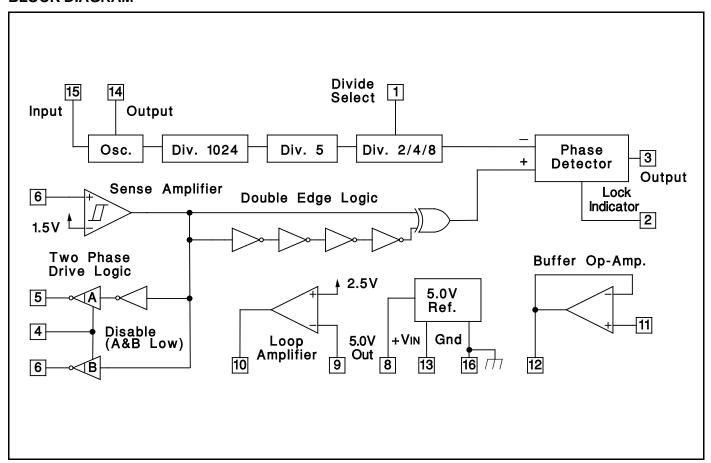
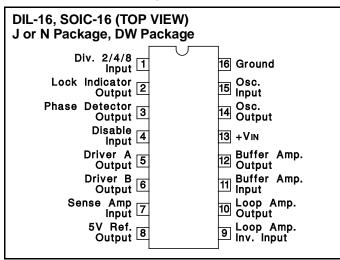
UC1634 UC2634 UC3634

Phase Locked Frequency Controller

FEATURES


- Precision Phase Locked Frequency Control System
- Communication Logic for 2-Phase Motors
- Disable Input for Motor Inhibit
- Crystal Oscillator
- Programmable Reference Frequency Dividers
- Phase Detector with Absolute Frequency Steering
- Digital Lock Indicator
- Two High Current Op-Amps
- 5V Reference Output

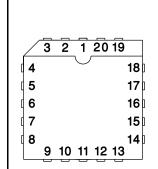
DESCRIPTION


The UC1634 series of devices is optimized to provide precision phase locked frequency control for two phase DC brushless motors. These devices include most of the features of the general purpose UC1633 Phase Locked Control family and also provide the out-of-phase commutation signals required for driving two phase brushless motors. Only an external power booster stage is required for a complete drive and control system.

The two commutation outputs are open collector devices that can sink in excess of 16mA. A disable input allows the user to simultaneously force both of these outputs to an active low state. Double edge logic, following the sense amplifier, doubles the reference frequency at the phase detector by responding to both edges of the input signal at Pin 7.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Note 1, 2)


Note 1: Voltages are referenced to ground, (Pin 16, DIL Package). Currents are positive into, negative out of, the specified terminals.

Note 2: Consult Packaging Section of Databook for thermal limitations and considerations of package.

CONNECTION DIAGRAMS

PLCC-20 (TOP VIEW)

Q Package

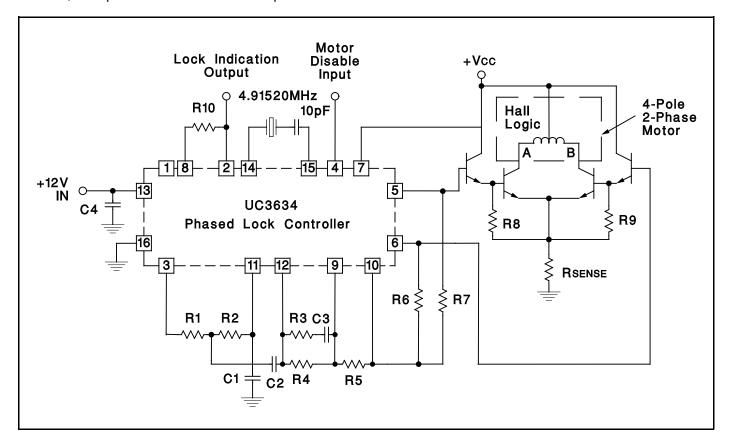
PACKAGE PIN FUNCTION			
FUNCTION	PIN		
N/C	1		
DIV 2/4/8	2		
Lock Indicator Output	3		
Phase Detector Output	4		
Disable Input	5		
N/C	6		
Driver A Output	7		
Driver B Output	8		
Sense Amp Output	9		
5V Ref Output	10		
Loop Amp Inv Input	11		
Loop Amp Output	12		
Buffer Amp Input	13		
Buffer Amp Output	14		
+VIN	15		
N/C	16		
OSC Output	17		
OSC Input	18		
Ground	19		
DIV 4/5 Input	20		

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for Ta = 0°C to +70°C for the UC3634, -25°C to + 85°C for the UC2634 and -55°C to +125°C for the UC1634, +VIN = 12V. Ta=TJ.

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	+VIN = 15V		20	29	mA
Reference		<u>-</u>	•	•	-
Output Voltage (VREF)		4.75	5.0	5.25	V
Load Regulation	IOUT = 0mA to 7mA		5.0	20	mV
Line Regulation	+VIN = 8V to 15V		2.0	20	mV
Short Circuit Current	Vout = 0V	12	30		mA
Oscillator		-			
DC Voltage Gain	Oscillator In to Oscillator Out	12	16	20	dB
Input DC Level (VIB)	Oscillator In Pin Open, TJ = 25°C	1.15	1.3	1.45	V
Input Impedance (Note 3)	$VIN = VIB \pm 0.5V$, $TJ = 25$ °C	1.3	1.6	1.9	kΩ
Output DC Level	Oscillator In Pin Open, T _J = 25°C	1.2	1.4	1.6	V
Maximum Operating Frequency		10			MHz
Dividers		-			
Maximum Input Frequency	Input = 1VPP at Oscillator In	10			MHz
Div. 4/5 Input Current	Input = 5V (Div. by 4)		150	500	μΑ
(Q Package Only, Note 4)	Input = $0V$ (Div. by 5)	-5.0	0.0	5.0	μΑ

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for TA = 0°C to +70°C for the UC3634, -25°C to + 85°C for the UC2634 and -55°C to +125°C for the UC1634, +VIN = 12V. TA=TJ

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Dividers (cont.)					
Div. 4/5 Input Threshold (Q Package Only, Note 4)		0.5	1.6	2.2	V
Div. 2/4/8 Input Current	Input = 5V (Div. by 8)		150	500	μΑ
	Input = 0V (Div. by 2)	-500	-150		μΑ
Div. 2/4/8 Open Current Voltage	Input Current = 0μA (Div. by 4)	1.5	2.5	3.5	V
Div. by 2 Threshold		0.20	0.8		V
Div. by 4 Threshold		1.5		3.5	V
Div. by 8 Threshold	Volts Below VREF	0.20	0.8		V
Sense Amplifier					
Threshold Voltage	Percent of VREF	27	30	33	%
Threshold Hysteresis			10		mV
Input Bias Current	Input = 1.5V	-1.0	-0.2		μΑ
Two Phase Drive Outputs, A and B					
Saturation Voltage	IOUT = 16mA		0.3	0.6	V
Leakage Current	Vout = 15V		0.1	5.0	μΑ
Disable Input	·		•		
Input Current	Input = 5V (Disabled, A and B Outputs Active Low)		150	500	μΑ
	Input = 0V (Enabled)	-5.0	0.0	5.0	μA
Threshold Voltage		0.5	1.6	2.2	V
Phase Detector					•
High Output Level	Positive Phase / Freq. Error, Volts Below VREF		0.2	0.5	V
Low Output Level	Negative Phase / Freq. Error		0.2	0.5	V
Mid Output Level	Zero Phase / Freq. Error, Percent of VREF	47	50	53	%
High Level Maximum Source Current	Vout = 4.3V	2.0	8.0		mA
Low Level Maximum Sink Current	Vout = 0.7V	2.0	5.0		mA
Mid Level Output Impedance (Note 3)	$IOUT = -200 \text{ to } +200\mu\text{A}, TJ = 25^{\circ}\text{C}$	4.5	6.0	7.5	kΩ
Lock Indicator Output	·				•
Saturation Voltage	Freq. Error, IOUT = 5mA		0.3	0.45	V
Leakage Current	Zero Freq. Error, Vout = 15V		0.1	1.0	μΑ
Loop Amplifier					
N INV. Reference Voltage	Percent of VREF	47	50	53	%
Input Bias Current	Input = 2.5V	-0.8	-0.2		μΑ
AVOL	·	60	75		dB
PSRR	+VIN = 8V to 15V	70	100		dB
Short Circuit Current	Source, Vout = 0V	16	35		mA
	Sink, Vout = 5V	16	30		mA
Buffer Op-Amp			1		•
Input Offset Voltage	VcM = 2.5V			8	mV
Input Bias Current	VcM = 2.5V	-0.8	-0.2		μА
PSRR	+VIN = 8 to 15V	70	100		dB
CMRR	VcM = 0 to 10V	70	100		dB
Short Circuit Current	Source, Vout = 0V	16	35		mA
	Sink, Vout = 5V	16	30		mA
	1- , : :			1	<u> </u>


Note 3: These impedance levels will vary with T_J at about 1700ppm/°C.

Note 4: This part is also available in a 20 pin plastic leadless chip carrier, Q designator, where a divide by 4/5 select pin is available. Consult factory for details.

APPLICATION AND OPERATION INFORMATION (For additional information see UC1633 data sheet)

Design Example:

Precision phased locked frequency control of a 2-phase motor at 3600 RPM. Using the commutation logic on the UC3634, a simple discrete drive scheme is possible.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated