

中兴通讯 CDMA无线模块数据业务应用说明

版 本: V1.0

中兴通讯股份有限公司

版权声明

Copyright $^{\circ}$ 2006 by ZTE Corporation

本资料著作权属中兴通讯股份有限公司所有。未经著作权人书面许可,任何单位或个人不得以任何方式 摘录、复制或翻译。

ZTE中兴

为中兴通讯股份有限公司所有商标。

侵权必究。

本手册中出现的其他公司商标,由商标拥有公司所有。

中兴通讯保留修改本手册技术参数及规格的权力,对本手册中的印刷错误及与最新资料不符之处我们会及时改进。所有这些改动不再事先通知,但会编入新版手册中。

中兴通讯拥有本手册的最终解释权。

中兴通讯拥有雄厚的技术实力,可为 CDMA/GPRS 等通讯模块客户提供全方位的技术支持,支持内容包括:

- 1、提供完善的技术资料;
- 2、提供可用于研发、测试、生产、售后等环节的开发板;
- 3、提供原理图、PCB、测试方案等评审和技术会诊;
- 4、提供测试环境。

中兴通讯为客户提供现场、电话、网站、即时通讯、E-MAIL 等多种支持方式。

中兴通讯模块网站module.zte.com.cn,提供相关的行业信息和模块相关技术资料。授权的模块客户可以在网站下载模块最新的相关技术资料。如果您有更多的需求,可发送邮件至module@zte.com.cn。您还可以拨打技术支持热线: 0755-86360280。

修改记录

文档版本 V1.0 (2007-06-04)

第一次正式发布。

目录

1	概述	5
2	内部协议栈	5
	2.1 内部协议栈发送数据流程	5
	2.2 内部协议栈虚拟在线的实现	6
	2.3 内部协议栈短信和电话的处理	7
3	外部协议栈	8
	3.1 部协议栈拨号上网步骤	8
	3.2 外部协议栈虚拟在线的实现	16
	3.3 外部协议栈来电来短信的处理	16
	3.4 外部协议栈上网串口连接建议	16

1 概述

本应用说明适用于中兴通讯生产的 MG815+、MG615+、MG415+、MG416+、MG815A、MG415A、MG416A、MG116A 和 MG602A 等模块产品。本应用说明提供了在模块中在数据业务应用过程的具体描述。本应用说明适用于使用模块产品的工程技术人员。

注意: 部分功能需要软件支持,详细请咨询中兴通讯技术支持人员。

2 内部协议栈

当用户对传输数据的速率要求不高时,建议使用内部协议栈。

2.1 内部协议栈发送数据流程

内部协议栈发送数据步骤如下表所示(以 TCP 协议为例, UDP 协议步骤相同,部分指令不同)。

步骤	功能	指令(黑色为指令,蓝色为回码)	词,UDP 协议步骤相问,部分指令个问)。 说明
1	设定业务号码	at+zpnum=#777	在联通公网下面默认的拨号号码是#777,用户
	和用户名密码	OK	名和密码分别是 card.card。模块默认值同上。
		at+zpidpwd = card,card	如果需要上其它专用网络,需要用这两条指令
		OK	修改相应的值。
2	建立 PPP 链接	at+zpppopen	该指令主要有两个功能: 1.发起呼叫,在空口
		+ZPPPOPEN:	建立业务信道; 2.向网络端的 PDSN 发送 PPP
		OK	请求链接报文。如果成功,返回
		+ZPPPSTATUS: OPENED	+ZPPPSTATUS: OPENED; 如果失败,返回
			+ZPPPSTATUS: CLOSED。失败的原因可能
			是:
			1. 信号弱: 使用 at+csq?指令查看网络信号,
			如果返回值小于10,信号太弱会导致失败。
			2. 未读卡: 使用 at+zind?指令查看返回值与 1
			与操作之后是否等于 1; 如果是 0, 表示模块
			和 UIM 卡的接触有问题。
			3. UIM 的余额不足:如果余额小于 10 元,不
			能够成功拨号。
3	查询 IP 地址	at+zipgetip	查看模块(本机)当前分配的 IP 地址。
		+ZIPGETIP: 220.192.63.11	
		OK	
4	建立TCP链接	at+zipsetup=0,202.XXX.XXX	该指令用来建立 TCP 链接,其作用是在模块
		.XXX,5000	端保存 tcp 和 socket 信息,并发起 tcp 的握手
		OK	协议报文。其中第一个 0 表示 socket 号码,
		+ZTCPESTABLISHED: 0	我们提供的 socket 号码有 0—5,中间的 IP 表
			示对方 IP 地址,5000 表示对方端口号。
			如果 TCP 建立成功,会有
			+ZTCPESTABLISHED:0 的提示其中 0 表示具

			体的 socket 号码。失败提示+ZTCPCLOSED: 0
5	发送数据	at+zipsend=0,512 0x0D	该指令用来向服务器发送数据,其中 0 表示
		AAAAAAAAA	socket 号码,512 表示数据的长度,长度不能
		+ZIPSEND: 512	超过 1024 个字符。0x0D 可用 16 进制输入,
			表示换行,使用串口工具时也可以直接回车。
			AAAAAAAAA 表示输入的发送数据。当输
			入的数据小于之前设定的长度时,模块会处于
			等待状态,等到输入的数据与设定长度相同的
			时候,直接发送。当输入数据大于设定长度,
			则只发送该段数据的前一段与长度相同的数
			据。该指令如果发送成功会返回
			+ZIPSEND:×,×表示发送的长度。如果发送
			失败显示+ZIPSEND: -102。
			注意:
			1. 发送成功的长度可能会小于设定的长度。这
			是因为此处的发生成功表示的是把数据写入
			缓存,模块缓存为 2k 字节。当缓存不足时,
			则会出现发送长度小于设定长度情况。
			2. 从缓存发送出去的数据,每个包最大为536
			字节。
			3. 此处显示格式与调试工具有关。
6	断开TCP链接	at+zipclose=0	该指令用来断开 TCP 的链接。其中 0 表示
		OK	socket 号码。
		+ZTCPCLOSED: 0	
7	断开 PPP 链接	at+zpppclose	该指令用来断开 PPP 链路,并释放业务信道。
		+ZPPPCLOSE:	
		OK	
		+ZDORMANT: READY	
		+VKLStatus:0	
		+ZPPPSTATUS: CLOSED	

2.2 内部协议栈虚拟在线的实现

2.2.1 VKL 技术介绍

虚拟在线技术(Virtually Keep on Line-VKL)是根据 CDMA 标准中的休眠模式所演进的一套 AT 接口。演进的目的是给客户提供根据自身业务特点设定网络的方法、进而改善空口资源消耗、降低运营成本、最终降低客户网络资费。利用 VKL 接口,用户可以根据业务特点通过 AT 指令灵活选用网络使用方式。通常情况下,模块只占用网络资源、IP 地址。当有实际数据收发请求时,模块占用空口资源。这样,用户只需根据数据收发时间给无线运营商付费。

虚拟在线模式即为模块进入休眠,模块休眠有两种模式:模块主动设置休眠时间和系统强制终端进入休眠。以广东联通为例,系统规定终端 3 分钟没有数据则强制模块进入休眠模式。休眠后收发数据可自动唤醒,唤醒时间 5 秒左右,唤醒之前收发的数据会丢掉。

2.2.2 VKL 相关 AT 指令

模块 PPP 链接成功后方可使用 VKL 相关 AT 指令。

注意: at+vklstatus 指令 1.50 及其以上版本方可支持。

功能	指令(黑色为指令,蓝色为回码)	说明
启动虚在线模式	at+vklstatus=0	该条指令用于主动使模块进入虚拟在线状态。
	OK	1.50 之前版本,可使用 AT+ZDORMANT 替代。
	+VKLStatus:0	
启动实在线模式	at+vklstatus=1	输入该指令后,模块每秒发送一次报文以唤醒
	OK	模块,唤醒则回+VKLStatus:1。输入一次指令最
	+ZCORG:#777	多发送 15 次报文, 15 秒后仍未唤醒则回
	+VKLStatus:1	+VKLStatus:4°
启动永远在线模式	at+vklstatus=2	该指令的功能为 AT+ZPKEEPALIVE=1 和
	OK	AT+CTA=0 的复合作用,即不设置自动休眠,
		并每两分钟发送一个心跳包。
		注意: 此处的两分钟是以广东联通为参照设计
		的,不一定适合每个地区。用户若不需要模块
		的休眠功能,应根据具体情况自主设置心跳包
		的时间。
设置进入虚在线模	at+vklstatus=4,X	该指令设置模块在 X 秒无数据流量后自动进入
式时间	OK	休眠, 其功能与 AT+CTA=X 相同。X 的取值范
		围为 0~255, 为 0 时表示不自动进入休眠。
查询在线模式	at+vklstatus=3	该指令查询当前模块在线模式,返回值为0,1,
查询在线模式	+VKLStatus:2	2.
	OK	注意: 只有当设置 at+vklstatus=2 后,查询值会
		返回 2。但是,如果设置 at+vklstatus=2 后模块
		又进入休眠状态,则返回值还是为0。
休眠提示	+ZDORMANT: READY	出现该提示表示模块进入休眠模式。
	+VKLStatus:0	
唤醒提示	+ZCORG:#777	出现该提示表示模块已被唤醒。
	+ZCCNT:20,33	注意: 有时模块没有收发数据也会被唤醒, 这
	+VKLStatus:1	是网络脏数据造成的,且模块本身无法避免。

2.3 内部协议栈短信和电话的处理

使用内部协议栈进行数据业务时,模块可以正常收发短信,此时数据业务不受影响。如果收到短信时 正在收发数据,会延迟显示,也就是说收短信不会打断正在传送的数据包。 此时模块做主叫,需要释放业务信道,即让模块先进入休眠模式。步骤为:

at+vklstatus=0

OK

+VKLStatus:0

atd10011;

OK

- +ZCORG:10011
- +**ZCCNT**:0, 3
- +ZCEND:25

做被叫,模块会主动释放业务信道,然后收到来电提示,之后就可以使用指令 ATA 接听电话。具体指令如下:

+ZDORMANT: READY

+VKLStatus:0

RING:

RING:

ata

OK

- +ZCANS:0
- +ZCCNT:0,3
- +ZCEND:25

注意: 通话接受后, 模块处于虚在线模式。

3 外部协议栈

用户要求数据传输较高时,应采用外部协议栈。外部协议栈应由客户自行开发,以下提到的外部协议栈,均指 WINDOWS 所带的 TCP/IP 协议栈。

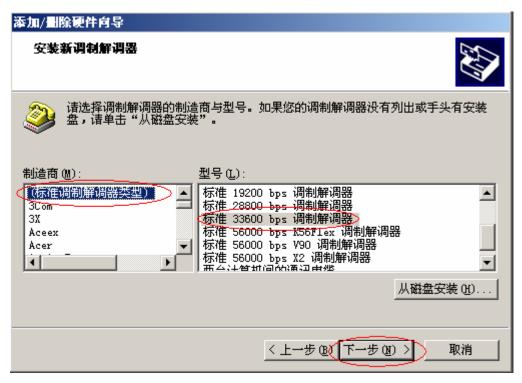
3.1 部协议栈拨号上网步骤

在实际使用中,可结合开发板将模块当作一个无线 modem 来使用。设置步骤如下(以 WINDOWS2000 为例):

步骤一 安装调制解调器

1. 开始——设置——控制面板,打开"电话和调制解调器选项"。

2. 选择"调制解调器",单击"添加"。

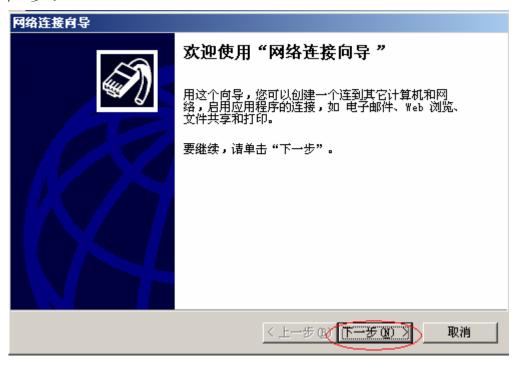


3. 单击"下一步"。

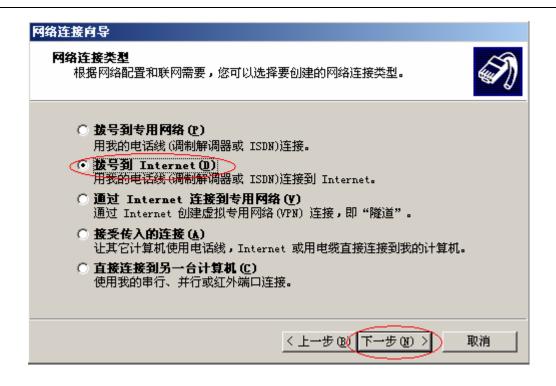
4. "制造商"选择"标准调制解调器类型","型号"选择"标准 33600 bps 调制解调器",单击"下一步"。

5. 选择相应的串口,单击"下一步"。

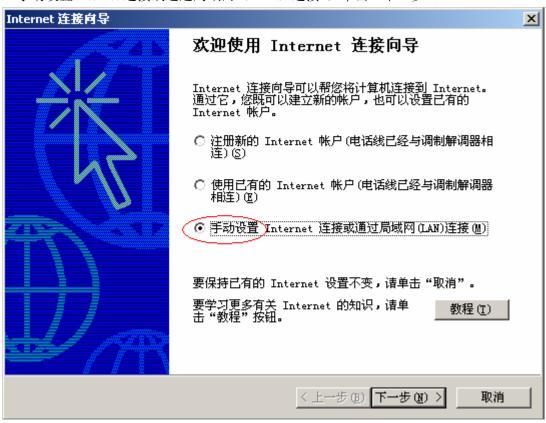
6. 单击"完成",安装完毕。


步骤二 设置拨号连接

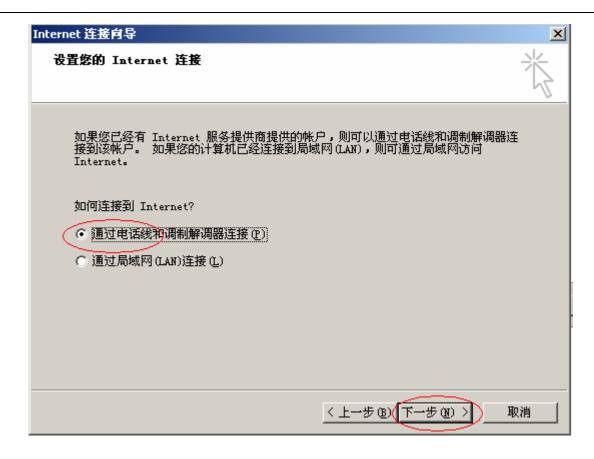
1. 打开"网络连接与拨号连接",打开"新建连接"。



2. 单击"下一步"。



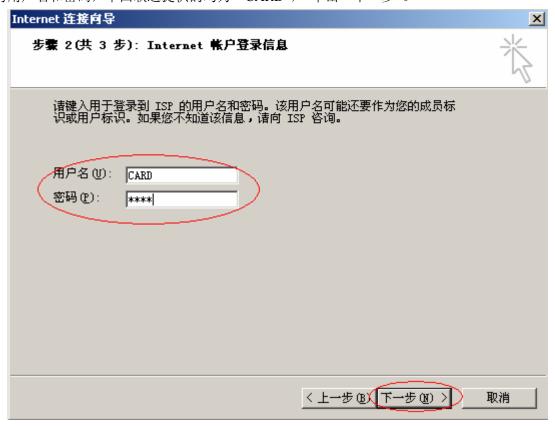
3. 选择"拨号到 Internet", 单击"下一步"。



4. 选择"手动设置 internet 连接或通过局域网(LAN)连接",单击"下一步"。

5. 选择"通过电话线和调制解调器连接",单击"下一步"。

6. 选择调制解调器,单击"下一步"。



7. 填写电话号码,中国联通提供的拨号号码为"#777",单击"下一步"。

8. 填写用户名和密码,中国联通提供的均为"CARD", 单击"下一步"。

9. 填写任意连接名,单击"下一步"。

10. 下一步,单击"完成",拨号连接建立完成。 以上步骤完成后,点击建立好的拨号连接,即可拨号上网了。

3.2 外部协议栈虚拟在线的实现

使用外部协议栈进行数据业务,可以在初始化时用 AT+CTA 指令设定休眠时间。其他 VKL 相关指令,不能在外部协议栈中使用。

3.3 外部协议栈来电来短信的处理

外部协议栈在来短信,由于串口被占用,不能直接从串口获取这个消息,但是模块的输出引脚 GPIO47 (MG815+为 28 引脚)会给短信提示。该引脚初始状态为高电平,有短信来时会有 200MS 的低电平脉冲。

当有来电时,串口的 RI 引脚会给提示。该引脚初始状态为高电平,收到振铃信号后会有个低电平脉冲信号,RING 结束后恢复高电平。

3.4 外部协议栈上网串口连接建议

客户在使用外部协议栈上网时,模块串口处于数据传输的在线模式,此时模块无法进行 AT 指令的解析。断网过程中,CDMA 模块将会检测串口的 DTR 电平信号,并在模块侧主动断网。然而在客户实际使用过程中,往往没有实际连接上串口的 9 条信号线,或者给出的 DTR 电平信号有误,这就使得模块无法进行主动断网,只能等待网络系统侧断网,这就很有可能造成网络侧断网不成功。此时模块串口仍然处于在线模式而不解析 AT 指令,客户进行 AT 指令操作而无响应,造成客户认为的"死机"或串口不

通现象。

因此使用 CDMA 模块作为 MODEM, 通过外部协议栈上网或者进行数据传输,建议连接 DB9 的 9 条 连接线,进行完整的硬件流控操作。

通过 DTR 信号的改变来通知模块进行断网,具体操作如下:

- 1、外部协议栈上网前,先通过 AT 指令 AT&D1 进行 DTR 信号设置,使能 DTR 信号检测,AT&C1 进行 DCD 信号设置,使 DCD 信号在数据传输时使能。
- 2、DTR 引脚信号,TTL 电平,待机为低电平,当外部协议栈断网时,对 DTR 引脚置高电平。
- 3、模块检测到 DTR 信号的变化,将会从终端侧主动断网,串口切换到命令模式。从而避免断网不成功造成模块串口不通的现象。

以上方式,对模块与 MCU 或者 PC 连接均适用。

当模块作为 MODEM 连接 PC 时, DTR 和 DCD 信号的连接和使能,将会使 PC 断网时间缩短。