
笔记本诊断卡 (三合一版) 使用说明

该笔记本诊断卡支持 Mini PCI, Mini PCI-E, LPC 总线接口。诊断卡工作时, 仅需连接到其中的一个接口, 剩下的两个接口无需连接。该诊断卡使用方便, 稳定性好, 是笔记本电脑维修的理想工具。

- 一: 系统主要组成部分及用法
- 二:诊断卡的 Mini PCI 接口
- 三:诊断卡的 Mini PCI-E 接口
- 四:诊断卡的 LPC 接口
- 五:诊断卡的显示接口
- 六: 诊断卡的部分错误代码解释

版权所有: 任何人未经允许,不得擅自复制,销售该笔记本诊断卡。

一: 系统主要组成部分

- 1) Mini PCI 接口: 用于连接该诊断卡到笔记本主板的 Mini PCI 插槽
- 2) Mini PCI-E 接口:用于连接该诊断卡到笔记本主板的 Mini PCI-E 插槽
- 3) LPC 接口: 用于连接该诊断卡到笔记本主板的 LPC 接口
- 4) 专用的主芯片: 用于处理 Mini PCI, Mini PCI-E, LPC 的信号
- 5) 两个七段数码管: 用于显示诊断结果
- 6) 测试接口: 该接口仅被用于在该卡出厂前的检测,用户请不要连接该接口

二:诊断卡的 Mini PCI 接口

Mini PCI 是被笔记本主板普遍使用的接口,它的功能类型于 PCI 总线。Mini PCI 总线 共有 124 个管脚,该诊断卡通过使用其中的 101 个管脚实现了所需的功能。当该诊断卡被安 装到笔记本的 Mini PCI 插槽上的时候,该诊断卡的长度会短于主板 Mini PCI 插槽的长度。 这给使用该诊断卡带来了方便。

三:诊断卡的 Mini PCI-E 接口

Mini PCI-E 是笔记本主板正在逐渐使用的新型接口。比较于 Mini PCI 接口, Mini PCI-E 接口占用更少的空间。该诊断卡使用 Mini PCI-E 接口的下列管脚: PIN-8, PIN-10, PIN-12, PIN-14, PIN-16, PIN-17, PIN-19。当前,由于这部分的管脚定义标准正在形成,所以并非目前所有笔记本主板都支持该接口。经测试,最近的联想,惠普, 东芝, 华硕, TCL 等笔记本主板能够支持该接口。对于少数不支持该接口的笔记本主板,该接口将无法正常使用。

四:诊断卡的 LPC 接口:

LPC 口是主板普遍使用的接口。诊断卡上对该接口的定义是: 从左到右, 依次是 PIN1-3.3V, PIN2-LFRAME#, PIN3-LAD3, PIN4-LAD2, PIN5-LAD1, PIN6-LAD0, PIN7-GND, PIN8-LRESET#, PIN9-LCLK, PIN10-3.3V。

主板上通常没有跟该接口相对应的插槽,所以用户需要通过飞线来连接该接口到主板上。一般来说,为方便起见,建议用户通过飞线连接该诊断卡到主板的 LPC 接口 BIOS 上。下图是 LPC BIOS 的管脚定义: PIN2-RST#, PIN13-LAD0, PIN14-LAD1, PIN15-LAD2, PIN16-GND, PIN17-LAD3, PIN23-LFRAME#, PIN25-VCC, PIN31-CLK。

诊断卡和 LPC 接口 BIOS 间的连接方法是: 主板的 BIOS 诊断卡 PIN1-3.3V PIN25-VCC PIN2-LFRAME# PIN23-LFRAME# PIN3-LAD3 PIN17-LAD3 PIN4-LAD2 PIN15-LAD2 PIN5-LAD1 PIN14-LAD1 PIN6-LAD0 PIN13-LAD0 ☐ LFRAME# PIN7-GND PIN16-GND LAD0 PIN8-LRESET# PIN2-RST# PIN9-LCLK PIN31-CLK AD2 GND -AD3 PIN10-3.3V PIN25-VCC

除了 LPC BIOS, 用户也可以连接该诊断卡到常用的笔记本主板 LPC 接口芯片上,比如常见的 PC97551, PC87541, PC87591, H8S/2149, W83L950D, TCPA 等。下面是部分芯片的 LPC 管脚定义。更多信息请参考该芯片的数据手册。

注: 上图中未列出电源和地。用户可以使用主板上的任意 GND 和 3.3V 电源。(注意:请不要连接该诊断卡的 PIN1-3.3V 或者 PIN10-3.3V 到非 3.3V 的电源上。因为该诊断卡使用 3.3V 供电,不正确的电源连接会永久损坏该诊断卡。)

对于 IBM X60 的笔记本主板,LPC 接口已被保留于序号为 U39 的插槽上。其定义为: A2->LRESET#, A3->LFRAME#, A5->LCLK, A9->LAD3, A10->LAD2, A11->LAD1, A12->LAD0

对于 IBM T6 R6 主板, LPC 接口已被保留于序号为 J26 的插针上。其定义为: A1->LCLK, A3->LFRAME#, B2->LRESET#, B7->LAD3, A7->LAD2, B6->LAD1, A6->LAD0

五:诊断卡的显示接口

诊断卡的显示接口为两个七段数码管。其中两个数码管中的两个圆点分别被用于显示笔记本主板的"复位(RST)"和"时钟(CLK)"状态。 当主板在"复位(RST)"状态时,左边的数码管圆点会被点亮。当主板的"时钟(CLK)"工作正常时,右边的数码管圆点会被点亮。

当按下主板的"复位(RST)"开关的时候,左边数码管的圆点会被点亮,右边数码管的圆点熄灭。

当主板处于正常工作状态时,左边数码管的圆点会熄灭,右边数码管的圆点会被点亮。 这表明主板"复位(RST)"信号正常,"时钟(CLK)"信号正常。同时,七段数码管会输出 相对应的代码。

如果左边数码管的圆点一直被点亮,这说明主板正处于复位(RST) 状态。

六:诊断卡的部分代码解释

当主板 BIOS 在运行的时候,会通过该诊断卡输出一系列的代码。当主板出现故障时,诊断卡会显示对应于故障的代码。下面列出部分重点代码:

AWARD BIOS, 当诊断卡所显示的数字停留在下列代码时的解释如下:

代码	解释	注解
C0	关闭 Cache	
01	处理器测试	
07	CMOS 测试	
C1	内存大小测试	
0A	设置中断表	
0C	初始化键盘	
0D	初始化显卡	
1A	显示 CPU 频率	
3C	CMOS 设定	
42	初始化硬盘	
52	检测扩展 ROM	
FF	引导系统	

AMI BIOS, 当诊断卡所显示的数字停留在下列代码时的解释如下:

代码	解释	注解
00	自检出错	
01	处理器测试出错	
0D, 0F	CMOS 自检出错	
1A 至 22	内存自检出错	
3A	显卡出错	
FF	顺利完成自检	