

ZTE MU301

Mini PCI-E模块

产品说明

中兴通讯股份有限公司

地址: 深圳市科技南路 55 号

邮编: 518057

电话: (86) 755 26779999

技术支持网站: http://www.zte.com.cn

电子邮件: mobile@zte.com.cn

法律声明

本资料著作权属中兴通讯股份有限公司所有。未经著作权人书面许可,任何单位或个人不得以任何方式摘录、复制或翻译。

侵权必究。

对本手册中的印刷错误及与最新资料不符之处我们会及时改进。这些改动不再事先通知,但会编入新版手册中,中兴通讯保留最终解释权。

Copyright © 2010 ZTE CORPORATION.

版本号: 2.0 发布日期: 2010年2月

修改记录

版本	修改日期	更改理由	主要更改内容
V2.0	2010-2-26	升级	完善内容,升级到 V2.0

目 录

1	综述		6 -
	1.1 简介		6 -
	1.2 产品外观		
2	特性		_ & _
_			
	2.1 主要特性		
	2.2 技术规格		
	2.2.1 硬件特性		
	2.2.2 可靠性		
	2.2.2.1 极限工作条件	Ÿ ————————————————————————————————————	
	2.2.2.2 推荐工作条件	-	
	2.2.3 逻辑电平特性		
	2.2.4 天线性能技术要求	N N A	
	2.2.5 结构尺寸		
	2.2.6 尺寸配合注意事项	,	15 -
3	系统架构		17 -
	2.1 硬件系统加均		17
	3.1 咬口水机木构		17
	3.2 扒 [水 51. 木 19		1 / -
4	业务和应用		19 -
	3.2 软件系统架构		19 -
	4.2 SMS 业务		19 -
	4.3 MMS 业务		19 -
	4.4 语音业务(可选)		19 -
	4.5 WMMP 业务(可选)		20 -
	4.6 可视电话(可选)		20 -
	4.7 支持的操作系统		20 -
5	控口		21
,	接口	•••••	21 -
	5.1 电源接口		21 -
	5.2 天线接口		
	5.2.1 射频连接器		
	5.2.2 天线接口特性		
	5.3 通信接口		
	5.3.1 USB 接口		
	5.3.2 PCM 接口		
	5.4 USIM 卡接口		
	5.4.1 USIM 接口概述		
	5.4.2 接口推荐电路		
	5.4.3 卡座接口 ESD 防护		
	5.5 AT 命令接口		26 -
6	调试环境说明		27 -

6.1 硬件调试环境	27 -
6.1.1 调试板概述	27 -
6.1.2 调试板接口介绍	28 -
6.1.2.1 Mini PCI-E 接口介绍	28 -
6.1.2.2 Mini USB 接口介绍	28 -
6.1.2.3 电源适配器接口介绍	29 -
6.1.2.4 USIM 卡座接口介绍	29 -
6.2 软件调试环境	29 -
6.2.1 驱动安装	29 -
6.2.2 AT 命令调试	29 -
6.2.3 业务应用 demo 程序	30 -
7 测试及认证	31 -
7.1 遵循规范	
7.2 认证	
8 缩略语	

1 综述

1.1 简介

ZTE MU301(以下简称MU301)模块是一款满足工业级要求的嵌入式Mini PCI-E模块产品,支持网络制式: TD-SCDMA/HSDPA/GSM/GPRS/EDGE,提供的业务: 数据、语音、彩信、短消息等,支持中国移动WMMP3.0规范,可作为M2M模块使用。

MU301模块可广泛应用于笔记本、MID、阅读器、无线公话、接入盒、远程监控、车载台、无线多媒体终端和无线个人终端等系统中。同时该模块支持中国移动标准AT命令集,亦可根据客户需求提供灵活的定制产品。

MU301支持标准如下:

- 高速下行分组接入技术(HSDPA)
- 通用移动通信系统(UMTS)
- 增强型数据速率GSM演进技术(EDGE)
- 通用分组无线服务技术(GPRS)
- 全球移动通讯系统(GSM)

MU301支持的功能如下:

- HSDPA/TD-SCDMA分组数据业务
- EDGE/GPRS分组数据业务
- TD-SCDMA/GSM短消息业务
- TD-SCDMA/GSM语音业务

1.2 产品外观

图 1-1 MU301 外观图片

2 特性

2.1 主要特性

MU301主要特性如下:

- TD-SCDMA A频段: 2010~2025MHz,EDGE/GPRS/GSM
- HSDPA数据业务能力: DL/UL:2.8Mbps/384Kbps
- TD-SCDMA数据业务能力: DL/UL:384Kbps/128Kbps
- EDGE数据业务能力: DL/UL:236.8Kbps/118.4Kbps
- GPRS数据业务能力: DL/UL: 85.6Kbps/42.8Kbps
- TD-SCDMA/GSM网络下基于CS/PS域的短消息服务
- TD-SCDMA/GSM网络下的语音服务
- TD-SCDMA/GSM网络下的彩信服务
- STK/USAT功能
- 支持Windows XP/Windows Vista/Windows 7/Linux/WinCE操作系统

2.2 技术规格

2.2.1 硬件特性

表2-1 产品硬件特性

产品特性	描述					
工作电压	DC 3.3V (±	DC 3.3V(±10%)(标准 Mini PCI-E 接口)				
	GSM/GPRS 9	GSM/GPRS 900: 33dBm (±2)				
	GSM/GPRS 1800: 30dBm (±2)					
最大输出功率	EDGE 900: 27dBm (±3)					
	EDGE 1800 26dBm (±3)					
	TD-SCDMA:	: 24dBm (+1/-3)				
工作电流(CLASS10)	测试电压	3. 3V				

	测试制式	TD-SCDMA	电流 (mA)	功耗 (mW)
	底电流		1.86	6. 14
	待机时电流		2. 7	8. 91
	找网最大电		001	
	流		221. 4	730
	通话时电流		225. 2	743
	测试制式	GSM		
	底电流		1. 75	5. 77
	待机时电流		4. 1	13. 53
	找网最大电 流		195. 4	644
	通话时电流	功率等级		
	GSM900	5	410.7	1353
		12	227. 8	749
		19	189. 6	624
	DCS1800	0	364. 1	1201
		8	212. 4	699
		15	191	630
	测试制式	GPRS	*	
	底电流	V V V	1. 75	5. 77
	待机时电流		3. 6	11.8
	找网最大电		202. 1	667
	流		202. 1	007
	通话时电流	功率等级		
	GSM900	5	651. 9	2148
		12	306. 7	1009
		19	230. 3	759
All K	DCS1800	0	570. 5	1881
		8	275. 7	907
	*	15	232. 9	765
	测试制式	EGPRS		
	底电流		1. 75	5. 77
	待机时电流		3. 61	11. 9
	找网最大电		254. 5	838
	流		201. 0	000
	通话时电流	功率等级		
	GSM900	8	425. 4	1402
		13	291. 7	960
		19	243. 5	801
	DCS1800	2	415. 6	1369
	DC91900	4	410.0	1909

		8	283. 5	933		
		15	251	828		
	GSM900: 93	35∼960MHz				
接收频率范围	DCS1800: 1805~1880 MHz					
	TD-SCDMA:	2010~2025 MHz				
	GSM900: 89	00∼915 MHz				
发送频率范围	DCS1800: 1710~1785 MHz					
	TD-SCDMA: 2010~2025MHz					
灵敏度	GSM: ≤-102dBm					
火蚁没	TD-SCDMA: ≤-108dBm					
最大下行速率	2.8Mbps					
最大上行速率	384Kbps					
	可在GSM、TD	D-SCDMA间自动切换	(可处于以下几种模式:	优先GSM模式、优先		
双模自动切换	TD-SCDMA模式、仅GSM模式或仅TD-SCDMA模式)					
正常工作温度范围	-10~+75°C					
极限工作温度范围	-20~+80°C					
存储温度范围	-40~+85°C					
湿度范围	推荐45%~6	50%HR,极限<95%	HR			

表2-2 模块的Mini PCI-E接口管脚定义

管脚	第一定义	信号说明	方向(对模块而
4			言)
52	+3.3Vaux	电源	I
50	GND	地	I
48	NC	/	
46	NC	/	
44	NC	/	
42	LED_WWAN#	指示灯控制信号(低电平有效)	0
40	GND	地	I
38	USB_D+ (DP)	USB 数据线 D+	IO
36	USB_D- (DM)	USB 数据线 D-	IO
34	GND	地	I
32	NC	/	
30	NC	/	
28	NC	/	
26	GND	地	I
24	+3.3Vaux	电源	I

22	NC	根据中国移动规范要求定义为 NC	I
20	W_DISABLE	射频开关信号,低电平时关闭射频,	I
		高电平时开启射频	
18	GND	地	I
16	NC	/	
14	SIM_RESET	SIM 卡复位	О
12	SIM_CLK	SIM 卡时钟	0
10	SIM_DATA	SIM 卡数据	IO
8	VSIM_ABB	SIM 卡电源	0
6	NC	/	
4	GND	地	I
2	+3.3Vaux	电源	I
51	PCMIN	PCM 输入	I
49	PCMOUT	PCM 输出	0
47	PCMSYNC	PCM 同步帧信号	0
45	PCMCLK	PCM 时钟信号	0
43	GND	地	I
41	+3.3Vaux	电源	I
39	+3.3Vaux	电源	I
37	GND	地	Ι
35	GND	地	Ι
33	NC		
31	NC		
29	GND	地	I
27	GND	地	I
25	NC	/	
23	NC	/	
21	GND	地	I
19	NC	/	
17	NC	/	
15	GND	地	I
13	NC	/	
11	NC	/	
9	GND	地	I
7	NC	/	
5	NC	/	
3	NC	/	I
1	NC	/	О

备注:所有电源管脚均处于同一电路网络,所有地管脚也处于同一电路网络。

2.2.2 可靠性

2.2.2.1 极限工作条件

表 2-3 极限工作条件

参数	Min	Type	Max	单位	备注
模块供电电压	3.0	3.3	3.6	V	
工作温度	-10	40	80	$^{\circ}\!\mathbb{C}$	
存储温度	-40	30	85	$^{\circ}\!\mathbb{C}$	
工作湿度	5%	60%	95%	HR	

2.2.2.2 推荐工作条件

表 2-4 推荐工作条件

			0 1
参数	Туре	单位	备注
模块供电电压	3.2~3.4	V	
供电电压纹波	<2%		
工作温度	0~45	$^{\circ}$	
工作湿度	45%~60%	HR	

2.2.3 逻辑电平特性

表 2-5 逻辑电平特性

符号	测试条件	Min	Max	单位
V _{IH} 输入电压(高)	Vpin=Vpin _{max}	0.7*Vpin	/	V
V _{IL} 输入电压(低)	Vpin=Vpin _{min}	/	0.3*Vpin	V
V _{OH} 输出电压(高)	Vpin=Vpin _{min} $I_{OH} = -0.5 \text{mA}$	Vpin - 0.2	Vpin	V
V _{OL} 输出电压(低)	$Vpin=Vpin_{min}$ $I_{OL}=2mA$	GND	0.2	V
V _{OLPWRON} 输出电压(低)	Vpin=Vpin _{min} I _{OL} = 30 μ A	GND	0.3	V
I _{IH} 输入漏电流(高)	Vpin=Vpin _{max} V _{IN} =Vpin _{max}	-1.0	1.0	μА
I _{IH_P} 内部下拉输入电流	Vpin=Vpin _{max} V _{IN} =Vpin _{max}	15	100	μА
I _{IL} 输入漏电流(低)	$Vpin=Vpin_{max}$ $V_{IN}=0$	-1.0	1.0	μА
I _{IL_P} 内部上拉输入电流	$Vpin=Vpin_{max}$ $V_{IN}=0$	-100	-15	μА
I _{OZL} 三态漏电流(低)	Vpin=Vpin _{max} V _{IN} =Vpin _{max}	-1.0	1.0	μА

I _{OZH} 三态漏电流(高)	Vpin=Vpin _{max}	-1.0	1.0	μА
	$V_{IN} = 0$			

注: Vpin由器件管脚的驱动电压而定。MU301模块中38管脚(USB_D+)和36管脚(USB_D-)的驱动电压为VUSB,则Vpin=VUSB=3.3V; 10管脚(DBB_SIM_DATA)驱动电压为VSIM,则Vpin=VSIM=1.8V或2.8V(MU301模块支持1.8V和2.8V的USIM/SIM卡)。

2.2.4 天线性能技术要求

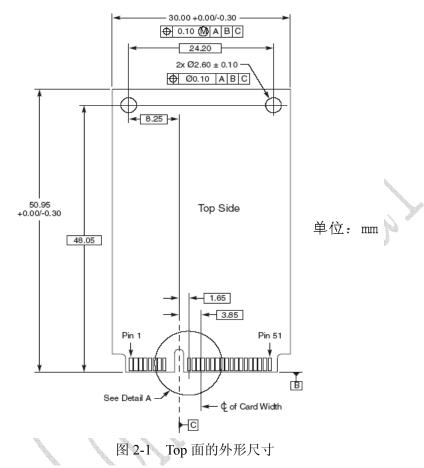
表 2-6 天线性能技术要求

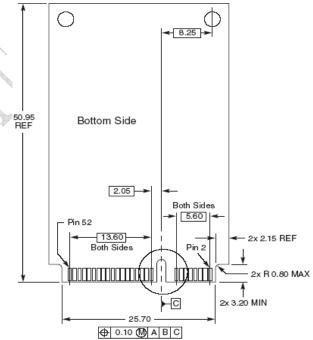
	《江北汉/7女/7
性能(Band 1)	
频率范围 Frequency Range	890~960MHz
增益 Gain	≥-2dBi
驻波比 VSWR	≤2.5
效率 Efficiency(%)	≥50%
耦合灵敏度 TIS	≤-102dBm
性能 (Band 2)	
频率范围 Frequency Range	1710~1880MHz
增益 Gain	≥-2dBi
驻波比 VSWR	≤2.5
效率 Efficiency(%)	≥50%
耦合灵敏度 TIS	≤-102dBm
性能 (Band 3)	*
频率范围 Frequency Range	2010~2025MHz
增益 Gain	≥-2dBi
驻波比 VSWR	≤2.5
效率 Efficiency(%)	≥50%
耦合灵敏度 TIS	≤-105dBm

表 2-7 馈线要求

馈线型号(Cable Type)	Coaxial cable terminate to U.FL-R-SMT plug
	Band 1: $\leq 0.6 \ (-10^{\circ}C \sim 60^{\circ}C)$
馈线插损 (Insertion Loss)	Band 2: $\leq 1.0 \ (-10^{\circ}C \sim 60^{\circ}C)$
	Band 3: $\leq 1.2 \ (-10^{\circ}C \sim 60^{\circ}C)$

2.2.5 结构尺寸




安装方式: 52pin连接器, 两颗螺钉固定。

螺钉定位孔尺寸为: 直径2.6mm。

重量:约12.2克。

设计外形尺寸: 30.0mm×50.95mm×4.75mm, 如图2-1~图2-4所示

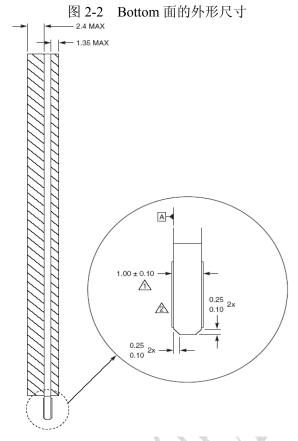


图 2-3 边缘的外形尺寸

注:由于PCB在加工时,厚度尺寸的最大误差为+/-0.15mm,所以模块的正常外形尺寸范围为:

宽: 29.70-30.00mm, 长: 50.65-50.95mm, 厚: 4.60-4.90mm。

2.2.6 尺寸配合注意事项

• 禁布器件区域

在模块底面从金手指端面(如果模块插入插座,则该端面与插座的中线重和)到屏蔽架外沿,至少5.1mm的距离上不能布放任何元器件,上网本等载体的主板上同样不能在该区域布放元器件。具体见图2-4。

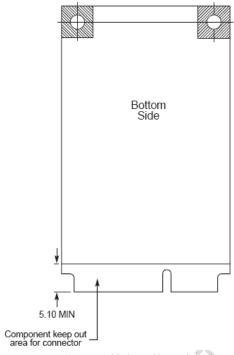
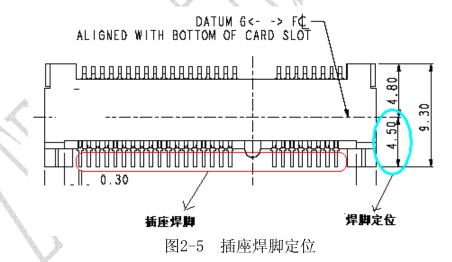



图 2-4 禁布器件区域

• 插座焊脚长度及锡高

建议金手指插座的焊脚不要延伸到从插座中线算起4.5mm之外的区域,如图2-5。另外插座贴片后锡高控制在0.1mm之内,如果不能保证此SMT高度(如手工维修)时,需在此处加贴绝缘膜。

3 系统架构

3.1 硬件系统架构

MU301模块的应用功能框图如下图4-1所示,本模块与外部主要有RESET、USIM接口、USB接口、外部电源、PCM等接口部分。

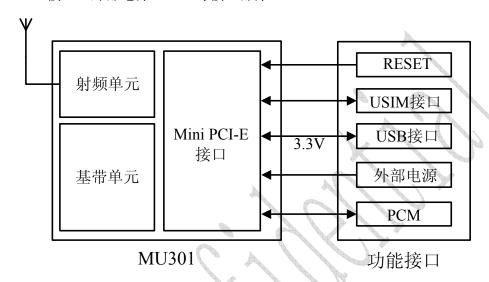


图 3-1 模块通用应用功能框图

MU301模块可分为射频单元、基带单元和Mini PCI-E接口。

射频单元主要完成了EDGE、GPRS、GSM和TD-SCDMA的上下链路的信号的发射和接收。

基带单元主要完成了基带信号处理功能,包括上、下行信号的调制解调、信道编解码、加密/解密等等。

Mini PCI-E接口部分为模块提供与外部电路的接口。通过RESET管脚使用户可复位模块,即通过拉低RESET上的电压可使模块重启。模块USIM/SIM接口与USIM/SIM卡连接,实现与USIM/SIM卡的数据交互。模块USB接口提供了模块与外部数据交换的途径。Mini PCI-E接口中定义了多个电源管脚,通过这些电源管脚,外部电路可给模块提供电源,本模块要求外部电源供电为+3.3V,可提供的最大电流不能小于2.75A。模块PCM接口与外部电路实现语音信号的交互。

3.2 软件系统架构

MU301模块的软件系统架构框图如图4-2所示。

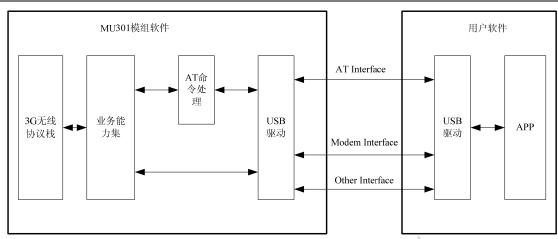


图3-2 模块软件业务应用框图

MU301模块软件由以下模块构成:

USB驱动模块:用于接收来自用户侧的USB数据;

AT命令处理模块:用于解析来自用户的AT命令,执行相应的业务,并向用户发送执行结果。

业务能力集:支持数据业务、SMS、MMS、电话等业务能力。

3G无线协议栈:用于与网络侧进行无线通讯。

MU301模块在用户侧系统上会枚举出多个端口,用户侧系统需要安装相应的端口驱动程序后,才能与MU301进行数据交互。

用户侧应用软件通过Modem端口进行拨号,来进行数据业务;通过AT端口发送AT 命令给模块,来指示其进行相应的业务;通过接收模块上报的AT命令响应或者指示状态的AT命令,获得模块的执行结果和工作状态。

除此之外MU301还预留了其他端口,来完成更为丰富的电信业务。

4业务和应用

4.1 分组数据业务

MU301模块支持以下数据业务能力:

- HSDPA数据业务能力: DL/UL:2.8Mbps/384Kbps
- TD-SCDMA数据业务能力: DL/UL:384Kbps/128Kbps
- EDGE数据业务能力: DL/UL:236.8Kbps/118.4Kbps
- GPRS数据业务能力: DL/UL: 85.6Kbps/42.8Kbps

进行数据业务需要使用拨号应用程序来进行,拨号时需要设置以下参数:

- 接入号码
- 根据中国移动的要求进行设置。
- 网络接入点(APN)
- 支持CMNET、CMWAP等,并支持中国移动所有其他的接入点

4.2 SMS 业务

MU301模块支持以下SMS业务能力:

- 支持MO (Mobile Originated)、MT (Mobile Terminated) 及蜂窝广播功能 (GSM 网络)
- 支持PDU(Protocol Date Unit)模式及文本模式
- 支持长短消息(Concatenated SMS)

4.3 MMS 业务

MU301模块支持MMS(多媒体信息服务)。

4.4 语音业务 (可选)

MU301模块支持以下业务能力:

• 支持MO(Mobile Originated)、MT(Mobile Terminated)及紧急呼叫功能

〈本文中的所有信息均为中兴通讯股份有限公司内部信息,不得向外传播。〉 - 19.

• 支持以下声码: PCM、AMR

附加业务功能:

- 呼叫转移
- 呼叫限制
- 多方通话
- 来电显示
- 呼叫等待及呼叫保持

4.5 WMMP 业务 (可选)

MU301支持中国移动WMMP3.0规范,可用于M2M产品。

4.6 可视电话 (可选)

MU301支持中国移动可视电话业务,同时支持以下补充业务:

- 可视电话呼叫转移
- 可视电话来电显示
- 可视电话呼叫限制

4.7 支持的操作系统

MU301可以嵌入到安装以下操作系统的主机或终端中应用:

- Windows XP
- Windows Vista
- Win7
- WinCE
- Linux

5 接口

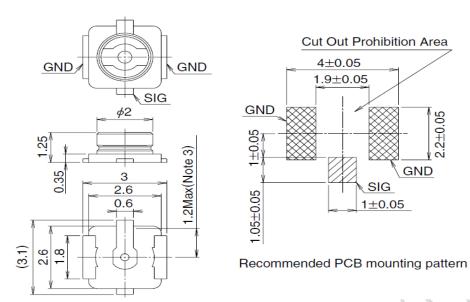
5.1 电源接口

MU301模块的总电源来自Mini PCI-E接口,供电电压为+3.3V(±10%)。输入电源经过模块上的DC-DC转化输出3.8V,送给电源管理单元(PMU),由其内部的LDO和DC/DC产生终端系统所需的各种电源,通过电感隔离送给射频部分的PA供电。

管脚号	信号名	描述	参数
			供电电压为+3.3V (±10%), 因
			此在模块以最大功率发射时,电
			源瞬时供电电流会较大,
2、24、39、41、52	+3.3Vaux	电源	+3.3Vaux 电压会有跌落, 但必须保
			证其不低于 3.0V。供电电路能够提
		AV	供给模块的最大电流不能小于
	CA	A A	2.75A。
4、9、15、18、21、26、27、29、	GND	地	0V
34、35、37、40、43、50	GIND	TE	0 0

表 5-1 电源接口定义表

5.2 天线接口


天线接口为射频连接器,要求天线的特征阻抗为50欧姆。

5.2.1 射频连接器

MU301

GND

模块上采用HRS公司的U.FL-R-SMT-1,其尺寸如下图5-1所示。

图 5-1 天线接口尺寸

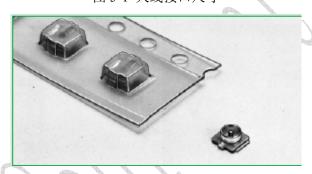


图5-2 射频接口测试座(HRS公司 U.FL-R-SMT(10)) 对应于射频接口的线缆,建议选用HRS公司的U.FL LP 088,如图3.5所示。

图5-3 测试线缆Cable

MU301的天线在系统板侧放置,建议天线空间尺寸在7mm*10mm*100mm以上,如 MU301内置在笔记本中,则放置在LCD屏幕顶端。

表 5-2 天线接口特性

名称	描述	条件
接触电阻	中心: 20m ohms max	10mA max
	外部: 10m ohms max	
隔离电阻	500 M ohms min	100V DC

频率范围	直流到 6GHz	\
温度范围	-40~90 ° C	\

5.2.2 天线接口特性

表 5-3 MU301 模块天线接口射频性能功能表

表 3-3 MO301 侯头入线设计为须且能为能表					
参数		最小值	典型值	最大值	单位
频率范围	P-GSM 900	890	/	915	MHz
	GSM 1800	1710	/	1785	MHz
工(1/M2、D12)	TD-SCDMA	2010	/	2025	MHz
频率范围	P-GSM 900	935	/	960	MHz
「 下行(BTS→MS)	GSM 1800	1805	1	1880	MHz
111/019 1419	TD-SCDMA	2010	1	2025	MHz
	P-GSM 900	31	33	35	dBm
发射功率范围	GSM 1800	28	30	32	dBm
	TD-SCDMA	21	23	25	dBm
	P-GSM 900	1	124		个
载频数量	GSM 1800		374	1	个
	TD-SCDMA	1	68	\	个
	P-GSM 900	1	25	\	MHz
双工间隔	GSM 1800		75	\	MHz
	TD-SCDMA	1	0	\	MHz
载频间隔			200	\	kHz
多工,双工方式		EDGE/GPRS: TDMA/FDMA, FDD			
		TD-SCDMA/HSDPA: TDMA, TDD			
每 TDMA 帧的时隙		7个主时隙、3个特殊时隙、1个保护时隙			
帧周期		短帧长 10ms (子帧 5ms)			
时隙周期		0.675ms			
调制方式		EDGE/GPRS: GMSK, 8PSK			
		TD-SCDMA/HSDPA: QPSK, 16QAM			
	P-GSM 900	≤-102 dE		dBm	
接收灵敏度	GSM 1800	≤-102			dBm
·	TD-SCDMA	≤-108			dBm

5.3 通信接口

5.3.1 USB 接口

MU301模块遵循Mini PCI-E V1.2规范USB2.0接口。

表 5-4 USB 接口

管脚号	信号名	I/O	描述
34、40	GND	P	地
38	USB_D+ (DP)	双向	USB 数据线 D+
36	USB_D- (DM)	双向	USB 数据线 D-

本模块中的电源由+3.3Vaux提供,其可以由USB口中的5V电源线经过电压转换得到。USB_D+和USB_D-信号引入模块后,在模块中已进行了EDS保护设计,该两根信号线在模块中都是通过一个33欧姆的电阻与DBB芯片的相应管脚相连。模块中数据接口部分的电路如图5-2所示。

图5-4 MU301模块中数据接口电路

5.3.2 PCM 接口

在用户需要时, MU301 模块可提供 PCM 接口, 具体如表 5-5 所示:

表 5-5 PCM 接口

管脚号	信号名	I/O(相对于模块)	描述
51	PCMIN	I	PCM 输入
49	PCMOUT	О	PCM 输出
47	PCMSYNC	О	PCM 同步帧信号
45	PCMCLK	О	PCM 时钟信号

5.4 USIM 卡接口

5.4.1 USIM 接口概述

MU301 模块遵循 Mini PCI-E V1.2 规范对外提供 USIM 卡接口。

管脚号	信号名	信号流向(相对于模块)	信号定义
14	DBB_SIM_RESET	0	SIM/USIM 卡复位
12	DBB_SIM_CLK	О	SIM/USIM 卡时钟
10	DBB_SIM_DATA	I/O	SIM/USIM 卡串行数据
8	VSIM_ABB	О	SIM/USIM 卡电源
4	GND	0	SIM/USIM 卡地

表 5-5 USIM 接口

5.4.2 接口推荐电路

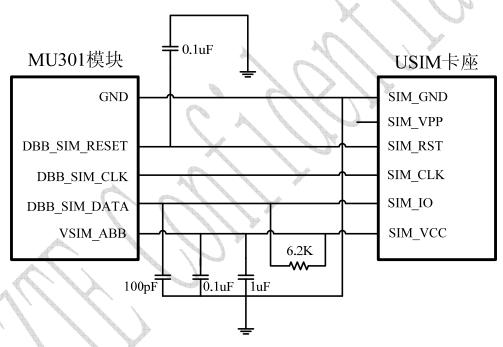


图 5-5 USIM 卡接口推荐电路

建议USIM卡座应该距离模块接口较近的位置(建议从模块的Mini PCI-E连接器到SIM卡座的PCB走线长度不能超过100mm),以避免因走线过长使波形产生较严重的变形,从而影响信号的通信。

建议DBB_SIM_RESET与GND之间并联一个0.1uF的电容,DBB_SIM_DATA与GND之间并联一个100pF的电容,VSIM_ABB与GND之间并联一个0.1uF和1uF的电容,滤除射频信号的干扰。

5.4.3 卡座接口 ESD 防护

MU301模块的USIM卡接口ESD防护推荐电路如图5-4所示,TVS要尽量靠近USIM卡座放置。

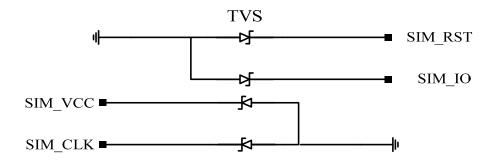


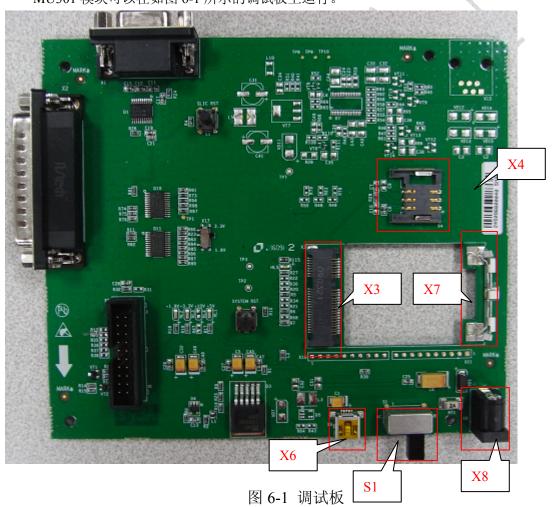
图 5-6 USIM 卡接口 ESD 防护推荐电路

5.5 AT 命令接口

MU301遵从如下AT命令规范:

3GPP TS 27.007 V3.13.0 AT command set for User Equipment (UE)

《中国移动通信随e行客户端AT命令接口规范V1.0.0》



6 调试环境说明

6.1 硬件调试环境

6.1.1 调试板概述

MU301 模块可以在如图 6-1 所示的调试板上运行。

用户可使用该调试板进行MU301模块的开发工作。该调试板可采用两种供电方式:电源适配器供电和USB接口供电。在同时用户通过调试板上的USB接口与模块进行数据的交互,在这一过程中用户需要了解到几个部分如下:

• S1: 电源选择开关

• X6: Mini USB接口

- X8: 电源适配器接口
- X3: Mini PCI-E接口插座
- X7: MU301模块固定弹片
- X4: USIM卡座

该调试板的使用过程如下:

首先,将MU301模块插入Mini PCI-E接口插座(X3)并向下按,使模块顶端与模块固定弹片(X7)相扣,以固定模块;选择好电源选择开关(S1)的位置,使调试板处于断电状态(即如果采用USB供电,就将开关拨向左边以使调试板处于AC供电状态,如果采用电源适配器供电,就将开关拨向右边以使调试板处于USB供电状态);将USIM卡插入USIM卡座(X4)中,并将调试板的Mini USB接口(X8)通过USB线连接至PC;如果选择用电源适配器供电,此时还需将电源适配器供电线插入调试板上的电源适配器接口(X6)中;拨动开关,使调试板正常供电(此时板上的HL1、HL2和HL3灯会亮,分别表示+5V、+1.8V和+3.3V供电正常;其中HL2灯亮度不高,需要仔细观察),模块开始启动,PC正常检测到模块端口后,HL5灯亮,表示模块中射频部分已经开始工作,随后即可通过相关软件进行开发工作。

注:该调试板中的DB9接口、DB25接口和ARM JTAG接口均为模块研发调试接口,用户不需要用到。

6.1.2 调试板接口介绍

6.1.2.1 Mini PCI-E 接口介绍

调试板上的Mini PCI-E接口插座上各管脚的定义同表2-2所示,不同之处只在于调试板上的接口是母口,模块上的为公口。

6.1.2.2 Mini USB 接口介绍

Mini USB接口由5根线组成,各根线的定义如表6-1所示。

管脚号 信号名 方向(对接口而言) 描述 USB VCC +5V 电源 Ι 2 USB 数据线 D-USB D- (DM) I/O 3 USB D+(DP) I/O USB 数据线 D+ 4 ID 在 Mini USB 接口中此 线定义为身份识别线, 此调试板中未用该线 地 5 **GND** Ι

表 6-1 Mini USB 接口

6.1.2.3 电源适配器接口介绍

本接口的电器特性和物理特性如表 6-2 和表 6-3 所示。

表 6-2 电气特性

特性	要求
A. 接触电阻	20m Ω MAX.
B. 额定电流	3.0A DC
C. 耐电压	500V AC/minute
D. 绝缘电阻	100M Ω MIN.
E. 額定电压	30V DC

表 6-3 物理特性

特性	要求	
A. 插入力	3.0N~20N	
B. 保持力	3.0N~20N	
C. 机械寿命	5000 次	. A

根据调试板内部电路和接口特性,建议电源适配器供给的电压范围为 4.5V~15V, 电流范围为 1.5A~2A。

6.1.2.4 USIM 卡座接口介绍

USIM 卡座为 6 线卡座, 其各管脚定义如表 6-4 所示。

表 6-4 USIM 接口

管脚号	信号名	信号方向(相对于卡座)	信号定义
1	SIM_GND	The second second	地
2	SIM_VPP		NC
3	SIM_IO	I/O	SIM/USIM 卡串行数据
4	SIM_VCC	X	SIM/USIM 卡电源
5	SIM_RST	I	SIM/USIM 卡复位
6	SIM_CLK	I	SIM/USIM 卡时钟

6.2 软件调试环境

6.2.1 驱动安装

MU301模块可以通过Mini PCI-E或者调试板转换为USB接口与PC机连接,此时会枚举出通讯端口,需要安装驱动后才能与模块软件进行交互。

请分别使用Windows及Linux等操作系统对应的驱动软件。

6.2.2 AT 命令调试

Windows XP操作系统中,可以使用系统自带的超级终端工具与MU301模块枚举出 的端口相连, 进行AT命令的调试。

该工具所在路径为 <开始> - <所有程序> - <附件> - <通讯> - <超级终端>。

Linux操作系统,可以使用Mini COM串口工具。

其他操作系统,请使用相应的串口通讯工具进行AT命令的调试。

6.2.3 业务应用 demo 程序

MU301在Windows XP操作系统下,可以配合中国移动随e行应用软件熟悉SMS、 MMS、数据业务等常用业务的使用。

7 测试及认证

7.1 遵循规范

- 3GPP TS 27.007 AT command set for User Equipment (UE)
- 3GPP TS 27.005 3rd Generation Partnership Project; Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- 3GPP TS 21.111 USIM and IC card requirements
- 3GPP TS 22.060 General Packet Radio Service (GPRS); Stage1
- 3GPP TS 24.011 Point-to-Point (PP) Short Message Service (SMS) Support on Mobile Radio Interface
- 3GPP TS 31.111 USIM Application Toolkit (USAT)
- GSM04.07 Mobile radio interface signaling layer 3; General aspects
- GSM04.11 Point-to-point short message service support on mobile radio interface
- GSM07.60 Mobile Station(MS) supporting GPRS;
- 语音编码方式: 13K QCELP(IS-733), 8K EVRC(IS-127)
- 中国移动终端AT命令规范V2.0。
- PCI Express Mini Card Electromechanical Specification Revision 1.2

7.2 认证

- 无委核准认证(证书编码: 2009-0265)
- 入网认证(证书编码: 17-6467-900831)
- CCC认证(证书编码: 2009011606333278)
- RoHS认证(证书编码: SHR09042930361001C-1)

8 缩略语

表 8-1 缩略语

EDGE	Enhanced Data rates for GSM Evolution,GSM 增强型数据速率
FDD	Frequency Division Duplexing,频分双工
GSM	Global System for Mobile communications, 全球移动通信系统
GPRS	General Packet Radio Service,通用分组无线业务
HSDPA	High Speed Downlink Packet Access,高速下行分组接入
PMU	Power Manager Unit,电源管理模块
STK	SIM Tool Kit,SIM 卡工具包
TDD	Time Division Duplexing,时分双工
TD-SCDMA	Time Divided-Synchronization Code Divided Multiple Access,时分同步码
	分多址
USIM	Universal Subscriber Identified Module,用户标识模块