

ZTE-T M501 60PIN B2B模块

产品说明

中兴通讯股份有限公司

地址: 深圳市科技南路 55 号

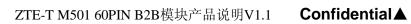
邮编: 518057

电话: (86) 755 26779999

技术支持网站: http://www.zte.com.cn

电子邮件: mobile@zte.com.cn

法律声明


本资料著作权属中兴通讯股份有限公司所有。未经著作权人书面许可,任何单位或个人 不得以任何方式摘录、复制或翻译。

侵权必究。

对本手册中的印刷错误及与最新资料不符之处我们会及时改进。这些改动不再事先通 知,但会编入新版手册中,中兴通讯保留最终解释权。

Copyright © 2010 ZTE CORPORATION.

版本号: 1.0 发布日期: 2010年2月

修改记录

版本	修改日期	更改理由	主要更改内容
V1. 1	2010-5-26	升级	完善内容,升级到 V1.1

目 录

1	综述	7 -
	1.1 简介	7 -
	1.2 产品外观	8 -
2	特性	9 -
	2.1 主要特性 2.2 技术规格	
	2.2.1 硬件特性	
	2.2.2 M501 管脚说明	
	2.2.3 可靠性	
	2.2.3.1 极限工作条件	
	2.2.3.2 推荐工作条件	
	2.2.4 逻辑电平特性	- 17 -
	2.2.5 天线性能技术要求	
	2.2.6 结构尺寸	
	2.2.7 尺寸配合注意事项	
	3.1 硬件系统架构	25 -
	3.2 软件系统架构	
4		
	4.1 分组数据业务	- 28 -
	4.2 SMS 业务	
	4.3 MMS 业务	
	4.4 语音业务(可选)	- 28 -
	4.5 WMMP 业务(可选)	- 29 -
	4.6 可视电话(可选)	- 29 -
	4.7 支持的操作系统	- 29 -
5	接口	- 30 -
	5.1 电源接口	30 -
	5.2 天线接口	
	5.2.1 射频连接器	
	5.2.3 天线焊盘	- 32 -
	5.2.3 天线接口特性	- 32 -
	5.3 通信接口	33 -
	5.3.1 USB 接口	- 33 -
	5.3.2 UART 接口	- 35 -
	5.4 SIM/USIM 卡接口	36 -
	5.4.1 SIM/USIM 接口概述	- 36 -
	5.4.2 SIM/USIM 检测	
	5.4.3 接口推荐电路	
	5.4.4 卡座接口 ESD 防护	
	5.5 通讯选择接口	38 -

5.6 音频接口	39 -
5.4.1 Microphone 接口	39 -
5.4.2 Speaker 接口	40 -
5.4.3 Receiver 接口	41 -
5.4.4 耳机接口	42 -
5.7 上电指示(VGP)接口	43 -
5.8 时钟备用电池(VRTC_ABB)接口	44 -
5.9 AT 命令接口	45 -
6 调试环境说明	46 -
6.1 硬件调试环境	46 -
6.1.1 调试板概述	
6.1.2 转接板概述	48 -
6.1.3 调试注意事项	
6.1.3.1 下载软件版本	51 -
6.1.3.2 通讯选择	
6.1.3.3 GPIO+USB 休眠模式选择	
6.1.3.4 注册网络和呼叫	
6.1.4 调试板接口介绍	
6.1.4.1 80PIN(X12/X39)接口介绍	
6.1.4.2 电源适配器(X13)接口	
6.1.4.3 音频接口介绍	
6.1.4.4 USB 接口(X11)介绍	
6.1.4.5 上电指示 LED	
6.1.4.6 SIM/USIM 卡座(X3)接口介绍	
6.1.4.7 UART(X24/X25)接口介绍	
6.2 软件调试环境	
6.2.1 驱动安装	
6.2.2 AT 命令调试	
6.2.3 业务应用 demo 程序	58 -
7GPS 功能	
7.1 GPS 方案说明	59 -
7.2 GPS 芯片特点	59 -
8 测试及认证	62 -
8.1 遵循规范	- 62 -
8.2 认证	
9 缩略语	- 63 -
10 附录	64 -
10.1 M501 板对板连接器信号电平描述	64 -
10.1.1 加电不开机状态下信号说明	64 -
10.1.2 复位完成状态信号说明	64 -
10.1.3 待机模式下信号说明(未休眠)	66 -

10.1.4 休眠模式下信号说明......-68 -

综述

1.1 简介

ZTE-T M501(以下简称M501)模块是一款满足工业级要求的嵌入式模块产品,支 持网络制式: TD-SCDMA/HSUPA/HSDPA/GSM/GPRS/EDGE, 提供的业务: 数据、语 音、彩信、短消息等,可作为M2M模块使用,提供C接口的二次开发平台。

M501模块可广泛应用于笔记本、MID、阅读器、无线公话、接入盒、远程监控、 车载台、无线多媒体终端和无线个人终端等系统中。同时该模块支持中国移动标准AT 命令集,亦可根据客户需求提供灵活的定制产品。

M501支持标准如下:

- 高速下行分组接入技术(HSDPA)
- 高速上行分组接入技术(HSUPA)
- 通用移动通信系统(UMTS)
- 增强型数据速率GSM演进技术(EDGE)
- 通用分组无线服务技术 (GPRS)
- 全球移动通讯系统(GSM)

M501支持的功能如下:

- HSUPA/HSDPA/TD-SCDMA分组数据业务
- EDGE/GPRS分组数据业务
- TD-SCDMA/GSM短消息业务
- TD-SCDMA/GSM语音业务

1.2 产品外观

图 1-1 M501 外观图片

2 特性

2.1 主要特性

M501主要特性如下:

- TD-SCDMA A频段: 2010~2025MHz, F频段: 1880~1920MHz
- EDGE/GPRS/GSM: EGSM900 880~960MHz, GSM1800 1710~1880MHz
- HSUPA数据业务能力: DL/UL:2.8Mbps/2.2Mbps
- HSUPA数据业务能力: DL/UL:2.8Mbps/384Kbps
- TD-SCDMA数据业务能力: DL/UL:384Kbps/128Kbps
- EDGE数据业务能力: DL/UL:236.8Kbps/118.4Kbps
- GPRS数据业务能力: DL/UL: 85.6Kbps/42.8Kbps
- TD-SCDMA/GSM网络下基于CS/PS域的短消息服务
- TD-SCDMA/GSM网络下的语音服务
- TD-SCDMA/GSM网络下的彩信服务
- 支持Windows XP/Windows Vista/Windows 7/Linux/WinCE操作系统

2.2 技术规格

2.2.1 硬件特性

表2-1 产品硬件特性

产品特性	描述
工作电压	DC 3.3V~4.5V,典型值 3.8V(60PIN B2B 接口)
	GSM/GPRS 900: 33dBm (±2)
	GSM/GPRS 1800: 30dBm (±2)
最大输出功率	EDGE 900: 27dBm (±3)
	EDGE 1800 26dBm (±3)
	TD-SCDMA: 24dBm (+1/-3)

	——————— │测试电压	3. 8V		
工作中次(CLASSIO)	测试制式	TD-SCDMA	电流 (mA)	功耗 (mW)
工作电流(CLASS10)	底电流		1.97	7.48
	待机时电流		2.8	10. 6
	找网最大电流		167	634.6
	通话时电流		178	676. 4
	测试制式	GSM		
	底电流		1.9	7. 22
	待机时电流		3. 78	14. 36
	找网最大电流		149.8	569. 2
	通话时电流	功率等级		
	GSM900	5	290	1102
		12	174. 2	661.9
		19	145. 4	552. 5
	DCS1800	0	236	896.8
		8	160.8	611.0
		15	145. 3	552.1
	0 1			
	测试制式	GPRS		
	底电流	10	1.96	7. 44
	待机时电流		3. 49	13. 26
	找网最大电流		158. 1	600.7
	通话时电流	功率等级		
	GSM900	5	390	1482
		12	227. 7	865. 2
		19	172.6	655.8
	DCS1800	0	329	1250. 2
		8	201.5	765. 7
\ \ \ \		15	172. 1	653. 9
	测试制式	EGPRS		
▼	底电流		1. 97	7. 48
	待机时电流		3. 52	13. 37
	找网最大电流		241.4	917.3
	通话时电流	功率等级		
	GSM900	8	310	1178
		13	222. 4	845.1
		19	183	695. 4
	DCS1800	2	290	1102

		8	209. 2	794.9	
		15	188. 3	715. 50	
	测试制式	GPRS			
	底电流		1. 96	7.44	
	待机时电流		3. 49	13. 26	
	找网最大电流		158. 1	600. 7	
	通话时电流	功率等级			
	GSM900	5	527.8	2005. 6	
		12	355.8	1352. 0	
		19	245. 3	932. 1	
	DCS1800	0	357. 9	1360. 0	
		8	304.8	1158. 2	
		15	245. 8	934. 0	
工作电流(CLASS12)					
	测试制式	EGPRS			
	底电流		1. 97	7. 48	
	待机时电流	10	3. 52	13. 37	
	找网最大电流		241. 4	917.3	
	通话时电流	功率等级			
	GSM900	8	375. 1	1425. 3	
		13	328. 9	1249.8	
	X	19	248. 7	945. 0	
	DCS1800	2	362. 5	1377.5	
		8	301.8	1146.8	
		15	259.6	986.4	
	GSM900: 935~	~960MHz			
校业还录进用	DCS1800: 1805	5∼1880 MHz			
接收频率范围					
	TD-SCDMA: 2	$010 \sim 2025 \text{ MH}$	łz		
	GSM900: 890~	~915 MHz			
发送频率范围	DCS1800: 1710	0∼1785 MHz			
火 丛频平径围					
<u> </u>	TD-SCDMA: 2	010~2025MH	Z		
目标的	GSM: ≤-102dBm				
灵敏度	TD-SCDMA: ≤-108dBm				
最大下行速率	2.8Mbps				
最大上行速率	2.2Mbps				
水八工日心十		 ↑DMA间自动和:	施 (可从手刊)		
双模自动切换	可在GSM、TD-SCDMA间自动切换(可处于以下几种模式:				
/火/天 口 <i>/</i> // // // // // // // // // // // // //	优先GSM模式、优先TD-SCDMA模式、仅GSM模式或仅				

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

	TD-SCDMA模式)
正常工作温度范围	-10~+55℃
极限工作温度范围	-25~+70°C
存储温度范围	-40~+85℃
湿度范围	20% ~ 90%HR

2.2.2 M501 管脚说明

表2-2 M501主要管脚说明

电源供电					
管脚命名	方向(对模块而言)	信号说明	直流参数	备注	
VBAT	输入	在 60PIN B2B 连	Vmax=4.5V		
		接器上一共有 5	Vmin=3.3V		
		个 VBAT 引脚,	Vnormal=3.8V		
		可以为 M501 提			
		供范围是 3.3V~			
	1	4.5V 电压, 提供			
		的最大电流值可			
		以达到 2.5A。	9		
VRTC_ABB	输入/输出	充电电池供给	Vmax=2.0V		
	.0	RTC 的电压,同	Vmin=1.6V		
	1/2 6	时内部	Vnormal=1.8V		
	1,0	VRTC_ABB 也可	Ioutmax=20uA		
		以给电池充电。	Iin=5uA		
VMIC_ABB	输出	M501 模块提供	Vmax=2.6V		
		给外部音频 MIC	Vmin=2.4V		
		通路的偏置电压。	Vnormal=2.5V		
		开机信号	,		
POWERON	输入	POWERON 被上	VILmax=0.35*VRTC_ABB	在调试板	
		拉后开机。当板子	VIHmin=0.65*VRTC_ABB	上被	
		上电后,用户将调		+3.3V 上	
		试板上		拉。	
		POWERON 按键			
		长按 2s 后,模块			
		开机。			
	音频接口				
MICN1	输入	音频差分输入	参考章节 5.6		
MICP1	输入				
ABB_AOUT2N	输出	音频差分输出可			
ABB_AOUT2P	输出	以驱动8欧姆负			

		载		
EPN	输 出	音频差分输出可		
EPP	输出	以驱动 32 欧姆负		
Lit	1111 111	载		
HEADSET_MIC	输入	耳机音频 MIC 输		
	100/ 🕻	入 入		
HPR	输出	耳机左右声道音		
HPL	输出	频输出,不是差分		
111 2	1114 223	的		
JACKSENSE	输入	耳机插拔检测信		
		号		
		UART 接口		L
UART_RI	输出/4MA	5 线 UART 用于	VILmin=0V	
UART_CTS	输出/16MA	通讯	VILmax=0.3* VEXT_ABB	
UART_RTS	输入/4MA		VIHmin=0.7* VEXT_ABB	
UART_RX	输入/4MA	•	VIHmax=VEXT_ABB +0.3	
UART_TX	输出/4MA		VOLmin=GND	
DBB_USC_1	输入/8MA	2线 UART 用于	VOLmax=0.2V	
DBB_USC_2	输出/8MA	下载软件	VOHmin=VEXT_ABB -0.2	
			VOHmax= VEXT_ABB	
	S	IM/USIM 卡接口		T
SIM_DETECT	输入/4MA	SIM 卡的检测信	VILmin=0V	SIM 卡的
		号	VILmax=0.3*VSIM	信号线全
DBB_SIM_RESET	输出/4MA	SIM 卡的复位信	VIHmin=0.7*VSIM	部都有
		号	VIHmax=VSIM+0.3	ESD进行
DBB_SIM_CLK	输出/4MA	SIM 卡的时钟信	VOLmin=GND	保护,模
		号	VOLmax=0.2V	块内部设
DBB_SIM_DATA	输入/输出/4MA	SIM 卡的数据信	VOHmin=VSIM-0.2	计了
		号	VOHmax=VSIM	ESD,建
				议在模块
				外部也设 计 ESD,
, , ,				参考章节
				多写早日 5.4
VSIM	输出	由模块内部 ABB	VSIM 可以由软件自动选	J. 4
A SHAI	柳山	提供给调试板上	¥ 1.8V 或 2.85V	
		SIM卡的供给电	JT 1.0 V → 2.00 V	
		压		
	<u> </u>	USB 接口		<u>I</u>
USB_DP	输入/输出	USB 总线 D+, 差		
	1144 page	分走线		
USB_DM	输入/输出	USB 总线 D-,差		
		分走线		
5VUSB	输入	USB 5V 电压,是		
	· · · · · · · · · · · · · · · · · · ·		l .	1

		模块内部		
		VUSB_ABB 电压		
		的输入。		
	整	控制(GPIO)信号		
COM_SEL2	输入/4MA	工作模式选择信	VILmin=0V	
		묵	VILmax=0.3*VEXT_ABB	
COM_SEL1	输入/4MA	通讯口选择信号	VIHmin=0.7* VEXT_ABB	
DOWNLOAD_MODE	输入/4MA	下载模式选择,高	VIHmax=VEXT_ABB +0.3	在调试板
		电平表示 USB 下		上当
		载; 低电平表示		USB 下
		UART 下载		载时,被
				上拉到
				3.3V
A2B_SLEEP	输入/4MA	睡眠指示,指示外		
		部主机是否睡眠		
A2B_WAKE	输入/4MA	唤醒输入,外部主	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		机唤醒模块	X / U	
B2A_SLEEP	输出/4MA	睡眠指示,指示模		
		块是否睡眠		
B2A_WAKE	输出/4MA	唤醒输出,模块唤		
		醒外部主机		
-				

表2-3 模块的60PIN B2B接口管脚定义

管脚	定义	信号说明	方向(对模
		\ \ \	块而言)
1	DBB_USC_0	保留	输入
3	DBB_USC_1	UART2 的接收信号	输入
5	DBB_USC_2	UART2 的发送信号	输出
7	DBB_USC_3	保留	输入
9	DBB_USC_4	保留	输入
11	DBB_USC_5	保留	输入
13	DBB_USC_6	保留	输入
15	GND	地	
17	ABB_AOUT2N	SPEAKER 负输出	输出
19	ABB_AOUT2P	SPEAKER 正输出	输出
21	HEADSET_MIC	耳机 MIC 输入	输入
23	MICN1	MICPHONE 的输入负端	输入
25	MICP1	MICPHONE 的输入正端	输入
27	VMIC_ABB	外接 MICPHONE 电源	输出
29	HPR	耳机左声道输出	输出
31	HPL	耳机右声道输出	输出
33	EPN	RECEIVER 输出负端	输出

7TF-T M501 60PIN R2R模块产品说明V1 1

ZTE-T M 501 60PIN B2B模块产品说明V1.1 Confidential ▲				
35	EPP	RECEIVER 输出正端	输出	
37	JACKSENSE	耳机插拔检测	输入	
39	GND	地		
41	USB_DP	USB 总线 D+	双向	
43	USB_DM	USB 总线 D-	双向	
45	5VUSB	+5V 电源输入	输入	
47	5VUSB	+5V 电源输入	输入	
49	POWERON	开机信号	输入	
51	VBAT	系统电源输入	输入	
53	VBAT	系统电源输入	输入	
55	VBAT	系统电源输入	输入	
57	VBAT	系统电源输入	输入	
59	VBAT	系统电源输入	输入	
2	无	保留		
4	GND	地		
6	COM_SEL2	工作模式选择信号	输入	
8	COM_SEL1	通讯口选择信号	输入	
10	VRTC_ABB	RTC 备份电池接口	输入	
12	ALERT	保留	输入	
14	SYNCH	保留	输入	
16	VGP_ABB	上电指示信号	输出	
18	SIM_DETECT	USIM 检测信号	输入	
20	DBB_SIM_RESET	USIM 卡接口复位信号	输出	
22	DBB_SIM_CLK	USIM 卡接口时钟信号	输出	
24	DBB_SIM_DATA	USIM 卡接口数据信号	双向	
26	VSIM	USIM 卡电源	输出	
28	DOWNLOAD_MODE	下载模式选择	输入	
30	UART_RI	振铃信号	输出	
32	UART_CTS	UART1 硬件流控信号	输出	
34	UART_RTS	UART1 硬件流控信号	输入	
36	UART_RX	UART1 接收信号	输入	
38	UART_TX	UART1 发送信号	输出	
40	GND	地		
42	A2B_SLEEP	睡眠指示,指示外部主机是否睡	输入	
44	A2D WAVE	眠	输入	
44	A2B_WAKE B2A_SLEEP	唤醒输入,外部主机唤醒模块		
48	B2A_SLEEP B2A WAKE	睡眠指示,指示模块是否睡眠 唤醒输出,模块唤醒外部主机	输出	
50	_	唤醒输出,模块唤醒外部主机 复位信号	输出 输入	
	ABB_CRST	发位信号 地	捌八	
52	GND	_		
54	GND	地		
56	GND	地		
58	GND	地		

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

60 GND 地	60	GND	70	
----------	----	-----	----	--

备注:所有电源管脚均处于同一电路网络,所有地管脚也处于同一电路网络。

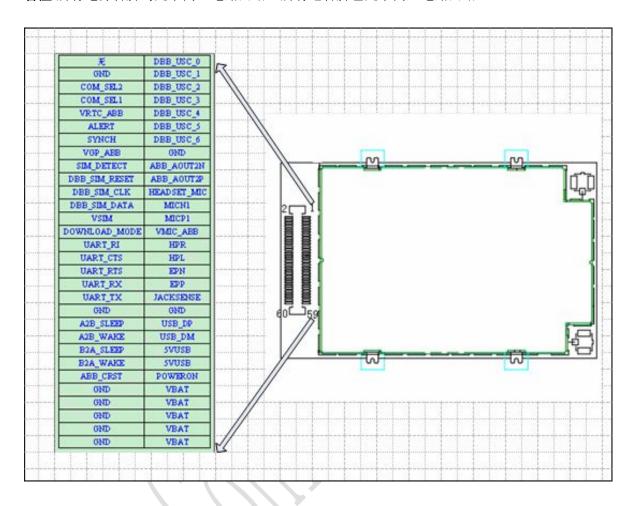


图 2-1 M501 管脚顺序图

2.2.3 可靠性

2.2.3.1 极限工作条件

表 2-4 极限工作条件

X 2 1 1 X 1 X 1					
参数	Min	Type	Max	单位	备注
模块供电电压	3.3	3.8	4.5	V	
工作温度	-25	25	70	$^{\circ}$ C	
存储温度	-40	30	85	$^{\circ}$ C	
工作湿度	20%	60%	90%	HR	

2.2.3.2 推荐工作条件

表 2-5 推荐工作条件

参数	Туре	单位	备注
模块供电电压	3.8~4.0	V	
供电电压纹波	<2%		
工作温度	0~45	$^{\circ}$	
工作湿度	45%~60%	HR	

2.2.4 逻辑电平特性

表 2-6 逻辑电平特性

	农 20 之种 11 11			
符号	测试条件	Min	Max	单位
V _{IH} 输入电压(高)	Vpin=Vpin _{max}	0.7*Vpin		V
V _{IL} 输入电压(低)	Vpin=Vpin _{min}	/	0.3*Vpin	V
V _{OH} 输出电压(高)	$Vpin=Vpin_{min}$ $I_{OH}=-0.5mA$	Vpin - 0.2	Vpin	V
V _{OL} 输出电压(低)	Vpin=Vpin _{min} $I_{OL} = 2mA$	GND	0.2	V
V _{OLPWRON} 输出电压(低)	$Vpin=Vpin_{min}$ $I_{OL}=30 \mu A$	GND	0.3	V
I _{IH} 输入漏电流(高)	Vpin=Vpin _{max} V _{IN} =Vpin _{max}	-1.0	1.0	μΑ
I _{IH_P} 内部下拉输入电流	Vpin=Vpin _{max} V _{IN} =Vpin _{max}	15	100	μΑ
I _{IL} 输入漏电流(低)	$Vpin=Vpin_{max}$ $V_{IN}=0$	-1.0	1.0	μА
I _{IL_P} 内部上拉输入电流	$Vpin=Vpin_{max}$ $V_{IN}=0$	-100	-15	μА
I _{OZL} 三态漏电流(低)	$Vpin=Vpin_{max}$ $V_{IN}=Vpin_{max}$	-1.0	1.0	μА
I _{OZH} 三态漏电流(高)	$Vpin=Vpin_{max}$ $V_{IN}=0$	-1.0	1.0	μА

注: Vpin 由器件管脚的驱动电压而定。M501模块中41管脚(USB_D+)和43管脚 (USB_D-)的驱动电压为VUSB,则Vpin=VUSB=3.3V; 24管脚(DBB_SIM_DATA)驱动 电压为VSIM,则Vpin=VSIM=1.8V或2.8V(M501模块支持1.8V和2.8V的USIM/SIM卡)。

2.2.5 天线性能技术要求

表 2-7 天线性能技术要求

性能(Band 1)	
频率范围 Frequency Range	890~960MHz
增益 Gain	≥-2dBi
驻波比 VSWR	≤2.5
效率 Efficiency(%)	≥50%
耦合灵敏度 TIS	≤-102dBm
性能 (Band 2)	
频率范围 Frequency Range	1710~1880MHz
增益 Gain	≥-2dBi
驻波比 VSWR	≤2.5
效率 Efficiency(%)	≥50%
耦合灵敏度 TIS	≤-102dBm
性能 (Band 3)	
频率范围 Frequency Range	2010~2025MHz
增益 Gain	≥-2dBi
驻波比 VSWR	≤2.5
效率 Efficiency(%)	≥50%
耦合灵敏度 TIS	≤-105dBm

表 2-8 馈线要求

馈线型号(Cable Type)	Coaxial cable terminate to U.FL-R-SMT plug
	Band 1: $\leq 0.6 \ (-10^{\circ} C \sim 60^{\circ} C)$
馈线插损 (Insertion Loss)	Band 2: $\leq 1.0 \ (-10^{\circ} C \sim 60^{\circ} C)$
(, ())	Band 3: $\leq 1.2 \ (-10^{\circ} C \sim 60^{\circ} C)$

2.2.6 结构尺寸

安装方式: 60PIN B2B连接器,通过屏蔽架上的4个小焊盘进行固定。

设计外形尺寸: 55mm×33mm×2.6mm, 如图2-2~图2-5所示

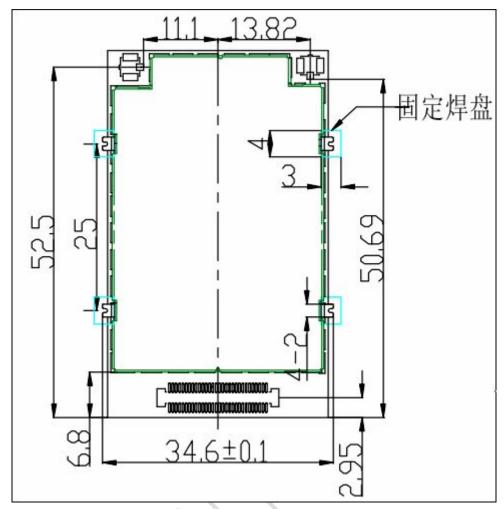


图 2-2 Top 面的外形尺寸

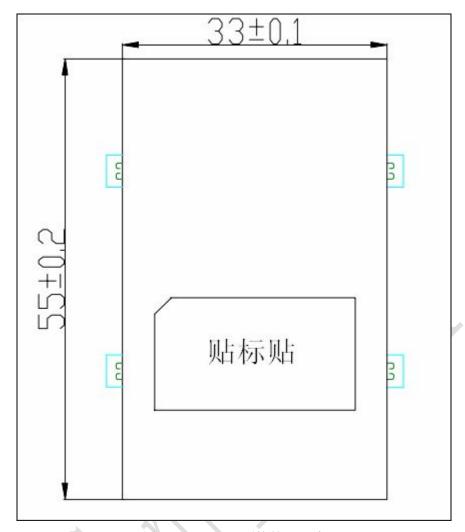


图 2-3 Bottom 面的外形尺寸

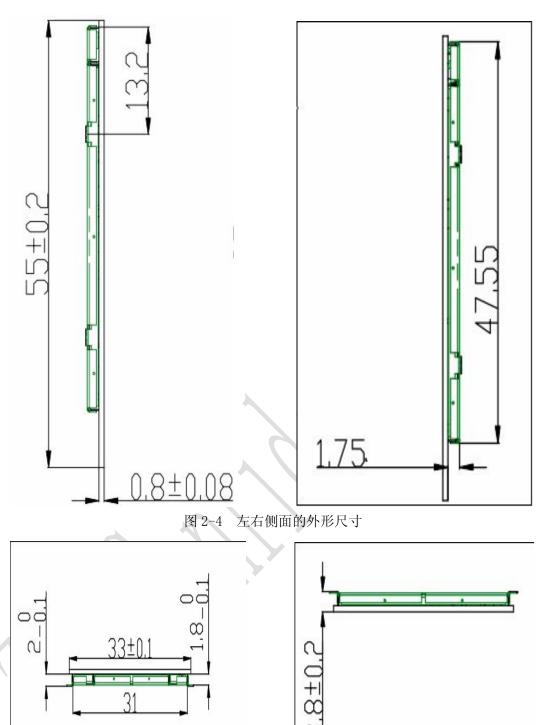


图 2-5 上下侧面的外形尺寸

注:由于PCB在加工时,对于板厚小于1.0mm的板子,长、宽和高的最大误差为 +/-0.08mm, 所以模块的正常外形尺寸范围为:

长: 54.92-55.08mm, 宽: 32.92-33.08mm, 厚: 2.52-2.68mm。

2.2.7 尺寸配合注意事项

禁布器件区域

在模块底面从板子下边沿到屏蔽罩外沿,至少6.8mm的距离上不能布防任何元器件。 具体见图2-6。

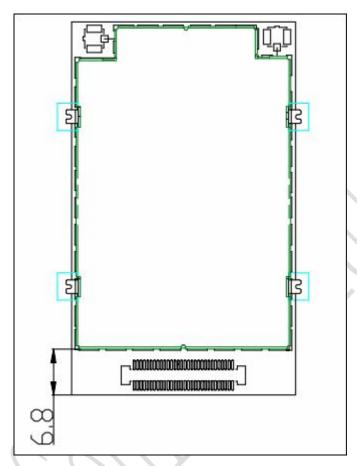


图 2-6 禁布器件区域

60PIN B2B连接器装配

M501使用的是60PIN板对板连接器,型号为松下公司的AXK6F60347YG;与其配套使 用的必须是松下公司的AXK5F60547YG。

AXK6F60347YG 的结构尺寸如图 2-7 所示:

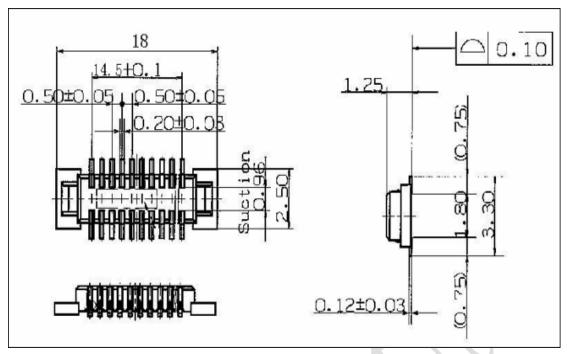


图 2-7 AXK6F60347YG 的结构尺寸图 AXK5F60547YG 的结构尺寸和推荐焊盘如图 2-8 和 2-9 所示:

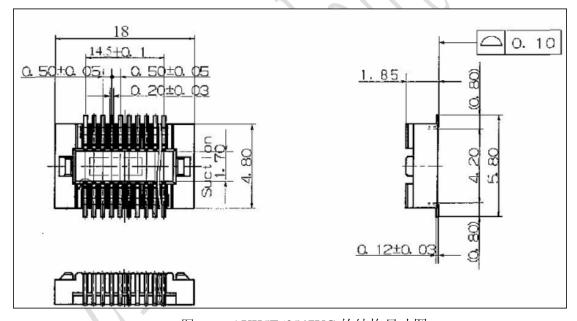


图 2-8 AXK5F60547YG 的结构尺寸图

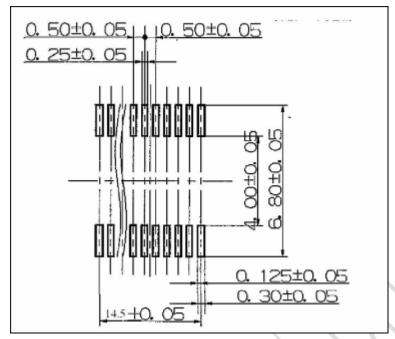


图 2-9 AXK5F60547YG 的推荐焊盘图

3 系统架构

3.1 硬件系统架构

M501模块的应用功能框图如下图3-1所示,本模块与外部主要有RESET、USIM接口、 USB接口、外部电源、模拟音频、UART、通讯选择、上电指示、时钟备用电池等接口部分。

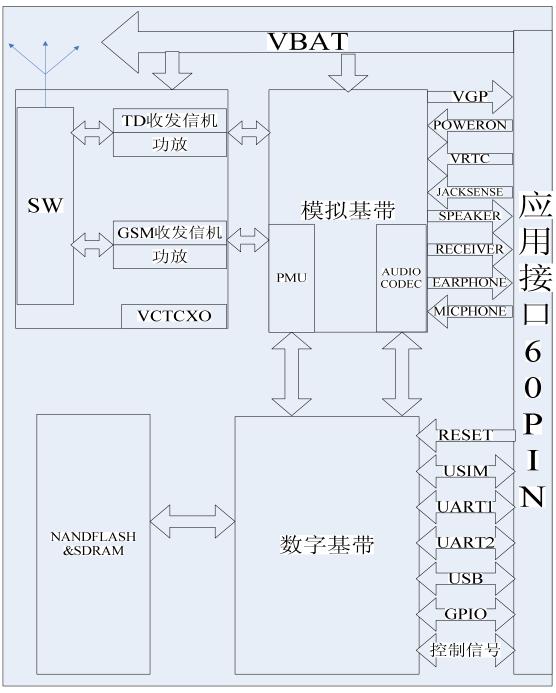


图 3-1 模块通用应用功能框图

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

M501模块可分为射频单元、基带单元和60PIN B2B接口。

射频单元主要完成了EDGE、GPRS、GSM和TD-SCDMA的上下链路的信号的发射和接 收。

基带单元主要完成了基带信号处理功能,包括上、下行信号的调制解调、信道编解码、 加密/解密等等。

60PIN B2B接口部分为模块提供与外部电路的接口。通过RESET管脚使用户可复位模 块,即通过拉低RESET上的电压可使模块重启。模块USIM/SIM接口与USIM/SIM卡连接, 实现与USIM/SIM卡的数据交互。模块USB接口提供了模块与外部数据交换的途径。模块 UART接口也提供了模块与外部数据交换的途径。60PIN B2B接口中定义了5个电源管脚,通 过这些电源管脚,外部电路可给模块提供电源,本模块要求外部电源供电典型值为+3.8V, 可提供的最大电流不能大于2.5A。模块模拟音频接口与外部电路实现语音信号的交互。

3.2 软件系统架构

M501模块的软件系统架构框图如图4-2所示。

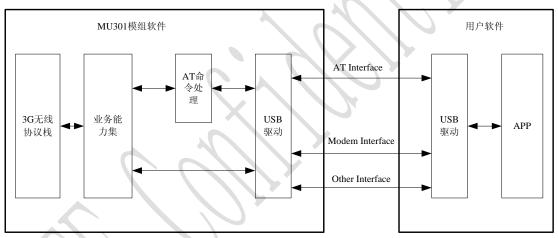


图3-2 模块软件业务应用框图

M501模块软件由以下模块构成:

USB驱动模块:用于接收来自用户侧的USB数据;

AT命令处理模块:用于解析来自用户的AT命令,执行相应的业务,并向用户发送 执行结果。

业务能力集:支持数据业务、SMS、MMS、电话等业务能力。

3G无线协议栈:用于与网络侧进行无线通讯。

M501模块在用户侧系统上会枚举出多个端口,用户侧系统需要安装相应的端口驱 动程序后,才能与M501进行数据交互。

用户侧应用软件通过Modem端口进行拨号,来进行数据业务;通过AT端口发送AT 命令给模块,来指示其进行相应的业务;通过接收模块上报的AT命令响应或者指示状 态的AT命令,获得模块的执行结果和工作状态。

ZTE中兴

除此之外M501还预留了其他端口,来完成更为丰富的电信业务。

- 28 -

4业务和应用

4.1 分组数据业务

M501模块支持以下数据业务能力:

- HSDPA数据业务能力: DL/UL:2.8Mbps/2.2Mbps
- TD-SCDMA数据业务能力: DL/UL:384Kbps/128Kbps
- EDGE数据业务能力: DL/UL:236.8Kbps/118.4Kbps
- GPRS数据业务能力: DL/UL: 85.6Kbps/42.8Kbps

进行数据业务需要使用拨号应用程序来进行,拨号时需要设置以下参数:

- 接入号码
- 根据中国移动的要求进行设置。
- 网络接入点 (APN)
- 支持CMNET、CMWAP等,并支持中国移动所有其他的接入点

4.2 SMS 业务

M501模块支持以下SMS业务能力:

- 支持MO(Mobile Originated)、MT(Mobile Terminated)及蜂窝广播功能(GSM 网络)
- 支持PDU(Protocol Date Unit)模式及文本模式
- 支持长短消息(Concatenated SMS)

4.3 MMS 业务

M501模块支持MMS(多媒体信息服务)。

4.4 语音业务 (可选)

M501模块支持以下业务能力:

支持MO(Mobile Originated)、MT(Mobile Terminated)及紧急呼叫功能

〈本文中的所有信息均为中兴通讯股份有限公司内部信息,不得向外传播。〉

支持以下声码: PCM、AMR

附加业务功能:

- 呼叫转移
- 呼叫限制
- 多方通话
- 来电显示
- 呼叫等待及呼叫保持

4.5 WMMP 业务 (可选)

M501支持中国移动WMMP3.0规范,可用于M2M产品。

4.6 可视电话 (可选)

M501支持中国移动可视电话业务,同时支持以下补充业务:

- 可视电话呼叫转移
- 可视电话来电显示
- 可视电话呼叫限制

4.7 支持的操作系统

M501可以嵌入到安装以下操作系统的主机或终端中应用:

- Windows XP
- Windows Vista
- Win7
- WinCE
- Linux

5 接口

本章节主要描述 M501 模块各接口的说明,包括:

- 电源接口
- 天线接口
- 通信接口
- SIM/USIM 卡接口
- 通讯选择接口
- 音频接口
- 上电指示接口
- 时钟备用电池接口
- AT 命令接口

5.1 电源接口

M501模块的总电源来自60PIN B2B接口,供电电压为+3.3V~+4.5V。输入电源直接送 给电源管理单元(PMU),由其内部的LDO和DC/DC产生终端系统所需的各种电源,通过电 感隔离送给射频部分的PA供电。

管脚号	信号名	描述	参数
51、53、55、57、59	VBAT	电源	供电电压范围为+3.3V~+4.5V, 其典型值+3.8V,因此在模块以最 大功率发射时,电源瞬时供电电 流会较大,+3.8V电压会有跌落, 但必须保证其不低于3.3V。供电 电路能够提供给模块的最大电流 不能大于2.5A。
4、15、39、40、52、54、56、58、 60	GND	地	0V

表 5-1 电源接口定义表

5.2 天线接口

天线接口为射频连接器,要求天线的特征阻抗为50欧姆。此外,在模块bottom面提供天 线焊盘,同样选择50ohm特性阻抗的线缆和天线。

TD/GSM 的输入输出信号通过测试接口连接到测试电缆或天线处,输入输出信号分别是 时分的下行接收信号和上行的发射信号。

5.2.1 射频连接器

ZTE-T M501 60PIN B2B模块上采用HRS公司的U.FL-R-SMT-1,其尺寸如下图5-1所示。

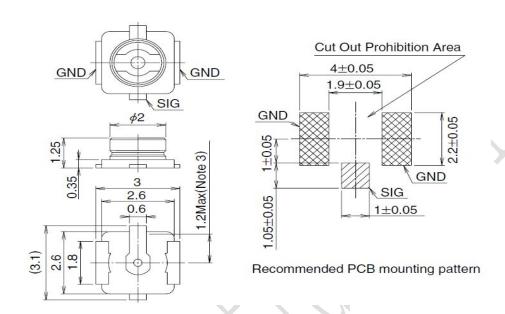


图 5-1 天线接口尺寸

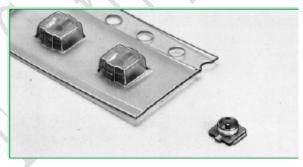


图5-2 射频接口测试座 (HRS公司 U.FL-R-SMT(10)) 对应于射频接口的线缆,建议选用HRS公司的U.FL LP 088,如图5-3所示。

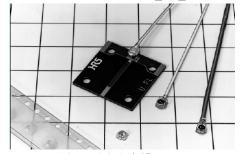


图5-3 测试线缆Cable

表 5-2 天线接口特性

名称	描述	条件
接触电阻	中心: 20m ohms max	10mA max
	外部: 10m ohms max	
隔离电阻	500 M ohms min	100V DC
频率范围	0.045~6GHz	\

5.2.3 天线焊盘

ZTE-T M501 60PIN B2B 模块背面提供天线焊盘,如图 5-4 所示,为用户提供一个天线馈点 以及两个地,便于用户测试使用。相对应的焊接线缆,使用刚性或柔性同轴线均可。

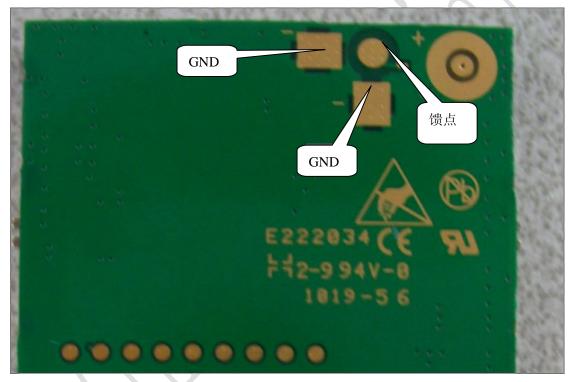


图 5-4 bottom 面天线焊盘

5.2.3 天线接口特性

表 5-3 M501 模块天线接口射频性能功能表

参数		最小值	典型值	最大值	单位
频率范围	P-GSM 900	890	/	915	MHz
上行(MS→BTS)	GSM 1800	1710	/	1785	MHz
	TD-SCDMA	2010	/	2025	MHz

		1880	/	1920	MHz	
	P-GSM 900	935	/	960	MHz	
频率范围	GSM 1800	1805	/	1880	MHz	
下行(BTS→MS)	TD CCDMA	2010	/	2025	MHz	
	TD-SCDMA	1880	/	1920	MHz	
	P-GSM 900	31	33	35	dBm	
发射功率范围	GSM 1800	28	30	32	dBm	
	TD-SCDMA	21	23	25	dBm	
	P-GSM 900	/	124	/	个	
载频数量	GSM 1800	\	374	\	个	
	TD-SCDMA	\	68		个	
	P-GSM 900	\	45		MHz	
双工间隔	GSM 1800	\	95		MHz	
	TD-SCDMA	\	0		MHz	
载频间隔		\	200		kHz	
多工,双工方式		EDGE/GPRS: TDMA/FDMA, FDD				
多工, 从工刀式		TD-SCDMA/HSDPA: TDMA, TDD				
每 TDMA 帧的时隙	以数	7个主时隙、3个特殊时隙、1个保护时隙				
帧周期	短帧长 10ms(子帧 5ms)					
时隙周期		0.675ms				
调制方式		EDGE/GPRS: GMSK, 8PSK				
		TD-SCDMA/HSDPA: QPSK, 16QAM				
	P-GSM 900	≤-102	7		dBm	
接收灵敏度	GSM 1800	≤-102			dBm	
	TD-SCDMA	≤-108	≤-108			

5.3 通信接口

5.3.1 USB 接口

M501模块遵循USB2.0接口规范,支持USB2.0全速模式(12Mbit/s),用户可以通过USB 进行软件下载和通讯。

表 5-4 USB 接口

管脚号	信号名	I/O	描述
45、47	5VBUS	输入	USB 供电+5V
41	USB_DP	双向	USB 数据线 D+
43	USB_DM	双向	USB 数据线 D-

本模块中的电源由+3.8V和+5V提供,其中+3.8V由外部电源通过60PIN B2B连接器直接 供给模块内部,而USB口中的+5V也直接通过60PIN B2B连接器直接供给模块内部。USB_D+ 和USB_D-信号引入模块后,在模块中已进行了ESD保护设计,该两根信号线在模块中都是 通过一个33欧姆的电阻与DBB芯片的相应管脚相连。模块中数据接口部分的电路如图5-4所 示。

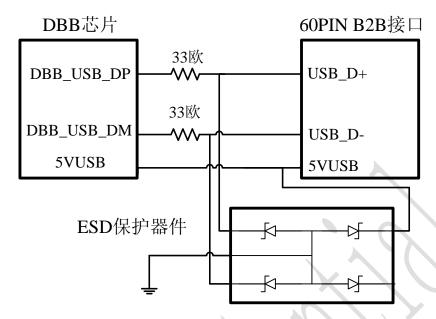


图5-5 M501模块中数据接口电路

下图是M501模块USB接口测试点:

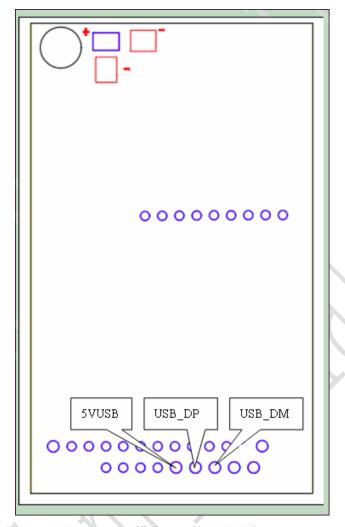


图5-5 M501模块USB接口测试点

5.3.2 UART 接口

ZTE-T M501 TD-SCDMA B2B 模块具备 UART 串行功能。UART1 用作与主机的通讯口, 其速率缺省为 115.2kbps,可以采用相关 AT 指令动态配置从 1200bps 到 460.8kbps,下边是 UART1 定义:

表 5-5 UART1 接口

信号	管脚	I/O	电气特性	说明
UART_TX	38	О	2V8	UART1 数据发送
UART_RX	36	I	2V8	UART1 数据接收
UART_RTS	34	I	2V8	UART1 硬件流控信号
UART_CTS	32	О	2V8	UART1 硬件流控信号
UART_RI	30	O	2V8	UART1 振铃信号

模块在以上功能基础之上,另外提供一组独立接口 UART2,用于软件下载,其下载速 率固定为 115.2kbps。

表 5-6 UART2 接口

信号	管脚	I/O	电气特性	说明
DBB_USC_2	5	0	2V8	UART2 数据发送
DBB_USC_1	3	I	2V8	UART2 数据接收

M501 模块可以通过使用 232 类芯片与标准 RS-232 的接口连接,推荐使用 MAX3238 芯片,如下图所示:

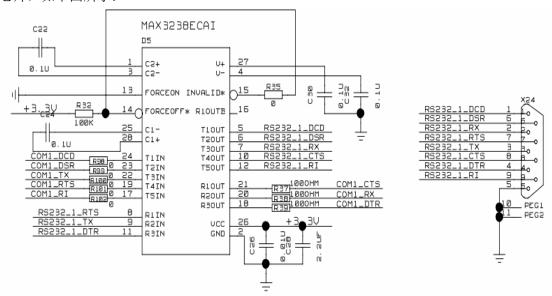


图5-6 串口连接示意图

5.4 SIM/USIM 卡接口

5.4.1 SIM/USIM 接口概述

M501 模块遵循 USIM 卡接口规范。

表 5-7 USIM 接口

管脚号	信号名	信号流向(相对于模块)	信号定义
20	DBB_SIM_RESET	0	SIM/USIM 卡复位
22	DBB_SIM_CLK	0	SIM/USIM 卡时钟
24	DBB_SIM_DATA	I/O	SIM/USIM 卡串行数据
26	VSIM	О	SIM/USIM 卡电源
18	SIM_DETECT	I	SIM/USIM 卡检测

5.4.2 SIM/USIM 检测

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

模块的 SIM_DETECT 接口依据以下原则进行设计:

- (1) 电平由高到低, SIM 卡为拔出状态
- (2) 电平由低到高, SIM 卡为插入状态

对于 SIM/USIM 卡检测需要使用带检测功能的 SIM/USIM 卡座, M501 调试板使用的是 AMPHENOL 公司型号为101-00586-68卡座和ELCO公司型号为04 5036 006 201 862+卡座, 其卡座的具体尺寸如下图所示:

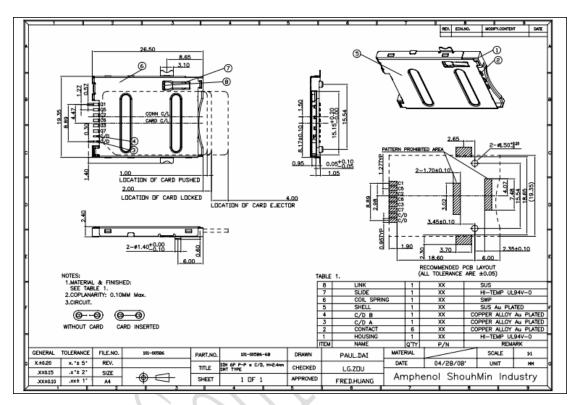


图5-6 SIM/USIM卡座尺寸外形图

5.4.3 接口推荐电路

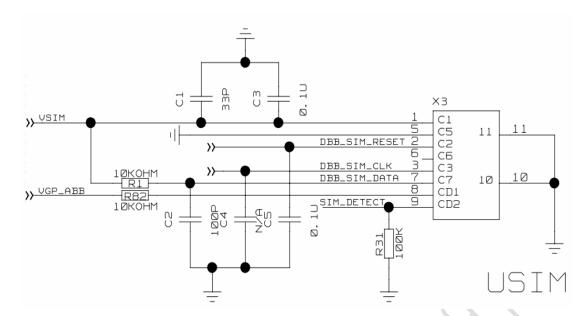


图 5-7 USIM 卡接口推荐电路

建议USIM卡座应该距离模块接口较近的位置(建议从模块的60PIN B2B连接器到SIM 卡座的PCB走线长度不能超过100mm),以避免因走线过长使波形产生较严重的变形,从而影响信号的通信。对于USIM卡检测电压VGP_ABB,上图中所示是由模块内部输出,同时也可以由用户从外部直接供给,电压要求2.8V~3.0V。

建议DBB_SIM_RESET与GND之间并联一个0.1uF的电容,DBB_SIM_DATA与GND之间并联一个100pF的电容,VSIM与GND之间并联一个0.1uF和33PF的电容,滤除射频信号的干扰。

5.4.4 卡座接口 ESD 防护

M501模块的USIM卡接口ESD防护推荐电路如图5-7所示,ESD保护器件要尽量靠近USIM卡座放置。

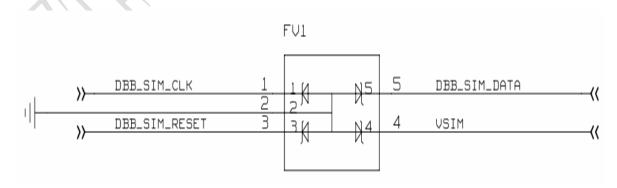


图 5-8 USIM 卡接口 ESD 防护推荐电路

5.5 通讯选择接口

ZTE-T M501 60PIN B2B模块产品说明V1.1

Confidential ▲

模块连接器上 2 个通讯口选择信号线 COM_SEL1、COM_SEL2,用于选择 M501 与外部的通讯口,定义如下:

表 5-8 通讯选择接口

信号	管脚	I/O	电气特性	说明
COM_SEL1	8	I/O	2V8	通讯选择信号
COM_SEL2	6	I/O	2V8	通讯选择信号

表 5-9 通讯口选择信号状态定义

状态	COM_SEL2	COM_SEL1	所选择的通讯端口
状态 1	0	0	以 UART1 为通信口,工作在正常模式
状态 2	1	0	以 UART1 为通信口,工作在生产测试模式
状态 3	0	1	以 USB 为通信口,工作在正常模式
状态 4	1	1	以 USB 为通信口,工作在生产测试模式

5.6 音频接口

5.4.1 Microphone 接口

ZTE-T M501 TD-SCDMA B2B 模块具备 Microphone 功能,配置独立接口,如表 5-3 所示。

表 5-10 Microphone 接口

信号	管脚	I/O	电气特性	说明
MICP1	25	Ĭ	模拟	麦克风正端输入
MICN1	23	Ι	模拟	麦克风负端输入

模块 Microphone 功能通过差分电路实现;

下面是 Microphone 接口在应用端的一些参考设计, 供用户在直接连接音频负载时参考。

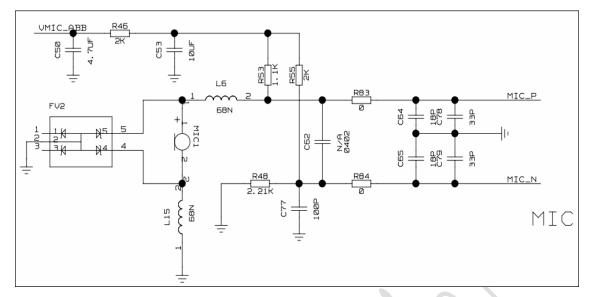


图 5-9 Microphone 接口电路的参考设计

上图中对于 Microphone 参考设计其 ESD 保护器件 FV2 用户可以根据需要来进行选择, 电容 C62、C64、C65、C78、C79 用来调节 Microphone 的音频效果,用户可以根据需要进 行选择,推荐值 C62=18PF, C64=18PF, C65=18PF, C78=33PF, C79=33PF, R83=R84=0.1UF。

5.4.2 Speaker 接口

ZTE-T M501 TD-SCDMA B2B 模块具备扬声器功能,配置独立接口。

表 5-11 Speaker 接口

信号	管脚	I/O	电气特性	说明
ABB_AOUT2P	19	0	模拟	扬声器正端输出
ABB_AOUT2N	17	0	模拟	扬声器负端输出

模块 Speaker 音频采用差分输出结构。

下面是 Speaker 接口在应用端的一些参考设计,供用户在直接连接音频负载时参考。

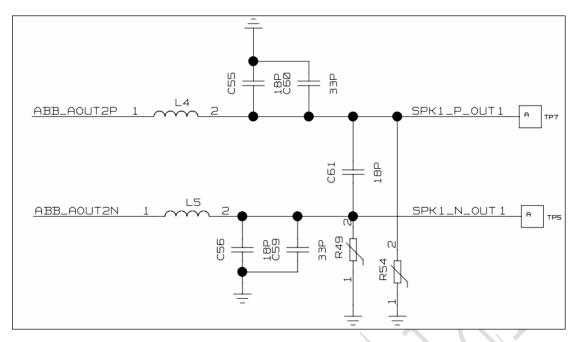


图 5-10 Speaker 接口电路的参考设计

上图中对于 Speaker 参考设计其压敏电阻 R49 和 R54 用来 ESD 防护,用户可以根据需要来进行选择,电容 C61、C55、C60、C56、C59 用来调节 Speaker 的音频效果,用户可以根据需要进行选择,推荐值 C61=18PF,C55=18PF,C56=18PF,C59=33PF,C60=33PF。

5.4.3 Receiver 接口

ZTE-T M501 TD-SCDMA B2B 模块具备 Receiver 功能,配置独立接口。

表 5-12 Receiver 接口

信号	管脚	I/O	电气特性	说明
EPP	35	0	模拟	RECEIVER 正端输出
EPN	33	О	模拟	RECEIVER 负端输出

模块 Receiver 音频采用差分输出结构。

下面是 Receiver 接口在应用端的一些参考设计,供用户在直接连接音频负载时参考。

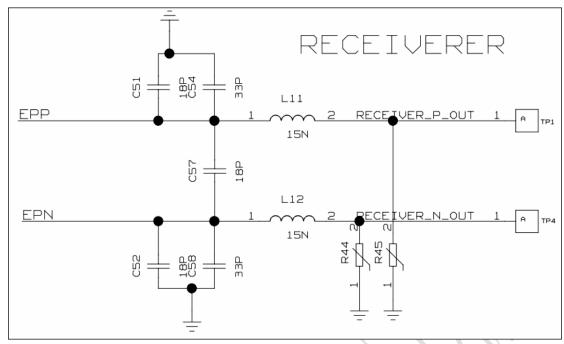


图 5-11 Receiver 接口电路的参考设计

上图中对于 Receiver 参考设计其压敏电阻 R44 和 R45 用来 ESD 防护,用户可以根据需要来进行选择,电容 C57、C51、C54、C52、C58 用来调节 Receiver 的音频效果,用户可以根据需要进行选择,推荐值 C57=18PF, C51=18PF, C52=18PF, C54=33PF, C58=33PF。

5.4.4 耳机接口

ZTE-T M501 TD-SCDMA B2B 模块具备耳机功能,配置独立接口。

表 5-13 耳机接口

信号	管脚	I/O	电气特性	说明
HPL	31	О	模拟	耳机左声道输出
HPR	29	О	模拟	耳机右声道输出
HEADSET_MIC	21	I	模拟	耳机麦克风输入
JACKSENSE	37	I	2V8	耳机插拔检测

耳机语音输出是左右声道,此时 HPL 和 HPR 不是差分走线,布线时需要将 HPL 和 HPR 中间用地线隔开,防止互相干扰。

下面是耳机接口在应用端的一些参考设计,供用户在直接连接音频负载时参考。

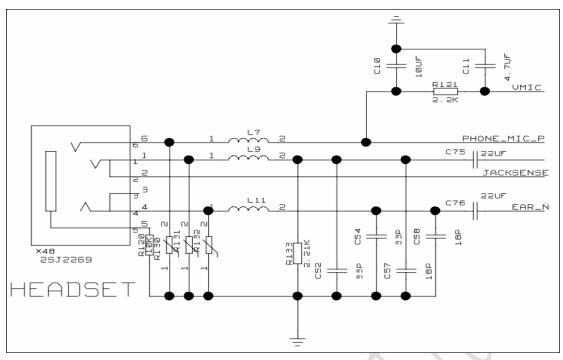


图 5-12 耳机接口电路的参考设计

上图中对于耳机参考设计其压敏电阻 R57、R58 和 R59 用来 ESD 防护,用户可以根据需要来进行选择。C52、C54、C57、C58、C75、C76 用来调节耳机的音频效果,用户可以根据需要进行选择,推荐值 C57=18PF,C58=18PF,C52=33PF,C54=33PF,C75=22UF,C76=22UF。对于电阻 R133 是用来检测耳机的插拔状态,其 R133=2.21K;对于耳机的 MIC需要上拉到 VMIC,VMIC 电压可以通过 60PIN B2B 连接器引出。

5.7 上电指示(VGP)接口

ZTE-T M501 TD-SCDMA B2B 模块提供一个 VGP 接口驱动外接的 LED, 指示模组上电工作状态。

表 5-14 VGP 接口

信号	管脚	I/O	电气特性	说明
VGP_ABB	16	О	2V8	指示模块上电工作状态

下面是 VGP 接口在应用端的一些参考设计,供用户在直接连接负载时参考。

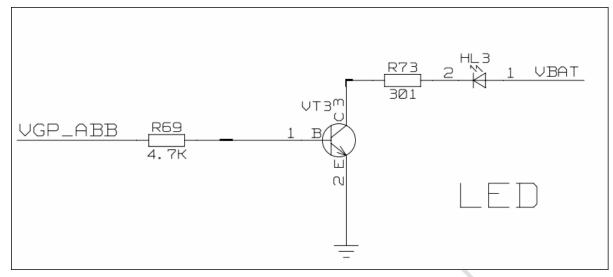


图 5-13 VGP 接口电路的参考设计

上图中用户可根据实际情况来适当选取 R69 和 R73 的取值。

5.8 时钟备用电池(VRTC_ABB)接口

ZTE-T M501 TD-SCDMA B2B 模块具备为时钟提供备用电池功能,配置独立接口。 VRTC_ABB 是 M501 模块内部实时时钟备用电源输入接口。当 VBAT 在位时,实时时钟可以通过 VBAT 供电;当 VBAT 不在位时,VRTC_ABB 为实时时钟提供备用电源。

VRTC ABB 可以使用电池供电,电池的电压范围是 2.8V~3.1V。

当 VRTC_ABB 使用可充电电池, VBAT 在位时, 通过 VBAT 可以给电池充电。从 VBAT 给备份电池充电的条件是:

主电源电压>实时时钟备份电池电压

主电源电压>2.8V

表 5-15 时钟备用电池接口

信号	管脚	I/O	电气特性	说明
VRTC_ABB	10	I	1V8	时钟备用电源

下面是时钟备用电池接口在应用端的一些参考设计,供用户在直接连接电池负载时参考。

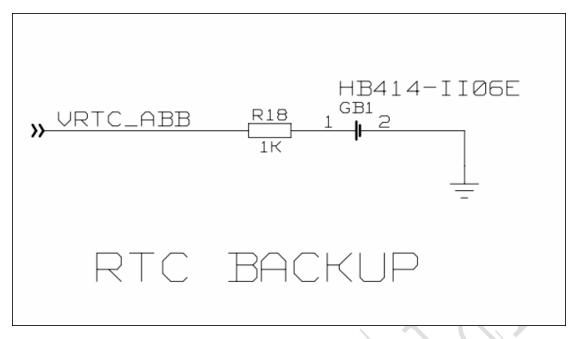


图 5-14 时钟备用电池接口电路的参考设计

上图中GB1为Lithium-Ion电池,推荐型号为SII公司型号为HB414-II06E和KANEBO 公司型号为 PAS414HR-VA5R。

5.9 AT 命令接口

M501遵从如下AT命令规范:

3GPP TS 27.007 V3.13.0 AT command set for User Equipment (UE)

《中国移动通信随e行客户端AT命令接口规范V1.0.0》

6 调试环境说明

6.1 硬件调试环境

6.1.1 调试板概述

M501 模块整个调试环境包括 3 部分:调试板、转接板、M501 模块,如图 6-1 所示:

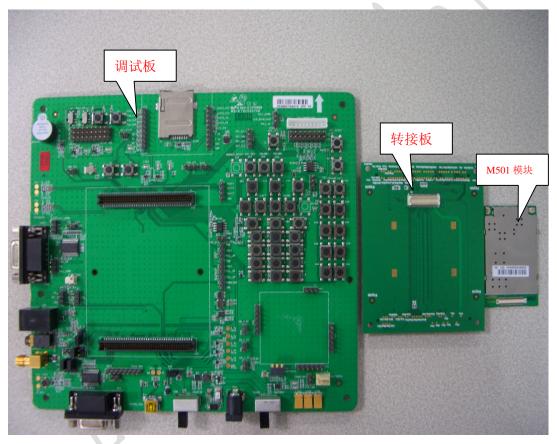


图 6-1 M501 调试环境

M501 模块可以在如图 6-2 所示的调试板上运行。

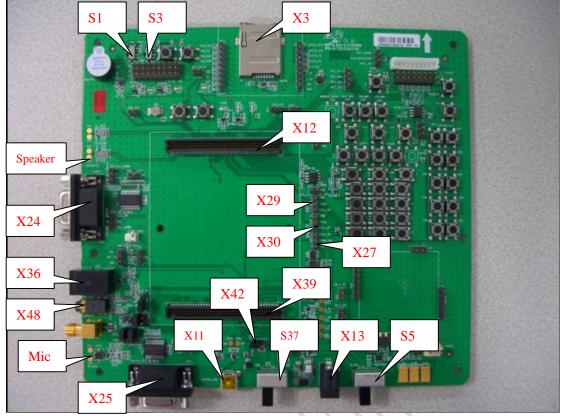


图 6-2 调试板

用户可使用该调试板进行M501模块的开发工作。该调试板可采用两种供电方式:可以 采用电池供电和DCDC供电两种方式,通过一个双刀双掷开关S5选择,供电电压均值为3.8V。 其中,DCDC的输入电源可由另一个双刀双掷开关S37在USB和5V适配器间切换。同时用户 通过调试板上的USB接口与模块进行数据的交互,在这一过程中用户需要了解到几个部分如 下:

- S37: 电源选择开关---开关向左表示USB供电; 开关向右表示+5V电源适配器供电。
- X12、X39: 80芯1.27*1.27间距直式PCB贴片焊接插针接口
- X42: +5V跳线开关。当用USB供电时,将插针的左边和中间用跳线帽连接。当用 适配器供电时,将插针的右边和中间用跳线帽连接。
- X13: 电源适配器接口
- X11: USB A型4芯弯式PCB焊接屏蔽插座
- S5: DCDC选择开关---开关向左表示用调试板上的+5V--+3.8V的DCDC给模块供 电: 开关向右表示用调试板上的电池给模块供电。
- X3: SIM/USIM卡座
- X24、X25: D型9芯弯式PCB焊接插座,用于UART传输。
- X27: 用于选择下载模式为USB下载或UART下载。
- X29、X30: 用于通讯选择。
- S1、S3: 用于USB+GPIO休眠方式的选择。

Mic: 用于焊接Microphone。

Speaker: 用于焊接Speaker。

X36: 用于连接手持听筒。

X48: 3.5MM耳机插座。

6.1.2 转接板概述

M501 模块是通过转接板连接到调试板上,转接板如图 6-3 和图 6-4 所示:

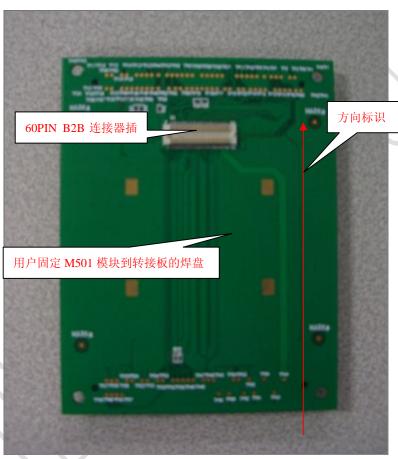


图 6-3 转接板 TOP 面

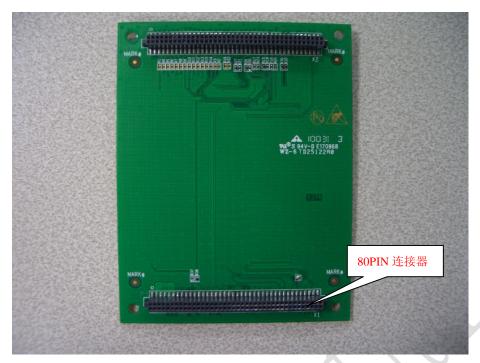


图 6-4 转接板 BOTTOM 面

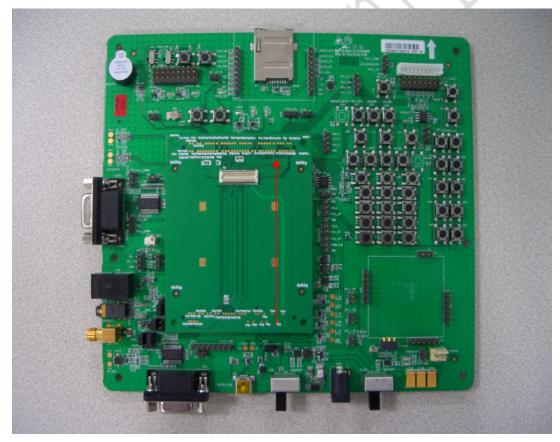


图 6-5 装配图 a

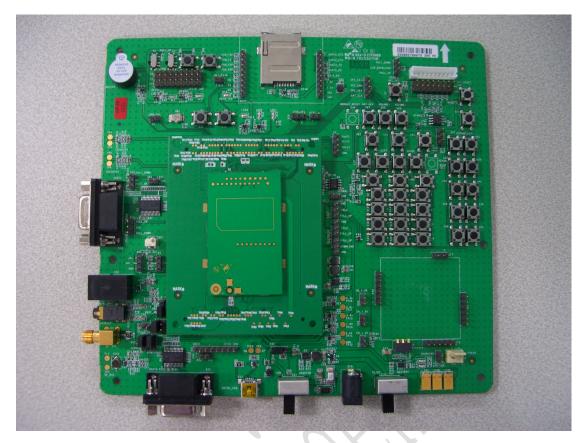


图 6-6 装配图 b

该调试板和转接板的使用过程如下:

- 1: 将转接板插入到调试板上的2个80PIN 插座中并向下按, 使转接板与调试板接触从 而固定, 如图6-5所示。
- 2: 然后将M501模块插入到转接板上的60PIN B2B连接器的插座中并向下按,使M501模块固定到转接板上,如图6-6所示。
- 3:接下来选择供电方式,通过开关S5可以选择用调试板上的DCDC给模块供电,还是电池给模块供电,由于调试板上不带电池,所以开关S5一直扳到左边,用调试板上的DCDC给模块供电。调试板上的DCDC的输入+5V电压可以是电源适配器供电,也可以是USB供电,通过开关S37来进行选择。当S37扳到左边此时调试板上DCDC的输入是USB供电;当S37扳到右边此时调试板上的DCDC的输入是电源适配器供电,同时对于X42(+5V跳线开关)当用USB供电时,将X42插针的左边和中间用跳线帽连接。当用适配器供电时,将X42插针的右边和中间用跳线帽连接如图6-2所示。
- 4:将USIM卡插入USIM卡座X3中,并将调试板的USB接口X1通过USB线连接至PC;如果选择用电源适配器供电,此时还需将电源适配器供电线插入调试板上的电源适配器接口X13中;拨动开关,使调试板正常供电,模块开始启动,PC正常检测到模块端口后,至此模块可以正常工作。

6.1.3 调试注意事项

6.1.3.1 下载软件版本

当用调试板给 M501 模块下载软件版本时需要注意, M501 模块支持 2 种下载方式: 1 种是通过 USB 进行下载: 另外 1 种是通过 UART 进行下载。

当用 USB 进行下载时,首先将 USB 线连接到调试板上的 USB 头上,另外一端连接 PC, 然后用跳线帽将下载选择开关 X27 上的 PULL UP 和 DOWNLOAD 短接, 在打开下载工具, 选择正确的软件版本,最后拨动 S37 到 USB 侧和 S5 到 DC/DC 侧就可以正常下载了。

当用 UART 进行下载时,首先将串口线连接到调试板上的 X25 上,另外一端连接 PC, 然后用跳线帽将 X27 上的 GND 和 DOWNLOAD 短接,在打开下载工具,选择正确的软件 版本,最后拨动 S37 到 USB 侧和 S5 到 DC/DC 侧就可以正常下载了。

6.1.3.2 通讯选择

M501 模块支持 USB 和 UART 两种通讯模式,参照 5.5 章节的介绍。目前默认的操作 是以 USB 为通信口,工作在正常模式,此时 COM_SEL1=1, COM_SEL2=0。通过开关 X29 和 X30 来进行选择, X29 是 COM SEL1, X30 是 COM SEL2。对于 X29 此时跳线帽将 SEL1 和 PULL UP 进行短接;对于 X30 此时跳线帽将 SEL2 和 GND 进行短接,如下图所示。所 有这些操作必须在上电前准备完毕。

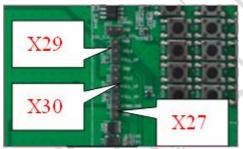


图 6-7 通讯模式选择图

6.1.3.3 GPIO+USB 休眠模式选择

M501 模块支持 GPIO+USB 的休眠方式,通过调试板上的开关 S1 和 S3 使模块进入休 眠。当模块上电时,必须将 S1 和 S3 扳到下边。此时 X5 和 X6 从左往右第 2 个插针和第 3 个插针必须用跳线帽进行短接,如下图所示:

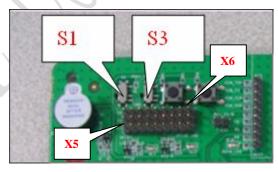


图 6-7 休眠模式选择图

6.1.3.4 注册网络和呼叫

当进行语音呼叫时,首先需要正确的将听筒或耳机插入到调试板上。 当用 USB 供电且听筒接听时,如图 6.8 所示:

图 6.8 USB 供电听筒接听示意图

上图中红圈中的放大图如图 6.8a 所示:

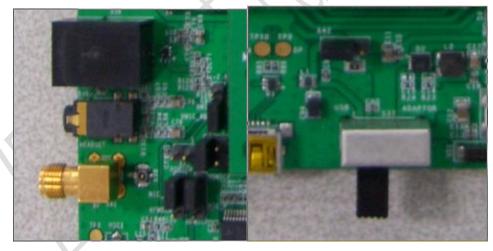


图 6.8a 听筒跳线帽放大示意图

听筒旁边的4组插针的跳线帽按照上图6.8a中所示连接,同时X42和S37也按照图6.8a 中所示连接。

当用 USB 供电且耳机接听时,如图 6.9 所示:

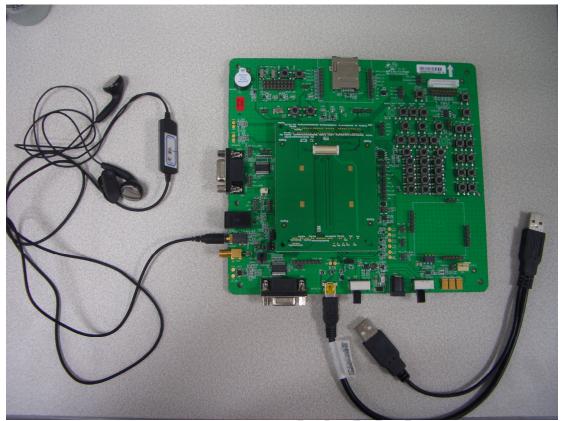
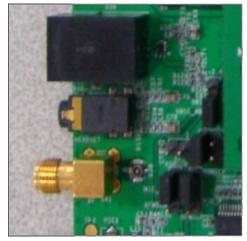



图 6.9 USB 供电耳机接听示意图 当用适配器供电且听筒接听时,如图 6.10 所示:

图 6.10 适配器供电听筒接听示意图 上图中红圈中的放大图如图 6.10a 所示:

ZTE中兴

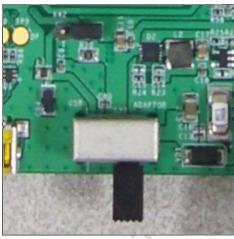


图 6.10a 听筒跳线帽放大示意图

听筒旁边的 4 组插针的跳线帽按照上图 6.10a 中所示连接,同时 X42 和 S37 也按照图 6.10a 中所示连接。

当用适配器供电且耳机接听时,如图 6.11 所示:

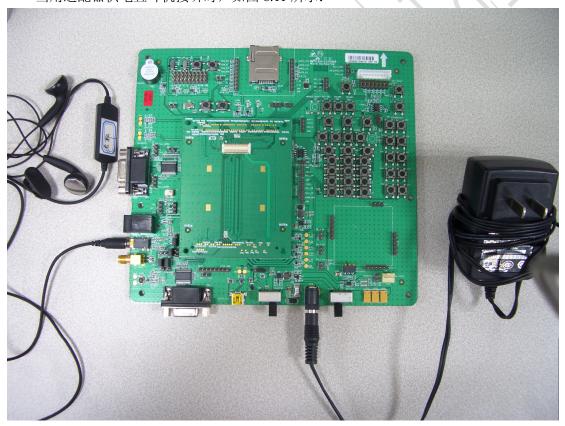


图 6.11 适配器供电耳机接听示意图

其次连接 USB 线到调试板上的 USB 插座 X11 上,另一端连接 PC。点击开始---所有程 序---附件---通讯---超级终端。设置正确的 Baud Rate 和 COM number。

最后将天线连接到 M501 上的射频测试座上,插入 SIM 卡。

上述设置和检查完毕后,调试板上电,连接 AT 端口,注册流程如下:

//确认端口是否正常以及模块是否开机 at

OK

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

//查询软件版本,方便技术交流 at^zversion?

^ZVERSION:M501V0.0.1B02 A2000PU.3.20.10 modem

OK

at^ddtm? //查询注册方式

^DDTM: 0,2

OK

//单次注册 GSM 模式 at^dstm=0,1,0

OK

at+cfun=1 //注册网络

OK

+CREG: 2 ^DACTI: 0 ^MODE:0

^DCINFO: 1,1,0,0

//注册到了网络 +CREG: 1

^MODE:3

//拨打电话 88459569 atd88459569;

DIALING

OK

ALERTING

//挂机 ath

HANGUP: 0

OK

^DCINFO: 1,1,0,0

6.1.4 调试板接口介绍

6.1.4.1 60PIN(X12/X39)接口介绍

调试板上的2个60PIN接口是和转接板上的2个60PIN接口相搭配的,不同之处只在于调 试板上的接口是公口, 转接板上的为母口。

6.1.4.2 电源适配器(X13)接口

本接口的电器特性和物理特性如表6-1和表6-2所示。

表 6-1 电气特性

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

特性	要求
A. 接触电阻	20m Ω MAX.
B. 额定电流	3.0A DC
C. 耐电压	500V AC/minute
D. 绝缘电阻	100M Ω MIN.
E. 額定电压	30V DC

表 6-2 物理特性

特性	要求
A. 插入力	3.0N∼20N
B. 保持力	3.0N∼20N
C. 机械寿命	5000 次

根据调试板内部电路和接口特性,建议电源适配器供给的电压为5V,电流为2A。

表 6-3 电源适配器接口

管脚号	信号名	方向(对接口而言)	描述
1	AC_5V	I	+5V/2A 直流电源输入

6.1.4.3 音频接口介绍

表 6-4 Mic 接口

管脚号	信号名	0	方向(对接口而言)	描述
1	MIC_P		i T	Micphone 的输入正端
2	MIC_N	1	I	Micphone 的输入负端

表 6-5 Speaker 接口

管脚号	信号名	方向(对接口而言)	描述
1	SPK2_P	I	Speaker 的输出正端
2	SPK2_N	I	Speaker 的输出负端

表 6-6 Receiver 接口

管脚号	信号名	方向(对接口而言)	描述
1	RECEIVER_P	I	Receiver 的输出正端
2	RECEIVER_N	I	Receiver 的输出负端

6.1.4.4 USB 接口(X11)介绍

USB接口由4根线组成,各根线的定义如表6-7所示。

表 6-7 USB 接口

管脚号	信号名	方向(对接口而言)	描述
1	USB_5V	I	+5V 电源
2	USB_DM	I/O	USB 数据线 D-
3	USB_DP	I/O	USB 数据线 D+
4	GND	I	地

6.1.4.5 上电指示 LED

表 6-8 USB 接口

信号名	描述	状态
LED1	模块上电指示灯	当模块 ABB 工作后输
		出 VGP_ABB, 点亮
		LED1。

6.1.4.6 SIM/USIM 卡座(X3)接口介绍

SIM/USIM 卡座详细介绍参见章节 5.4.2, 下表是 SIM/USIM 卡座接口: 表 6-9 SIM/USIM 卡座接口

- 1				
	管脚号	信号名	方向(对接口而言)	描述
	1	VSIM	0	SIM/USIM 卡电源
	2	SIM_RESET	0	SIM/USIM 卡复位
	3	SIM_CLK	О	SIM/USIM 卡时钟
	5	GND		地
	6	悬空		未定义
	7	SIM_DATA	О	SIM/USIM 卡串行数据
	CD1	VGP_ABB	0	SIM/USIM 卡检测电压
	CD2	SIM_DETECT	I	SIM/USIM 卡检测

6.1.4.7 UART(X24/X25)接口介绍

调试板上共有两组 UART 接口, UART1 为 5 线串口, UART2 为 2 线串口。使用串口调 试时,用串口线将调试板通过 DB9 芯和电脑连接。

X24 对应 UART1, X25 对应 UART2。当进行下载版本时,可以用 UART2 通过 DB9 芯 和电脑相连接。

表 6-10 UART(X24)接口

管脚号	信号名	方向(对接口而言)	描述
1	COM1_TX	О	UART1 数据发送
2	COM1_RX	I	UART1 数据接收
3	COM1_RTS	I	数据终端发送请求信号
4	COM1_CTS	О	UART1 允许发送信号
5	COM1_RI	0	UART1 振铃信号

表 6-11 UART(X25)接口

管脚号	信号名	方向(对接口而言)	描述
1	COM2_TX	О	UART2 数据发送
2	COM2_RX	I	UART2 数据接收

6.2 软件调试环境

6.2.1 驱动安装

M501模块可以通过Mini PCI-E或者调试板转换为USB接口与PC机连接,此时会枚举 出通讯端口、需要安装驱动后才能与模块软件进行交互。

请分别使用Windows及Linux等操作系统对应的驱动软件。

6.2.2 AT 命令调试

Windows XP操作系统中,可以使用系统自带的超级终端工具与M501模块枚举出的 端口相连, 进行AT命令的调试。

该工具所在路径为 <开始> - <所有程序> - <附件> - <通讯> - <超级终端>。

Linux操作系统,可以使用Mini COM串口工具。

其他操作系统,请使用相应的串口通讯工具进行AT命令的调试。

6.2.3 业务应用 demo 程序

M501在Windows XP操作系统下,可以配合中国移动随e行应用软件熟悉SMS、 MMS、数据业务等常用业务的使用。

7_{GPS} 功能

7.1 GPS 方案说明

M501 采用 SiRF GSD3tw-8220 为主芯片的 GPS 方案, 由于 GSD3tw-8220 采用半软半硬 的方案, 意思就是说其软件 SIRFNavlll 运行在我们模块主系统上, 会占用主系统上的存储 空间和 CPU 资源,所以使其方案的优点是所需要的外围电路较少,可以在不占用太多 PCB 布局空间的情况下把 GPS 功能应用到模块产品中。

7.2 GPS 芯片特点

GSD3tw-8220 内部集成 LNA。

单电源供电,电压 1.8V。

内部集成输入 1.8V, 输出 1.2V 的 LDO。

典型休眠电流 10UA。

最大功率下定位时功耗 67MW, 电流大约 37MA。

与主机通讯接口有 SPI 和 UART 两种模式,但是对于其 M501 来说只支持 UART 模式的通 讯接口, 其与 M501 中的 DBB 通讯模式如下图 7.1 所示:

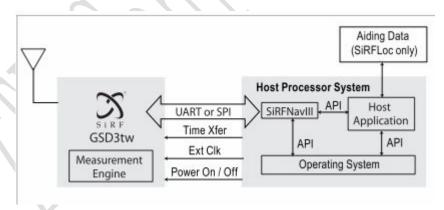


图 7.1 M501 中的 DBB 通讯模式

GPS 功能的原理图见下图 7.2:

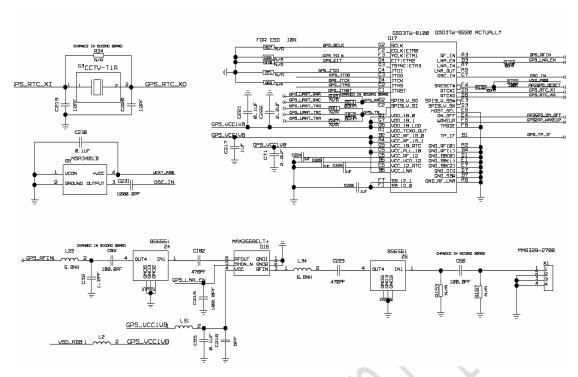


图 7.2 GPS 功能的原理图

简单说明一下原理图: GPS 信号通过 X1 测试座(型号 MM9329-2700,同 RF 测试座)进入射频链路,经过一路 π 型匹配网络到 NF,然后到 LNA(型号 MAX2659ELT+),再经过 NF 到达主芯片,GPS 信号和 DBB 通过 UART 来交互。

GPS 主时钟采用型号为 NSA3401B 的标频 16.369MHZ 的晶振提供,另外 32.768k 提供睡眠时钟。对于 GSD3tw-8220 来说,其主时钟支持四种模式,通过 GPS 芯片的 JTCK 和 JTDI 引脚进行选择,如下图 7.3 所示。目前我们选用的是 SIRF 推荐的 16.369MHZ 晶振,因为当用 16.369MHZ 晶振时可以采用 GPS 芯片内部提供的 LNA,不需要额外的增加外部 LNA;同时当采用 16.369MHZ 晶振时也可以采用外部独立的 LNA。

Exte	External Straps		TCXO Frequency	Supported Configuration		
JTC	K	JTDI	Reference Values (MHz)	Internal LNA	External LNA	
0		0	16.8	Yes	Yes	
0		1	40	Yes	Yes	
1		0	26	Yes	Yes	
1		1	16.369	Yes	Yes	

图 7.3 GPS 晶振选择逻辑表

GPS 的测试结果:

在 GPS simulator 以-110dBm 发射时,单板接收到的载噪比可以达到 54dB-Hz,如图 7.4 所示:

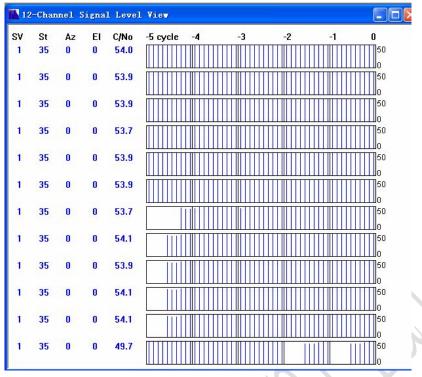


图 7.4 GPS 软件接收信号示意图

GSP 天线的选择

GPS 天线可以选择的很多,我们推荐使用广东盛路通信的 SL10913 系列产品,

电性能参数	指标
频率范围	(1575.42±5) MHz
增益	25±2dB
极化方式	右旋圆极化
电压驻波比	小于等于 2
噪声系数	1.5dB
电源电压	DC (3.3~5) V
接口形式	SMA-J3

8 测试及认证

8.1 遵循规范

- 3GPP TS 27.007 AT command set for User Equipment (UE)
- 3GPP TS 27.005 3rd Generation Partnership Project; Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- 3GPP TS 21.111 USIM and IC card requirements
- 3GPP TS 22.060 General Packet Radio Service (GPRS); Stage1
- 3GPP TS 24.011 Point-to-Point (PP) Short Message Service (SMS) Support on Mobile Radio Interface
- 3GPP TS 31.111 USIM Application Toolkit (USAT)
- GSM04.07 Mobile radio interface signaling layer 3; General aspects
- GSM04.11 Point-to-point short message service support on mobile radio interface
- GSM07.60 Mobile Station(MS) supporting GPRS;
- 语音编码方式: 13K QCELP(IS-733), 8K EVRC(IS-127)
- 中国移动终端AT命令规范V2.0。
- PCI Express Mini Card Electromechanical Specification Revision 1.2

8.2 认证

- 无委核准认证(证书编码: 2009-0265)
- 入网认证(证书编码: 17-6467-900831)
- CCC认证(证书编码: 2009011606333278)
- RoHS认证(证书编码: SHR09042930361001C-1)

9 缩略语

表 8-1 缩略语

EDGE	Enhanced Data rates for GSM Evolution,GSM 增强型数据速率
FDD	Frequency Division Duplexing,频分双工
GSM	Global System for Mobile communications, 全球移动通信系统
GPRS	General Packet Radio Service,通用分组无线业务
HSDPA	High Speed Downlink Packet Access,高速下行分组接入
PMU	Power Manager Unit,电源管理模块
STK	SIM Tool Kit,SIM 卡工具包
TDD	Time Division Duplexing,时分双工
TD-SCDMA	Time Divided-Synchronization Code Divided Multiple Access,时分同步码
	分多址
USIM	Universal Subscriber Identified Module,用户标识模块

10 附录

10.1 M501 板对板连接器信号电平描述

10.1.1 加电不开机状态下信号说明

当外部给模块供电,但不通过 POWERON 信号进行开机,那么此时其它管脚处于不确 定状态,要求外部处理器与之连接的信号线都为低电平或高阻态,以防止通过模块的信号管 脚造成漏电。

10.1.2 复位完成状态信号说明

VBAT 电源输入范围+3.3V~+4.5V, 当 VBAT=+3.8V 时, 电源域 VEXT_ABB=2.8V, VSIM=2.85V, 下表中按照 VBAT=+3.8V 时进行描述:

分类	管脚	信号	I/O 属性	电平状态	电源域	描述
			91	(HORL)		
	51	VBAT	I		3.8V	系统电源输入
	53	VBAT	I		3.8V	系统电源输入
	55	VBAT	I)	3.8V	系统电源输入
	57	VBAT	I		3.8V	系统电源输入
	59	VBAT	I		3.8V	系统电源输入
	4	GND	地		0V	系统地
电源及	15	GND	地		0V	系统地
开机复	39	GND	地		0V	系统地
位	40	GND	地		0V	系统地
	52	GND	地		0V	系统地
, /	54	GND	地		0V	系统地
`	56	GND	地		0V	系统地
	58	GND	地		0V	系统地
	60	GND	地		0V	系统地
	49	POWERON	I	VBAT	VBAT	开机信号
	50	ABB_CRST	I			复位信号
USC&	1	DBB_USC_0				保留
UART2	3	DBB_USC_1	I		VEXT_ABB	UART2 接收
	5	DBB_USC_2	I		VEXT_ABB	UART2 发送
	7	DBB_USC_3				保留
	9	DBB_USC_4				保留
	11	DBB_USC_5				保留

ZTE中兴 ZTE-T M501 60PIN B2B模块产品说明V1.1 **Confidential**▲

	13	DBB_USC_6				保留
TIGD (.		TALLACT V DD	71,12
USIM	18	SIM_DETECT	I	_	VEXT_ABB	I. E. D. D.
	20	DBB_SIM_RESET	О	L	VSIM	USIM 卡复位信 号
	22	DBB_SIM_CLK	O	L	VSIM	USIM 卡时钟信 号
	24	DBB_SIM_DATA	O	L	VSIM	USIM 卡数据信 号
	26	VSIM	О	0V	VSIM	USIM 卡电源, 1.8V 或 2.85V
上电指示	16	VGP_ABB	О	0V	3.0V	上电指示信号
	10	VRTC_ABB	I		VRTC_ABB	RTC 备份电源 1.8V
UART1	30	UART_RI	О	, A	VEXT_ABB	振铃信号
	32	UART_CTS	O		VEXT_ABB	UART1 硬件流
						控信号
	34	UART_RTS	0		VEXT_ABB	UART1 硬件流 控信号
	36	UART_RX	A		VEXT_ABB	UART1 接收信 号
	38	UART_TX	0	7	VEXT_ABB	UART1 发送信 号
控制信 号	42	A2B_SLEEP	I		VEXT_ABB	睡眠指示,指示外 部主机是否睡眠
	44	A2B_WAKE	I		VEXT_ABB	唤醒输入,外部主 机唤醒模块
	46	B2A_SLEEP	О		VEXT_ABB	睡眠指示,指示模 块是否睡眠
	48	B2A_WAKE	О		VEXT_ABB	唤醒输出,模块唤 醒外部主机
	28	DOWNLOAD_MODE	I		VEXT_ABB	下载模式选择
	12	ALERT			VEXT_ABB	保留
	14	SYNCH			VEXT_ABB	保留
	6	COM_SEL2	I		VEXT_ABB	工作模式选择信 号
	8	COM_SEL1	I		VEXT_ABB	通讯口选择信号
	2	保留				保留
USB	41	USB_DP	I/O		5VUSB	USB 总线 D+
	43	USB_DM	I/O		5VUSB	USB 总线 D-
	45	5VUSB	I		+5V	USB 主机电源输入
	47	5VUSB	I		+5V	USB 主机电源输

_		enti	
1 · ^	ntia	Anti	21 8
			-

						入
音频	37	JACKSENSE	I	0V	VBAT	耳机插拔检测
	17	ABB_AOUT2N	О	0V	VBAT	SPEAKER 负输出
	19	ABB_AOUT2P	О	0V	VBAT	SPEAKER 正输出
	21	HEADSET_MIC	I	0V	2.75V	耳机 MIC 输入
	23	MICN1	I	0V	2.75V	MICPHONE 的输
						入负端
	25	MICP1	I	0V	2.75V	MICPHONE 的输
						入正端
	27	VMIC_ABB	О	0V	2.75V	外接 MICPHONE
						电源
	29	HPR	О	0V	2.75V	耳机左声道输出
	31	HPL	О	0V	2.75V	耳机右声道输出
	33	EPN	О	0V	2.75V	RECEIVER 输出
						负端
	35	EPP	О	0V	2.75V	RECEIVER 输出
						正端

10.1.3 待机模式下信号说明(未休眠)

VBAT 电源输入范围+3.3V~+4.5V, 当 VBAT=+3.8V 时, 电源域 VEXT_ABB=2.8V, VSIM=2.85V, 下表中按照 VBAT=+3.8V 时进行描述:

分类	管脚	信号	I/O 属性	电平状态	电源域	描述
		1, () 1		(HOR		
				L)		
	51	VBAT	I	3.8V	3.8V	系统电源输入
	53	VBAT	I	3.8V	3.8V	系统电源输入
	55	VBAT	I	3.8V	3.8V	系统电源输入
	57	VBAT	I	3.8V	3.8V	系统电源输入
	59	VBAT	I	3.8V	3.8V	系统电源输入
	4	GND	地		0V	系统地
电源及	15	GND	地		0V	系统地
开机复	39	GND	地		0V	系统地
位	40	GND	地		0V	系统地
	52	GND	地		0V	系统地
	54	GND	地		0V	系统地
	56	GND	地		0V	系统地
	58	GND	地		0V	系统地
	60	GND	地		0V	系统地
	49	POWERON	I	VBAT	VBAT	开机信号
	50	ABB_CRST	I			复位信号

ZTE	中兴	ZTE-T M501 60PIN I	32B模块产。	品说明 V 1.1	Confiden	tial▲
USC&	1	DBB_USC_0				保留
UART2	3	DBB_USC_1	I		VEXT_ABB	UART2 接收
	5	DBB_USC_2	I		VEXT_ABB	UART2 发送
	7	DBB_USC_3				保留
	9	DBB_USC_4				保留
	11	DBB_USC_5				保留
	13	DBB_USC_6				保留
USIM	18	SIM_DETECT	I	插入 SIM 卡时为 H; 不插入时 为 L	VEXT_ABB	
	20	DBB_SIM_RESET	О	VSIM	VSIM	USIM 卡复位信 号
	22	DBB_SIM_CLK	О		VSIM	USIM 卡时钟信 号
	24	DBB_SIM_DATA	О	X	VSIM	USIM 卡数据信 号
	26	VSIM	0	VSIM	VSIM	USIM 卡电源,
		·	1			1.8V 或 2.85V
上电指示	16	VGP_ABB	O	3.0V	3.0V	上电指示信号
71,	10	VRTC_ABB	I	\leftarrow	VRTC_ABB	RTC 备份电源
	10	VICE_TIBE	1		VKIC_IBB	1.8V
UART1	30	UART_RI	0		VEXT_ABB	振铃信号
	32	UART_CTS	0		VEXT_ABB	UART1 硬件流
		1				控信号
	34	UART_RTS	0		VEXT_ABB	UART1 硬件流 控信号
	36	UART_RX	I		VEXT_ABB	UART1 接收信 号
1/	38	UART_TX	О		VEXT_ABB	UART1 发送信 号
控制信 号	42	A2B_SLEEP	I		VEXT_ABB	睡眠指示,指示外 部主机是否睡眠
	44	A2B_WAKE	I		VEXT_ABB	唤醒输入,外部主 机唤醒模块
	46	B2A_SLEEP	0		VEXT_ABB	睡眠指示,指示模 块是否睡眠
	48	B2A_WAKE	О		VEXT_ABB	唤醒输出,模块唤 醒外部主机
	28	DOWNLOAD_MODE	I		VEXT_ABB	下载模式选择
	12	ALERT			VEXT_ABB	保留
	14	SYNCH			VEXT_ABB	保留

ZTE-T M501 60PIN B2B模块产品说明V1.1 Confidential▲

	6	COM_SEL2	I		VEXT_ABB	工作模式选择信
						号
	8	COM_SEL1	I		VEXT_ABB	通讯口选择信号
	2	保留				保留
USB	41	USB_DP	I/O		5VUSB	USB 总线 D+
	43	USB_DM	I/O		5VUSB	USB 总线 D-
	45	5VUSB	I		+5V	USB 主机电源输
						入
	47	5VUSB	I		+5V	USB 主机电源输
						λ
音频	37	JACKSENSE	I	插入耳机	VBAT	耳机插拔检测
				时为		
				VBAT,不		
				插入时 0V		
	17	ABB_AOUT2N	О		VBAT	SPEAKER 负输出
	19	ABB_AOUT2P	O		VBAT	SPEAKER 正输出
	21	HEADSET_MIC	I	X	2.75V	耳机 MIC 输入
	23	MICN1	I	10	2.75V	MICPHONE 的输
						入负端
	25	MICP1	I		2.75V	MICPHONE 的输
						入正端
	27	VMIC_ABB	О	2.5V	2.75V	外接 MICPHONE
						电源
	29	HPR	0		2.75V	耳机左声道输出
	31	HPL	0		2.75V	耳机右声道输出
	33	EPN	O		2.75V	RECEIVER 输出
			*			负端
	35	EPP	О		2.75V	RECEIVER 输出
						正端

10.1.4 休眠模式下信号说明

VBAT 电源输入范围+3.3V~+4.5V, 当 VBAT=+3.8V 时, 电源域 VEXT_ABB=2.8V, VSIM=2.85V, 下表中按照 VBAT=+3.8V 时进行描述:

分类	管脚	信号	I/O 属性	电平状态	电源域	描述
				(HOR		
				L)		
	51	VBAT	I	3.8V	3.8V	系统电源输入
	53	VBAT	I	3.8V	3.8V	系统电源输入

ZTE-T M501 60PIN B2B模块产品说明V1.1 **Confidential**▲

	55	VBAT	I	3.8V	3.8V	系统电源输入
	57	VBAT	I	3.8V	3.8V	系统电源输入
	59	VBAT	I	3.8V	3.8V	系统电源输入
	4	GND	地		0V	系统地
电源及	15	GND	地		0V	系统地
开机复	39	GND	地		0V	系统地
位	40	GND	地		0V	系统地
	52	GND	地		0V	系统地
	54	GND	地		0V	系统地
	56	GND	地		0V	系统地
	58	GND	地		0V	系统地
	60	GND	地		0V	系统地
	49	POWERON	I	VBAT	VBAT	开机信号
	50	ABB_CRST	I			复位信号
USC&	1	DBB_USC_0				保留
UART2	3	DBB_USC_1	I		VEXT_ABB	UART2 接收
	5	DBB_USC_2	I		VEXT_ABB	UART2 发送
	7	DBB_USC_3		1		保留
	9	DBB_USC_4	1			保留
	11	DBB_USC_5	7//		>	保留
	13	DBB_USC_6				保留
USIM	18	SIM_DETECT	I	插入 SIM	VEXT_ABB	
				卡时为 H;		
		, , , , , ,	Y	不插入时		
				为 L		
	20	DBB_SIM_RESET	0	VSIM	VSIM	USIM 卡复位信 号
	22	DBB_SIM_CLK	O		VSIM	USIM 卡时钟信 号
	24	DBB_SIM_DATA	О		VSIM	USIM 卡数据信 号
	26	VSIM	0	VSIM	VSIM	USIM 卡电源,
	20	VIDIN		, 51141	7 51111	1.8V 或 2.85V
上电指	16	VGP_ABB	0	3.0V	3.0V	上电指示信号
示	*					
	10	VRTC_ABB	I		VRTC_ABB	RTC 备份电源 1.8V
UART1	30	UART_RI	О		VEXT_ABB	1.8V 振铃信号
UAKII	32	UART_CTS	0		VEXT_ABB	UART1 硬件流
	32	UAKI_CIS	J		VLAI_ADD	控信号
	34	UART_RTS	О		VEXT_ABB	UART1 硬件流
						控信号
	36	UART_RX	I		VEXT_ABB	UART1 接收信

ZTE中兴 ZTE-T M501 60PIN B2B模块产品说明V1.1 **Confidential**▲

						号
	38	UART_TX	О		VEXT_ABB	UART1 发送信
						号
控制信	42	A2B_SLEEP	I		VEXT_ABB	睡眠指示,指示外
号						部主机是否睡眠
	44	A2B_WAKE	I		VEXT_ABB	唤醒输入,外部主
						机唤醒模块
	46	B2A_SLEEP	O		VEXT_ABB	睡眠指示,指示模
						块是否睡眠
	48	B2A_WAKE	О		VEXT_ABB	唤醒输出,模块唤
						醒外部主机
	28	DOWNLOAD_MODE	I		VEXT_ABB	下载模式选择
	12	ALERT			VEXT_ABB	保留
	14	SYNCH			VEXT_ABB	保留
	6	COM_SEL2	I		VEXT_ABB	工作模式选择信
						号
	8	COM_SEL1	I		VEXT_ABB	通讯口选择信号
	2	保留		1		保留
USB	41	USB_DP	I/O		5VUSB	USB 总线 D+
	43	USB_DM	I/O		5VUSB	USB 总线 D-
	45	5VUSB	I		+5V	USB 主机电源输入
	47	5VUSB	I	5	+5V	USB 主机电源输入
音频	37	JACKSENSE	I	插入耳机	VBAT	耳机插拔检测
				时为		
				VBAT,不		
				插入时 0V		
	17	ABB_AOUT2N	О	0	VBAT	SPEAKER 负输出
	19	ABB_AOUT2P	О	0	VBAT	SPEAKER 正输出
	21	HEADSET_MIC	I	0	2.75V	耳机 MIC 输入
, ,	23	MICN1	I	0	2.75V	MICPHONE 的输
						入负端
	25	MICP1	I	0	2.75V	MICPHONE 的输
						入正端
	27	VMIC_ABB	О	0	2.75V	外接 MICPHONE
						电源
	29	HPR	О	0	2.75V	耳机左声道输出
	31	HPL	О	0	2.75V	耳机右声道输出
	33	EPN	О	0	2.75V	RECEIVER 输出
						负端
	35	EPP	О	0	2.75V	RECEIVER 输出
						正端

