QHY8PRO 彩色天文制冷CCD相机 用户手册

QHY8PRO用户手册 V1.0

目录	
1)安全信息	2
2)标准配置	3
3)选配件	5
4) 相机接口及说明	6
5)快速入门及相机安装	7
6) DC201 输入范围	9
7)产品使用温度和湿度	9
8)芯片结露问题	10
9)长时间使用及远程天文台注意事项	12
11)制冷器保护	15
12)CCD表面的清洁	16
13)关于GAIN和OFFSET设置	17
14) QHY8PRO机械尺寸	18
15)QHY8PR0后截距	19
16) 中心及倾角调节环使用方法	20
17)软件入门简易教程	21
18) QHY8PROCCD的图像校准	29
19)BIAS图像的拍摄	30
20) DARK图像的拍摄	31
21)FLAT图像的拍摄	32

QHY8PRO彩色制冷天文CCD相机使用手册

欢迎您购买QHYCCD天文系列产品。 在使用相机前,请您仔细阅读本使用手册以及注意事 项,以便能迅速掌握本产品的正确使用方法

1 重要的安全信息

幅面较大的CCD芯片和制冷器均属于易碎器件,相机受 到强烈撞击或者跌落时,可能导致损坏,因此在使用和 运输过程中中应避免碰撞、摔。

2 散热的通风口要避免阻挡。

3 9芯电源线接口避免热插拔。建议的连接顺序为:首先连接USB线,再连接9芯线,最后连接12V输入电源。关闭顺序为:先关闭12V输入电源,再拔掉9芯线,最后拔掉USB线。(如果先连接9芯线,再连接USB线,但这时候没有连接12V输入电源,会导致计算机找到unknowndevice)。

DC201的12V输入口,为内正外负,内径为2.1mm请检查 电源适配器的插头机型是否匹配。若极性接反会导致损 坏。使用不同内径(如2.5mm)的插头,会导致接触不 良的问题。

QHYCCD

标准配件

请检查包装箱内是否提供以下标准配置

5

选配件

以下为选配件(根据地区不同,需要单独购买,或由经

1:相机前端盖 2:密封室空气连接孔 3:M42/0.75内螺纹接环 (螺纹深度为3mm) 4:红外截止玻璃窗口 5:散热出风口

相机接口及说明

6:9芯电源线插座 7:USB插座 8:导星或控制信号输出 口 9:散热入风口

6

OHYCCD

快速入门及相机驱动安装

- 从www.qhyccd.com/download.html下载最新版的 QHY8PRO驱动安装程序(WINUSB 64/32版本),该版 本支持windowsXP,windowsVista和windows 7,64 及32位版本。
- 2 运行驱动安装程序,直到程序运行完毕。
- 3 使用USB线连接电脑与相机,暂不连接9芯电源。
- **围** 驱动安装成功后,相机的LED指示灯会闪烁。
- 6 从<u>www.qhyccd.com/download.Html</u>下载
 Driver Version Detector 解压后运行
 CameraVersion.exe文件,点击QHY8PRO,检测是
 否为最新版本。
- 使用9芯电源线连接DC201和QHY8PRO。注意9芯电 源线有EMC磁环一端应与DC201连接。

- 将DC201接通12V电源,DC201右上角(+15,-15,+5V)的指示灯亮。
- 从www.qhyccd.com/download.Html下载运行EZCAP 软件,打开camera点击scan camera后,此时 QHY8PRO显示为可选,点击QHY8PRO。
- 检查DC201上FAN和TEC指示灯是否亮,QHY8PRO的 风扇是否运转。

DC201输入电压范围及功率

DC201需12V稳压电源输入。最大允许输入范围为 11-13V。连接蓄电池,充满的蓄电池电压可能超过 13V。电压太高可能减少TEC和风扇的寿命。必须在 这种情况下使用时,应限制最大制冷器功率。 EZCAP软件Favorite—"TEC PROTECT"选项,请勾取 该选项。ASCOM已默认设置该项。

QHY8PRO的功率与制冷器PWM功率设置有关,范围为 3.6Watt到30Watt.因此应选择12V4A以上的供电电 源。

产品使用温度和湿度

QHY8PRO使用温度为-20摄氏度到+30摄氏度。 相对湿度RH=0%-90%

芯片结露问题

一定的相对湿度下,温度低于露点,物体表面出现结露 或结霜,这是自然规律。结露或结霜出现在芯片和玻璃 窗表面,会对成像产生影响。芯片表面结霜较多,这些 冰晶融化成水,流至相机电路板,易产生短路并带有腐 蚀性,导致相机损坏。相机在使用前后应避免出现此问 题。

芯片表面结露

芯片处在密封性高的环境,芯片表面出现结露,说明密 封环境内相对湿度较大,此时需干燥处理。

常用干燥使用方法:

①旋开前端盖上密封腔连接螺丝。

②将干燥管内装满硅胶干燥剂。装干燥剂前需加入少量 棉花,避免干燥剂颗粒掉入密封腔内。干燥剂必须保证 有效。

③将干燥管旋入空气连接接口处。检查橡胶密封圈状况,保证其气密性。

④约24小时后,密封腔内相对湿度可获得降低。

快速干燥使用方法:

准备干燥的压缩空气,(或手动气泵,让空气缓慢 经过干燥管)稍微旋松前端盖,使气流通过空气连 接口,进入密封腔,从前端盖与机身之间旋松处流 出。几分钟后,密封腔内相对湿度可以获得降低。 采用此方法,应避免气压太大。太大的气压可导致 芯片或制冷器损坏。

红外截止玻璃窗口结露

外界环境湿度大时,若制冷温度太低,因密封腔内 部空气对流,会导致红外截止玻璃窗口温度降低, 使玻璃窗口结露。

QHY8PRO采用较厚玻璃窗口,有效改善上述情况。 极端情况下,发生此问题,请采用以下方法: ①加装QHYCCD生产的M42接口玻璃窗口加热器。加

热器通过提高玻璃窗口的温度来避免结露问题。请向经销商咨询购买。

②减少制冷量。QHY8PR0最佳制冷温度为-15摄氏度 到-20摄氏度之间,应根据实际情况设置制冷器温度。

③避免CCD玻璃窗口朝向下方。CCD玻璃窗口朝向下 方时,冷空气更易集中在玻璃窗口,导致玻璃窗口 温度更低。 相机使用结束后,应关闭所有电源。避免关闭制冷器后,相机部分仍保持供电的情况。因为相机使用结束后,芯片周围可能存在冰晶。冰晶融化后,流至电路板上,电路板保持供电的情况下会出现短路或者电化学腐蚀情况,容易损坏相机。

长时间使用及远程天文台使用注意事项

CCD长时间使用,或者远程天文台使用时,请注意安 全须知,并与经销商进行咨询。

注意事项:

①使用前需要反复检查密封腔内是否处于干燥状态。其方法为制冷后,观察芯片周边是否产生较多 冰晶,若出现,则说明密封腔内相对湿度较大,需 要进行干燥处理。

②检查密封腔气密性。其方法为使用手动泵从密封 腔空气连接口向内部加压(注意压力不能太大,不 能超过1.1MP),观看压力是否迅速减小,若迅速 减小,则说明气密性不良,检查前端盖是否拧紧。 ③将干燥管装满有效的干燥剂,始终与CCD连接。以

获得较长时间的持续的干燥效果

④不建议CCD长期(几天或几周)处于供电工作状态。应使用控制器对12V输入或交流输入进行控制。

OHYCCD

制冷器保护

QHY8PRO的双层制冷器最大可以达到40-45摄氏度的 环境温差,因此需要注意避免热冲击。热冲击是指 制冷器在温度快速变化时,由于膨胀或者收缩,导 致的制冷器内部应力变化。强烈的热冲击会缩短制 冷器的使用寿命,甚至导致制冷器的永久损坏。 避免制冷器热冲击的方法,在开机时,避免将制冷 器功率调节到最大值,应逐步增大制冷器功率。在 关机时,如果制冷器功率较大,应该逐步减小制冷 器功率。然后关闭电源。

CCD表面的清洁

如果CCD表面有较大的灰尘,影响成像效果,则可以 打开前端盖进行芯片表面清洁处理;对于较小的灰 尘,建议尝试使用平场的方法进行处理,而无需打 开前端盖。

清洁方法

①逆时针拧开前端盖 ②使用手动泵对表面的灰 尘进行清洁。对于无法吹 掉的污渍,使用镜头纸或 者市面上可以买到的单反 相机专用清洁套装对CCD表 面进行清洁。

对于镜头纸,正确的清洁方法为 ①首先用肥皂清洗双手。 ②取一张镜头纸,折叠一次或者两次(不可折叠太 多,折叠太多以后,镜头纸会产生很尖锐的棱角, 可能划伤CCD玻璃表面) ③对着CCD哈一口气,然后用手压在镜头纸上,保持 适当的压力,对CCD表面进行擦拭。 ④清洁完毕以后,重新安装CCD前端盖。如果环境湿 度较大,则需要对CCD密封腔内部进行干燥处理。

关于GAIN和OFFSET设置

QHYCCD开放了相机内部ADC的GAIN和OFFSET设置,以 便用户获得最佳的使用性能。

GAIN是ADC的前置可编程增益放大器的增益设置,范围为0-63。OFFSET是ADC的电压偏置设置。正确的设置OFFSET和GAIN,可以改变CCD的系统增益,使得CCD的输出信号范围与ADC的量化范围相匹配,从而获得最好的动态范围。

适合于大多数情况的校准方法

①首先设置增益为0

②在曝光时间为0的情况下,盖上镜头盖,拍摄一张 BIAS帧。

③观看所拍摄图像的局部平均值(可以用EZCAP的 Noise Analyze功能)

④理想的平均值在500-1000左右,如果值偏大,则减小0FFSET,如果值偏小,则增加0FFSET。

⑤重复2-4步,获得理想的OFFSET值。

⑥打开镜头盖,增加曝光时间,对着均匀的灯光(如 灯箱,或者液晶屏,拍摄一张曝光饱和的图像。 ⑦观看所拍摄图像的局部平均值,如果小于60000, 则增加GAIN,如果全部为65535,则减小GAIN

①重复6-7步,得到适合的OFFSET ②再上述GAIN下,在此重复2-4步,得到更为准确的 OFFSET.

注: 对于某一些QHYCCD和2*2,3,3,4*4增益下, 即使增益为0时,也为65535,这种情况下,就 将增益设置为0。

QHY8PR0机械尺寸

QHY8PR0后截距

OHYCCD

如果没有连接中心及倾角调节环,QHY8PRO的后截距为 20mm. 如图所示

连接中心及倾角调节环以后,QHY8PRO的后截距将增加约3mm.

中心及倾角调节环使用方法:

- QHY8PRO本身具有M42/0.75的螺纹,可以直接与望远镜 连接。如果需要调节CCD中心及倾角,需要使用中心及 倾角调需要注意的是,如果使用此调节环,QHY8PRO后 截距将增加大约3mm.
- 中心调节时,将调节环周围的三颗螺丝松开,将调节环 套入QHY8PRO的燕尾槽中,此时调节三个螺丝的位置, 可以实现最大约1mm的中心位置调节。
- ③ 倾角调节时,略微松开三颗螺丝,在调节环侧面有一个 顶丝,调节该顶丝的位置,可以实现倾角角度大小的调 节。将QHY8PR0与调节环相对旋转,可以实现倾角的方 位调节。
- ④ 调节好中心和方位后,将三颗螺丝锁死。

软件入门简易教程

尽管有丰富的软件支持QHY8PRO相机,但是我们仍 然强烈建议您初次试用的时候使用QHY8PRO标配的 EZCAP软件。EZCAP软件具有最大的硬件兼容性,您 可以使用EZCAP软件验证您的相机能否正常工作。

EZCAP

1 运行EZCAP. exe

- ┏ 在Camera菜单栏中选择Scan Camera
- 如果检测到相机,则会显示【QHY8PRO】,请点击 【QHY8PR0】。EZCAP软件左边的Preview栏目会自 动打开。
- **④** 设置GAIN为0, OFFSET为125
- 5 设置Exposure曝光时间
- 6 点击Snap按钮,相机开始曝光,并且显示图像
- **7** 调节Histgram栏里的灰度拉伸条,选择合适的拉伸 范围。通常情况下,可以观察Histgram的强度图 谱,然后调节拉伸条,让拉伸条所涵盖的范围正好 包括强度谱线主要的分布范围。

- **8** 勾取Live Preview,可以实现连续预览。建议使用 较短的曝光时间(100-500ms),从而获得较快的预 览谏度。
- 调节镜头或者望远镜焦距,使得图像基本清晰。 9 调节镜头或者10 停止连续预览
- **1** 通过鼠标在图像区域点击,选择一个合适的目标或 者星点。
- 12 打开FOCUS栏,点击Focus按钮,获取一张对焦图像
- 13 调节Histgram栏里的灰度拉伸条,选择合适的拉伸 范围。
- □ 勾取Live Focus,进行连续预览。可以通过鼠标在 图像区域点击,更为准确的选择目标。此时,在 Screen View栏中会显示强度分析曲线,以及5倍放 大对焦图像。在FWHM中会显示星点半宽和星点峰值 强度。一般说来,FWHM越小,峰值强度越高,说明 对焦越好。
- 15 对焦完毕以后,打开Capture栏,进行正式拍摄。
- **16** 设置合适的增益和偏置以及曝光时间。
- **⑰** 选取1*1合并模式,选择低速读出。点击Capture进 行拍摄。

EZCAP可以对相机进行手动或者自动的温度控制。 在Setup菜单中选择Temp Control。温度控制窗口 出现,可以看到一共有三个选项:TEC OFF, Manuel和Auto Control.其中TEC OFF为关闭制冷 器,选中以后制冷器电源会立即关闭。Manuel为手 工控制,此时可以通过左边的PWM功率调节条,控 制制冷器功率。范围从0%到100%。Auto Control为 自动恒温控制,此时可以调节右边的目标温度调节 条,设置所需要的温度。

EZCAP输出的图像中,有可能包含overscan区域和 optic black区域。如图所示。这些区域的数据可 以用于CCD图像的预处理。注意不是所有软件都可 以输出这些区域。

QHYCCD

MAXIMDL ASCOM连接方式

拍摄步骤

- 在http://ascom-standards.org/下载最新版本的 ASCOM平台软件,请注意ASCOM是否有最新的 UPDATE,如果有,请一并下载
- 2 安装ASCOM平台软件,同时安装UPDATE软件
- ③ 按照<u>http://www.qhyccd.com/download.html</u> 里面 所指示的ASCOM驱动连接,下载并安装QHY8PRO的 ASCOM驱动。
- Ⅰ 运行MAXIMDL软件,选择工具栏的相机图标。将出 现一个Camera Control的窗口。在该窗口的Setup 中,按Setup Camera按钮,在Camera Model下拉选 单里面选择ASCOM. 点击Advanced按钮, 在ASCOM Camera Choose窗口中,选择下拉菜单中的相机型 号: QHY8PRO-StarSenseSci。 然后点击在 Properties 按钮,设置一些常用参数,如GAIN, OFFSET, 以及读出速度等。点击确定以后, 回到 Camera Control窗口,点击Connect按钮。 5 在Camera Control里面,选择Exposure分栏, 6 选择Find Star,在Seconds里面设置曝光时间。 在Option的弹出菜单里面,勾取"No Calibration" 8 在X和Y里面设置合并模式,例如选择X=4,Y=same 按动Start,开始曝光和拍摄 10 拍摄完毕,图像会显示出来,然后通过Screen
 - Stretch工具,调节图像的位数拉伸。

拍摄彩色图像:

QHY8PR0的2*2,4*4合并模式,均返回黑白图像。因此,2*2,4*4合并模式仅用于图像的预览,对焦等。若要获得正式的彩色图像,请使用1*1合并模式。

从上述步骤8开始:

■在X和Y里面设置合并模式,选择X=1,Y=same

9按动Start,开始曝光和拍摄

●拍摄完毕以后,图像会显示出来,此时显示的为 RAW格式图像,仍然为黑白图像。在MAXIMDL的 Color菜单栏里面选择Convert Color.在Convert Color窗口选择OFFSET X=0,Y=0,Select Camera下 拉框中选择Generic RGB.在preview窗口中预览图 像色彩是否正确。按OK按钮,等待片刻,即可得到 彩色图像。若色彩不正确,请尝试改变Convert Color窗口中的OFFSET X,Y的值以及Select Camera 中的相机类型。

AstroART ASCOM连接方式

- 在http://ascom-standards.org/下载最新版本的 ASCOM 平台软件,请注意ASCOM 是否有最新的 UPDATE,如果有,请一并下载
- 2 安装ASCOM平台软件,同时安装UPDATE软件
- 3 按照<u>http://www.qhyccd.com/download.html</u>里面 所指示的ASCOM驱动连接,下载并安装QHY8PRO的 ASCOM驱动。
- 安装AART3.0以后,请安装AART4.0升级包。并且将 AART的CCD链接库(piccdgui.dll,在AART网站有下 载)拷贝到AART安装目录。再安装AstroART的 ASCOM驱动程序

http://www.astrosoft.be/CURRENT_RELEASE/ASCO
M_AstroArt.exe

- 运行AstroART软件,在Plug-in菜单栏选择CCD Camera,出现CCD Camera Control Panel窗口。在 Setup分栏里面选Imaging/GuideCamera类型为 ASCOM。点击SETUP按钮,选择QHY8PRO-StarSenseSci在Properties里面设置合适的GAIN和 OFFSET。点击OK。
- 6 若QHY8PRO成功连接, AART会显示温度控制窗口, 请将Target设置为所需要的温度值。

- 在CCD控制窗口的Setting分栏里设置像素合并模式。
- 8 在CCD控制窗口下端设置曝光时间,点击START按 钮,拍摄一张图像。
- ① 在1×1合并模式下,若要获得彩色的图像,需要使用color菜单中的CCD Color Synthesis功能,进行色彩转换。选择RGB图像,以及合适的X,Y OFFSET.点击OK即可。

QHYCCD

QHY8PR0 CCD的图像校准

图像校准是指对CCD进行BIAS场,DARK场,FLAT场 校准。通过校准,可以完全去除CCD的热噪点,同 时使得图像亮度均匀,以及去除CCD表面由于灰尘 所导致的暗斑。图像校准是进行严肃的天文拍摄所 必须进行的步骤。

为了获得准确的校准信息,需要利用QHY8PRO的温度控制器,将CCD设置在恒温状态。并且温度要与正式拍摄时使用的温度相同。

EZCAP 中, 温度控制在Setup菜单栏中的Temp Control中,选择Temperature Control窗口右侧的 温度调节条。设置温度,然后选择Auto Control, 即可进入恒温控制。

CCD需要一定时间才能达到目标温度。等温度稳定 后,即可开始拍摄校准图像。

CCD图像校准原理:

校准后图像=[(L-B)-(D-B)]/(F-B)=(L-D)/(F-B) 其中L为实际拍摄图像,D为Dark Frame图像,B为 BIAS图像,F为FLAT图像。

注:大量的BIAS或者DARK图像叠加以后,可能在 叠加后的BIAS或者DARK图像上出现垂直条纹。这 个是正常情况。经过校准以后的图像,不会出现 这样的条纹

BIAS图像的拍摄

BIAS图像是指曝光时间为0时的图像。拍摄时需要避免任何光进入CCD传感器中。因此需要盖上镜头盖。 将曝光时间设置为0,然后使用低速,1*1模式拍摄若 干张(10张-50张)BIAS图像。保存,然后用叠加软 件进行叠加(选用平均叠加,不进行位置匹配,得到 一张BIAS Master图像。保存该图像。

BIAS图像局部剪裁(B)

OHYCCD

DARK图像的拍摄

DARK图像是指曝光时间与正式拍摄时间相同的图像。拍摄时需要避免任何光进入CCD传感器中。因此需要盖上镜头盖。

将曝光时间设置为与正式拍摄时间相同,然后使用 低速,1*1模式拍摄若干张(10张-50张)BIAS图 像。保存,然后使用叠加软件进行叠加,得到一张 DarkMaster图像。保存该图像。

Dark图像局部剪切(D)

经过BIAS场校准的DARK图像(D-B)

FLAT图像的拍摄

FLAT图像可以校正由于光学系统的不均匀性造成的中心亮,边缘暗的问题,也可以校正由于CCD芯片表面会成导致的图像污渍问题。

平场校准的方法是: 需要一个均匀发光的灯箱。将 灯箱放置于望远镜镜头前。设置适当的曝光时间, 进行曝光。连续拍摄10-50张平场图像。保存并进 行叠加,得到一张FLAT Master图像,保存该图 像。

要获得准确的平场校准,需要注意以下事项。

应在拍摄之前或者拍摄结束之后立即拍摄平场图像。以避免由于拆装设备后,振动导致CCD表面灰 尘的位置发生变化。

曝光量的选择,以最大动态范围的30%为宜,即得 到的平场图像,像素值为20000-30000。

获得的BIAS Master, DARK Master和FLAT Master 图像将作为图像后期处理时,对所拍摄图像进行校 准的数据。

在MAXIM DL使用QHY8PRO导星

QHY8PRO自带有导星口,用户可以使用QHY8PRO的导星口通过ASCOM输出导星信号进行导星。QHY8PRO默认使用1×1合并,正常速度读取模式,截取拍摄图像的一部分作为导星的图像区域。

1 首先将QHY8PR0用导星线和赤道仪导星口相连接。

运行MAXIMDL软件,选择工具栏的相机图标。将出现一个Camera Control的窗口。一般导星使用Camera2,在该窗口的Setup中,按Setup Camera按钮,在Camera Model下拉选单里面选择ASCOM.点击Advanced按钮,在ASCOM Camera Choose窗口中,选择下拉菜单中的相机型号:QHY8PRO-StarSenseSci。然后点击在Properties按钮,设置一些常用参数,如GAIN,OFFSET,以及读出速度等。点击确定以后,回到Camera Control窗口,点击Connect按钮。

3 在Camera Control里面,选择Guide分栏。

④ 在Seconds里面设置曝光时间,单位为秒。

- 点击"Settings",打开"Guider Settings"窗口,在 "Settings"选项卡的"Exposure Settings"区域点击 "Reset",将拍摄区域恢复为最大范围,点击"OK"保存。
- 选择Expose,点击Start开始曝光,拍摄一张图像。

- 拍摄完毕,图像会显示出来,然后通过 Screen Stretch工具,调节图像的位数拉 伸。
- B 再次点击"Settings",打开"Guider Settings"窗口,在刚才拍摄的图像上用 鼠标拖动拉出一个区域,这个区域就是 CCD要拍摄的区域。点击"OK"保存。
- 选择Expose,点击Start拍摄一张新的图像。这张图像就是刚才选择的那部分区域的图像。
- 在拍摄的图像上找到一个星点,用鼠标拖动将其框选出来。

11 点击"Calibrate",开始校准赤道仪。

- ☑ 校准完成后,点击"Options",选择"No Calibration",即对导星的图像不进行校准。
- **13** 选择"Track",点击"Start"开始导星。
- 14 点击"Graph"按钮,打开导星的精度图。