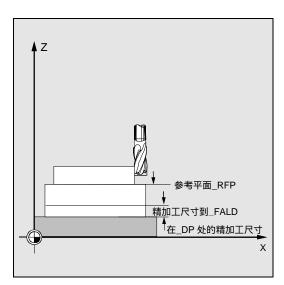


图9-65

_KNAME(名称)

待加工的轮廓完整的编程在一个子程序中。_KNAME定义了轮廓子程序的名称。

轮廓可以定义为一个子程序:

KNAME=子程序名

轮廓子程序的名称应符合列在编程手册中规定的命名规则。

输入:

- 子程序已经存在→输入名称,继续
- 子程序不存在→ 输入名称并按软键 "new file"。将出现一个具有名称的程序(主程序)且程序跳到轮廓编辑中。

如果要退出输入,按软键"Technol.mask";程序返回循环支持界面。

2. 轮廓也可以是调用程序的一部分:

KNAME=起始标志的名称:末尾标志的名称

输入:

- 轮廓已经存在→ 起始标志名:输入末尾标志名
- 轮廓还不存在→输入起始标志名并按软键 "contour append"。 起始和末尾标志将按照所输入的名称自动建立。然后程序将跳到轮廓 编程界面。

如果要退出输入,按软键"Technol.mask",程序返回循环支持界面。

举例:

_KNAME= " KONTUR_1 "	铣削轮廓是一完整的程序
	Kontur_1。
_KNAME=" ANFANG:ENDE "	铣削轮廓定义为调用程序中的一部分,从包含标志ANFANG的程序段开始到包含标志
	ENDE的程序段结束。

_LP1, _LP2(长度, 半径) 使用参数_LP1来编程接近路径或接近半径(从刀具外沿到轮廓起始点的距离), 参数_LP2用来编程返回路径或返回半径(从刀具外沿到轮廓终点的距离)。

_LP1,_LP2的值必须大于零。如果等于零,将输出报警61116"接近或返回路径=0"

注意:

如果使用G40,接近路径或返回路径为从刀具中心点到轮廓起始点或终点的距离。

_VARI(加工类型)

使用此参数可以定义加工类型。允许值为:

UNIT DIGIT

值: 1粗加工

2精加工

TENS DIGIT

值: 0使用G0的中间路径

1使用G1的中间路径

HUNDREDS DIGIT

值: 0在轮廓末端返回_RTP

1在轮廓末端返回_RFP+_SDIS

2在轮廓末端返回_SDIS

3在轮廓末端不返回

如果编程了其它的值,循环将终止并产生报警61002"加工类型定义不正确"。

_RL(围绕轮廓移动)

此参数可以编程使用G40,G41或G42围绕轮廓中心,在轮廓右侧,或轮廓左侧移动。

关于允许值,参见"CYCLE72的参数"。

_AS1, _AS2(接近方向/路径, 返回方向/返回路径)

_AS1用来编程接近路径的定义,_AS2用于编程返回路径的定义。关于允许值,参见"CYCLE72的参数"。如果_AS2未编程,返回路径的方式类似于接近路径的方式。

如果刀具还未啮合或适合该接近方式,只能编程沿空间路径(螺旋或直线)平稳接 近轮廓。

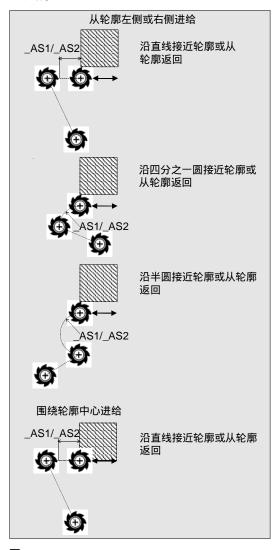


图9-66

如果是沿轮廓中心(G40)接近和返回,只允许沿直线的接近和返回方式。

_FF3(返回进给率)

如果要使用G01进给率执行中间动作,此参数用于定义平面中(开放式)中间位置的返回进给率。如果未编程进给率值,使用G01的中间动作按端面进给率执行。

更多说明

循环调用前必须编程刀具补偿。否则,循环终止并产生报警61000 " 无有效刀具 补偿 "。

编程举例1:围绕封闭轮廓外部铣削

此程序用于铣削以下图中的轮廓。

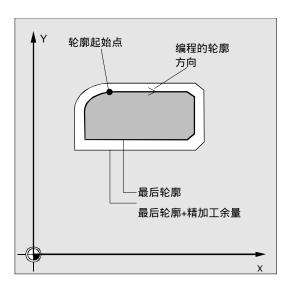


图9-67

用于循环调用的参数:

•	返回平面	250mm
•	参考平面	200
•	安全间隙	3mm
•	深度	175mm
•	最大进给深度	10mm
•	深度的精加工余量	1.5mm
•	深度进给进给率	400mm/min
•	平面中的精加工余量	1mm
•	平面中的进给率	800mm/min

• 加工:粗加工至精加工余量;使用G1进行中间路径,Z轴的中间路径返回量为 _RFP+ _SDIS

用于接近的参数:

• G41-轮廓的左侧,即外部加工

在平面中沿四分之一圆接近和返回返回进给率20mm半径1000mm/min

N10 T3 D1	T3: 半径为7的铣 刀
N20 S500 M3 F3000	编程进给率,速度
N30 G17 G0 G90 X100 Y200 Z250 G94	回到起始位置
N40 CYCLE72	循环调用
("EX72CONTOUR", 250 200, 3, 175, 10, 1, 1.5, 800, 400, 111, 41, 2, 20,	
1000, 2, 20)	
N50 X100 Y200	
N60 M2	程序结束
%_N_EX72CONTOUR_SPF	用于铣削轮廓的子程序(举例)
N20 S500 M3 F3000	编程进给率 , 速度
N30 G17 G0 G90 X100 Y200 Z250 G94	回到起始位置
N40	循环调用
CYCLE72("PIECE_245:PIECE_245_E ", 250, 200, 3, 175, 10, 1, 1.5, 800,	
400 , 11 , 41 , 2 , 20 , 1000 , 2 , 20)	
N50 X100 Y200	
N60 M2	
N70 PIECE_245:	轮廓
N80 G1 G90 X150 Y160	
N90 X230 CHF=10	
N100 Y80 CHF=10	
N110 X125	
N120 Y135	
N130 G2 X150 Y160 CR=25	
N140 PIECE_245_E	轮廓结束
N150 M2	

9.6.10 矩形凸台铣削-CYCLE76

编程

CYCLE76 (_RTP, _RFP, _SDIS, _DP, _DPR, _LENG, _WID, _CRAD, _PA, _PO, _STA,, _MID, _FAL, _FALD, _FFP1, _FFD, _CDIR, _VARI, _AP1, _AP2)

参数 表9-17 参数CYCLE76

_RTP	实数	退刀平面(绝对值)
_RFP	实数	退刀平面 (绝对值)
_SDIS	实数	安全间隙(输入无符号)
_DP	实数	最终钻孔深度(绝对值)
-DPR	实数	与参考平面相关的钻孔深度(输入无符号)
_LENG	实数	凸台长度(输入无符号)
_WID	实数	凸台长度(输入无符号)
_CARD	实数	凸台边角半径(输入无符号)
_PA	实数	凸台的参考点,横坐标(绝对值)
_PO	实数	凸台的参考点,纵坐标(绝对值)
_STA	实数	纵向轴和平面第一轴之间的夹角
_MID	实数	最大进给深度(增量式;输入无符号)
_FAL	实数	空白轮廓处的最终加工许可量(增量的)
_FALD	实数	基部的精加工余量(增量的,输入无符号)
_FFP1	实数	轮廓处的进给率
_FFD	实数	深度方向进给的进给率
_CDIR	整数	铣削方向(输入无符号)
		值: ○顺铣
		1 逆铣
		2 带G2(独立于主轴方向)
VADI	市欠米 万	3 带G3
_VARI	整数	│技术 │値: 1粗加工至最终加工余量
		10 · 14加工主取终加工示量 2 精加工(余量X/Y/Z=0)
AP1	实数	空白凸台的长度
_^: '	大奴	エロロロガバ区

功能

使用该循环加工加工平面上的矩形凸台。对于精加工,需要一个端铣刀。深度方向的进给在靠近轮廓半圆的逆向位置处进行。

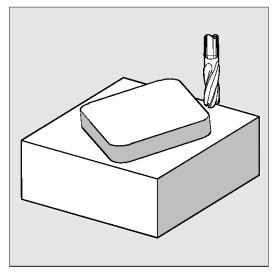


图9-43

操作顺序

循环开始前需到达的位置

开始点位置在横坐标的正范围内,并且考虑接近半圆和横坐标上的。 粗加工时的运动顺序(_VARI=1) 接近和从轮廓线和从轮廓退刀

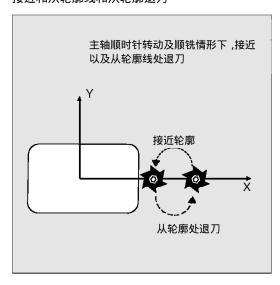


图9-44

以快速横向移动的方式接近退刀面(_RTP),接着在此高度上移动到加工平面内的起始点。起始点参考横坐标为0来定义。

刀具快速横向移动到安全间隙(_SDIS),之后以进给率横向移动到加工深度。 为了接近凸台轮廓,刀具沿着半圆路径移动。

以主轴方向为参考,铣削方向可以是顺铣或是逆铣(通常情形)。

若只在凸台处行径一次,在平面上轮廓处将留下一个半圆,刀具将移动到下一个加工深度。

接着,沿着半圆再一次地接近轮廓,并在凸台处行径一次。这一过程将不断重复 直到达到编程的凸台深度。接着,快速横向移动到退刀平面(_RTP)。

深度方向的进给:

- 进给到安全间隙
- 插入到加工深度

第一个加工深度依据以下各项计算得到:

- 总的深度
- 精加工余量
- 最大许可进给深度

精加工时的运动顺序(VARI=2)

根据设置参数_FAL和_FALD,精加工在表面轮廓处进行,或在基部进行,或在两个位置都进行。与平面内的运动相关的接近方法与粗加工时相同。

扩展参数

针对参数 _RTP , _RFP , _SDIS , _DP , _DPR , 参看CYCLE81。

针对参数 _MID , _FAL , _FALD , _FFP1 , _FFD , 参看POCKET3。

_LENG,_WID和_CRAD(凸台长度,凸台宽度和边角半径)

使用参数_LENG,_WID和_CRAD定义平面上凸台的形式。

凸台一般都是从中心位置定尺寸。长度(_LENG)总是参考横坐标。(平面角0°)。

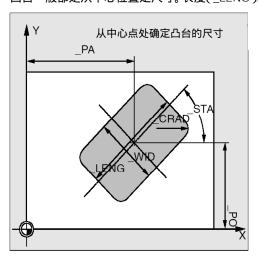


图9-45

_PA , _PO (参考点) 使用参数_PA和_PO定义沿横纵坐标方向的凸台参考点。 这是凸台中心点。

_STA(角) _____STA确定平面的(横坐标)第1根轴与凸台纵轴之间的夹角。

_CDIR(铣削方向) 使用该参数确定凸台的加工方向。

使用参数_CDIR, 铣削方向

- 直接用 "2对应G2", "3对应G3"进行编程,或是
- 替代的,"同步操作"或"反向旋转"。

通过在调用循环前激活的主轴旋转的方向,可在循环内部确定同步操作或是反向旋转。

同步操作 反向旋转

M3 G3 M3 G2 M4 G2 M4 G3

_VARI(加工种类) 使用参数_VARI定义加工种类

可能值:

- 1=粗加工
- 2=精加工

_AP1, P2(毛坯尺寸) 当加工凸台时,可以考虑毛坯尺寸(例如加工预制零件)。

毛坯尺寸的长度和宽度(_AP1和_AP2)的编程是无符号的,计算后通过围绕凹槽中心点的循环对移地设置。

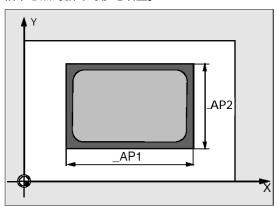
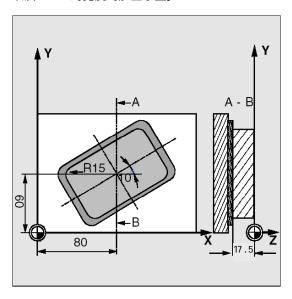


图9-46


更多提示 刀具补偿必须在循环调用之前被编程。否则,循环将被终止并输出报警61009"激活刀具数=0"。

在循环内部,使用一个新的当前工件坐标系,该坐标系能够影响实际的值的显示。该坐标系的零点在凹槽的中央点处定义。

在循环末尾,初始的C纵坐标系统再次被激活。

凸台的编程例子

使用该程序加工一个XY平面内的凸台:60mm长,40mm宽,边角半径15mm,深度15mm。该凸台具有一个相对于X轴10度的角,80mm的长度的加工余量,以及50mm的宽度的加工余量。

图9-47

N10 G90 G0 G17 X100 Y100 T20 D1 S3000 M3	技术值的具体描述
N11 M6	
N30 CYCLE76 (10, 0, 2, -17.5,, -60, -40, 15, 80,	循环调用
60, 10, 11,,, 900, 800, 0, 1, 80, 50)	
N40 M30	程序结束

9.6.11 圆形凸台铣削 - CYCLE77

编程 CYCLE77 (_RTP, _RFP, _SDIS, _DP, _DPR, _PRAD, _PA, _PO, _MID, _FAL,

_FALD, _FFP1, _FFD, _CDIR, _VARI, _AP1)

参数 需要下列输入参数:

表9-18 CYCLE77的参数

实数	退刀面(绝对值)
实数	参考面 (绝对值)
实数	安全空隙(输入无符号)
实数	深度(绝对值)
实数	与参考面相关的深度(输入无符号)
实数	凸台直径 (输入无符号)
实数	凸台的中心点,横坐标(绝对值)
实数	凸台的中心点,纵坐标(绝对值)
实数	最大深度方向的进给(增量的,输入无符号)
实数	轮廓边缘处的最终加工余量(增量的)
实数	基部的精加工余量(增量的,输入无符号)
实数	轮廓处的进给率
实数	深度方向进给的进给率(空间的进给)
整数	铣削方向(输入无符号)
	值: 0 顺铣
	1 逆铣
	2 带G2(独立于主轴方向)
	3 帯 G3
整数	技术
	值: 1粗加工至最终加工余量处
	2 精加工(余量 X/Y/Z=0)
实数	未加工的凸台的长度
	实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实。 整

功能 使用该循环加工加工平面中的圆形凸台。对于精加工,需要一个。

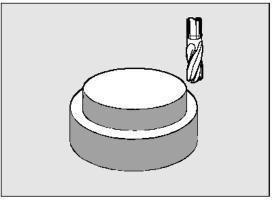


图9-48

操作顺序

循环开始前所到达的位置:

起始点在横坐标的正方向范围内 , 并要考虑需要接近的半圆和已编程的未加工尺寸。 粗加工时的运动顺序 (_VARI=1)

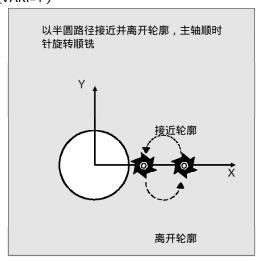


图9-49

快速横向移动靠近退刀面,在此高度上,移动到加工平面的起始点。起始点参考横坐标为0处而定义。

刀具快速地进给到安全间隙(_SDIS)处,并以进给率横向移动到加工深度处。 为接近凸台轮廓,刀具沿半圆路径接近凸台,并考虑已编程的未加工凸台。 参考主轴方向,铣削方向可以是顺铣也可以是逆铣。

若只在凸台处行径一次,在平面上轮廓处将留下一个半圆,刀具将移动到下一个加工深度。

接着,沿着半圆再一次地接近轮廓线,并在凸台处行径一次。这一过程将一直重复直到达到编程的凸台深度。

接着,快速横向移动靠近退刀面(RTP)

深度方向的进给:

- 进给到安全间隙处
- 插入到加工深度处

首个加工深度由以下数据计算得到:

- 总的深度
- 精加工余量
- 最大可能的深度方向的进给

精加工时的运动顺序(_VARI=2)

根据设置参数_FAL和_FALD,精加工在表面轮廓处进行,或在基部进行,或在两个位置都进行。与平面内的运动相关的接近方法与粗加工时相同。

扩展参数

对于参数 _RPT, _RFP, _SDIS, _DP, _DPR, 参看CYCLE81。 对于参数 _MID, _FAL, _FALD, _FFP1, _FFD, 参看POCKET3。 _PRAD(凸台直径) 输入无符号的。

_PA,_PO(凸台中心) 使用参数_PA和_PO定义凸台的参考点。

铣削方向

使用该参数确定凸台的加工方向。使用参数_CDIR,铣削方向

- 可直接用 "2对应G2", "3对应G3"进行编程
- 也可以用"同步操作"或"反向旋转"

通过在调用循环前主轴旋转的方向,可以在循环内部确定同步操作或反向旋转。

同步操作		反向旋转
M3	G3	M3 G2
M4	G2	M4 G3

_VARI 加工类型

使用参数_VARI定义加工类型。可能值为:

- 1=粗加工
- 2=精加工

_AP1(未加工凸台的直径) 使用该参数定义凸台的未加工尺寸(无符号)。内部计算的半圆形的接近路径 由该尺寸确定。

更多提示

在该循环调用前需要编程一个刀具补偿。否则,将退出循环并生成"激活刀具数=0"的报警61009。

在循环内部,将使用一个新的工件坐标系,该坐标系将影响实际值的显示。在槽的中心点是该坐标系的零点。

在循环的末尾,初始坐标系将被再次激活。

圆形凸台的编程例子

在毛坯件上加工一个直径为55mm,每次切削的最大进给深度为10mm的凸台;下一步精加工凸台表面所对应的最终加工余量的详细描述。整个加工以反向旋转方式进行。

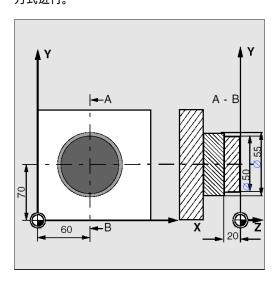


图9-50

N10 G90 G17 G0 S1800 M3 D1 T1	技术值的具体描述
N11 M6	
N20 CYCLE77 (10, 0, 3, -20,, 50, 60, 70, 10, 0.5, 0, 900, 800, 1, 1, 55)	调用粗循环
N30 D1 T2 M6	改变刀具
N40 S2400 M3	技术值的具体描述
N50 CYCLE77 (10, 0, 3, -20,, 50, 60, 70, 10, 0, 0, 800, 800, 1, 2, 55)	调用精加工循环
N40 M30	程序结束

9.7 故障信息和故障处理

9.7.1 概述

如果在循环中发现故障条件,则产生报警且循环执行中断。 而且,循环在控制系统的信息栏中显示信息。这些信息不会中断程序执行。 故障和反应以及信息栏中的信息都和各个循环有关。

9.7.2 循环中的故障处理

如果在循环中发现故障条件,则产生报警且循环执行中断。

循环中出现的报警号范围为从61000到62999之间。这些报警号按照报警响应和删除级依次重新划分。

与报警号一起显示的故障文本可以提供更详细的有关故障原因的信息。

表9-23

报警号	清除级	报警响应
6100061999	NC_RESET	NC中程序段预处理终止
6200062999	清除键	程序段预处理中断;报警清除后,使 用NC START继续执行循环

9.7.3 循环报警概述

故障号按以下划分;

6

- X=0 通用循环报警
- X=1 由钻孔,钻孔图式和铣削循环产生的报警

下表列出了发生在循环中所有的故障和发生位置以及故障修复说明。 表9-24

报警号	报警文本	来源	说明,修复
61000	" 无有效的刀具补偿 "	SLOT1 SLOT2 POCKET3 POCKET4 CYCLE71 CYCLE72	刀具偏移必须在循环调 用前编程
61001	" 无效的螺纹螺距 "	CYCLE84 CYCLE840	检查参数中定义的螺纹 尺寸或螺距是否冲突
61002	" 加工类型定义不正确 "	SLOT1 SLOT2 POCKET3 POCKET4 CYCLE71 CYCLE72	参数VARI中定义的加工 类型的值不正确且必须 修改
61003	" 循环中未编程进给率 "	CYCLE71 CYCLE72	关于进给率参数的值定 义不正确必须修改
61009	" 有效刀具号=0 "	CYCLE71 CYCLE72	循环调用前未编程刀具
61010	" 精加工余量太大 "	CYCLE72	底部的精加工余量大于 总深度;必须降低该值
61011	"比例不允许"	CYCLE71 CYCLE72	当前有效的比例系数不 能用于此循环
61101	" 参考平面定义不正确 "	CYCLE71 CYCLE72 CYCLE82到 CYCLE88 CYCLE840 SLOT1 SLOT2 POCKET3 POCKET4	深度的相对定义时必须 为参考平面和返回平面 选择不同的值,或者必须 定义深度的绝对值。
61102	" 未编程主轴方向 "	CYCLE86 CYCLE88 CYCLE840 POCKET3 POCKET4	必须编程参数SDIR(或 CYCLE840中的SDR)
61103	" 孔的数量为零 "	HOLES1 HOLES2	未编程孔的数量
61104	槽/加长孔的轮廓碰撞	SLOT1 SLOT2	决定圆弧上槽/加长孔位 置和形状的参数对于铣 削样式的定义不正确
61105	" 刀具半径太大 "	SLOT1 SLOT2 POCKET3 POCKET4	对于待加工的工件,所使用的刀具直径太大;使用半径较小的刀具或者更换轮廓
61106	" 圆弧元素的数量或距离 "	HOLES2 SLOT1 SLOT2	参数NUM或INDA定义不 正确;圆弧中的元素布置 不允许
61107	" 首次钻削深度定义不正确 "	CYCLE83	首次钻削深度和总钻削 深度相矛盾
61108	"参数_RAD1和_DP1的值不 允许"	POCKET3 POCKET4	确定深度进给路径的参数_RAD1和_DP1定义不正确

报警号	报警文本	来源	说明,修复
61109	"参数_CDIR定义不正确"	POCKET3 POCKET4	用于铣削方向的参数 _CDIR值定义不正确必须 修改
61110	"底部精加工余量大于深度 进给量"	POCKET3 POCKET4	底部的精加工余量大于最大深度进给;减少精加工余量或增加深度进给量量
61111	" 进给宽度大于刀具直径 "	CYCLE71 POCKET3 POCKET4	编程的进给宽度大于有效刀具的直径;必须降低进给宽度
61112	" 刀具半径为负 "	CYCLE72	有效刀具的半径不允许为 负
61113	"用于拐角半径的参数 _CRAD的值太大"	POCKET3	参数_CRAD的半径值太大,必须降低
61114	"加工方向G41/G42定义不 正确"	CYCLE72	刀 具 半 径 路 径 补 偿 G41/G42的加工方向选择不正确
61115	"接近或返回方式(直线/圆/平面/空间)"定义不正确	CYCLE72	轮廓的接近或返回方式 定义不正确;检查参数 _AS1或_AS2
61116	"接近或返回路径=0"	CYCLE72	接近或返回路径的值为零;必须增大该值;检查 参数_LP1或_LP2
61117	"有效刀具半径<=0"	CYCLE71 POCKET3 POCKET4	有效的刀具半径为负或零;这是不允许的
61118	" 长度或宽度=0 "	CYCLE71	需加工区域的长度和宽度值不允许;检查参数 _LENG和_WID
61124	" 未编程进给宽度 "	CYCLE71	对于无刀具的模拟时,始终需要给进给宽度 _MIDA参数赋值。
62100	" 无有效的钻孔循环 "	HOLES1 HOLES2	钻孔循环调用前没有模式 调用钻孔循环

9.7.4 循环中的信息

循环在控制系统的信息栏中显示信息。这些信息不会中断程序的执行。 信息说明了循环的某一动作和加工过程并且通常保留到下一个加工步骤或循环 结束.有以下可能的信息:

表 9-25

信息内容	来源
" 深度:按照相关的深度值 "	CYCLE82CYCLE88, CYCLE840
" 槽正在加工 "	SLOT1
" 正在加工圆周槽 "	SLOT2
"错误的铣削方向,G3有效"	SLOT1, SLOT2
" 第一钻削深度:按照相对深度值 "	CYCLE83

<号>-在信息中,始终代表当前加工的部件号。