

USB2.0 接口可编程控制模块

USB20D 使用说明

西安达泰电子有限责任公司

+86-29-85272421, 85277568, FAX:+86-29-85272421

西安市朱雀大街南段明德门凯旋广场 D323

E-MAIL: <u>info@dataie.com</u> <u>data@dataie.com</u>

本公司其他系列产品图片及详细资料, 欢迎查看网站 <u>http://www.dataie.com</u> 本文档更新日期:2008-02-18 版本号: V3.4 **该产品在不断改进功能,新增或修改功能的说明以最新版本为准。恕不另行通知。**

首先,感谢您选用 USB20D 模块,我公司将一如既往地为您提供优质的产品和服务!

敬告用户,请您在使用前,仔细阅读本手册!本手册适用于 USB20D,阅读时请您留意本模块的备注。

1	USB2	20D概述	及其设备安装3
1.1	. 1	USB20D	既述3
1.2	1	USB20Di	设备的安装4
	1	1.2.1	安装驱动程序4
	1	1.2.2	安装USB20D模块4
	1	1.2.3	安装结果验证7
	1	1.2.4	疑难问题解答8
2	硬件	描述	
2.1	. 1	辅助控制	信号9
	4	2.1.1	DMAING "正在批量数据传输"指示信号9
	2	2.1.2	CLKOUT 模块内单片机时钟输出信号9
2.2	3	数据总线	
2.3	t i	地址总线	
2.4	t .	地址I/O植	莫式所需的控制信号11
	4	2.4.1	PWR 地址写11
	2	2.4.2	PRD 地址读11
	4	2.4.3	PWAIT 等待外围逻辑11
	4	2.4.4	地址I/O模式的时序图12
2.5		DMA批量	量数据传输所需的控制信号 14
	4	2.5.1	DMACS14
	2	2.5.2	DMARD14
	2	2.5.3	DMAWR14
	4	2.5.4	DMADIR14
	4	2.5.5	DMAOE14
	2	2.5.6	PKTEND14
	2	2.5.7	FIFOEMPTY14
	4	2.5.8	FIFOFULL
	4	2.5.9	IFCLK
	2	2.5.10	DMA时序图15
2.6	; ;	模块封装	
	4	2.6.1	模块的管脚定义18
	2	2.6.2	模块封装20
3	库函	数使用说	明21
3.1	1	初始化函	数21
	2	3.1.1	USB20D_EnumDeviceCount错误!未定义书签。
		3.1.2	USB20D_Init错误!未定义书签。
		3.1.3	USB20D_Done错误!未定义书签。
	3	3.1.4	USB20D_WorkAtHighSpeed错误!未定义书签。

目 录

西安达泰电子有限责任公司

3.2	地址IO	函数
	3.2.1	USB20D_SetAddress错误!未定义书签。
	3.2.2	USB20D_Input错误!未定义书签。
	3.2.3	USB20D_Output错误!未定义书签。
	3.2.4	USB20D_MultInput错误!未定义书签。
	3.2.5	USB20D_MultOutput错误!未定义书签。
	3.2.6	USB20D_MixedIO错误!未定义书签。
3.3	批量传输	输函数
	3.3.1	USB20D_SetDMAClk错误!未定义书签。
	3.3.2	USB20D_StartDMA错误!未定义书签。
	3.3.3	USB20D_EndDMA错误!未定义书签。
	3.3.4	USB20D_DMARead错误!未定义书签。
	3.3.5	USB20D_DMAWrite错误!未定义书签。
	3.3.6	USB20D_ResetDMAFIFO错误!未定义书签。
	3.3.7	USB20D_DMAOutFIFOEmpty错误!未定义书签。
	3.3.8	USB20D_DMAOutFIFOFul1错误!未定义书签。
	3.3.9	USB20D_DMAInFIFOEmpty错误!未定义书签。
	3.3.10	USB20D_DMAFIFOStatus错误!未定义书签。
	3.3.11	USB20D_UnlockAfterDMA错误!未定义书签。
3.4	通用函	数
	3.4.1	USB20D_SetCPUCS错误!未定义书签。
	3.4.2	USB20D_GetLastError错误!未定义书签。
	3.4.3	USB20D_GetLastErrorStrC错误!未定义书签。
3.5	错误代码	码24
3.6	在应用和	程序中引用动态连接库中的函数
	3.6.1	在VC中引用24
	3.6.2	在Delphi中引用24
	3.6.3	在VB中引用24
	3.6.4	在VB.NET中引用24
4 应月	韦实例	
4.1	外围控制	制器是单片机25
	4.1.1	硬件连接框图
	4.1.2	单片机控制流程27
4.2	外围逻辑	辑是CPLD
	4.2.1	硬件连接框图
	4.2.2	CPLD程序29
4.3	主机应	用程序30

1 USB20D 概述及其设备安装

1.1 USB20D 概述

USB20D是由西安达泰电子有限责任公司设计的USB2.0 设备通用接口模块,它隐藏了 通过USB总线进行数据传输所需的繁琐技术细节。应用程序通过调用本模块提供的函数,可 以把相应的功能转变成模块硬件接口上的一系列脉冲和电平,发送到外围逻辑,进行指定的 数据传输,从而极大地简化USB设备的设计工作。

本模块提供两种数据传输模式:地址 I/O 模式、DMA 批量数据传输模式。以设计一个 A/D 数据采集器为例,可以使用地址 I/O 模式执行初始化、设置采样参数、读取状态等功能, 使用 DMA 批量数据传输模式读取采样得到的大批量数据。

本模块是一个 USB2.0 设备,同时也兼容 USB1.1 标准,但是会降低数据传输速度。

第2章详细介绍了硬件接口的总线和控制信号的功能。

第3章详细介绍了相关函数的功能和使用说明。

特点

标准 USB 接口,高性能 USB 接口器件,符合通用串行总线 USB2.0 版规范 高速 DMA 读写控制,读写速度大于 25Mbyte/Sec 系统驱动文件,DLL 动态连接库,用户不必编写任何驱动程序 SMT 工艺,低功耗系统,超小体积模块化设计,无需外接电源 简化的标准外部总线: 16 位数据总线,双向;高 8 位复用; 5 位地址总线,单向输出; 9 根读写控制线。

提供一个 48MHz 或 30MHz 的时钟输出

提供 5V 电源输出,

应用

USB20D 可以作为用户系统的嵌入式模块使用,用户无需深入了解 USB 的协议及底层 控制方法,就像操作 PC 总线一样,通过 USB 接口实现对用户系统的控制。

对于笔记本电脑来说,使用 USB 接口的意义更加重大,通用的 USB 接口不仅使笔记本电脑对外的连接变得方便,更可以使笔记本电脑生产厂商不再需要为不同配件在主板上安置不同的接口,这使主板的线路、组件的数量以及复杂程度都有不同程度的削减,从而使系统运行中的散热问题得到了改善。也将促进更高主频的处理器可以迅速应用在移动计算机中, 使笔记本电脑与桌面 PC 的差距进一步缩小。

USB20D 控制模块发挥了 USB2.0 高速数据传输的特点,尤其适合于高速数据采集及图像数据传输设备,用于医疗、地震、振动、监控、虚拟仪器、科研实验室、工业生产现场领域的数据采集设备,特别是为便携式笔记本电脑和日益流行的掌上电脑数据采集提供了极为 广阔的发展空间。

1.2 USB20D 设备的安装

特别提示:在首次使用 USB20D 模块之前,首先安装由生产厂家(西安达泰电子有限责任公司)提供的设备驱动安装程序!(程序在 USB20D_Setup 目录下)

1.2.1 安装驱动程序

打开计算机,进入 Windows98/2000/XP 系统,待启动完成后,建议将达泰资料光盘 USB20D_Setup 目录拷贝到您的硬盘,运行由厂商提供的 USB20D_Setup 程序。该程序可 以自动识别操作系统。注意:此时不要连接 USB20D 模块! USB20D_Setup.exe 将弹出以下界面:

点击[安装 USB20D]按键,按照提示安装即可。

1.2.2 安装 USB20D 模块

西安达泰电子有限责任公司

将 USB 四芯电缆扁平的一端插入计算机后面的任意一个 USB 端口 将另一端插入 USB20D 的 USB_T 插座上,硬件连接即完成。此时电脑提示发现新的 USB 设备,弹出上图界面: 选择从列表或指定位置安装(高级),点击[下一步]。

电脑提示以下信息:

找到新的硬作	向导
请选择您的)搜索和安装选项。
 一座这 使用 到的 	些位置上搜索最佳驱动程序(g)。 下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找 最佳驱动程序。
] 搜索可移动媒体 (軟盘、CD-BOM) (图)] 在搜索中包括这个位置 (0):
	C:\PROGRAM FILES\USB20D_DRIVER 🛛 浏览 (R)
○不要 选择 动程	搜索。我要自己选择要安装的驱动程序 @)。 这个选项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的驱 序与您的硬件最匹配。
	< 上一步 (B) 下一步 (B) > 取消

选择[在搜索中包括这个位置],驱动程序位于 C:\Program Files\USB20D_Driver 目录下。点击[下一步],电脑提示以下信息:

🖤 USB20D 使用说明

点击[仍然继续],按照提示即可完成 USB20D Loader Driver 安装。 然后安装 USB20D 接口驱动程序。此时会弹出以下界面:

选择[从列表或指定位置安装(高级)],点击[下一步],电脑提示以下信息:

请选择您的	捜索和安装选項。
◎薩这	些位置上搜索最佳驱动程序(2)。
使用一到的	下列的复迭框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装扩 最佳驱动程序。
	撥索可移动媒体(軟盘、CD-BOM)(图)
2	在搜索中包括这个位置 (0):
	C:\FROGRAM FILES\USB20D_DRIVER 🛛 浏览(图)
○ 不要 选择 动程	搜索。我要自己选择要安装的驱动程序 @)。 这个选项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的数 予与您的硬件最匹配。

选择[在搜索中包括这个位置],驱动程序位于 C:\Program Files\USB20D_Driver 目录下。点击[下一步],电脑提示以下信息:

点击[仍然继续],按照提示即可完成 USB20D General Interface Module 安装。 安装成功后, USB20D 模块上的绿色指示灯点亮。此时建议重新启动电脑!

1.2.3 安装结果验证

打开从 Windows"开始"菜单中单击"设置"进入"控制面板"窗口,双击"系统"图标,弹出"系统 属性"对话框,在对话框中单击"设备管理器"标签,然后在"计算机" 树形列表中双击"通用串行总线控制器",检查此项目中是否有"USB20D:USB2.0 General Interface Module"等字样。若有,表示 USB 设备已成功安装,否则,说明您的安装过程出 现了问题,请试着再安装,或向硬件供应商求助。

1.2.4 疑难问题解答

如果当您正确连接 USB 设备后,屏幕上没有任何反应,也没有出现"USB20D:USB2.0 General Interface Module",有可能您的 USB 端口出现了问题。请进入《安装结果验证》 中所述的"资源管理器"窗口中,检查树形列表中是否有"通用串行总线控制器"项目,若 有,通常在这个项目中还应有两个子项"USB Universal Host Controller"、"Usb Root Hub", 以上项目如若缺一项,那意味着在您的系统中 USB 控制器存在问题,那么您还应试着安装 USB 总线驱动程序,它们都在 Windows 的安装盘上。

有些电脑主板的 USB2.0 接口需要驱动,否则系统工作于 USB1.1 模式下,请检查是否有 上图中的子项:" USB2.0 Enhanced Universal Host Controller"

如果在安装过程中出现以下提示,这表明 USB20D 驱动安装不正常,这可能是安装过程 中操作不对,您可以执行 USB20D_Setup.exe 选择**卸载 USB20D 驱动**,然后**重新启动电脑**, 按照以上步骤重新安装。

2 硬件描述

本模块提供了 8 位数据总线、5 位地址总线、3 位地址 IO 所需的控制信号、9 位批量传输所需的控制信号、以及其他的辅助控制信号。

2.1 辅助控制信号

本模块提供了2根辅助控制信号:DMAING、CLKOUT。

2.1.1 DMAING "正在批量数据传输"指示信号

本信号为数据传输模式指示信号,由本模块输出。 <mark>高电平:</mark>指示工作于批量数据传输模式。

低电平:指示工作于地址 IO 模式。

本信号由函数 USB20D_STARTDMA 设置为高电平,由函数 USB20D_ENDDMA 设置为低电平。

2.1.2 CLKOUT 模块内单片机时钟输出信号

本信号输出模块内单片机的时钟。

本信号由函数 USB20D_SETCPUCS 控制,可以设定时钟的频率、是否输出、是否翻转。

2.2 数据总线

本模块在 DMA 模式时,既可以通过函数设为 16 位的数据总线,也可以设为 8 位的数 据总线;在 IO 模式时,只能为 8 位的数据总线。两种数据传输模式共用低 8 位数据总线。 当工作于"地址 IO 模式"并且 PWR 信号有效,或者工作于"批量传输模式"、DMARD 信 号有效并且 DMACS、DMAOE 有效时,数据总线处于输出状态,否则数据总线处于输入状态。

2.3 地址总线

本模块在 IO 模式时提供 5 位宽的地址总线,地址总线总是由本模块输出。

以下函数可以改变地址:

USB20D_SETADDRESS

USB20D_INPUT

USB20D_OUTPUT

USB20D_MULTINPUT

USB20D_MULTOUTPUT

USB20D_MIXEDIO

当使用后三个函数时,地址会根据函数的参数而改变,函数调用结束后,地址为函数参数指定的最后一个地址。

2.4 地址 I/O 模式所需的控制信号

本模块提供了3个地址 I/O 所需的控制信号: PWR、PRD、PWAIT。

2.4.1 **PWR** 地址写

本信号为地址写的写脉冲,是一个低电平脉冲。本脉冲由函数 USB20D_OUTPUT USB20D_MULTOUTPUT

产生。

当进行一次地址写时,本模块首先更新地址总线、把数据总线定义为输出并输出数据, 然后使 PWR=0;接着判断 PWAIT 状态,等待 PWAIT=1(此时可以等待外部单片机等慢速 逻辑执行)或者超时(超时时间由模块内单片机的工作频率决定,具体时间待测);最后, 使 PWR=1、把数据总线定义为输入。完成一次地址写。

2.4.2 PRD 地址读

本信号为地址读的读脉冲,是一个低电平脉冲。本脉冲由函数

USB20D_INPUT

USB20D_MULTINPUT

产生。

当进行一次地址读时,本模块首先更新地址总线、把数据总线定义为输入,使 PRD=0; 接着判断 PWAIT 状态,等待 PWAIT=1 或者超时;然后从地址总线读取数据,并把此数据 返回主机;最后,使 PRD=1。完成一次地址读。

2.4.3 **PWAIT** 等待外围逻辑

本信号为一个输入信号,一般情况下,当外部逻辑为单片机等慢速逻辑时,需要使用本 信号;如果外部逻辑为一个 CPLD 则可以悬空本信号管脚。

当外部逻辑为单片机等慢速逻辑时,先由外部逻辑把本信号拉低,则本模块在地址 IO 时会在 PWR、PRD 脉冲有效后会插入等待周期,等待外部逻辑执行完指定的读/写后,外部逻辑把本信号拉高,本模块检测到 PWAIT=1 后,结束 PWR、PRD 脉冲,外部逻辑检测到 PWR、PRD 无效后,再次使 PWAIT=0,准备好下一次读/写。

2.4.4 地址 I/O 模式的时序图

无等待周期的 I/O 写时序图

在 I/O 模式下,数据线为 8 位双向总线,地址线有锁存

无等待周期的 I/O 读时序图

在 I/O 模式下,数据线为 8 位双向总线,地址线有锁存

西安达泰电子有限责任公司

有等待周期的 I/O 写时序图

在 I/O 模式下,数据线为 8 位双向总线,地址线有锁存

有等待周期的 I/O 读时序图

在 I/O 模式下,数据线为 8 位双向总线,地址线有锁存

2.5 DMA 批量数据传输所需的控制信号

本模块提供了 9 个批量数据传输所需要的信号。它们分别是:DMACS、DMARD、 DMAWR、DMADIR、DMAOE、PKTEND、FIFOEMPTY、FIFOFULL、IFCLK 。

2.5.1 **DMACS**

模块选择信号,由外部逻辑提供,低电平有效。

当整个设备需要本模块与其他外部逻辑需要共享数据总线时,使 DMACS=1 可以使本模块断开与外部总线的链接,本模块将忽略 DMARD、DMAWR、DMAOE、PKTEND 信号。

2.5.2 **DMARD**

由外部逻辑提供,低电平脉冲有效。

当使用 USB20D_DMAWRITE 从主机向设备写数据时,数据首先从主机传送到本模块 内的缓冲区内,外部逻辑使用 DMARD 脉冲从本模块的缓冲区内读取主机发来的数据。

当 DMAOE 有效时,读到的数据在 DMARD 为低电平时从数据总线输出;当 DMAOE 无效时,数据总线悬空,但是 DMARD 脉冲依然有效,只不过数据不能输出。

2.5.3 **DMAWR**

由外部逻辑提供,低电平脉冲有效。

当使用 USB20D_DMAREAD 主机从设备读数据时,外部逻辑首先使用 DMAWR 脉冲把数据写入本模块的缓冲区内,然后数据从本模块内的缓冲区内传输到主机。

2.5.4 **DMADIR**

读/写控制信号,由本模块输出。 高电平:批量读数据,数据从设备传向主机。 低电平:批量写数据,数据从主机传向设备。

2.5.5 **DMAOE**

由外部逻辑提供,低电平有效。

当 DMAOE 有效时,外部逻辑从本模块内部缓冲区读数据时,在 DMARD 为低电平时 读到的数据从数据总线输出;当 DMAOE 无效时,数据总线悬空,但是 DMARD 脉冲依然 有效,只不过数据不能输出。

2.5.6 **PKTEND**

由外部逻辑提供,低电平脉冲有效。

在批量读数据时,外部逻辑使用 DMAWR 把数据写入本模块内部缓冲区,每写满一个 数据包后(如果本模块连接在 USB2.0 总线上则每个数据包为 512 字节,如果连接在 USB1.1 总线上则数据包为 64 字节),数据会自动传送到主机。如果需要传输一个不满的数据包("短 包")比如需要传输 31 个字节,则外部逻辑应该在写 31 个字节数据后,产生一个 PKTEND 脉冲。本模块接收到一个 PKTEND 脉冲后,会把接收到"短包"发送回主机。

2.5.7 FIFOEMPTY

本模块内部缓冲区"空"标志,由本模块输出,低电平有效。本信号在批量写数据时使用。

本模块内部提供了 2048 字节的批量写数据缓冲区,在批量写数据时,主机首先发送数

西安达泰电子有限责任公司

据到本模块的内部缓冲区,本模块接收到数据后,会使本信号无效,表示内部缓冲区已经有数据共外部逻辑读取。外部逻辑检测到本信号无效,开始从本模块缓冲区读取数据,数据全部读出后,本信号重新有效,此时外部逻辑应停止从本模块读取数据。

2.5.8 **FIFOFULL**

本模块内部缓冲区"满"标志,由本模块输出,低电平有效。本信号在批量读数据时使用。

本模块内部提供了 2048 字节的批量读数据缓冲区,在批量读数据时,如果本模块的内 部缓冲区不满,则模块使本信号无效,表示可以向本模块内部缓冲区写数据。外部逻辑检测 到正在批量读数据而且本信号无效,开始向本模块写数据,每写满一个标准数据包(如果本 模块连接在 USB2.0 总线上则每个数据包为 512 字节,如果连接在 USB1.1 总线上则数据包 为 64 字节)后,如果主机正在使用 USB20D_DMAREAD 函数读取数据,则数据自动发送 到主机。如果主机一直没有读取数据,则在外部逻辑写满 2048 个字节后,模块内部缓冲区 满,本信号有效,此时外部逻辑应停止写数据。

2.5.9 **IFCLK**

接口时钟信号,可以由本模块提供,此时该信号为输出,也可以由外部逻辑提供,此时 信号为输入。

本信号主要在同步 DMA 时用作 DMA 读/写的同步时钟,也可以在异步 DMA 时作为一 个高速时钟提供给外部逻辑。

本时钟信号如果由本模块提供,则可以选择时钟频率为48MHz/30MHz;如果由外部逻辑提供,则有效的频率范围为5MHz~48MHz。

可以使用 USB20D_SETIFCFG 函数设置本信号,可以设置本时钟是否由本模块提供、 模块提供的时钟频率(48MHz/30MHz)时钟是否翻转、DMA 工作于同步/不同步方式选择。

2.5.10 DMA 时序图

注:图中 FE 表示模块上的 FIFOEMPTY 信号线

USB20D 使用说明

西安达泰电子有限责任公司

使用模块内部同步时钟进行同步读时的参数表:

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83		ns
t _{SRD}	DMARD 有效到同步时钟有效所需的建立时间	18.7		ns
t _{RDH}	DMARD 的保持时间	0		ns
t _{Oeon}	DMAOE 有效到数据输出有效的建立时间		10.5	ns
t _{Oeoff}	DMAOE 无效后数据的保持时间		10.5	ns
t _{XFLG}	同步时钟到"缓冲区空"标志有效的传播延迟		9.5	ns
t _{XFD}	同步时钟到下一数据有效所需的传播延迟		11	ns

使用外部同步时钟进行同步读时的参数表:

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83	200	ns
t _{SRD}	DMARD 有效到同步时钟有效所需的建立时间	12.7		ns
t _{RDH}	DMARD 的保持时间	3.7		ns
t _{Oeon}	DMAOE 有效到数据输出有效的建立时间		10.5	ns
t _{Oeoff}	DMAOE 无效后数据的保持时间		10.5	ns
t _{XFLG}	同步时钟到"缓冲区空"标志有效的传播延迟		13.5	ns
t _{XFD}	同步时钟到下一数据有效所需的传播延迟		15	ns

异步DMA读时序图

注:图中 FE 表示模块上 FIFOEMPTY 信号线

异步读时的参数表:

参数	说明	最小值	最大值	单位
t _{RDpwl}	DMARD 脉冲的有效低电平时间	50		ns
t _{RDpwh}	DMARD 脉冲的有效高电平时间	50		ns
t _{XFLG}	脉冲下降沿到 " 缓冲区空 " 标志有效的传播延迟		70	ns
t _{XFD}	脉冲下降沿到下一数据有效所需的传播延迟		15	ns
t _{Oeon}	DMAOE 有效到数据输出有效的建立时间		10.5	ns
t _{Oeoff}	DMAOE 无效后数据的保持时间		10.5	ns

西安达泰电子有限责任公司

同步DMA写时序图

注:FF 表示 FIFOFULL 信号线

使用模块内部同步时钟进行同步写时的参数表:

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83		ns
t _{SWR}	DMAWR 有效到同步时钟有效所需的建立时间	18.1		ns
t _{WRH}	DMAWR 的保持时间	0		ns
t _{SFD}	数据有效到同步时钟的建立时间	9.2		ns
t _{FDH}	同步时钟后,数据保持时间	0		ns
t _{XFLG}	同步时钟到"缓冲区空"标志有效的传播延迟		9.5	ns

使用外部同步时钟进行同步写时的参数表:

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83	200	ns
t _{SWR}	DMAWR 有效到同步时钟有效所需的建立时间	12.1		ns
t _{WRH}	DMAWR 的保持时间	3.6		ns
t _{SFD}	数据有效到同步时钟的建立时间	3.2		ns
t _{FDH}	同步时钟后,数据保持时间	4.5		ns
t _{XFLG}	同步时钟到 " 缓冲区空 " 标志有效的传播延迟		13.5	ns

异步DMA写时序图

注:FF 表示模块上的 FIFOFULL 信号线

异步 DMA 写时的参数表:

参数	说明	最小值	最大值	单位
t _{WRpwl}	DMAWR 脉冲的有效低电平时间	50		ns
t _{WRpwh}	DMAWR 脉冲的有效高电平时间	70		ns
t _{SFD}	数据有效到脉冲上升沿的建立时间	10		
t _{FDH}	数据保持时间	10		
t _{XFLG}	脉冲下降沿到"缓冲区满"标志有效的传播延迟		70	ns

2.6 模块封装

2.6.1 模块的管脚定义

	-31-6-6-6-9	0	1.27
1 2 3 4 5 6 7 8 9 10 11 12 13 14	GND PWR/D13 PRD/D14 PWAT/D15 GND CLKOUT GND DMARD DMARD DMAWR NC GND IFCLK GND	SVout A4/D12 A3/D11 A2/D10 A1/D9 <u>A0/D8</u> <u>DMACS</u> PKTEND <u>DMADIR</u> DMAOE DMAing <u>NC</u> FIFOEMPTY	40 39 38 37 36 35 34 33 32 31 30 29 28 27
7 8 9 10 11 12 13 14 15 16 17 18	GND DMARD DMAWR NC GND IFCLK GND NC NC D0 D1 D2	DMACS PKTEND DMADIR DMAOE DMAing NC FIFOEMPTY FIFOFULL NC D7 D6 D5	34 33 32 31 30 29 28 27 28 27 26 25 24 23
19 20	D3 GND	D4 GND	22

注意:

1.标为"NC"的管脚需要悬空,不要与用户板连接,否则有可能出现故障。

2. Pin40 的 "5Vout"是本模块的输出电源,可用电流不要超过 200mA。

🖤 USB20D 使用说明

西安达泰电子有限责任公司

管脚说明:				
名称	定义	方向	说明	
D[70]	数据总线	双向	双向 DMA 数据总线,低 8 位。	
D[158]	数据总线	双向	双向 DMA 数据总线,高 8 位。	
DMADIR	传输方向	输出	由模块输出 DMA 控制器产生的方向控制信号。	
			1- 输入:从设备到主机。	
			0-输出:从主机到设备。	
DMAWR	写数据	输入	低电平脉冲有效。 当数据传输方向为 " 输入 "(从设	
			备到主机)时,在此信号的上升沿,把数据写入模	
			块。	
DMARD	读数据	输入	低电平脉冲有效。当数据传输方向为"输出"(从主	
			机到设备)时,在此信号的上升沿后一段时间,下	
			一有效数据出现在数据总线。	
DMAOE	输出使能	输入	低电平有效。当数据传输方向为"输出"时,如果	
			为低电平,则有效数据出现在数据总线上。	
DMACS	模块选通	输入	模块选通,低电平有效。	
FIFOFULL	缓冲区满	输出	低电平有效。一般在 " 输入 " 时使用本信号。外部	
			DMA 控制器只有当本信号为高电平(缓冲区有空	
			间)时才可以发 " 写数据 " 脉冲。	
FIFOEMPTY	缓冲区空	输出	低电平有效。一般在 " 输出 " 时使用本信号。外部	
			DMA 控制器只有当本信号为高电平(缓冲区有数	
			据)时才可以发 " 读数据 " 脉冲。	
PKTEND	结束写	输入	由外部逻辑提供,低电平脉冲有效。	
IFClk	接口时钟	输出/	可以由本模块提供,此时该信号为输出,也可以由	
	信号	输入	外部逻辑提供,此时信号为输入。	
A[40]	地址线	输出	5 位地址线,与 D[128]复用	
PWR	写地址	输出	低电平有效,与D13复用	
PRD	读地址	输出	低电平有效,与D14复用	
PWAIT	地址等待	输入	低电平有效,与D15复用	
DMAING	批量数据		本信号为数据传输模式指示信号,由本模块输出。	
	传输指示		<mark>高电平</mark> :指示工作于批量数据传输模式。	
			<mark>低电平</mark> :指示工作于地址 IO 模式。	
CLOCKOUT	时钟输出	输出		
5Vout	输出电源	输出	提供外部设备使用 5V 电源,电流小于 200mA	

2.6.2 模块封装

本模块使用自定义的 DIP40 封装, 封装定义如下:

3 库函数使用说明

本模块以动态连接库的形式提供了一系列的 API 函数,用于简化应用程序的编写。 函数封装在 USB20D.DLL 中。函数分为以下四类:初始化函数、地址 IO 函数、批量传 输函数、参数设置函数。

3.1 初始化函数

初始化函数主要用于完成本模块软件硬件的初始化工作,它包含以下四个函数:

USB20D_EnumDeviceCount USB20D_Init USB20D_Done USB20D_WorkAtHighSpeed

3.2 地址 IO 函数

本类函数完成地址 IO 的功能,包含以下六个函数:

USB20D_SetAddress

USB20D_Input

USB20D_Output

USB20D_MultInput USB20D_MultOutput

USB20D_MixedIO

3.3 批量传输函数

本类函数完成传输大批量数据的功能,包含以下12个函数:

USB20D_SetDMAClk

USB20D_StartDMA

USB20D_EndDMA

USB20D_DMARead

USB20D_DMAWrite

USB20D_ResetDMAFIFO

USB20D_DMAOutFIFOEmpty

 $USB20D_DMAOutFIFOFull$

USB20D_DMAInFIFOEmpty

USB20D_DMAInFIFOFull

USB20D_DMAFIFOStatus

USB20D_UnlockAfterDMA

//初始化设备时,设备曾经被初

//初始化设备时,没有发现设备。

//初始化设备时,已经发现设备,

//读写操作超时。

//设备没有连接。

//函数的参数不合适。

//不是我们的设备。

//读写操作错误(重叠)。 //读写操作错误。

//没有结束上次操作。

3.4 通用函数

本类函数完成有关本模块的一些通用功能,包含以下三个函数: USB20D_SetCPUCS USB20D_GetLastError USB20D_GetLastErrorStrC

3.5 错误代码

- USB20D_ERR_Success = 0;
 USB20D_ERR_DeviceAlreadyOpen = 1;
- 始化过一次。
- USB20D_ERR_CannotFindDevice = 2;
- USB20D_ERR_CannotOpenInfoOutPipe = 3;
 但是不能打开辅助输出管道。
- USB20D_ERR_CannotOpenInfoInPipe = 4; //初始化设备时,已经发现设备, 但是不能打开辅助输入管道。
- USB20D_ERR_CannotOpenMainOutPipe = 5; //初始化设备时,已经发现设备, 但是不能打开主输出管道。
- USB20D_ERR_CannotOpenMainInPipe = 6; //初始化设备时,已经发现设备, 但是不能打开主输入管道。
- USB20D_ERR_CannotCreateEndEvent = 7; //初始化设备是,没能创建终止事件。
- USB20D_ERR_IOTimeOver = 8;
- USB20D_ERR_IOOverlapError = 9;
- $\blacksquare USB20D_ERR_IOError = 10;$
- USB20D_ERR_DeviceNotConnected = 11;
- USB20D_ERR_LastIONotCompleted = 12;
- USB20D_ERR_IllegalParameter = 13;
- USB20D_ERR_IllegalDevice = 14;

3.6 在应用程序中引用动态连接库中的函数

3.6.1 在 VC 中引用

详细说明请参考资料光盘中提供的 USB20D.H 文档

3.6.2 在 Delphi 中引用

详细说明请参考资料光盘中提供的 USB20D_Delphi_Declare.DOC 文档

3.6.3 在 VB 中引用

详细说明请参考资料光盘中提供的 USB20D_VB_Declare.DOC 文档

3.6.4 在 VB.NET 中引用

详细说明请参考资料光盘中提供的 USB20D_VBNET_Declare.DOC 文档

4 应用实例

4.1 外围控制器是单片机

采用 8 位单片机进行异步 DMA 数据传输

4.1.1 硬件连接框图

4.1.2 单片机控制流程

IO 模式流程图

DMA 模式流程图

4.2 外围逻辑是 CPLD

采用 CPLD 进行同步 DMA 数据传输

西安达泰电子有限责任公司

4.2.1 硬件连接框图

USB20D 模块

方法一

CPLD

4.2.2 CPLD 程序

下面以 VHDL 语言为例,示例如何设计 CPLD。 顶层设计:

注:以上单片机, CPLD 及上位机例程见本公司所带附件。

4.3 主机应用程序

为了提高应用程序的运行效率、提高数据传输速率,主机应用程序应该使用多线程技术,把所有和数据传输相关的任务都放在"数据传输线程"中完成。

下面是一个典型的数据采集应用软件的数据传输线程的流程框图:

