铣床数控系统说明书

CM10-43V10 铣床系统

北京多普康自动化技术有限公司

T PCNC 北京多普康自动化技术有限公司

目录
目录

1. 安全须知	4
1.1 安全操作	4
1.1.1 机械危险	4
1.1.2 高压危险	4
1.1.3 电源隔离	4
1.1.4 工作环境	4
1.1.5 系统联接	5
1.1.6 良好接地	5
1.1.7 系统的防护	5
1.1.8 其它事项	5
1.2 控制系统的启动与关机	5
1.2.1 控制系统的启动	5
1.2.2 控制系统的关机	6
1.2.3 系统操作时的注意事项	6
1.3 控制系统的操作与检修	6
1.3.1 系统的操作	6
1.3.2 系统的检修	6
1.4 声明	6
1.4.1 系统保修说明	6
1.4.2 系统升级与服务	7
2.概述	8
21 主要功能	8
2·1 工实为記 2 2 系统组成	8
221 控制系统单元(系统操作显示面板).	
2.2.1 <u>元</u> ····································	
23 技术指标	9
24 外观及面板	9
5. 永纯铼作说明	
3.1 上电开机	
3.2 系统主窗口说明及操作	
3.3 自动加工	12
3.3.1 自动加工窗口说明	
3.3.2 自动加工前的准备	
3.3.3 自动加工的控制	
3.3.4 任意段开始的自动加工	
3.4 手动操作	14
3.4.1 手动操作窗口说明	14
3.4.2 手动操作中的功能说明	14
3.5 程序管理	15
3.5.1 程序编辑功能	16
3.5.2 <i>程序编辑的说明</i>	

T PCNC 北京多普康自动化技术有限公司

3.6 MDI	
3.7 机械零	
3.8 系统报警	
4.设置	
4.1 设参数	
4.1.1 控制项	
4.1.2 系统参数	
4.1.3 用户参数	
4.1.4 坐标系参数	
4.1.5 出厂值	
4.1.6 存参数	
4.2 自测试	
4.2.1 输入口测试	
4.2.2 输入态测试	
4.2.3 输出口测试	
4.2.4 输出态测试	
4.2.5 按键测试	
4.2.6 问题说明	
4.3 IO定义	
4.3.1 设输入	
4.3.2 设输出	
5.系统指令及编程	
51 编程概念/符号说明	28
511 相关概念	28
5.1.2 程序字及约定	28
5.2 系统坐标及相关概念	
5.2.1 坐标轴的确定	
4.2.2 轴方向的确定	
4.2.3 坐标系	
5.2.4 与加工有关的坐标点	
5.2.5 其它相关概念	
5.3G指令(准备功能)	
5.3.1 G92 工件坐标系设定	
5.3.2 G00 点位运动	
5.3.3 G01 沿直线铣削	
5.3.4 G02/G03 圆弧插补	
5.3.5 G04 延时指令	
5.3.6 G17/G18/G19 平面选择	
5.3.7 G40/G41/G42 铣刀半径补偿	
5.3.8 G36 子程序调用	
5.3.9 G37/G38 子程序定义	
5.3.10 G54-G59 编程坐标系	
5.3.11 G70 铣削矩形空腔	
5.3.12 G71 铣削圆形空腔	

TOPCNC 北京多普康自动化技术有限公司

5.3.13 G72 X向进给扫平面	
5.3.14 G73 Y向进给扫平面	
5.3.15 G74 圆周均布排列	
5.3.16 G76 直线均布排列	
5.3.17 G20/G22 定义循环体	
5.3.18 G80 取消钻孔循环	
5.3.19 G81 单次钻孔循环	
5.3.20 G82 回退到基面的多次进刀钻孔循环	41
5.3.21 G83 回退定值的多次进刀钻孔循环	
5.3.22 G89 设置Z平面	
5.4 S功能 (主轴转速指定)	
5.5 M指令 (辅助功能)	
6.系统连接	45
6.1 步进/伺服驱动器接口定义	
6.1.1 接口定义	
6.1.2 接口使用说明	
6.2 输入连接	
6.2.1 输入原理	
6.3.2 输入定义	
6.3 输出连接	47
6.3.1 输出原理	
6.3.2 输出定义	
6.4 手脉连接	
6.5 系统电气联接说明	
7. 常见故障及排除	
7.1 系统故障	
7.2 操作故障	
7.3 程序问题	
7.4 系统功能声明	

1. 安全须知

★★ 在使用本控制系统前,请您仔细阅读本手册后再进行相关的操作。

1.1 安全操作

阅读并弄懂控制系统的操作,以及用户安全须知,采取必要的安全防护措施。

1.1.1 机械危险

自动化设备的操作和维修具有潜在的危险,应该小心预防,以免造成人身伤害。尽量远离运行中的设备。正确运用面板上的键盘来对设备进行操作。

1.1.2 高压危险

在操作过程中,小心电击。依据设备安装程序和说明书进行设备安装。通电时,不要接触电缆或电线。只有 专业维修人员才能打开控制设备。当设备出现故障时,应切断电源进行检修,否则容易造成人员伤害或设备的损 坏。

1.1.3 电源隔离

请检查电源电压是否正确(AC220V±15%)。

超出上述电源电压范围时,必须增加交流稳压电源,保证控制系统正常工作而不损坏。

对于电源供电不规范的地区(如零地共用或无零线),为了确保控制系统正常工作、提高系统可靠性、保证操作者人身安全,在电网与控制系统之间,必须使用三相/两相 AC380V 转为二相 AC220V 的隔离变压器。

对于无避雷针的工作环境,必须加装避雷装置,确保系统安全。

1.1.4 工作环境

控制系统的工作环境温度为 0-40℃,当超出此环境温度时系统可能会出现工作不正常甚至死机等现象。温度 过低(零下)时,液晶显示器将会出现不正常显示的情况。

相对湿度应控制在 0-85%。

在高温、高湿、腐蚀性气体的环境下工作时,必须采取特殊的防护措施。

防止灰尘、粉尘、金属粉尘等杂物进入控制系统。

1.1.5 系统联接

系统供电用的 5V(3A 或以上)开关电源由用户自行配置,应选择较好的生产厂家,以保证系统安全可靠。该电源不能作为其它电器的电源。

系统输入/输出使用的 24V(3A 或以上)开关电源由用户自行配置,该电源不能作为其它电器的电源。当此电源未接入且急停和限位均设为有效时,系统将处于急停和限位状态下。

系统到电机驱动器的连线应采用良好的屏蔽线。

严禁带电插拔任何联接插头。

系统的输入/输出线应保证可靠连接。

1.1.6 良好接地

为了确保控制系统正常工作、提高系统可靠性、保证操作者人身安全,控制系统的所有部分均应良好接地。 系统的地线应保证线径不小于4平方毫米,且尽量缩短与入地端的距离。 直流24V的地端(负端)必须与大地断开。

1.1.7 系统的防护

保持控制系统与外部环境的隔离,以防止由于灰尘、粉尘、金属粉尘等杂物进入控制系统内部而造成控制系统工作不正常、系统部件损坏、降低系统寿命等。

应防护好控制系统的液晶屏幕(易碎品): 使其远离尖锐物体; 防止空中的物体撞到屏幕上; 不能用手指在屏幕上指点、比划、敲打; 当屏幕有灰尘需要清洁时, 应用柔软的纸巾或棉布轻轻擦除。

1.1.8 其它事项

系统可使用U盘,但U盘不在标准配置中,需用户自备。 系统可使用手脉,但不在标准配置中,用户需要时应提前说明。 系统的各种联接电缆、电线不在标准配置中,用户需要时应提前说明。 产品配套"使用操作说明书"只免费提供一本。 由于不符合安全须知,而造成的系统损坏,不在保修范围内。

1.2 控制系统的启动与关机

控制系统是机床数控系统的核心,对系统的使用应按照系统的操作要求进行。

1.2.1 控制系统的启动

当系统电源开启后,系统自动引导进入控制系统软件的开机画面,约 10 秒(可按任意键退出开机画面)后自

「 PCNC 北京多普康自动化技术有限公司

动进入系统主窗口。然后再打开驱动器的供电电源。 不要频繁打开、切断系统电源,否则易造成控制系统或开关电源的损坏。

1.2.2 控制系统的关机

操作完成后,需关闭控制系统时,应按先关闭驱动器的电源,然后再关闭控制系统的电源,避免干扰干扰造 成的电机误动作。

1.2.3 系统操作时的注意事项

系统启动后进入该控制软件,确保系统各参数正确的情况下,方可进行各种功能的操作。 在系统自动运行过程中,尽量不要操作系统面板上无关的按键,否则将出现非预知的系统错误。

1.3 控制系统的操作与检修

系统的操作者应经过严格的培训后,才能进行操作。系统需确定专门的操作者,无关人员严禁启动系统、打 开电气机柜等。

1.3.1 系统的操作

系统操作时需按压相应的操作按键,在按压按键时,需用食指或中指的手指肚按压,切忌用指甲按压按键, 否则将造成按键面膜的损坏,而影响您的使用。

初次进行操作的操作者,应在了解相应功能的正确使用方法后,方可进行相应的操作,对于不熟悉的功能或 参数,严禁随意操作或更改系统参数。

对于使用操作中的问题,随时提供电话咨询服务。

1.3.2 系统的检修

当系统出现不正常的情况,需检修相应的硬件或插座连接处时,应先切断系统电源。再进行必要的检修。 未进行严格培训的操作人员或未得到授权的单位和个人,不能打开控制系统进行维修操作,否则后果自负。

1.4 声明

1.4.1 系统保修说明

保修期:本产品自出厂之日起十二个月内。 保修范围:在保修期内,任何按使用要求操作的情况下所发生的故障。 保修期内,保修范围以外的故障为收费服务。

T PCNC 北京多普康自动化技术有限公司

保修期外,所有的故障维修均为收费服务。 以下情况不在保修范围内: 任何违反使用要求的人为故障或意外故障; 带电插拔系统联接插座而造成的损坏; 自然灾害,不可抗拒的因素等原因导致的损坏; 未经许可,擅自拆卸、改装、修理等行为。

1.4.2 系统升级与服务

本说明书如有与系统功能不符、不详尽处,以系统软件功能为准。 控制系统功能改变或完善(升级),恕不另行通知。 如需最新"使用操作说明书",提供更新后的电子板说明书(PDF格式),并以E_mail的形式发出。

2.概述

本控制系统是适用于钻床控制的四轴数控系统,选用高性能 32 位工业级 CPU,专用插补控制器,配备 320*240 单色液晶显示器,全封闭触摸式操作键盘,驱动装置可采用细分步进电机或交流伺服电机,配有 24V 机床电器控 制接口。该系统具有功能强、可靠性高、精度高、噪音小、操作方便、体积小、重量轻等特点。

本系统可控制四个坐标轴: 直线轴 X、直线轴 Y、直线轴 Z 和一个绕 Z 轴旋转的 C 轴,可实现四个坐标轴线 性联动、三个直线坐标轴的任意两轴的圆弧联动,可完成各种钻、铰、攻丝孔的加工; 支持多种 G 代码, M 代码; 支持主轴控制的 S 指令; 具备多种固定循环和钻孔循环; 具有输入/输出点设定功能。

2.1 主要功能

参数设置:可设置与加工、操作有关的各个控制参数,使加工效果达到最佳状态。
I/O 指定:对于系统的输入/输出可以任意指定输入/输出点。
系统自检:检查 I/O 状态,按键测试。
手动操作:可实现高、低速手动、点动、MDI、回程序零、回机械零等操作。
程序编辑:可对当前程序进行修改,调入已有加工程序,程序的存储与删除。
自动加工:可实现空运行、单段/连续、跳段、计划暂停、机床锁定等功能。
暂停处理:可实现暂停后的运动、返回、平移、继续等功能。
手轮操控:在手动状态下可用手轮任意操作各轴的运动。
固定循环:支持多种固定循环和钻孔循环。
任意段加工:支持程序从任意位置开始加工。
状态显示:显示加工、操作过程中的输入信息和操作状态。
多种坐标显示:机床坐标、工件坐标系绝对坐标、当前剩余增量显示。
图形轨迹显示:当前加工过程中的刀具中心轨迹显示。
刀具补偿:刀具半径补偿和长度补偿。
程序上传与下载:系统自带的U盘接口,可实现用户区与U盘的加工程序互传。

2.2 系统组成

数控系统主要由以下几部分组成:

2.2.1 控制系统单元(系统操作显示面板):

- 工业级 ARM 控制主板
- 单色液晶显示器(分辨率:320×240)
- 专用运动控制器(信号输出为:+5V TTL,差动输出)
- 输入/输出接口(24 路光电隔离输入,7 路光电隔离输出)

T●PCNC 北京多普康自动化技术有限公司

- 手脉操控接口,可支持三轴(X,Y,Z)选择和×1、×10、×100选择
- 支持伺服报警和伺服 Z 脉冲作为机械零点
- 支持伺服主轴的位置控制
- 支持运动倍率和主轴倍率操作
- 用户零件程序存储器(32个程序,每个程序最大64000字节)
- 摸式薄膜按键
- U 盘接口

2.2.2 驱动单元:

- X轴步进(细分)驱动器或伺服电机驱动器
- Y 轴步进(细分)驱动器或伺服电机驱动器
- Z 轴步进(细分)驱动器或伺服电机驱动器
- C 轴伺服电机驱动器

2.3 技术指标

- 最小可编程单位
- 最大编程尺寸 ±99999.999mm
- 最大圆弧半径 400000.000mm
- 快速点位运动限速 8000mm/min(脉冲当量为 0.001 毫米时)

0.001mm

150KHz

反向间隙

2/6M

4 轴(X、Y、Z、C)

分子:1-65535,分母:1-65535

最大可编辑长度 64K 字节

<64K字节(与每行实际长度有关)

3 轴联动(线性)

- 最高加工速度限速
- 最高脉冲输出频率
- 控制轴数
- 联动轴数
- 电子齿轮
- 系统主要功能
- 全中文菜单及提示
- 全屏幕多行文本编辑
- 程序管理
- 补偿功能
- 每个文件最大段数
- 最大用户程序容量

2.4 外观及面板

8000mm/min (脉冲当量为 0.001 毫米时)

自动、手动、程序管理、设置、自检等

新建、存储、读入、另存、目录、删除、接收、发送等

手动键(1-9): →:X+, ←:X-, ↗:Y+, ∠:Y-, ↑:Z+, ↓:Z-, 丶:C+, 丶:C-

3. 系统操作说明

钻床数控系统,可以实现精确的定位和连续的钻孔加工。系统的操作功能采用逐级功能菜单方式。在主窗口 菜单下,调用某一功能后,系统将进入相应的下级菜单。

液晶显示器下方为功能键(F1 至 F6)和 "ESC"键,功能菜单每级最多有 6 个功能,分别对应于下方的 6 个按键,按对应功能键,进入相应的功能操作,返回前级菜单时需按 "ESC"键直至主窗口。

3.1 上电开机

确认系统连接正确后,系统上电(打开系统电源开关)。系统上电后,屏幕将出现开机画面,10秒(按按任意 键)后系统进入如下主窗口:

3.2 系统主窗口说明及操作

主窗口说明如下:

- 标题栏:数控系统型号"JC200-M"、软件版本号"2.0",数控系统名称"钻床数控系统"。JC 闪烁(每秒一次)表示系统工作正常。
- 坐标显示区:包括坐标(机床坐标、绝对坐标、相对坐标)显示、进给速度显示、主轴转速显示。
- 程序显示区:显示正在执行的和下一加工程序段(在自动加工或 MDI 状态下更新此窗口的程序显示)。
- 菜单区:包括"ESC"按钮(2个)和6个功能(F1-F6所对应的)菜单,在不同的功能下有不同的菜单提示。通过其下方的操作键可选择进入不同的功能。
- 信息显示区:当前程序名称(111),当前速度倍率(100%),当前主轴倍率(100%)。
- 工作状态区:系统当前操作状态(手动/自动),暂停,急停等。
- 报警提示区:显示当前出现的报警内容(只显示限位、报警、急停)。
- 自动加工、手动操作、程序管理、坐标设置、参数设置、系统自检。各个功能的具体使用将在本章中进行详 细介绍。

TOPCNC 北京多普康自动化技术有限公司

3.3 自动加工

由系统主窗口下选择"自动",进入自动加工功能

3.3.1 自动加工窗口说明

启动:启动并执行加工程序(按"启动"键); 图形:切换图形显示或坐标显示(只当进入此画面,未按下"启动"键时可操作); 空运行:运行当前程序,但机床不运动,M指令执行; 设单段:设置并进入单段加工状态(每执行完一个程序段后暂停,按"启动"键继续); M01停:遇M01后暂停,按启动键继续; M锁定:运行当前程序,但M指令不执行

3.3.2 自动加工前的准备

- 1. 机械回零: 使各轴回到机械零点, 并查看坐标系是否正确;
- 3. 调入程序: 主界面下,按"程序"功能进入程序管理,调入程序到当前程序区(具体操作请参考 3.5 程 序管理);
- 选择加工起始行:退出程序编辑时光标所在的程序行即为起始行,此点一定要引起注意,进入程序编辑 时系统默认为第一行,一但选定起始行,在再次进行程序编辑前,所有的自动加工均从此选定的起始行 开始加工。
- 4. 执行状态: 查看各功能按键的状态, 使您的操作状态正确设置。
- 进入自动加工:按"启动"键,如果有错误提示,请进入"程序管理"状态,修改加工程序,然后重复本步操作,直至无错误提示。在程序未执行或处于"暂停"状态下,按"ESC"键可退出自动加工并返回到主窗口。
- 6. 开始自动执行加工程序: 按下"启动"键程序开始运行。
- 如果为任意段执行,再次按下"启动"键后开始从当前点运动到选定程序段的起始点(前一程序段的终点),在此过程中不支持暂停,如果暂停应回到程序的起点重新开始。当运动到选定程序段的起点后,

G PCNC 北京多普康自动化技术有限公司

开始按顺序自动执行后续的加工程序。

注:

- 当前程序区没有程序,或者程序中包含非法指令及语法错误,系统会给出错误提示!请根据提示修改程序。
- 2. 如果批量生产,且程序结束时的机床位置与程序起点相同,可直接从第5步开始。

3.3.3 自动加工的控制

在加工过程中可以进行如下控制:

- 进给速度倍率调节:调节速度倍率旋钮,用以改变加工速度,F↑,F↓键改变速度倍率,按一次变化 1%,长按时可快速变化;
- 主轴转速倍率调节:调节主轴倍率旋钮,用以改变主轴转速,'(',')'键改变转速倍率,按一次变化 1%,长按时可快速变化;
- 控制状态的改变:在运行过程中可以改变连续/单段、选择暂停等状态,应根据实际操作的需要改变, 请不要无目的的任意改变;
- 紧急停车:遇到紧急情况,压下控制系统上的红色"急停"按钮,系统立即停止程序的执行,并断开驱动电源,故障排除,重新上电后,需重复操作3.3.2,且重新加工。注意:在正常情况下,尽量避免按下此钮。
- 遇机床限位中止:在程序运行过程中,遇到机床限位开关时,则自动退出当前的程序执行,如需重新执行加工程序时,应重复操作3.3.2的操作后再进行。
 注意:在正常情况下,尽量避免碰到限位。
- 暂停程序的执行:按"暂停"键,可以暂停当前程序的执行,单段加工状态下,执行完一个程序段后直接进入暂停状态,在暂停状态下,按"启动"键可以继续暂停后的程序执行,按ESC键则退出并结束自动状态。
- 切换执行方式:处于暂停状态时,可切换到空运行、机床锁定等执行状态,但必须谨慎操作,以免造成 意外的操作失误。
- 退出加工程序的执行:当加工"暂停"后,可按"ESC"键终止加工并返回主窗口。

3.3.4 任意段开始的自动加工

在"程序"中的文本编辑器中,将光标定位到选择的起始加工行后,退出程序管理状态,选择"自动"进入 自动加工窗口,按"启动"键后,进入自动运行状态,并进行加工程序的处理,再按"启动"键后进入程序加 工状态,当光标选择为第一行时,则开始从头执行加工程序;当光标选择不在第一行时,再次按下"启动"键后, 从起刀点直接运动到所选程序段的起点坐标点后等待再次按下"启动"键,然后进入后续程序的加工执行。

注意:任意段开始和从头开始,刀具的起始位置是一致的;从刀具起始位置到运动到任意段的运动中,不能使用暂停,否则应重新返回刀具的起始位置后重新开始;如果本次用任意选定的程序段开始,加工完成后再次执行时仍为任意段加工,且起始程序段仍为上次设定的程序段;若改变所选段或从头开始,应重新进入"程序"进行程序段的选择。

3.4 手动操作

在主窗口下,按"手动"功能进入手动操作方式,窗口显示如下:

CM10-43V10 铣床数控系统	t	
^{絶对坐标} X 00000.000 Y 00000.000 Z 00000.000 C 00000.000	程序:1111 F0000 速度:100% S0000 主轴:100% G00 M00	
机 X 00000.000 相 X 床 Y 00000.000 对 Y 坐 Z 00000.000 坐 Z 标 C 00000.000 标 C	00000.000 00000.000 00000.000 00000.000	
< 高速度 点 动 手 脉	设坐标 坐标系 取坐标	>

3.4.1 手动操作窗口说明

高速度:控制手动操作时的速度,速度值由"设置"中设定。

点动:进入点动操作状态,再按一次退出点动状态,增量值由"设置"中设定。

手脉:进入手脉操作状态,再按一次退出手脉状态,由手脉控制盒进行操作。

设坐标:设置当前坐标(相对坐标)的值

坐标系:进入坐标系设定状态,再按一次退出坐标系设定状态,进入此状态后可将当前的机床坐标设定到相应的坐标系中(上、下光标键选择坐标轴,由"取坐标"实现设置)。

取坐标:在"坐标系"状态下,将选中的坐标轴的机床坐标设定到相应的坐标系中。

3.4.2 手动操作中的功能说明

● 手动操作

当按下相应的运动控制按键(X+, X-, Y+, Y-, Z+, Z-, C+, C-)时,相应的轴按相应的方向以当前的速度×运动倍率运动,抬起后运动停止,由于高速运动时,步进电机或伺服电机需升降速处理,所以抬起按键后仍有一段运动(减速停止,与升降速的时间设置有关)。

手动高速/低速:切换连续手动速度。按键点亮时为高速,暗时为低速,在"设置"的"系统"中有"手动 高速"和"手动低速"两个手动速度参数(详见参数设置)。实际运动速度为选择的运动速度×速度倍率。

手动操作时支持"急停"功能,按下"急停"后,运动停止。

手动操作时支持"限位"功能,当按某一方向运动,该轴的该方向碰到限位时,该方向将不能运动,此时可 反向运动使其离开限位点。某处产生限位时,在手动操作状态下,不影响其它轴的手动操作。

手动操作不受空运行的控制。

当处于"急停"状态时,任何方向均无运动产生。

● 点动操作

选择"点动"功能菜单进入该功能

如需改变点动增量值,请进入"设置"的"系统"中修改。若需退出点动状态而进入手动状态,需再按"点

TOPCNC 北京多普康自动化技术有限公司

动"所对应的键,则退出点动操作并进入手动操作状态。

当按下相应的运动控制按键(X+, X-, Y+, Y-, Z+, Z-, C+, C-)时,相应的轴按相应的方向以手动高速×运动倍率,运动一个点动增量值:按一次运动一次。

当为空运行时,绝对坐标和增量坐标发生变化,但不产生实际的运动。 点动操作时支持"急停"功能,按下"急停"后,运动停止。 点动操作时支持"限位"功能,当任一限位信号产生时,即停止运动。 当处于"急停"状态时,任何方向均无运动产生。

● 手脉操作

选择"手脉"功能菜单进入该功能

此时面板上的按键均为无效,再按F3键可退出"手脉"状态。

选择手脉控制盒上的 0FF, X, Y, Z 轴选开关,选择相应的控制轴;选择×1,×10,×100 倍率开关,选择手脉 每格所代表的运动距离;此时摇动手轮(正向,反向),则相应的控制轴运动,正向时正向运动,反向时反向运动。 手脉操作时支持"急停"功能,按下"急停"后,运动停止。

手脉操作时支持"限位"功能,当按某一方向运动,该轴的该方向碰到限位时,该方向将不能运动,此时可 反向运动使其离开限位点。某处产生限位时,在手脉操作状态下,不影响其它轴的脉动操作。

注意:当选择×10,×100,且机械惯量较大时,手轮摇动应尽量平稳,且避免快速频繁换向,以免造成机械的振动。

● 设坐标

选择"设坐标"功能菜单进入坐标输入状态。每个值间用"空格"分开,输入完毕后按"回车"键,即设定 了新的坐标值;按"ESC"键,则设置无效。

坐标系

进入"坐标系"状态后,通过上、下光标键选择需设置的坐标轴,通过左、右光标键选择需设置的坐标系 (G54-G59),选中后按"取坐标"键,则相应坐标轴的机床坐标设置到选中的坐标系中。同时绝对坐标发生 变化。

3.5 程序管理

主窗口下,选择"程序"功能进入,窗口刷新如下:

CM10-43V10	铣床数控系统	ŧ.		
G55				
GOO XO Y5O Z5				
G01 U30				
G83 I10 J6 K4 🛛	D3 P5			
GOO V10				
GOO V10				
G76 X0 Y0 P5				
X 02				
X 30				
文件名: 11	11	1	1	Ins
< 读程序 存	程序 新程序	删程序 读 Մ #	計画の	[盘]>

在上图所示的程序管理窗口中,系统将显示:文件名、光标位置(如"3 23",即为第三行第二十三列)、输入状态(Ins:插入,Rep:替换)和编辑功能菜单。

「 PCNC 北京多普康自动化技术有限公司

功能菜单定义如下: 读程序:从用户程序区中选择(根据文件名列表)一程序名后读取到当前程序区; 存程序:将当前程序以当前文件名存储; 新程序:将当前程序重新命名一个新的文件名; 删程序:删除列表中光标选中的文件; 读U盘:显示U盘中的文件名,选择并读取到用户程序区; 写U盘:将当前文件以当前的文件名写到U盘中;

3.5.1 程序编辑功能

 按键:数字键 0-9,小数点".",负号"-",空格,回车,字符键 A-Z, 光标移动键上"↑"下"↓"左"←"右"→", 翻页键(PgUp 和 PgDn), 删除键(BS、De、DLine), 转换键(Ins), 上档键(Shift)

● 光标移动

上、下键可以移动光标的行位,上键向上移动,直到第一行指令;下键向下移动,直到最末一行指令;左右 键移动光标的列位,左键向前移动,到该行指令的行首(左端第一个字符)后继续左移则到前一行指令的行尾(右 端最后一个字符),直到首行指令的第一个字符;右键向右移动,到该行指令行尾后继续右移则到下一行指令的 行首,直到最后一行指令的行尾(最右端);

● 翻页

编辑区可以显示多个指令行,当设计程序指令行数超过单屏显示的最大行数(满屏)后,可以用翻页键 PgDn 向后翻页,显示下一页。PgUp 向前翻页,显示前一页。

字符插入和替换

Ins 键可以切换插入(屏幕右下角显示 Ins)和替换(屏幕右下角显示 Rep)。插入状态下,系统将新字符插入 到光标处,光标连同其后的内容自动后移;替换状态下,新字符自动替换光标所在字符,然后光标后移,如果替 换的是行尾的换行符,则与下一行自动连接成一行。

● 插入新行

插入状态下,移动光标到行首,按"回车"键,系统将在该行前增加一个空行;移动光标到行尾,按"回车" 键,系统将在该行后增加一个空行。

● 删除字符

插入和替换状态下,按一次删除键 "De1"向后删除一个字符,按一次 "BS" 键向前删除一个字符,系统将自动删除光标处的一个字符,后面字符自动前移。

● 删除一行

按"Dline"键时,删除光标所在行,后续行前移。

● 一行分为两行

插入状态下,移动光标到任意位置(非行首亦非行尾),按"回车"键,系统将在光标位置处将该行分为两行。 在替换状态下,则将光标所在位置的字符删除。

「●PCNC北京多普康自动化技术有限公司

● 二行合并一行

当光标处于回车符上时,插入和替换状态下,按 Del 键,则两行合并为一个程序行。 当光标处于回车符上时,替换状态下,键入一个字符,则两行合并为一个程序行。

3.5.2 程序编辑的说明

本程序编辑功能是一个全屏幕的编辑,可将光标移动到编辑文本的任意位置,每行未的"回车"符,即为本 行的结束符,结束符后不能输入任何字符。

程序支持N标号的输入,但只作为操作者的一种标识,对加工执行不起任何作用。

程序输入时可不加入"空格"分隔符,以减少字符个数。

程序输入时无小数点时为整毫米数,小数点后有几位输入几位,无需补零;小数点后最多三位,多余部分忽略。

无运动的坐标可不输入(连同字段名),以减少字符个数。

程序最大可编辑长度为 64000 个字符。

程序可编辑的最大行数不限,但受 64000 个字符的限制。每行所显示的字符数(含分隔符和结束符),即为其 实际所占空间。如果平均每行占 20 个字符,则最大可编辑行数为 3200 行;如果平均每行所点字符为 40 个,则 最大可编辑行数为 1600 行。

3.6 MDI

选择 "MDI" 功能菜单进入该功能,同时在程序显示区的第二行出现一个光标,输入一个程序行后按"回车" 或"启动"键,则执行该程序行,同时在第一行显示上次已执行的或当前正在执行的程序行,在第二行显示光标 并等待输入新的程序行;按"ESC"键则取消刚刚的输入。再按一次"ESC"键则退出 MDI 状态。

在 MDI 状态下,可输入 GO0, GO1, GO2, GO3, G54-G59 等 G 代码; MO3, MO4, MO5, MO6, MO7, MO8, MO9, M10, M11 等 M 代码; 还可输入 S 代码。

在 MDI 状态下不能使用半径补偿的功能代码。

在 MDI 状态下不能使用固定循环。

在 MDI 状态下不要操作与程序输入、执行无关的按键。

MDI 支持"急停"功能,按下"急停"后,运动停止。

MDI 支持"限位"功能,当遇限位信号时中止本程序行的执行。

MDI 受空运行的控制。

MDI 执行程序的过程中可按下"暂停"键中止当前输入程序行的执行。

3.7 机械零

选择"机械零"功能菜单进入该功能。用 X+、X-,Y+、Y-,Z+、Z-键选择待回零的轴,回零的方向由"设置"中的"控制项"下的回零方向控制,与按键的方向无关。选中轴(X、Y、Z)以手动高速×运动倍率的速度返回机械零点(行程开关处),当零点信号有效时,减速停止(注意在停止前后此信号应一直保持)后,再以低速(约60mm/min,不受运动倍率的控制)返回,直到行程开关无信号。完成后,当前机床坐标清零,绝对坐标为当前坐

T PCNC 北京多普康自动化技术有限公司

标系的坐标。

回机械零点操作时支持"急停"功能,按下"急停"后,运动停止。 回机械零点操作时支持"限位"功能,当遇限位信号时中止回机械零操作。 回机械零点操作不受空运行的控制。 回机械零点操作过程中可按下"暂停"键中止回零操作。 当处于"急停"状态时,任何方向均无法进行回零操作。 **注意:**行程开关信号应在较大距离内有效,以保证高速运动时不冲出机械零点区域范围。

3.8 系统报警

在屏幕的右上角显示报警信息,所在报警信息如下所示:

"X 负限位"、"Z 正限位"、"Y 负限位"、"Y 正限位"、"Z 负限位"、"Z 正限位"、"外报警"、"急停钮"。

当出现多个报警信息时,系统只显示上述顺序中排在前面的报警信息,当此报警信息排除后,则后续的报警 将出现在报警区。

报警信息每秒闪烁一次。

4.设置

设置功能将设置数控系统运行所需的参数、I/0口的定义、I/0口测试,主窗口下,选"设置"功能进入,窗口刷新如下,"ESC"键返回主窗口。

功能菜单定义如下:

设参数:系统运行所需的速度参数、控制量;

自测试: I/0 口状态的测试;

I0 定义: I/0 口使用定义;

注:

系统参数应避免频繁修改,参数中除个别参数与用户使用有关外,大部分参数均由厂家设定。使用者应记 录设备到位后的各个参数值,以备需要时使用。

操作者修改参数时应格外谨慎,对于不理解的参数应小心修改,必要时恢复所记录的参数值。由于错误地 更改参数而造成的后果由用户承担。

参数设置功能说明

在系统参数窗口下,可以查看和修改各项参数值。

进入某参数功能后可用上、下光标键选择待修改的参数项。

对于复选框,用"空格"键改变其状态。

设参数:

任何参数修改完毕后,当前有效,断电丢失。若需长期保存,应选"存参数"功能。

出厂值为系统内部设定的一组通用参数,一般不使用。只有当系统参数丢失、混乱时才使用。如果您误用了 此功能,请不要操作"存参数",并且重新启动控制系统,则系统自动读取上次关机时的参数设置。

I0 定义:

I/0号指定后,按ESC 键退出时自动保存,一般只有厂家进行设置。当发现 I/0 有故障时,用户在维修时,可指定其它未用的 I/0 取代当前有故障的 I/0,但一定要在明白使用方法后再进行。正常情况下严禁用户更改 I/0 定义。

4.1 设参数

4.1.1 控制项

刚进入或按F1键,本页参数均为控制中的控制开关。

CM10-43V10 铣床数控系统	
 急 停无效 □ 机械零点常闭 □ Y 轴正向回零 □ Z 轴正向回零 □ 外暫停钮无效 □ 主轴报警无效 □ 	机械限位无效 口 X 轴正向回零 口 Z 轴正向回零 口 外启动钮无效 口 伺服报警无效 口
< 控制项系统用户。	坐标系 出厂値 存参数 >

4.1.2 系统参数

按F2键,进入

CM10-43V10	铣床数控系统		
X向分子N	00001	X向分母M	00001
Y 向分子 N	00001	Y向分母M	00001
Z向分子N	00001	Z向分母M	00001
C向分子N	00001	C向分母M	00001
启动速度	00100	极限速度	06000
升速时间	00500	最高速度	06000
手动高速	05000	手动低速	00300
X 向间隙	00000	Υ 向间隙	00000
Ζ 向间隙	00000	C 向间隙	00000
< 控制项系	• 统 用户:	坐标系 出厂	值 存参数 >

● 电子齿轮

N、M 分别表示 X、Y、Z 轴的电子齿轮的分子、分母。此数值的取值范围为 1-65535, 应由厂家进行设置,严 禁随意更改。

电子齿轮分子,分母的确定方法:

电机单向转动一周所需的脉冲数 (N)

电机单向转动一周所移动的距离(以微米为单位) (M)

将其化简为最简分数,并使分子和分母均为1-65535的整数。当有无穷小数时(如:π),可分子、分母同乘 以相同数(用计算器多次试乘并记住所乘的总值,确定后重新计算以消除计算误差),以使分子或分母略掉的小数 影响最小。但分子和分母均应为1-65535的整数。

例1:丝杠传动:步进电机驱动器细分为一转5000步,或伺服驱动器每转5000脉冲,丝杠导程为6毫米,

TOPCNC 北京多普康自动化技术有限公司

减速比为 1:1, 即 1.0

$$\frac{5000}{6 \times 1000 \times 1.0} \implies \frac{5}{6}$$

即:分子为5,分母为6。

例 2:齿轮齿条:步进电机驱动器细分为一转 6000 步,或伺服驱动器每转 6000 脉冲,齿轮齿数 20,模数 2。 则齿轮转一周齿条运动 20×2×π。

<u>6000</u> → <u>1</u> → <u>107</u> → <u>107</u> 20*2*3.14159265358979*1000 → <u>20.943951</u> → <u>107</u> 2241.00276 → <u>107</u> 2241 即:分子为107,分母为2241,误

差为 2241 毫米内差 3 微米(注意:π应足够精确)。

使用电子齿轮时的注意事项

- 1. 如果使用交流伺服,尽量将控制系统的电子齿轮设置为1,而改变伺服驱动器的电子齿轮设置。
- 2. 电子齿轮比(分子与分母的比)应尽量≤1,当电子齿轮比为1时最高速度可达9米/分,当电子齿轮比为2时最高速度可达4.5米/分,当电子齿轮为0.5时最高速度为18米/分。此为系统的理论速度,且受机械、电机功率、电机速度等因素的影响。
- 3. 电子齿轮的分子、分母均不能为零、负数或小数。
- 4. 电子齿轮修改应在厂家指导下进行。
- 5. 电子齿轮可对丝杠、齿条的线性误差进行线性的补偿。
- 系统的电子齿轮可与步进驱动器的细分数、伺服电机的电子齿轮结合在一起修改。从而保证电子齿轮的 比不超过1。总之,系统以设定的最高速运行时,其输出的最高频率应<150KHz。否则将出现不准确的现 象。
- 当使用步进电机,且电子齿轮比为1:1时,系统运动过程中的振动、噪音将降低,否则有可能出现一定 的振动或噪音

电子齿轮比的倒数为脉冲当量——即系统发出一个脉,机械实际运动的距离(单位为微米)。

● 升降速曲线的设定

启动速度: 电机启动的起始速度(单位:毫米/分,最小60);

极限速度: 电机需达到的最高速度(单位:毫米/分,最大8000);

升速时间: 启动速度到极限速度所需时间(单位:ms,最大1000);

说明:启动速度、极限速度、升速时间与升降速曲线有关,本系统根据上述的三个参数,自动计算产生一条 S形曲线。实际升降速曲线的参数设置与所用电机种类及厂家、电机的最高转速、电机的启动频率、机械传动的 传动比、机械的重量、机械的惯量、反向间隙的大小、机械传动阻力、电机轴与丝杠轴的同轴度、传动过程中的 功率损失、驱动器的输出功率、驱动器的状态设置等有关,注意设置要合理,否则将出现以下现象:

丢步: 启动速度过高/升速时间过短

- 堵转: 启动速度过高/升速时间过短/极限速度过高
- 振动: 启动速度过高/升速时间过短
- 缓慢: 启动速度过低/升速时间过长

当使用步进电机时,升降速曲线应以不堵转、不丢步为基准,通过改变启动速度、极限速度、升速时间,使 运动过程达到理想状态(极限速度较高、升速时间较短),但应预留一定的安全量,以免由于长期使用而引起的机 械阻力增加、电机扭矩下降、偶然碰撞等原因而造成堵转、丢步等现象。

当使用伺服电机时,升降速速曲线应以高效、无过冲为基准,通过改变启动速度、极限速度、升速时间,使

T PCNC 北京多普康自动化技术有限公司

用运动过程达到理想状态。

● 最高速度的确定

当使用步进电机时,最高速度应≤极限速度,如果最大实际加工速度远远小于极限速度,可将此值设为最高 速度。

当使用伺服电机时,最高速度应<极限速度,即极限速度减去3%左右。

● 手动高速、低速的确定

手动高速、低速是手动高速度的两个基本速度。

当使用步进电机时,手动高速应≤极限速度。

当使用伺服电机时,最高速度应<极限速度,即极限速度减去3%左右。

手动低速一般用于对刀,定位时使用,可根据需要自行确定。

● 反向间隙

控制换向时的反向丝杠间隙,一般应实测后确定。本系统采用渐补法,即运动过程中无停顿(单独走反向间隙)现象。

空载和大负载下的反向间隙有区别。

反向间隙值不能为负值。

由于切削力的原因(切削力大于工作台的磨擦力),加入间隙补偿可能会加大加工误差,最理想的处理方法是: 通过机械方法消除反向间隙,提高机械刚度。

● 周脉冲数

由于本系统的主轴控制采用伺服电机,既有转速控制,又有位置控制,且与伺服驱动器的电子齿轮设置有关, 为实现实际转速控制而设置的参数。

此参数应对应于实际转速。

应考虑到伺服电机本身的最高转速。

4.1.3 用户参数

按F3键,进入

CM10-43V	10 钅	先床	数控	系统	ដ				
回程高度	00	002.	000		退刀延	时	0000	00.200	
┃ 最高转数	00	0002	2000		点动增	朣	0000	0.100	
工件长度	00	500.	000		工件贯	渡	0030	00.000	
基准点 X	003	300.	000		基准点	ξY	0020	00.000	
< 控制项	系	统	用	户	坐标系	出月	「值	存参数	\$ >

● 回程高度

用于断屑钻孔循环 G83 的参数。

● 退刀延时

用于攻丝、镗孔循环的参数。

TOPCNC 北京多普康自动化技术有限公司

● 最高转速

主轴转速是为计算主轴实际转速而设定的参数,请不要与主轴电机和机械传动计算所得的转速值相混消。此 参数应由厂家设定,通过实测而确定。例如:通过计算所得主轴转速为 3000 转/分,可将该参数设置为 3000, 通过 MDI 功能设置主轴转速为 3000,启动主轴实测实际转速,当不一致时修改"主轴转速"参数,按上述过程 再进行一遍,直到设置参数与实际转速一致。

● 点动增量

点动操作时的运动增量。

● 工件形状

工件的长度、宽度,是为图形显示时设置的参数,此参数影响显示时的显示比例。

● 显示基准点

基准点X、Y,是为图形显示时设置的参数,此参数影响显示时的显示原点。

4.1.4 坐标系参数

按F4键,进入

					_					
CMIC	-43Y	10	铣床	数控系	₹\$Ĵ	ដ				
G54X	0000	00.	000	G54Y	00	0000.	000	G54Z	00000.	000
G55X	0000	00.	000	G55Y	00	0000.	000	G55Z	00000.	000
G56X	0000	00.	000	G56Y	00	0000.	000	G56Z	00000.	000
G57X	0000	00.	000	G57Y	00	0000.	000	G57Z	00000.	000
G58X	0000	00.	000	G58Y	00	0000.	000	G58Z	00000.	000
G59X	0000	00.	000	G59Y	00	0000.	000	G59Z	00000.	000
									_	
く控	制项	系	统	用 リ	Þ	坐标	系	出厂值	存参数	ל א

修改、设置 G54-G59 的坐标系相对于机床坐标系下的坐标。

4.1.5 出厂值

系统内部默认的一组参数(请谨慎使用,误用时可重新启动系统);

4.1.6 存参数

参数设置后,需长期保存时使用此功能(原参数丢失,请谨慎使用)。

4.2 自测试

在设置主窗口下,选"自测试"功能进入:

4.2.1 输入口测试

可以检测系统的输入信号连接及工作状态是否正常(确保 24V 电源正常的情况下)。

数字序号 01-24 分别对应于输入口 1-24,当对应输入口信号线与 24V 地短接时,对应的指示灯变为●,否则为〇。通过此操作可以测试输入信号是否正常。

为提高输入信号的可靠性,系统具有干扰过滤功能,信号需保持2毫秒以上。

当没有变化时,可能为如下情况:

24V 开关电源工作不正常、或联接有误。

该输入信号线联接不正常(断线、虚接、开关损坏)。

该路输入信号电路出现故障(器件损坏、线路板断路)。

4.2.2 输入态测试

当对应输入口信号线与 24V 地短接时,对应的指示灯变为●,否则为〇。通过此操作可以测试对应输入信号 是否正常。

当没有变化时,可能为如下情况:

设置输入口有误(见 I0 定义功能)。

该输入信号不正常(见输入口测试)。

4.2.3 输出口测试

CM10-43V10	铣床	数控系统	t				
M070							
M10〇							
M12O							
M14〇							
M16〇							
M180							
M200							
く輸入口輸	込态	输出口	输出态	按	键	Т	>
				10.5	10 AL		

数字序号 01-07 分别对应于输出口 1-7。

通过上、下标键改变所选择的输出点,光标随之移动。按空格键,对应指示灯由〇变为●,或由●变为〇。 同时对应的输出将由断开变为闭合,或由闭合变为断开。

当没有变化时,可能为如下情况: 24V 电源工作不正常、或联接有误。

该输出信号线联接不正常(断线、虚接)。

对应继电器不能正常动作或损坏。

该路输出信号电路出现故障(器件损坏、线路板断路)。

4.2.4 输出态测试

CM10-43V10 铣床	数控系统		
M070			
M10〇			
M12O			
M14O			
M16〇			
M180			
M200			
	於山口 於山太	12 64	
割八口 割八念	割田口 割田谷	1女 腱	>

通过上、下标键改变所选择的输出点,光标随之移动。按空格键,对应指示灯由O变为●,或由●变为O。 同时对应的输出口将由断开变为闭合,或由闭合变为断开。

当没有变化时,可能为如下情况: 设置输出点有误(见 I0 定义功能)。 T PCNC 北京多普康自动化技术有限公司

该输出信号不正常(见输出口测试)。

4.2.5 按键测试

CM10-43V	10 铣床	数控系统	t		
按 键:					
く輸入口	输入态	输出口	输出态	按键键	>

当有按键按下时,显示所按下的按键的名。

4.2.6 问题说明

由于输出驱动能力有限(不大于 50 毫安),所以当负载过大或输出与 24V 电源短路时将会造成系统输出电路的损坏。

对应输入信号无变化:输入信号联接有误(24V地不对、断线、虚接、未接入系统)。

对应输出无变化:输出信号联接有误(24V 电源不对、断线、虚接、未接入系统),负载过大,输出电路损坏。 对应按键无反应:按键失灵。

4.3 IO 定义

在设置主窗口下,选"IO 定义"功能进入:

TOPCNC 北京多普康自动化技术有限公司

4.3.1 设输入

CM10-43V10	铣床数控系统	统	
X负限位01	X正限位02	Y负限位O3	Y正限位04
X负限位05	Z正限位06	X机械零07	Y机械零08
Z机械零09	C机械零10	外启动11	外暂停12
外报警13	急停钮14		
< 设输入 诊	输出		>

设置对应输入功能所使用的输入口号。

通过上、下光标键移动光标,光标随之移动。

键入对应输入功能的输入口号,取值范围为1-24。当输入值为0时,关闭此输入功能。

当输入口有硬件故障时,可选择未用的输入口实现此输入功能,而避开此出现故障的输入口。

注:不能对不同的输入功能选择同一输入口 数值不能为负或大于 24

4.3.2 设输出

CM10-43V10	铣床数控	系統		
M07 01				
M10 02				
M12 03				
M14 04				
M16 05				
M18 06				
M20 07				
< 设输入 设	输出			>

设置对应输出功能所使用的输出口号。

通过上、下光标键移动光标,光标随之移动。

键入对应输出功能的输出口号,取值范围为1-7。当输入值为0时,关闭此输出功能。

当输出口有硬件故障时,可选择未用的输出口实现此输出功能,而避开此出现故障的输出口。

注:不能对不同的输出功能选择同一输出口

数值不能为负或大于7

5.系统指令及编程

5.1 编程概念/符号说明

5.1.1 相关概念

1. 插补功能:刀具沿着构成工件的直线、圆弧等曲线,多轴按规则同步运动的功能称为插补功能。

2. 进给功能:用指定的速度使刀具运动切削工件称为进给,进给速度用数值指定。例:让刀具以150毫米/分的速度切削,指令为:F150。此值为模态,后续有效。

3. 程序和指令:数控加工每一步动作,都是按规定程序进行的,每一个加工程序段由若干个**程序字**组成, 每个程序字必须由字母开头,后跟具体参数值(无空格)。

4. 编程方式:分为增量坐标方式和绝对坐标方式。增量坐标是以本程序段的起点(上一程序段的终点)为原 点,来描述本段程序的终点坐标;绝对坐标是以坐标原点为原点,来描述本段程序的终点坐标。

5.1.2 程序字及约定

- G 准备功能
- M 辅助功能
- P 循环次数或延迟时间或子程序名
- X/U X 轴绝对坐标/增量坐标
- Y/V Y轴绝对坐标/增量坐标
- Z/W Z 轴绝对坐标/增量坐标
- D 等距排列间距或增量角
- C 等距排列间距或起始角/C 轴增量运动值
- I 圆心 X 向相对圆弧起点的坐标等
- J 圆心 Y 向相对圆弧起点的坐标等
- K 圆心 Z 向相对圆弧起点的坐标等
- R 指定多圈螺旋线半径或圆弧的半径
- N 给出当前程序行的标号(无实际用途)
- F 指定进给速度
- S 指定主轴转速
- T 指定刀具号和刀具补偿号
- 注意 1: 在下面说明中,有如下约定:
 - m -- 坐标值,范围是±99999.999。
 - n -- 正整数。范围是 0-65535。
 - [] 为可选项。

注意 2: 指令执行顺序为,在程序中上一条程序的执行先于下一条;在同一条程序行内按 M, S, G 的次序执

「 PCNC 北京多普康自动化技术有限公司

行,而与在程序行中的次序无关。 同一程序段中出现两个G代码时,第0组优先。 同一程序段中不能出现两个同组的G代码,或两个M代码。 模态G代码后续可省略(用过其它代码后此模态取消)。 不产生运动的坐标轴(与上一段相同或增量为0),其坐标值和字段名可以不指定。 钻孔循环为设置行不执行,设定后每执行一次GOO-GO3或排列功能后自动执行一次,直到使用G80 后取 消。

程序中不能出现与代码格式无关的字符。

一个程序行不能占用两个显示行,即在一行内输入一个完整的程序行。

5.2 系统坐标及相关概念

本系统采用的坐标系统定义如下图所示:

坐标轴的取向以及正、负方向的选择可由用户根据实际情况或操作习惯确定。总之,既要符合理论规定,又 要兼顾操作者的习惯。

5.2.1 坐标轴的确定

Z轴:与刀具回转中心平行的方向。不同的机床(立式、卧式等),主轴的方向不同。不论何种机床,均以刀 具回转中心相平行的方向为Z轴。

X轴: 一般为当操作者站在正常的操作位置(与控制系统的安装位置与方向有关)时, 横向为 X轴。

Y轴: 第三个与 Z轴、X轴互为正交的直线轴为 Y轴。

C轴:绕Z轴旋转的回转轴。

4.2.2 轴方向的确定

均以工件不动,而刀具运动的相对运动为参考,即假设工件不动,刀具在上面作加工运动。

「 PCNC 北京多普康自动化技术有限公司

Z 轴正向为刀具渐渐远离工件的方向; X 轴正向为刀具向右运动的方向; Y 轴正向为符合左手坐标系规则的方向。

4.2.3 坐标系

机床坐标系:与机床的机械零点相对应的坐标系,其零点为返回机械零点,即行程开关所确定的点。此坐标 系与工件的尺寸、坐标点无直接的关系,代表系统当前所处的以机械零点为原点的坐标。丝杠导程补偿是以机床 坐标系相对应的。

工件坐标系:将被加工工件的某一位置指定为坐标零点,以便于加工时观察,此坐标系一般与程序坐标系相同。是因观察事物的角度不同,而出现的不同名称。本系统支持多个坐标系(G54-G59)。

程序坐标系:程序编写时假想的坐标系(一般对应于 G54-G59 的一个 或多个),此坐标零点在被加工工件上 某一位置,或在被加工工件以外的某一点上。程序坐标系坐标零的不同选择,将直接影响加工程序的编写。当接 到一个加工零件时,应先考虑加工工艺、基准平移、尺寸换算等,然后选择一个便于编写程序的基准点作为程序 零点。程序零点选定后,所有程序的编写均以此基准点为基础编写。

绝对坐标系: 与程序坐标系相对应, 是在程序坐标系下的绝对坐标。

增量坐标系:以起点为原点的坐标系,一般在增量编程(U, V, W)时使用。

5.2.4 与加工有关的坐标点

机械零点:以机械回零(行程开点)所确定的坐标点,当行程开关的位置发生变化时,其机械零点亦发生了改变。一但调定机械零点后,严禁操作者改变、移动行程开关的安装位置和精度,否则将因机械零点的改变而造成被加工零件的废品。

机床原点:与机械零点相重合,只是名称不同。

加工起点:程序编写完成后,在执行加工前,刀具应有一个正确的位置,此位置应与工件坐标系所设置的值 有关。此位置的不同将直接影响起点位置及开始进入加工时是否干涉。

程序零点:程序坐标系中的零点,即编程的基准点。此零点是通过坐标系(G54-G59)所设置的,坐标系的偏差将直接造成加工工件的偏移。

坐标零点:即程序零点,设定程序零点后,绝对坐标的零点。

5.2.5 其它相关概念

程序轨迹:即程序描述而形成的轮廓轨迹。程序编写时,并不关心刀具的半径,而通过半径补偿功能加以实现。

刀具中心轨迹:刀具实际运行的加工轨迹,即因半径补偿而偏移后的刀具中心的运动轨迹。当有刀具半径补偿,且刀半径不为0时,刀具中心轨迹与程序轨迹不重合。即绝对坐标显示与程序坐标不一致。

反向间隙:指某一轴改变方向时所引起的空程误差。其大小与丝杠螺母间隙、传动链的间隙、机床的刚性等 有关。使用时应设法从机械上消除此间隙,否则既使设置了此参数,在某些条件下,还会造成加工不理想。

速度倍率:对当前设定的 F 速度进行改变,即乘以速度倍率。一般在调试过程中试验最佳的加工速度,试验

TOPCNC 北京多普康自动化技术有限公司

完成后应将相应的 F 速度改为实际的最佳速度,即正常加工时,速度倍率处于100%位置。

5.3 G 指令(准备功能)

准备功能由 G 代码及后接 2 位数,规定其所在程序段的意义。G 代码有两种类型(模态、一次性),分为两组 (00 组、01 组):

G 代码	组别	功能	种类	备注
G92	。. 坐标系设定		一次性	必须在程序开头
G04	01	延时	一次性	
G00		快速移动(定位)	模态	
G01	01	直线插补	模态	
G02	01	顺时针圆弧插补	模态	
G03		逆时针圆弧插补	模态	
G17		X-Y 平面选择	模态	
G18	00	Y-Z 平面选择	模态	
G19		X-Z 平面选择	模态	
G36		子程序/循环体调用	一次性	
G37		子程序开始	一次性	
G38		子程序结束	一次性	
G54-G		近台位但是乙	<u> </u>	
59		·	一次性	
G20		程序循环结束	一次性	
G22		程序循环开始	一次性	
G80		取消钻孔循环	取消	
G81	01	单次钻孔循环	设置	
G82	-	退到基面多次钻孔循环	设置	
G83		回退定值多次钻孔循环	设置	
G84				
G85				
G86				
G87	-			
G88		攻丝循环	设置	
G89		设Z向基面	设置	
G40		取消铣刀半径补偿	模态	未用
G41	00	铣刀半径左侧补偿	模态	未用
G42		铣刀半径右侧补偿	模态	未用
G70	01	矩形循环	一次性	固定循环
G71		圆开循环	一次性	
G72		X 向进给扫平面	一次性	

	-				-	
	T	P	C	N	C	北京多普磨自动化技术有限公司
I.						

G73	Y 向进给扫平面	一次性
G74	圆周均布排列	一次性
G75	圆弧起、增角均布排列	一次性
G76	直线均布排列	一次性
G77		

注:同一个程序段可以使用不同组的G指令,如果同一个程序段中使用了一个以上的同一组G指令,最后一个有效!

编程时应注意绝对坐标和增量坐标的输入方法。

5.3.1 G92 工件坐标系设定

加工零件使用的坐标系称为工件坐标系,利用 G92 指令来设定。设定程序运行时,加工起点(**在工件坐标系** 中)的坐标值,必须放在程序开头,且只能使用一次,并用绝对坐标设定。X、Y、Z 值表示铣刀刀尖(中心)当前 位置在工件坐标系中的坐标值。

格式: G92 Xm Ym Zm

如果 G92 后不跟 X、Y、Z 坐标值,则以当前点为程序零点。取值为当前刀具位置在工件坐标系中的坐标。例: G92 X25.3 Y0 Z23

工件坐标系的确定方法:

- 结合机械零点功能设置工件坐标系: 假设设定的零点为已知,工件装夹的位置为已知,工件零点与设定 的零点的距离为已知,则可通过计算得到 G92 的值。以工件零点为原点,计算当前刀具在工件坐标系中 的坐标,即为 G92 的值。
- 【: 试切法寻找刀具起点:先设定刀具起点在工件坐标系中的坐标(G92 的值),然后通过试切法,分步使每 个坐标轴均移动到工件坐标系的零点上,此时将该轴坐标清零,再操作其余轴,直到各轴均操作完毕后, 按 G92 的设定值,移动到相应的坐标点。或移动到一个固定的坐标点后再修改 G92 的坐标值。

5.3.2 G00 点位运动

本指令可实现快速直线插补到指定位置,无切削动作。当有位移时,系统以**最高速度×速度倍率**从起点运动 到终点(刀具轨迹为直线)。

TOPCNC 北京多普康自动化技术有限公司

G00运动时,受速度倍率的影响。但与当前F速度无关。

格式: GO0 [X/Um] [Y/Vm] [Z/Wm] [Cm]

例: GOO X500 Y600

以系统最高速度×速度倍率运动到(500,600)。

注: 在 G00 程序代码中亦可加入 F 字段,只是 G00 的运动速度不受其控制,但可改变后续加工代码 (G01,G02,G03 等)的运动速度。 G00 运动时应避免其运动过程中与工件或工装发生碰撞。

5.3.3 G01 沿直线铣削

沿直线切削到点(Xm, Ym, Zm),或者在各个坐标轴方向增量切削(Um, Vm, Wm)。 注:进给速度可以由F命令指定。F在没有新的指令前,总是有效的。

格式: GO1 [X/Um] [Y/Vm] [Z/Wm] [Cm] [Fn]

例: G01 X200 Y100 F3000

- 以3米/分的速度运动到(200,100)点处。
- 例: G01 X200 V100 F3000

以 3 米/分的速度 X 轴运动到 200 毫米处, Y 轴运动 100 毫米。

5.3.4 G02/G03 圆弧插补

注:圆弧插补必须先选择正确的加工平面!参考平面选择指令 G17, G18, G19。

以当前点为起点,以给定坐标点为终点,以(Im,Jm)或(Jm,Km)或(Im,Km)为弧心点坐标(相对于起点的坐标, 必须给定),沿顺/逆时针方向的圆弧插补。

格式: G02/G03 [X/Um] [Y/Vm] Im Jm [Fn] (X-Y 平面圆弧)

格式: G02/G03 [Y/Vm] [Z/Wm] Im Jm [Fn] (Y-Z 平面圆弧)

格式: G02/G03 [X/Um] [Z/Wm] Im Jm [Fn] (X-Z 平面圆弧)

所谓顺时针和逆时针是指在机械坐标系中,对于 X-Y 平面(Y-Z 平面, Z-X 平面),从 Z 轴(X 轴, Y 轴)的正方向往负方向看而言,如下图例。

终点可以用绝对坐标指定,也可以用增量坐标指定。当不指定时为终点与起点相同,即为一个整圆。 圆心坐标由 I、J、K(分别对应 X、Y、Z)后的数值指定,以圆弧起始点为坐标原点,在该坐标系中圆弧圆心 的坐标即为相应的 I、J、K 的值。即圆心相对于起点的坐标。

5.3.5 G04 延时指令

延时相应时间。时间单位 0.1 秒。

格式: G04 Pn

例: 延时 20 秒

G04 P200

5.3.6 G17/G18/G19 平面选择

设定圆弧切削指令(包括 G02 和 G03)的有效平面,直到别的选择平面指令有效。指令后不跟任何参数。

- 格式: G17 选择 X-Y 平面
- 格式: G18 选择 Y-Z 平面
- 格式: G19 选择 X-Z 平面

说明:一但选定,后续即不变,直到下一次使用上述指令。

5.3.7 G40/G41/G42 铣刀半径补偿

刀半径补偿就是刀具半径在编程轮廓上偏移的能力, 启用刀具半径补偿后, 刀尖自动偏离编程轨迹一个刀具 半径, 偏移方向由 G41/G42 指定。

G40 为取消铣刀半径补偿。G41 和 G42 为设定铣刀半径补偿方式(左侧或者右侧),一直有效,直到补偿被取消。指令后不跟任何参数。

格式: G40	取消刀具半径补偿
格式: G41	铣刀半径左侧补偿
格式: G42	铣刀半径右侧补偿

如图所示,粗线为编程轮廓,细线为粗线的等距线,距离为刀具的半径,即刀具中心轨迹。左侧图形为加工 凸轮廓,右侧图形为加工凹轮廓。

当按 OACE---FCBO 的顺序编程时刀具应向右侧偏移,即使用 G42。

当按 OBCF--ECAO 的顺序编程时刀具应向左侧偏移,即使用 G41。

编程时,0AC/0BC 为增加的引入/引出段。AC/BC 段可为直线或圆弧,但本例中直线引入/引出不合理,应采用圆弧引入/引出。

以左侧图形的 OACE—FCBO 顺序编程如下:

G00	ХҮ	;	从 0 点到 A 点
G42	G02 X Y I J	;	进入右侧补偿,且顺圆弧从 A 点到 C 点
G01	ХҮ	;	直线从 C 点到 E 点
•••			
G01	ХҮ	;	直线从F点到C点
G02	ХҮІЈ	;	顺圆弧从 C 点到 B 点
G40	GOO X Y	;	取消刀半径补偿,且从 B 点回到 0 点

TOPCNC 北京多普康自动化技术有限公司

5.3.8 G36 子程序调用

调用子程序。P为子程序名称(由数字组成,取值范围为 1-32768)。本系统是以子程序号为索引的,请注意子程序号应正确。

格式: G36 Pn

例: G36 P1

说明:子程序调用最多可嵌套8层,不能超过8层。

子程序不能出现同名。

子程序不能递归调用。

所调用的子程序必须存在,且在 M02 至 M30 程序行之间。

5.3.9 G37/G38 子程序定义

	定	义	子程序。	0
--	---	---	------	---

格式: G37	Pn(子程序名) 子程序开始	台		
	•••(子程序体	:)			
G38		子程序结	束		
例: 调用子:	程序 001				
G92 X-50 Y	-50				
•••					
G36 P01	;	调用子程序			
•••					
M02					
G37 P01	;	01号子程序开始			
•••	;	01号子程序体			
G38	;	01号子程序结束			
G37 P02	;	02 号子程序开始			
	;	02号子程序体			
G38	;	02 号子程序结束			
M30	;	所有子程序均位于	M02至M30之间		
说明: 所有	子程序的书写	必须在 MO2(主程序	;结束)之后、M30	全部程序结束)之前	前。

所有子程序不能出现重名。

5.3.10 G54-G59 编程坐标系

切换到新的坐标系下进行编程

格式:	G54	切换到 G54 坐标系下
	G55	切换到 G55 坐标系下
	G56	切换到 G56 坐标系下

T PCNC 北京多普康自动化技术有限公司

G57	切换到 G57 坐标系下
G58	切换到 G58 坐标系下
G59	切换到 G59 坐标系下

说明:坐标系的设定必须正确,否则将造成加工错误。系统进入时默认 G54,当调用坐标系后,该坐标系一 直保持到关闭系统。

5.3.11 G70 铣削矩形空腔

以当前点为矩形空腔的一个顶点,以指令给出的(Xm,Ym)为空腔矩形的相应对角顶点。Dn 为进刀增量,Pn 为重复次数。

格式: G70 Xm/Um Ym/Vm Dm Pn

如上图所示,以当前点为基准点,以(Xm,Ym)为对角点,以D的值为矩形的扩展增量。 当D的值为正值时按上图左侧方式加工,为负值时按上图右侧方式加工。

注意:无刀具半径补偿,即与刀具半径无关。

D值为X、Y两方向的增量值。

5.3.12 G71 铣削圆形空腔

以当前点为圆形空腔的弧起点(同时也是弧终点),Rm为空腔圆弧半径。Dn为进刀增量,Pn为重复次数。 格式:G71 Rm Dm Pn

如上图所示,以当前点为基准点,以 R 的值为半径,以顺圆(G02)加工,以 D 的值为扩展增量,共扩展 Pn 次。

当 D 的值为正值时按上图左侧方式加工,为负值时按上图右侧方式加工。 注意:无刀具半径补偿,即与刀具半径无关。

TOPCNC 北京多普康自动化技术有限公司

从固定的位置,以固定的方向加工。

5.3.13 G72 X 向进给扫平面

以当前点为起点,以(Xm,Ym)为终点的斜线加工,Dm为X向每次进给量,Pn为重复次数。 格式:G72 Xm Ym Dm Pn

如上图所示,以当前点为起点,以(Xm,Ym)为终点,以Dn为增量,沿X方向加工,共扩展Pn次(上图中 n=3)。 当D的值为正值时按上图左侧方式加工,为负值时按上图右侧方式加工。 注意:无刀具半径补偿,即与刀具半径无关。

5.3.14 G73 Y 向进给扫平面

以当前点为起点,以(Xm,Ym)为终点的斜线加工,Dm为X向每次进给量,Pn为重复次数。

格式:G72 Xm Ym Dm Pn	
0	
	~

如上图所示,以当前点为起点,以(Xm,Ym)为终点,以Dn为增量,沿Y方向加工,共扩展Pn次(上图中 n=3)。 当D的值为正值时按上图左侧方式加工,为负值时按上图右侧方式加工。 注意:无刀具半径补偿,即与刀具半径无关。

5.3.15 G74 圆周均布排列

以(Xm, Ym)为圆心,以(Cm)为半径,Dm为起始角,Pn为均布孔数按逆时针方向进行等距排列。

格式: G74 [X/Um] [Y/Vm] Cm Dm Pn

如上图所示,以(Xm,Ym为圆心,以(Cm)为半径,以(Dm)为起始角,以360度/Pn为增量,沿逆时针方向均布 排列,共排列 Pn-1次。

角度值为度数,取值范围为-360—360。 如果设置了钻孔循环,则每运动一个位置后后执行一次钻孔循环。 注意:无刀具半径补偿,即与刀具半径无关,且只在 X-Y 平面内。

5.3.16 G76 直线均布排列

以当前点为第一点,以(Xm,Ym)为终点,Pn为均布孔距数进行等距排列。

如上图所示,以当前点(基点)为起点,以(Xm,Ym)为终点,以Pn为均布数,共排列Pn次。上图为Pn=5。 如果设置了钻孔循环,则每运动一个位置后后执行一次钻孔循环。 n代表间距数,由于起点孔已打,实际打孔也为n个。 可以按直线、斜线排列,均为等距孔排列。 注意:无刀具半径补偿,即与刀具半径无关,且只在X-Y平面内。

5.3.17 G20/G22 定义循环体

定义循环体的开始(G81)和结束(G80)。循环次数取值范围为1-32768。

格式: G22 P(循环次数) 循环体开始

…(循环体程序)

循环结束

说明:循环可以嵌套,最多8层。

G20

循环体至少被执行一次。

循环体内避免使用刀具半径补偿,或在循环体内完成一次进入并退出的半径补偿。

5.3.18 G80 取消钻孔循环

取消前面设置的钻孔循环,程序开始执行时默认为 G80。 格式: G80 取消钻孔循环

5.3.19 G81 单次钻孔循环

快速运动到Z向的的基面,然后以进给速度钻孔(深度为D值)。

说明:此钻孔循环为单次钻孔循环,同时可用于粗镗孔加工。

此代码为设置钻孔功能的代码。

正常钻孔(向下)时D值应为正值,当为负值时将向上钻孔。

快速移动到钻孔基面,然后开始钻孔加工。

当打多孔时,可依次用 G00-G03、排列指令给出定位坐标(X,Y),每运动一次自动调用一次钻孔功能。 当使用 G80 代码后,该钻孔循环被取消。

举例: 在工件坐标系的(50,50)、(100,100)、(0,100)三处钻三个孔,基面在 Z-10 处,加工深度为 20mm,加工速度为 100 毫米/分。

G92X0Y0Z10

G00Z0

G89Z-10	;	设设基面位置
G81D20F200	;	设钻孔循环(无钻孔操作)
G00X50Y50	;	移动到(50,50)后钻一孔
X100Y100	;	移动到(100,100)后钻一孔
XO	;	移动到(0,100)后钻一孔
G80	;	取消钻孔循环
GOOXOYOZ10	;	返回程序起点
M02		
M30		

5.3.20 G82 回退到基面的多次进刀钻孔循环

快速运动到 Z 向的的基面,然后以进给速度钻孔,首次钻孔深度为 I 值,第二次钻孔深度为 J 值,第三次钻孔深度为 K 值,第四次及后续钻孔深度为 D 值,并退回到到基面,共钻孔 n 次。

说明:此钻孔循环为多次钻孔循环,可用于较深的通孔或盲孔的钻孔加工。

此代码为设置钻孔功能的代码。

正常钻孔(向下)时 I, J, K, D 值应为正值,当为负值时将向上钻孔。

快速移动到钻孔基面,然后开始钻孔加工,每进给一次,均快速回退到钻孔基面(排屑)后,快速回到上次深度(留1毫米)位置,再次钻孔。

当循环少于四次时,可按 I, J, K, D 次序只给出前面的参数,后面的省略。

当 I, J, K 某个或全部不指定时, D 值必须给定, 且省略的参数按 D 值代替。

当打多孔时,可依次用 G00-G03、排列指令给出定位坐标(X,Y),每运动一次自动调用一次钻孔功能。 当使用 G80 代码后,该钻孔循环被取消。

举例:在工件坐标系的(50,50)、(100,100)、(0,100)三处钻三个孔,基面在 Z-10 处,首次加工深度为 20mm, 深度增量为 10mm,总加工深度为 100mm,加工速度为 100 毫米/分。

累次进也次数为: (100-20)/10+1=9;

G92X0Y0Z10

G00Z0

G89Z-10	;	设设基面位置
00/210	,	X X E H L L

G81I20D10P9F100 ;设钻孔循环(无钻孔操作)

41

GOPCNC 北京多普康自动化技术有限公司

G00X50Y50	;移动到(50,50)后钻一孔
X100Y100	;移动到(100,100)后钻一孔
XO	;移动到(0,100)后钻一孔
G80	; 取消钻孔循环
GOOXOYOZ10	;返回程序起点
M02	
M30	

5.3.21 G83 回退定值的多次进刀钻孔循环

快速运动到 Z 向的的基面,然后以进给速度钻孔,首次钻孔深度为 I 值,第二次钻孔深度为 J 值,第三次钻孔深度为 K 值,第四次及后续钻孔深度为 D 值,每次回退(排屑)深度由"设置"中"用户"下的参数设定。

格式: G83 [Im] [Jm] [Km] [Dm] Pn [F]

说明:此钻孔循环为多次钻孔循环,可用于较深的通孔或盲孔的钻孔加工。

此代码为设置钻孔功能的代码。

正常钻孔(向下)时 I, J, K, D 值应为正值,当为负值时将向上钻孔。

快速移动到钻孔基面,然后开始钻孔加工,每进给一次,均快速回退设定值 d(断屑)后,再次钻孔(设定的本次钻孔进给值+d)。

当循环少于四次时,可按 I, J, K, D 次序只给出前面的参数,后面的省略。

当 I, J, K 某个或全部不指定时, D 值必须给定, 且省略的参数按 D 值代替。

当打多孔时,可依次用 G00-G03、排列指令给出定位坐标(X,Y),每运动一次自动调用一次钻孔功能。

当使用 G80 代码后,该钻孔循环被取消。

举例:在工件坐标系的(50,50)、(100,100)、(0,100)三处钻三个孔,基面在 Z-10 处,深度增量为 10mm, 总加工深度为 100mm,加工速度为 100 毫米/分。

累次进也次数为: (100-10)/(10-2)+1=12.25=13;

G92X0Y0Z10

G00Z0

「 PCNC 北京多普康自动化技术有限公司

G89Z-10	; 设设基面位置
G84D10P10F100	;设钻孔循环(无钻孔操作)
G00X50Y50	;移动到(50,50)后钻一孔
X100Y100	;移动到(100,100)后钻一孔
XO	;移动到(0,100)后钻一孔
G80	; 取消钻孔循环
GOOXOYOZ10	;返回程序起点
M02	
M30	

5.3.22 G89 设置 Z 平面

为钻孔循环设置的快速运动到的 Z 向基面

格式: G88 Zm

说明:一但设定后一直有效,直到再次使用此指令设置新的值。 此指令设定的值只影响钻孔循环的基面。

5.4 S功能 (主轴转速指定)

主轴为变频调速模式!

格式: Sn

举例:设定最高转速 800r/min

S800

注意:由于主轴转速是通过伺服电机实现,则其"周脉冲数"设置应正确,否则将与实际转速不对应。

5.5 M 指令 (辅助功能)

实际应用中,加工开始前必须使主轴旋转,供给冷却液等,完成这些控制的指令为M指令。同一个程序段中, 只允许一个有效。

- MOO 暂停,等待启动
- M01 选择暂停(面板开关有效时相当于 M00, 否则不执行)
- M02 主程序结束
- M03 主轴正转
- M04 主轴反转
- M05 主轴关
- M07 冷却开(输出态 1)
- M09 冷却关(输出态 1)
- M10 输出态 2 开
- M11 输出态 2 关

M12	输出态 3 开
M13	输出态3关
M14	输出态4开
M15	输出态4关
M16	输出态 5 开
M17	输出态 5 关
M18	输出态 6 开
M19	输出态 6 关
M20	输出态7开
M21	输出态7关
M30	全部程序结束

6.系统连接

6.1 步进/伺服驱动器接口定义

6.1.1 接口定义

电机接口为四个 15 花 义如下表:

X 轴		
脚号	定义	
1	Xcp+	
6	Xcp-	
2	Xdir+	
7	Xdir-	
3	Vcc	
8	Xpz+	
4	Xpz-	
9	Xalm+	
5	Xalm-	

5 芯孔	插座,	定
Y	轴	
脚号	定义	
1	Ycp+	
6	Үср-	
2	Ydir+	
7	Ydir-	
3	Vcc	
8	Ypz+	
4	Ypz-	
9	Yalm+	

Yalm-

脚号

1 6

2

7

3

8

4

9

5

Ζź	铀	_	C ‡	油
1	定义		脚号	定义
	Zcp+		1	Ccp+
	Zcp-		6	Ccp-
	Zdir+		2	Cdir+
	Zdir-		7	Cdir-
	Vcc		3	Vcc
	Zpz+		8	Cpz+
	Zpz-		4	Cpz-
	Zalm+		9	Calm+
	Zalm-		5	Calm-

6.1.2 接口使用说明

伺服驱动器:

按上表所示将系统与伺服驱动器连接。

5

当不需检测伺服编码器的 Z 信号(对于高精度的机床,要求精确回零时使用,本系统未用),pz+,pz-不接。 当需要检测伺服报警信号时,可接入 alm+, alm-信号,此信号为常闭点,当任意一个伺服有报警时均产生报 警(本系统未用)。

步进驱动器:

差分方式: 接每个接口的 dir+, dir-, cp+, cp-。

非差分方式:应将 Vcc 接到驱动器的公共端,将 dir-, cp-接到驱动器的 dir, cp。

pz+, pz-不接。

如果有报警输出,可接入 alm+, alm-信号。此信号为常闭点,当任意一个伺服有报警时均产生报警(本系统 未用)。

接线要求:

采用多芯屏蔽线,每芯为0.2mm²的铜导线。

尽量缩短导线的长度。

屏蔽层单端接地。

接插要求:

TOPCNC 北京多普康自动化技术有限公司

联接要可靠。 严禁带电插拔。

6.2 输入连接

6.2.1 输入原理

6.3.2 输入定义

定义	脚号	脚号	定义
24G	1	14	输入信号 24
输入信号 23	2	15	输入信号 22
输入信号 21	3	16	输入信号 20
输入信号 19	4	17	输入信号 18
输入信号17	5	18	输入信号 16
输入信号 15	6	19	输入信号 14
输入信号13	7	20	输入信号 12
输入信号11	8	21	输入信号 10
输入信号9	9	22	输入信号 8
输入信号7	10	23	输入信号6
输入信号 5	11	24	输入信号4
输入信号3	12	25	输入信号2
输入信号1	13		

接线要求:

采用多芯电缆线,每芯为不小于 0.2mm²的铜导线。 尽量缩短导线的长度。 24V 地及各信号线,应与机壳、机床绝缘。 严禁带电插拔。

6.3 输出连接

6.3.1 输出原理

6.3.2 输出定义

输出由一个25芯孔组成,定义如下图所示:

定义	脚号	脚号	定义
+24V	1	14	+24V
24G	2	15	24G
输出 1	3	16	输出 2
输出 3	4	17	输出 4
输出 5	5	18	输出 6
输出 7	6	19	输出1开点
输出1闭点	7	20	输出2开点
输出2闭点	8	21	输出3开点
输出3闭点	9	22	输出4开点
输出4闭点	10	23	输出5开点
输出5闭点	11	24	输出6开点
输出6闭点	12	25	输出7开点
输出7闭点	13		

СТФРС	NC北京多普康自动化技术有限公司

定义	脚号	脚号	定义		
+24V	1	14	+24V		
24G	2	15	24G		
输出7开点	3	16	输出7闭点		
输出 7Com	4	17	输出6开点		
输出6闭点	5	18	输出 6Com		
输出5开点	6	19	输出5闭点		
输出 5Com	7	20	输出4开点		
输出4闭点	8	21	输出 4Com		
输出3开点	9	22	输出3闭点		
输出 3Com	10	23	输出2开点		
输出2闭点	11	24	输出 2Com		
输出1开点	12	25	输出1闭点		
输出 1Com	13				

接线要求:

采用多芯电缆线,每芯为不小于 0.2mm²的铜导线。 尽量缩短导线的长度。

24V、24V 地及各信号线,应与机壳、机床绝缘。 严禁带电插拔。

6.4 手脉连接

定义	Vcc	PA	Х	Ζ	В	$\times 100$		
脚号	1	2	3	4	5	6	7	8
脚号	9	10	11	12	13	14	15	
定义	Gnd	PB	Y	А	×10			

从系统内部接出 5V 电源,应注意不要电源短路。 5V 电源的正、负端联接要正确,否则将造成系统板或手脉的损坏。 当不使用外接手脉手持盒时,应采用屏蔽线。

6.5 系统电气联接说明

系统的 5V 供电电源应不小于 3A,且不禁正、负端接错,否则将造成系统板损坏。

系统内部不提供 DC24V 电源,因此用户需外加大功率直流电源(视负载的大小而定,一般不小于 2A),用户 在连接电缆时务必将+24V 和 24V 地与系统的+24V 和 24V 地联接良好。

24V 电源不能与大地、机壳等短接,当距离较大时应使用较粗的电气联接线,一般(6 米以内)可使用 0.2 平 方毫米的铜线。

保护型输入信号:如限位、急停等,均采用常闭联接方式,其它可根据系统的要求、参数的设置等情况选定。 从本系统到驱动器的连接线必须使用屏蔽线,在系统一端接地,降低干扰。

T PCNC 北京多普康自动化技术有限公司

电气柜中配线,应注意强电、弱电分离,避免强电弱电混在一起,且尽量减少交差,注意电磁干扰对系统的 影响。

系统接地线应采用较粗的铜线,一般应大于4平方毫米。并尽量缩短与接地端的距离。

7. 常见故障及排除

7.1 系统故障

系统无法引导进入控制窗口

可能液晶温度过低,不能正常工作。开机加热一段时间再重新开机。 引导软件不正常,则可能系统故障,应及时与我公司联系。

按键失常

可能按键损坏,可进入自检-键盘功能,测试键盘,按住常亮,抬起即灭。 可能按键抖动。可进入自检-键盘功能,测试键盘,按住常亮,抬起即灭,无闪烁。

7.2 操作故障

手动时无运动:

可能是此方向有限位,或急停按钮按下。

电子齿轮的分子为0。或电子齿轮分母为0

伺服驱动器或步进驱动器报警。

控制系统与驱动器间信号线联接有误。

运动距离有误差

电子齿轮比不合适。更改伺服驱动器的电子齿轮或系统的电子齿轮。

电机堵转或丢步(阻力过大、机械联接故障、电机功率过小、升降速曲线不合理)。

运动速度不对

升降速曲线参数不合理(极限速度应大于最高运动速度,但应小于8米/分;升降速时间过长或过短,最多1秒)。

速度参数设置不合理。

7.3 程序问题

代码与格式问题

加工程序可由 CAM 生成并通过 U 般传送到控制系统进行加工处理。由于不同的 CAM 及不同的后置处理, 所生成的加工程序代码亦有区别,所以生成的加工程序传入控制系统后,可能会出现语法错误或代码错误而不能 加工,应在计算机上对生成的加工代码进行修改。

本系统所能识别的坐标数据为公制,以毫米为单位,当为整数时为毫米数,小数点后3位有数数字,多出部 分被忽略。

程序的字段之间可加入空格作为分隔符,亦可无分隔符。

如果使用 G92,则 G92 不能出现在除第一行以外的任何位置。

程序默认为绝对编程方式,可用U、V代表X、Y向的增量坐标值。不支持G90/G91。

T PCNC 北京多普康自动化技术有限公司

运行速度可加入F字段,但后给的值应为整数,不能是小数。 程序的结束处应具有下列两行程序:

M02 (主程序结束)

M30 (全部程序结束,此行尾应以回车作为结束)

当有子程序时,所有子程序应放在 M02 到 M30 之间。

当一个整圆不能加工时,可能是由于计算的误差(包括生成加工代码时的舍入误差)所致,应改变切入点重试。

由于本系统是新开发的控制系统,所用的加工控制代码(G、M 代码)以够用为度,其它特殊定义的代码,有 待于后续的升级增强。

7.4 系统功能声明

本说明书如有不正确、不详尽处,以系统软件功能为准。

控制功能改变(升级), 恕不另行通知。

如需最新"使用操作说明书",只提供更新后的电子板说明书(.PDF).