

EM9360 开发评估底板手册

感谢您选择英利 EM9360 工控主板。

EM9360 是一款面向工业自动化领域的高性价比嵌入式 Linux 工控主板,其内核 CPU 为工业级品质的 ARM9 芯片 AT91SAM9260。EM9360 预装嵌入式 Linux-2.6 实时多任务操作系统,并针对板载的各个接口,提供了完整的接口底层驱动以及丰富的应用程序范例,用户可在此基础上,利用熟悉的各种软件工具直接开发自己的应用程序,以方便、快速地构成各种高性能工控产品。

EM9360 与其开发评估底板的连接关系如下图所示。

由图可知,包括 EM9360 在内的所有英利嵌入式主板产品,均采用背插形式,通过主板的双排坚固插针与客户的应用底板连接在一起,从而构成完整的智能设备。

客户应用底板的基本功能包括向 EM9360 供电、引出所需的各个通讯接口、扩展专用的应用电路单元等等。应用底板的尺寸以及接口所处位置则与整机产品的接口密切相关。另外整机的电磁兼容性也会在应用底板上有相应体现。

当客户第一次购买 EM9360 产品时,由于还没有自己的应用底板,自然就需要一个能对 EM9360 的各项功能进行快速评估的底板,因此英利公司设计了专门的 EM9360 开发评

估底板, 供客户在其产品初期开发中使用。

EM9360 开发评估底板将包括在开发套件中出售,套件中的资料还包括了开发评估底板的电路原理图(Orcad 和 PDF 格式)、PCB 图(Protel 格式)。用户可在这些资料的基础上,根据自己的需求进行删减和增加,快速完成自己的应用底板的设计。

本手册主要介绍 EM9360 开发评估底板的使用,包括各个接口的信号定义、扩展的驱动电路说明等内容,供用户使用时备查以及设计自己的应用底板时作为参考。

此外,英利公司针对软硬件开发环境的配置编写有《英利 Linux 工控主板使用必读 (EM9x60)》,针对 EM9360 的使用编写有《EM9360 工控主板数据手册》,针对应用程序 的开发编写有《英利 Linux 工控主板应用程序编程手册》。这些手册都包含在英利为用户提供的产品开发光盘里面,用户也可以登录英利公司网站下载相关资料的最新版本。

在使用英利产品进行应用开发的过程中,如果您遇到任何困难需要帮助,都可以通过以下三种方式寻求英利工程师的技术支持:

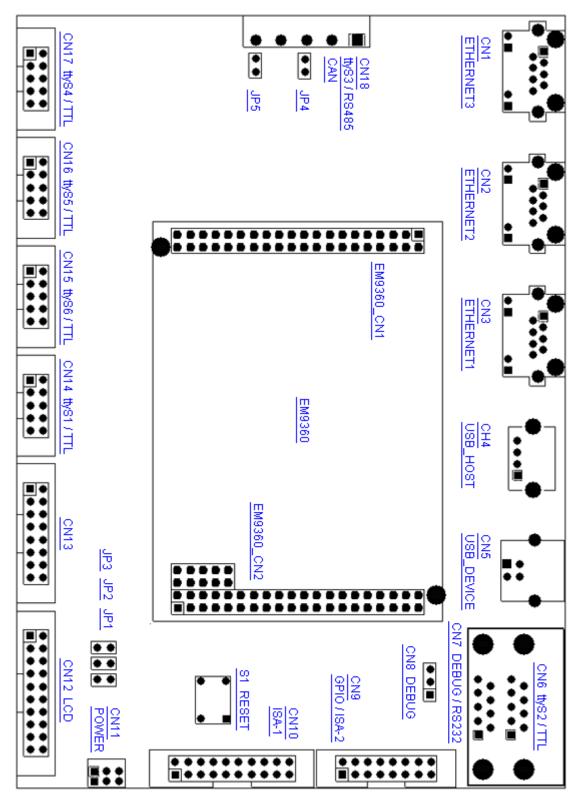
- 1、直接致电 028-86180660 85329360
- 2、发送邮件到技术支持邮箱<u>support@emlinix.com</u>
- 3、登录英利网站www.emlinix.com,在技术论坛上直接提问
- 另,本手册以及其它相关技术文档、资料均可以通过英利网站下载。
- 注:英利公司将会不断完善本手册的相关技术内容,请客户适时从公司网站下载最新版本的手册,恕不另行通知。

再次谢谢您的支持!

目 录

1	概述	4
2	平面示意图	6
3	接插座引脚定义及说明	7
	3.1 CN1-CN3: 以太网接口	7
	3.2 CN6-CN8: RS232 电平异步串口	8
	3.3 CN14-CN17: TTL电平异步串口	8
	3.4 CN18: RS485 电平异步串口 / CAN接口	9
	3.5 CN4: USB主控(HOST)接口	9
	3.6 CN5: USB设备(DEVICE)接口	10
	3.7 CN9: GPIO / ISA-2 接口	10
	3.8 CN10: 精简ISA总线接口	10
	3.9 CN11: 电源输入插座	11
	3.10 CN12: LCD接口	11
	3.11 EM9360_CN1	14
	3.12 EM9360_CN2	16
	3.13 JP1-JP5: 跳线器设置	17
	3.14 S1: 复位按钮	18
4	其他说明	19

1 概述


在实际应用中,EM9360 是以"器件"的形式,背插在应用底板上,应用底板将从插针引出所需的通讯接口并向 EM9360 供电,从而构成完整的智能设备。EM9360 的开发评估底板就是作为 EM9360 最初始的应用底板,以供客户对其功能进行评估以及初始阶段应用程序的开发,EM9360 的开发评估底板还为用户开发自己的应用底板提供参考。具体来说,EM9360 与开发评估底板之间是靠 EM9360 的两个双排 IDC40 插针连接的。开发评估底板除了承载 EM9360 并为其供电以外,还将其所有硬件接口引出做成标准接口形式提供给用户。此外底板上扩展了 RS485、GPRS 无线通讯接口单元,提供实时时钟后备电池。用户可以以评估底板为样本,根据英利公司提供的电路原理图和 PCB 图进行增加或者删减,设计出适合自己的底板。

EM9360 开发评估底板上共有 20 个接插件、5 个跳线器和 1 个复位按钮。列表如下:

插座编号	插座类型	功能说明	
CN1	RJ45 接口	以太网接口3	
CN2	RJ45 接口	以太网接口 2	
CN3	RJ45 接口	以太网接口 1, 也是系统的调试网口	
CN4	USB A 型插座	USB 主控接口	
CN5	USB D 型插座	USB 设备接口	
CN6	DB9 (阳性)	ttyS2,3 线 RS232C 电平	
CN7	DB9 (阳性)	调试串口,其信号接到 CN8。CN8 可通过带线与	
CN8	3芯单排插座	EM9360 的调试串口相连。客户一般不用	
CN9	16 芯双排插座	12 位 GPIO 接口 / 精简 ISA 高位地址总线	
CN10	20 芯双排插座	精简 ISA 总线 1,最常用扩展接口	
CN11	3 芯 SIP 插座	+5V 电源输入接口	
CN12	20 芯双排插座	单色 LCD 接口	
CN13	16 芯双排插座	不再使用,系统保留	
CN14	10 芯双排插座	ttyS1 (TTL 电平)	

CN15	10 芯双排插座	ttyS6 (TTL 电平)		
CN16 10 芯双排插座		ttyS5 (TTL 电平)		
CN17	10 芯双排插座	ttyS4(TTL 电平)		
CN18	HT508-5P 插座	ttyS3(485 电平)和 CAN 总线接口		
EM9360_CN1	40 芯 IDC 插座	连接 EM9360 的 CN1		
EM9360_CN2 40 芯 IDC 插座		连接 EM9360 的 CN2		
JP1	2 芯 SIP	工作模式选择(调试/运行)		
JP2	2 芯 SIP	用户模式选择 OP1		
JP3	2芯 SIP	用户模式选择 OP0		
JP4	2芯SIP	RS485 匹配电阻选择(加匹配电阻/不加)		
JP5	2芯SIP	CAN 匹配电阻选择(加匹配电阻/不加)		
S1	复位按钮	系统复位		

2 平面示意图

长: 155mm 宽: 110mm

3 接插座引脚定义及说明

EM9360 的开发评估底板上的所有双排插针的编号均为交错排列,其中的 1#管脚为方形焊盘,而其他管脚为圆形焊盘,借助评估底板焊接面的丝网方框标志,可以很容易识别 1#管脚位置。所有信号名称若带#后缀,表示该信号为低电平有效。

3.1 CN1-CN3: 以太网接口

EM9360 的开发评估底板引出了主板上的 3 个以太网接口,它们分别是 CN3 (网口 1)、CN2 (网口 2) 以及 CN1 (网口 3)。为了方便客户的电磁兼容性设计,评估底板上包括了每个网络接口的隔离变压器,缺省配置 EM9360 板上不带网络隔离变压器。每个网络的 RJ45 插座上自带以太网指示灯。其中绿灯为 LINK 灯;黄灯为 100M 灯。其中的 CN3 (网口 1)除作为通常的网络相关应用外,还用于 EM9360 系统的调试维护,这两个功能可以同时运行,互不影响。各管脚信号定义如下:

PIN#	信号名称	信号简要描述		
1	TPTX+	隔离差分输出+		
2	TPTX-	隔离差分输出-		
3	TPRX+	隔离差分输入+		
4		- 通过 75Ohms 电阻接到 RJ45 外壳地		
5				
6	TPRX-	隔离差分输入-		
7		- 通过 75Ohms 电阻接到 RJ45 外壳地		
8				

3.2 CN6-CN8: RS232 电平异步串口

在缺省配置中,	EM9360 的 CN6 为 RS23	2C 电平的异步串口 ttvS2	. 其信号定义加下.
			,光旧了足入别!;

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	6	
COM3_RX ,ttyS2输入	2	7	
COM3_TX ,ttyS2输出	3	8	
	4	9	
GND ,公共地	5		

此外,串口 ttyS2 也可根据客户需求,在出厂时配置成 TTL 电平信号。

开发评估底板上的 CN7、CN8 也是 RS232 电平异步串口,用于输出 EM9360 的调试信息,其中 CN7 信号定义与 CN6 完全一样,CN8 用于连接 EM9360。在多数应用开发中,客户无需关心调试串口的使用;一些特殊情况下,客户可能需要了解 EM9360 的启动过程,此时可与英利技术部门联系。

3.3 CN14-CN17: TTL 电平异步串口

在 EM9360 的开发评估底板上一共引出了 4 个 TTL 电平的异步串口,它们分别是 CN14 (ttyS1)、CN15 (ttyS6)、CN16 (ttyS5) 和 CN17 (ttyS4)。每个插座的信号定义都是一样的,如下表所示:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	2	
RXD ,ttyS 输入	3	4	
TXD ,ttyS 输出	5	6	
	7	8	
GND ,公共地	9	10	VCC ,+5V 电源输入

其中 CN4(ttyS1)还可以支持完整的 Modem 控制线,这些控制线与 GPIO4-GPIO9 信号复用管脚,可以通过在开发评估底板上的 R2-R7 焊接 0Ω 电阻来引入这些信号,具体配置如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
DCD2# ,ttyS1 控制信号	1	2	DSR2# ,ttyS1 控制信号
RXD2 ,ttyS1 输入	3	4	RTS2# ,ttyS1 控制信号
TXD2 ,ttyS1 输出	5	6	CTS2# ,ttyS1 控制信号
DTR2# ,ttyS1 控制信号	7	8	RI2# ,ttyS1 控制信号
GND ,公共地	9	10	VCC , +5V 电源输入

3.4 CN18: RS485 电平异步串口 / CAN 接口

CN18 是 RS485 电平的异步串口 ttyS3 以及 CAN 总线接口。两个电路单元均支持光电隔离,并共享一个 DC-DC 隔离电源。在缺省配置中,RS485 和 CAN 均不带光电隔离,需要使用光电隔离功能的客户,可以参考开发评估底板电路原理图,自行加焊相关的隔离元器件,也可以在购买时向英利公司声明。各管脚信号定义如下:

PIN#	信号名称	信号简要描述	
1	DATA+	485 差分信号+	
2	DATA-	485 差分信号-	
3	ISO_GND	隔离地	
4	CAN_H	CAN 差分信号+	
5	CAN_L	CAN 差分信号-	

注: 1、JP4 短接则 RS485 差分信号线之间加 120Ω 匹配电阻; 断开则不加。

2、JP5 短接则 CAN 差分信号线之间加 120Ω 匹配电阻;断开则不加。

3.5 CN4: USB 主控(HOST) 接口

CN4 为 USB 主控(HOST)接口,支持 U 盘文件操作。用户的基本配置信息 userinfo.txt 文件需通过该接口读入到系统中。各管脚信号定义如下:

PIN#	信号名称	信号简要描述		
1	+5V	USB 供电输出,最大电流 500mA		
2	USB_HD-	USB 差分信号-		

3	USB_HD+	USB 差分信号+
4	GND	公共地

3.6 CN5: USB 设备(DEVICE)接口

USB 设备(Device)接口可用于维护 EM9360 的 Linux 内核,采用标准 USB C 型插座,信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
USBCNX	1	2	USB_DD- ,USB差分信号-
USB_DD+ ,USB差分信号+	3	4	GND ,公共地

3.7 CN9: GPIO / ISA-2 接口

CN9 引出 GPIO 以及 ISA 高位地址线(复用管脚),采用 16 芯 IDC 插针,交错排列。信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GPIO4 / SA5	1	2	GPIO5 / SA6
GPIO6 / SA7	3	4	GPIO7 / SA8
GPIO8 / SA9	5	6	GPIO9 / SA10
GPIO10 / SA11	7	8	GPIO11 / SA12
CS0#,总线片选	9	10	GND,公共地
VCC,+5V 电源输入	11	12	GND,公共地
GPIO0	13	14	GPIO1
GPIO2	15	16	GPIO3

3.8 CN10: 精简 ISA 总线接口

通过 CN10 可方便地使 EM9360 与英利公司提供的各种总线扩展模块等系列扩展模块相连接;用户还可以自己设计扩展模块,与扩展总线连接,可以以较低的成本实现整套系统

的评估和开发工作。CN10	的插针米用交错排列.	信号定义如卜:
---------------	------------	---------

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
RSTOUT# ,复位输出	1	2	SAO ,地址总线
SDO ,数据总线,低位	3	4	SA1 ,地址总线
SD1 ,数据总线	5	6	SA2 ,地址总线
SD2 ,数据总线	7	8	SA3 ,地址总线
SD3 ,数据总线	9	10	SA4 ,地址总线
SD4 ,数据总线	11	12	WE# ,写信号控制线
SD5 ,数据总线	13	14	RD# ,读信号控制线
SD6 ,数据总线	15	16	CS1# ,片选线
SD7 ,数据总线,高位	17	18	VCC ,+5V电源输出
IRQ1 ,中断请求线	19	20	GND ,公共地

注: 精简 ISA 总线的 8 位数据总线 SD0-SD7 以及低三位地址总线 SA0-SA2 被同时接到评估底板的 LCD 接口,因此可以认为 LCD 是精简 ISA 总线扩展的基本案例。

3.9 CN11: 电源输入插座

CN11 为开发评估底板以及 EM9360 模块供电。

PIN#	信号名称	信号简要描述
1	VCC +5V	+5V电源输入
2		未用
3	GND	公共地

3.10 CN12: LCD 接口

CN12 采用 20 芯 IDC 插针,信号交错排列。在信号中以"#"结束,表示低电平有效。

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GND ,公共地	1	2	VCC ,+5V电源输出
系统保留	3	4	SAO ,地址总线,选择寄存器

LCD_WE# ,写信号,低有效	5	6	LCD_RD# ,读信号,低有效
SD0 ,数据总线,LSB	7	8	SD1 ,数据总线
SD2 ,数据总线	9	10	SD3 ,数据总线
SD4 ,数据总线	11	12	SD5 ,数据总线
SD6 ,数据总线	13	14	SD7 ,数据总线,MSB
SA1 ,地址总线	15	16	SA2 ,地址总线
LCD_CE# ,LCD片选,低有效	17	18	SA3 ,地址总线
RSTOUT# ,复位输出,低有效	19	20	保留

- 注: 1、对字符型 LCD、基于 KS0108(或 HD61202)控制器的点阵 LCD, 6 脚为 LCD 总线使能信号,高电平有效;对基于 T6963 和 SED1335 控制器的点阵 LCD, 6 脚为 LCD_RD#读信号,低电平有效。
 - 2、LCD 控制信号 LCD_WE#、LCD_RD#和 LCD_CE#上都接有 5.1K 下拉电阻, 以禁止这些信号线直接接地,否则可能对 EM9360 造成损害。

EM9360 可配置五种常用的点阵型 LCD 模块,其中常用的有 KS0108 控制器 128×64 点阵、SED1335 控制器 320×240 点阵、T6963C 控制器 240×128 点阵。通过 CN12 与这三种 LCD 的信号连线如下面的三个表所示:

表 1: CN12 与 KS0108 控制器 128×64 点阵 LCD 连接表

CN8信号名称及简要描述	CN8 PIN#	LCD模块信号名称及简要描述
GND ,公共地	1	GND ,公共地
VCC ,+5V电源输出	2	VCC ,电源输入
SAO ,地址总线	4	D/I ,选择寄存器
LCD_WE# ,LCD写信号	5	R/W ,读写选择
LCD_RD# ,LCD读信号	6	E,读写使能,高有效
SDO ,数据总线,LSB	7	SDO ,数据总线,LSB
SD1 ,数据总线	8	SD1 ,数据总线
SD2 ,数据总线	9	SD2 ,数据总线

SD3 ,数据总线	10	SD3 ,数据总线
SD4 ,数据总线	11	SD4 ,数据总线
SD5 ,数据总线	12	SD5 ,数据总线
SD6 ,数据总线	13	SD6 ,数据总线
SD7 ,数据总线,MSB	14	SD7 ,数据总线,MSB
SA1 ,地址总线	15	CSB# ,片选B
SA2 ,地址总线	18	CSA# ,片选A

- 注: 1、若用户接上 LCD 后左右屏幕显示内容相反,则需将 CSA#与 CSB#交换。
 - 2、对 192×64 分辨率 KS0108 控制器的 LCD, 也可参照上表与 EM9360 相连, 只是启动画面只使用 LCD 的 2/3 显示区域。

表 2: CN12 与 SED1335 控制器 320×240 点阵 LCD 连接表

CN8信号名称及简要描述	CN8	LCD模块信号名称及简要描述
CNO旧与石协及间安抽处	PIN#	LOD模块值与石桥及间安油处
GND ,公共地	1	GND ,公共地
VCC ,+5V电源输出	2	VCC ,电源输入
SAO ,地址总线	4	A0 ,选择寄存器
LCD_WE# ,LCD写信号	5	WR# ,写信号,低有效
LCD_RD# ,LCD读信号	6	RD# ,读信号,低有效
SDO ,数据总线,LSB	7	SDO ,数据总线,LSB
SD1 ,数据总线	8	SD1 ,数据总线
SD2 ,数据总线	9	SD2 ,数据总线
SD3 ,数据总线	10	SD3 ,数据总线
SD4 ,数据总线	11	SD4 ,数据总线
SD5 ,数据总线	12	SD5 ,数据总线
SD6 ,数据总线	13	SD6 ,数据总线
SD7 ,数据总线,MSB	14	SD7 ,数据总线,MSB
LCD_CE# ,LCD片选信号	17	CE# ,片选,低有效
RSTOUT# ,复位输出	19	RST# ,复位输入,低有效

表 3: CN12 与 T6963C 控制器 240×128 点阵 LCD 连接表

CN8信号名称及简要描述	CN8	LCD模块信号名称及简要描述
CNO信与石桥及间安细处	PIN#	LOD模状情与石桥及间安抽处
GND ,公共地	1	GND ,公共地
VCC ,+5V电源输出	2	VCC ,电源输入
SAO ,地址总线	4	C/D ,选择寄存器
LCD_WE# ,LCD写信号	5	WR# ,写信号,低有效
LCD_RD# ,LCD读信号	6	RD# ,读信号,低有效
SDO ,数据总线,LSB	7	SDO ,数据总线,LSB
SD1 ,数据总线	8	SD1 ,数据总线
SD2 ,数据总线	9	SD2 ,数据总线
SD3 ,数据总线	10	SD3 ,数据总线
SD4 ,数据总线	11	SD4 ,数据总线
SD5 ,数据总线	12	SD5 ,数据总线
SD6 ,数据总线	13	SD6 ,数据总线
SD7 ,数据总线,MSB	14	SD7 ,数据总线,MSB
LCD_CE# ,LCD片选信号	17	CE# ,片选,低有效
RSTOUT# ,复位输出	19	RST# ,复位输入,低有效

注: 该 LCD 的 1 脚 FG 和 18 脚 FS 接地或者接+5V, 具体请参考 LCD 的技术手册。

3.11 EM9360_CN1

与 EM9360 的 CN1 对应的插座。

PIN#	信号名称	信号描述
1	TPTX1+	以太网口 1 差分输出信号
2	TPTX1-	以太网口 1 差分输出信号
3	TPRX1+	以太网口 1 差分输入信号
4	TPRX1-	以太网口 1 差分输入信号
5	VDD_MCT1	以太网口 1 公共端

6	VDD_MCT2	以太网口 2 公共端
7	TPTX2+	以太网口 2 差分输出信号
8	TPTX2-	以太网口 2 差分输出信号
9	TPRX2+	以太网口 2 差分输入信号
10	TPRX2-	以太网口 2 差分输入信号
11	TPTX3+	以太网口 3 差分输出信号
12	ТРТХ3-	以太网口 3 差分输出信号
13	TPRX3+	以太网口 3 差分输入信号
14	TPRX3-	以太网口 3 差分输入信号
15	VDD_MCT3	以太网口 3 公共端
16	SP100M1#	以太网口 1 100M 指示信号,低电平有效
17	LINK1#	以太网口 1 连接指示信号,低电平有效
18	SP100M2#	以太网口 2 100M 指示信号,低电平有效
19	LINK2#	以太网口 2 连接指示信号,低电平有效
20	SP100M3#	以太网口 3 100M 指示信号,低电平有效
21	LINK3#	以太网口3连接指示信号,低电平有效
22	USBCNX	USB Device 接口设备接入状态指示
23	USB_DD+	USB Device 差分接口信号
24	USB_DD-	USB Device 差分接口信号
25	USB_HD+	USB HOST 接口的差分输入输出
26	USB_HD-	USB HOST 接口的差分输入输出
27	CAN_TX0	CAN 接口数据输出,TTL 电平
28	CAN_RX0	CAN 接口数据输入,TTL 电平
29	TXD2	ttyS1 口数据输出,LVTTL 电平
30	RXD2	ttyS1 口数据输入,LVTTL 电平
31	COM3_TX	ttyS2 口数据输出,RS232C 电平
32	COM3_RX	ttyS2 口数据输入,RS232C 电平
33	TXD4	ttyS3 口数据输出,LVTTL 电平
34	RXD4	ttyS3 口数据输入,LVTTL 电平

35	TXD5	ttyS4 口数据输出,LVTTL 电平
36	RXD5	ttyS4 口数据输入,LVTTL 电平
37	TXD6	ttyS5 口数据输出,LVTTL 电平
38	RXD6	ttyS5 口数据输入,LVTTL 电平
39	TXD7	ttyS6 口数据输出,LVTTL 电平
40	RXD7	ttyS6 口数据输入,LVTTL 电平

3.12 EM9360_CN2

与 EM9360 的 CN2 对应的插座。

PIN#	信号名称	信号描述	
1-8	SD0-SD7	精简 ISA 总线的双向数据线,SD0 为最低位(LSB),SD7	
		为最高位(MSB),5V TTL 电平	
9-13	SA0-SA4	精简 ISA 总线的低 5 位地址总线,5V TTL 电平	
14	RSTOUT#	复位输出信号,低电平有效	
15	CS0#	精简 ISA 总线的片选信号,片选脉冲宽度 360ns	
16	CS1#	精简 ISA 总线的片选信号,片选脉冲宽度 360ns	
17	WE#	精简 ISA 总线的写信号,写脉冲宽度 200ns	
18	RD#	精简 ISA 总线的读信号,读脉冲宽度 280ns	
19		上电复位启动后为 LCD 专用读写控制信号;在上电复位期	
	LCD_WE#/	间为输入 OP0,加 5K 下拉电阻,OP0 为低,否则 OP0 输	
	OP0	入为高。OPx 状态将被复位信号锁存在系统的内部寄存器,	
		应用程序可读取该配置信息	
20		上电复位启动后为 LCD 专用读写控制信号;在上电复位期	
	LCD_RD#/	间为输入 OP1,加 5K 下拉电阻,OP1 为低,否则 OP1 输	
	OP1	入为高。OPx 状态将被复位信号锁存在系统的内部寄存器,	
		应用程序可读取该配置信息	

21	LCD_CE# / DBGSL#	上电复位启动后为 LCD 片选控制信号;在上电复位期间为输入 DBGSL#,加 5K 下拉电阻,DBGSL#为低,否则DBGSL#输入为高。DBGSL#状态将被复位信号锁存在系统的内部寄存器,系统将根据 DBGSL#状态进入调试或运行模式	
22	IRQ1	独立的外部硬件中断信号,上升沿有效	
23-30	SA5-SA12 /	复用管脚,通用 GPIO 或精简 ISA 总线的高 8 位地址总线,	
	GPIO4-GPIO11	3.3V TTL 电平。缺省设置为 GPIO 输入状态	
31	GPIO0	通用数字 IO,可作为时间同步脉冲的输入 PPS_IN,系统将	
		以中断方式响应脉冲的上升沿,以支持系统对时功能	
32	GPIO1	通用数字 IO,可作为时间同步脉冲的输出 PPS_OUT,以支	
		持对其他单元的对时功能	
33-34	GPIO2-GPIO3	通用数字 IO,也可作为独立的外部中断输入	
35-36	+5V	+5V 电源输入	
37	RSTIN#	外部复位输入,低电平有效	
38	BATT3V	3.0V 电池输入, 为板上 RTC 提供后备电源	
39-40	GND	电源地,也就是公共地	

- 注: 1、关于 EM9360_CN1 与 EM9360_CN2 中信号的进一步说明,请参阅《EM9360 工控主板数据手册》。
 - 2、OPx 和 DBGSL#的状态都将被复位信号锁存在系统的内部寄存器中,应用程序可读取 OPx 配置信息;同时将根据 DBGSL#状态进入调试或运行模式。

3.13 JP1-JP5: 跳线器设置

JP1-JP5 是五个系统配置跳线器, 其功能说明如下:

跳线器	功能描述		
	短接	断开	
JP1	系统开机以后进入调试模式	系统开机以后进入运行模式	
JP2	OP1 = 0	OP1 = 1	

JP3	OP0 = 0	OP0 = 1
JP4	485 差分信号间加 120Ω 匹配电阻	485 差分信号间不加 120Ω 匹配电阻
JP5	CAN 差分信号间加 120Ω 匹配电阻	CAN 差分信号间不加 120Ω 匹配电阻

JP1-JP3 分别通过一个 5.1K 电阻与 EM9360 的 LCD 控制信号 LCD_XX#相连。在复位有效时(低电平有效),LCD_XX#信号处于高阻三态,复位脉冲上升沿将锁存 LCD_XX#的状态到 EM9360 内部寄存器。应用程序可以读取 OP0-OP1 的状态。

CAN 总线一般需要加 120 Ω 匹配电阻,以防止 CAN_H 和 CAN_L 电平可能的反转,即 CAN L 电平高于 CAN H。

3.14 S1: 复位按钮

按下 S1 则系统复位重启。

4 其他说明

- 1、底板上提供了四个 Φ3.175 的定位孔,可用之将底板固定在特定位置,如机箱上。
- 2、开发光盘中提供有评估底板的电路原理图(PDF 文件)和 PCB 图(Protel 文件),用户可作为进一步开发的参考,进行增加或删减以满足自己产品的实际需要。我公司提供的图纸已经证实成功实现上述各功能,但不能保证用户根据此图纸作的进一步更改能够 100%成功,用户若有疑问,请与英利公司工程师联系。