KM51G-754 主板

nVIDIA[®] GeForce[™] 6100 (nForce4 C51G)及 nForce[™] 410 (nForce4 MCP51G) 支援 Socket 754 AMD Athlon[™] 64/ Sempron[™] 处理器

简体中文使用手册

主板尺寸 (本主板属Micro-ATX 规格)

• 244 mm x 219 mm (宽与长)

操作系统 (Operating System)

● 支持 Windows[®] 2000/ XP 作业平台

Ver: SC100

- 此手册之所有图片仅供参考,请以您手边的主板为主。
- ◆ 主板是由许多精密的积体电与组件所组成,为避免受到静电影响,请配戴防静电手环。
- 请尽量避免碰触主板上的集成电路与组件。
- ◆ 在拆装任何内部硬设备或调整跳线帽时,请先拔除 AC 电源线,以避免发生 短路或造成危险。

- ◆ KM51G-754 主板
- ♦ FDD 排线
- ◆ HDD 排线
- ◆ Serial ATA 排线
- ◆ 后方 I/O 檔板 (ATX 机壳使用)
- ◆ SPDIF 板卡 (选择性配备)
- ◆ KM51G-754 主板使用手册
- ◆ KM51G-754 驱动程序光盘片
- ◆ 主板快速安装手册

目录
第一章 简介1
主板简介1
规格简介2
主板组件配置图5
KM51G-754 主板5
硬件安装6
安装中央处理器6
安装内存模块: DIMM1/DIMM27
后方面板配置
连接 翻
接脚、跳线器(Headers & Jumpers)
音效功能介绍
扩充插槽 (Slots)15
安装电源供应器15
第二章 主板 BIOS 系统设定16
简介16
按键功能说明16
选单说明16
附录I: 超级 5.1 声道音效设定18
附录II: RAID设定19

<u>第一章 简介</u> 主板简介

感谢您选择了 KM51G-754 主板! KM51G-754 主板是建构于北桥芯片 nVIDIA[®] GeForce[™] 6100 (nForce4 C51G) 与南桥芯片 nVIDIA[®] nForce[™] 410 (nForce4 MCP51G) 的组合,同时具有内建显示功能。另外,支持 AMD Athlon[™] 64/ Sempron[™] 前置总线 (FSB) 为 800 MHz (1600MT/s) 的处理器。

KM51G-754 主板提供了 2 个可插 184 针脚的内存模块插槽,您可安插支援 DDR400 (PC3200)/ DDR333 (PC2700)/ DDR266 (PC2100) 规格的内存模块(DDR SDRAM),最高可支持到 2GB 的 内存容量。

KM51G-754 主板提供 1 个 PCI-Express x16 接口插槽及 2 个 PCI 接口插槽,以供额外安插显示 卡或任何支持此接口的扩充卡使用;另外也提供了 1 个 PCI-Express x1 接口插槽,以供安插任何 支持此接口的扩充卡使用。另外,亦提供 2 个支持 PIO mode 0~4、Bus Master 及 Ultra DMA 66/100/133 IDE 硬盘装置的 IDE 硬盘连接器,以及 1 个支持 360KB/720KB/1.2MB/1.44MB/ 2.88MB 功能的软盘连接器。

而主板内建的 Serial ATA II 功能, 2 个 SATA II 硬盘连接器可支持每秒 300 Mb 的传输速率以及支持 RAID 0/1 模式设定【请参照附录 II】。

KM51G-754 主板可支持最多 8 个 USB 2.0/ 1.1 规格的连接端口。

另外, 主板内建的 AC'97 Sound Codec 音效芯片, 可支持高品质 6 声道的超级 5.1 声道音效【请参照附录 I】, 以及支持 Sony/ Philips 数字音效接口(SPDIF)的输出输入功能。

KM51G-754 主板还内建了一颗局域网络芯片,可支持传输速率每秒达 10/100 Mb,您可将局域 网络装置连接头,连接在后面板的 LAN 连接埠上。

本使用手册所提及的所有与本产品的相关信息 (包括软件及硬设备) 仅供参考,请依您手边的产品规格为主。本手册内容会随时更新,恕不另行通知。若有任何错误,本公司不担负任何责任。

<u>规格简介</u>

中央处理器 (CPU):

- 支持 Socket 754 规格
- 支持 AMD Athlon[™] 64/ Sempron[™]处理器
- 内建 Hyper-Transport[™] Link 技术
- 支持前置汇流排频率(FSB) 800 MHz (1600MT/s)

芯片组 (Chipset):

- 北桥芯片 nVIDIA[®] GeForce[™] 6100 (nForce4 C51G)
- 南桥芯片 nVIDIA[®] nForce[™] 410 (nForce4 MCP51G)
- I/O 控制芯片 ITE® IT8712F
- AC' 97 Sound Codec 音效芯片 Realtek[®] ALC655
- 局域网络控制芯片 Realtek[®] RTL8201BL / RTL 8201CL

系统内存 (Memory):

- 2个内存模块插槽,支持最大内存容量 2 GB
- 支援184脚位的DDR400(PC3200)/ DDR333(PC2700)/ DDR266(PC2100) SDRAM

扩充插槽 (Slots):

- 1个 PCI-Express x16界面插槽
- 1个 PCI-Express x1界面插槽
- 2个 PCI 界面插槽

软盘机连接器:

- 1个软盘连接器,可支持连接最多2个软件机装置
- 支持 360KB/720KB/1.2MB/1.44MB/2.88MB 功能

<u>KM51G-754 主板</u>

IDE 硬盘连接器:

- 2个IDE硬盘连接器,可支持连接最多4个硬盘装置
- 支援 PIO mode 0~4、Bus Master及Ultra DMA 66/100/133 功能
- 支持高容量的硬盘机装置

Serial ATA II 硬盘连接器:

- 2个 SATA II 硬盘连接器,可支持连接最多 2 个 SATA II 硬盘机装置
- 支持 SATA 2.0 规格,每秒 300 Mb 的传输速率
- 支持 RAID 0/1 模式

内建 I/O 装置

- 1个可支持多种模式的并列连接端口:
 - 1. 标准双向并列埠
 - 2. 增强型并列埠 (EPP)
 - 3. 延伸型并列埠 (ECP)
- 1个串行连接埠
- 1个 VGA连接埠(即D-Sub连接埠)
- 1个 PS/2鼠标连接端口及1个 PS/2键盘连接端口

USB连接埠:

- 4个内建USB 2.0/ 1.1 连接埠
- 2个前置USB接脚,支持额外再连接4个USB连接埠

<u>KM51G-754 主板</u>

内建AC' 97 Sound Codec 音效芯片:

- 支持高效能音讯频率 (>90db)
- 提供符合 AC' 97 2.3 标准的安装接口
 - 1. 支持 6 声道输出 (超级 5.1 声道音效)
 - 2. 支持 3D 立体声道
 - 3. 支持 S/PDIF输出输入功能

内建局域网络芯片(LAN PHY):

● 支持每秒10/100 Mb模式,提供全双倍运转及半双倍运转的自动流通功能

BIOS 部分

- 支援 Phoenix-Award™ BIOS
- 支援 APM1.2
- 支持 ACPI 2.0电源管理规则
- 支持 USB 功能

环保省电功能 (Green Function)

- 支持 Phoenix-Award[™] BIOS 电源管理模式设定
- 经由触碰键盘、鼠标或运作其它装置,系统便可由省电模式回到一般模式

硬件监控功能:

- 监控 CPU风扇及系统风扇转速
- 监控系统环境及CPU温度
- 监控系统电压

主板组件配置图 KM51G-754 主板 JCFAN1 JKBMS1 JATXPWR1 JCOM1 Socket 754 CPU1 PRNT1 APAC DIMM1 2 JUSBV1 JUSB1 JATXPWR2 IDE1 IDE2 JUSBLAN1 LAN PHY GeForce ■ • JFAUDIO1 6100 JAUDIO1 BAT1 PCI-EX1_1 • • • JCDIN1 JSFAN1 Codec PCI-EX16 JSPDIF_OUT1 PCI1 nForce JSATA ~~°~~ 410 JSATA ° 。 。 ° JCI1 PCI2 Super I/O JCMOS1 ∎ o o JUSBV2 BIOS 0 FDD1 USB2 ANEL 1

注: 📕 为 pin1。

伸件安装

本章节将可帮您迅速地安装系统的硬件,在拿取各组件之前请您先戴上静电护腕,否则静电可能 会导致系统内的组件损坏。

安装中央处理器

本主板支援 AMD Athlon[™] 64/ Sempron[™] Socket 754 架构的处理器,我们建议您在组装系统前 先拜访AMD 官方网站,参考处理器安装步骤,网址为<u>http://www.AMD.com</u>

Socket 754 架构的CPU安装步骤

1. 将 Socket 754 脚座旁的固定杆向外轻轻推出后向上拉起成 90 度。

2. 先在脚座上找出一有切角的位置 (如图)。再将 CPU 上的金三角对正 Socket 754 脚座上的切 角位置后插入,如此 CPU 就会平贴于 Socket 754 脚座上。

3. 将固定杆向下压,并推到定位,这个动作会将 CPU 固定。

4. 在 CPU 抹上散热膏或贴上散热胶带,然后将 CPU 风扇紧扣在 Socket 754 脚座上并固定 住,把风扇电源线安插至主板的 JCFAN 接头上。结束以上之所有步骤之后,即完成所有安装 CPU 的程序。

注意 请勿用手触摸脚座上欲与 CPU 相接触之针脚,否则可能将会因此而导致脚 座损坏。开机前请确定 CPU 安装步骤均己完成。请确定散热片已确实安装, 且处理器风扇己开始动作,过热的情况可能会使处理器和其它的组件受损。

风扇电源接头: JCFAN1, JSFAN1

此处所介绍的 2 个风扇接头在您的安装过程中扮演着不可或缺的角色。它们是主板上所有散热风扇的电源供应接头。安装散热风扇对降低系统及 CPU 温度来说是非常重要的功能。请将风扇的电源连接线接上主板上的 JCFAN1 接头及 JSFAN1 接头。

CPU 风扇接脚: JCFAN1

	脚位	信号定义
1 00	1	接地
JCFAN1	2	+12V 电源
	3	FAN RPM 感应频率

系统风扇接脚: JSFAN1

	脚位	信号定义
	1	接地
JSFAN1	2	+12V 电源
••••	3	FAN RPM 感应频率

注意

强烈建议您一定要安装散热风扇于 CPU 上,并将风扇连接线的接头接至 JCFAN1 接脚上,以免您的处理器因温度过高而导致损毁。

一般而言,风扇连接线的接头具有防呆作用,连接在线的黑色线为接地线,请将其接头插至接脚的1号针脚。

安装内存模块: DIMM1/DIMM2

KM51G-754 主板提供了 2 个可插 184 针脚的内存模块插槽,您可安插支援 DDR400(PC3200)/ DDR333(PC2700)/ DDR266(PC2100) 规格的内存模块(DDR SDRAM),最高可支持到 2GB 的内 存容量。

		0 00 00 00 00 00 00 00 00 00 00 00 00 0
DIMM1		
	m s	······································
DIMM2		

内存安装程序

1. 将 DIMM 插槽两边卡榫向左右两边拉开至定位。

2. 因插槽中会有一凸出的标记,必须与内存金手指接口上的凹陷标记相对应后,即可将内存依照正确的方向插入 DIMM 插槽,这个动作可以确保内存方向安插确实。

3. 将内存依正确方向置入插槽后,再以双手拇指将内存用力下压至插槽两边卡榫确实将内存卡稳,并固定。

4. 以重复步骤 1、2及3的方法,安装内存至 DIMM 插槽中。

*以上安装图片仅供参考,请依您手边产品为主。

后方面板配置

PS/2 鼠标及 PS/2 键盘连接端口: JKBMS1

本主板各提供1个标准规格的 PS/2 鼠标及 PS/2 键盘连接端口。安装时直接将 PS/2 鼠标或 PS/2 键盘接头直接插入连接埠即可。此连接端口的位置及针脚方向图标如下:

脚位	信号定义	脚位	信号定义
1	资料	4	+5 V (fused) 电源
2	空脚	5	Clock
3	接地	6	空脚

PS/2鍵盤

并列连接埠/串行连接埠

本主板配置有一个后面板并列埠、一个串行端口和一个影像输出 端口于后方面板上,以下为概略介绍。

并列连接端口(打印机连接端口): JPRNT1

和串行埠不同,并列端口接头的规格都已经统一,所以在连接时 不会造成任何的困难。并列端口通常都被用来连接打印机,其接 头为 25 针脚的连接器。

串行连接埠: JCOM1

本主板提供 1 个串行连接埠 JCOM1,您可以将鼠标、调制解调器或其它外接式装置连接至此连接端口上。您也可以利用此连接端口,将您的计算机连接到另外一部计算机上,并藉此传输硬盘里的数据和内容。

影像输出端口: JVGA1

您的屏幕连接线可直接连接至本主板的 VGA 影像输出端口上来显示影像画面。

USB 及 LAN连接埠: JUSB1、JUSBLAN1

本主板在后方面板提供了 4 个 USB 1.1/2.0 规格的 USB 连接端口来连接 USB 规格装置,如:键盘、鼠标以及其它此规格符合的硬件装置。 安装时直接将 USB 连接接头插入此连接埠即可。同时,本主板也提供 1 个每秒 10/100 Mb 的局域网络(LAN)连接埠,您可直接将网络装置接头插入此连接埠即可。

LAN	脚位	信号定义	脚位	信号定义
連接追	1	TX+ (TX+)	5	空脚 (TRD2-)
	2	TX- (TX-)	6	RX-
	3	RX+ (RX+)	7	空脚 (TRD3+)
	4	空脚 (TRD2+)	8	空脚 (TRD3-)
USB	脚位	信号定义	脚位	信号定义
連接埠	1/5	+5 V 电源	3/7	USBP0+/P1+
	2/6	USBP0-/P1-	4/8	接地

音效接头连接端口: JAUDIO1

本主板提供3个音效接头,其中的麦克风输入、音效输入及前置音效输出接是标准的音效接头, 提供基本的音效功能。

音效输入接头(蓝)用来连接外接的 CD 光驱、卡式录音机与其 它外接式音效装置,并藉此输出立体音效。当您驱动及设定超级 5.1 声道音效后,此连接端口则变为后置喇叭左右声道之输出。

● 音效輸入接頭
● 音效輸出接頭
● 参克風接頭

音效输出接头(绿) 用来连接声音喇叭与耳机的,并藉此输出立 体音效。当您驱动及设定超级 5.1 声道音效时,此连接端口则 为前置喇叭左右声道之输出。

麦克风接头(粉红)用来连接麦克风的,您可以透过此接头来输出立体音效与您的声音。当您驱动超级 5.1 声道音效时,此连接端口则为重低音及中置喇叭之输出。

本主板支持6声道音效(超级5.1声道音效);您可以将原本的2声道转换 为6声道,请参照**附录**I可获得更多信息。

连接器配置 (Connectors)

软盘连接器: FDD1

本主板提供 1 个标准规格的软盘连接器,可支持 360KB/720KB/1.2MB/1.44MB/2.88MB 规格, 搭配产品配件中的 FDD 排线,让您可连接最多两部软盘机。

硬盘连接器:

本主板提供2个标准规格的 IDE 硬盘连接器,支持 PIO mode 0~4、Bus Master 及 Ultra DMA 66/100/133 规格;搭配产品配件中的 IDE 排线,让您可连接最多4部 IDE 硬件装置,包括有 IDE 硬盘机、CD-ROM 光驱、DVD-ROM 光驱等。

主要IDE连接器: IDE1

本连接器能够连接一台 Master IDE 硬盘机和一台 Slave IDE 硬盘机。本连接器上的第二台装置必须设定为 Slave 模式,这样装置才能正常运作,而光驱装置目前只能连接到此连接器。

次要IDE连接器: IDE2

IDE2 连接器也可以同时连接一台 Master IDE 硬盘机和一台 Slave IDE 硬盘机,但请把第二台 硬盘机设定为 Slave 模式,这样硬盘机才能正常运作。

Serial ATA II硬盘连接器: JSATA1, JSATA2

此两连接器支持每秒 300 MB 的传输速率及支持 RAID 0/ 1 模式设定;搭配产品配件中的 SATA 排线(选择性配备),让您可连接最多 2 部 SATA II 硬盘机。

<u>KM51G-754 主板</u>

	脚位	信号定义	脚位	信号定义
	1	接地	2	TX+
	3	TX-	4	接地
JSATA1/JSATA2	5	RX-	6	RX+
	7	接地		

本主板支持 RAID 0/1 模式设定,详细信息请参考附录 II。

前方面板接脚配置: JPANEL1

扬声器绿色接脚SPK (Speaker)

透过此扬声器接脚,您可以外接一个扬声器到您的主板上。当计算机开机正常无误时,此扬声器 会发出一短「哔」声,但若计算机开机时出现不正常状况时,此扬声器会发出不规则长、短或高 的「哔哔」声来提醒使用者。

硬盘动作中指示灯橘色接脚 HLED (Hard Drive LED)

将机壳前面板的 HLED 指示灯接到此接头上,便可经由此指示灯看到硬盘运转的状况。

系统重置按钮红色接脚 RST (Reset Button)

将机壳前面板的 RST 连接线接到此接脚,此接头内含一个开启的 SPST 切换开关。若关闭此开关,则系统将重置并执行开机自我测试 (POST)。

系统休眠按钮黑色接脚 SLP (Sleep Button)

将连接线连至此接脚,当系统空闲时,便自动进入休眠状态而达到电源省电功能。

电源指示灯黄色接脚 PWR LED (Power LED)

请将连接线接到此接脚,并注意针脚方向,当计算机开机时,电源指示灯即会点亮。

电源开关钮黑色接脚 ON/OFF (Power-on Button)

将机壳前面板上的电源开关电缆连接至此接脚,便可以电源开关按钮打开或关闭计算机。

红外线传输蓝色接脚 IR (IrDA)

将 IrDA 红外线装置连接至此接头,便可透过红外线传输数据。

接脚、跳线器(Headers & Jumpers) 机壳打开警告功能接脚: JCI1

如果此功能在 BIOS 里被设定为 Enable,而且机壳曾被他人打开,则开机时系统会在屏幕上自动显示警告讯息。相反地,若此功能在 BIOS 里被设定为 Disable,即使机壳曾被他人打开,开机时系统亦不会自动显示警告讯息在屏幕上。(请先确认您的机壳是否备有此功能连接线。)

1	脚位	信号定义
	1	机壳打开警告讯号
JUI	2	接地

前置USB 接脚: JUSB2/JUSB3

本主机在后方面板上己提供了 4 个 USB 连接埠,但为了让使用者可外接更多的 USB 装置,在主板上又内建了 2 组 USB 接脚,您只要轻易的将 USB 连接线(选择性配备) 与 JUSB2/3 接脚连接,即可透过此连接在线的 USB 连接埠再外接最多 4 个 USB 装置。在本主板最多可支持 8 个 USB 连接埠。

	接脚	信号定义	接脚	信号定义
	1	+5V (fused)电源	2	+5V (fused)电源
2 ○ ○ ○ ○ ○ 10	3	USB-	4	USB-
JUSB2/JUSB3	5	USB+	6	USB+
	7	接地	8	接地
	9	防呆	10	空接

如果您要在 Windows XP 或 Windows 2000 操作系统下使用 USB 2.0 装置,请从 Microsoft 网站下载 USB 2.0 驱动程序并安装。但若您 有安装含有 Service pack 1 或以上的 Windows XP 操作系统时,或 安装含有 Service pack 4 以上的 Windows 2000 操作系统,就不需 要再下载此驱动程序。

USB 电源选择接脚: JUSBV1/JUSBV2

您可利用 JUSBV1 及 JUSBV2 接脚上的跳线帽设定成+5V 电源或+5V 备用电源模式。而利用所 安插的接口装置来使系统能从睡眠模式中唤醒。

JUSE	BV1/JUSBV2	信号定义	说明
0			JUSBV1 接脚:为供给 JUSB1 接脚 和 JUSBLAN1的+5V电源。
1	Pin 1-2 短路	+5V	JUSBV2 接脚: 为供给 JUSB2 及 JUSB3 接脚的+5V 电源。
		+5V 备用	JUSBV1 接脚:为供给 JUSB1 接脚 和 JUSBLAN1的+5V 备用电源。
1	Pin 2-3 短路	电源	JUSBV2 接脚: 为供给 JUSB2 及 JUSB3 接脚的+5V 备用电源。

注: 短路意指用跳线帽将两支针脚套住的意思。

清除CMOS 数据选择接脚: JCMOS1

当您无法开机或忘记开机密码时,您可利用这个跳线器来清除CMOS先前所更改且储存的设定, 而重置系统原本的默认值。

JCMOS1	信号定义		
1 ■ ○ ○ Pin 1-2 短路	正常运作 (默认值).		
1 ■ ○ ○ Pin 2-3 短路	清除 CMOS 资料		

註: 短路意指用跳線帽將兩支針腳套住的意思。

以下是重设 BIOS 密码的程序,请务必遵循步骤操作。

- 1. 关机,并拔掉 AC 电源线。
- 2. 将 JCMOS1 针脚 (2-3) 短路。
- 3. 等候数秒钟。
- 4. 再将 JCMOS1 针脚 (1-2) 短路。
- 5. 重新接上 AC 电源。
- 6. 请重新设定您新的密码。

音效功能介绍

前置音效接脚 (Front Panel Audio): JFAUDIO1

如果您的机壳原本就有前方面板的音效接头设计,请先拔除此接脚上的跳线帽,这样您可以使用前后两方面板上的音效接头。然而,假使您的机壳无此设计,请将 4 个跳线帽置于 pin-5&6, pin-9&10, pin-11&12, pin-13&14 的位置,否则后方面板上的音效接头则无法使用。

2 0 0 0 0 0 14 1 ■ 0 0 0 0 0 13 JFAUDIO1						
接脚	信号定义	接脚	信号定义			
1	麦克风输入/Center	2	接地			
3	麦克风电源//Bass	4	扬声器电源			
5	右声道输出/前置右声道输出	6	右声道输出/前置右声道			
7	备用	8	防呆			
9	左声道输出/前置左声道	10	左声道输出/前置左声道			
11	右声道输入/后置右声道	12	右声道输入/后置右声道			
13	左声道输入/后置左声道	14	左声道输入/后置左声道			

光驱音源接头:JCDIN1

本接头用来连接 CD-ROM 光驱/ DVD-ROM 光驱的音源线。

	脚位	信号定义
	1	左道输入
	2	接地
JCDIN1	3	接地
	4	右声道输入

数字音效输出接头:JSPDIF_OUT1 (选择性配置)

S/PDIF (Sony/Philips Digital Interface) 是全新的音效转换档案格式,透过光纤与数字讯号传输,可提供高品质音效,而不再只是传统的模拟式音效。首先,把 S/PDIF 子卡(选择性配备)装在机壳 后方面板里,再将 S/PDIF 装置上的 S/PDIF 连接线插在主板的 S/PDIF 接脚,即可享受此特殊的音 效格式。S/PDIF 装置上附有 RCA 接头或 TOS-Link 接头,透过音效讯号线连接至另一个支持 S/PDIF 的光纤音效模块,这样您便可以建立 S/PDIF 格式的数字音效输出。不过,您必须具备有支持 S/PDIF 格式的声音喇叭,这样才能够结合此格式的输出,并将此音效功能发挥到极致。

	脚位	信号定义		
	1	+5V		
	2	SPDIF OUT		
JSPDIF_001	3	接地		

扩充插槽 (Slots)

PCI-Express x16 界面插槽: PCI-Ex16

本主板提供支持安插一张兼容于PCI-Express x16规格的显示卡,此接口可支持每秒单向频宽高达 4GB。

PCI-Express x1 界面插槽: PCI-Ex1_1

本主板提供支持安插一张兼容于PCI-Express x1规格的扩充卡,如网络卡、SCSI卡等。

PCI界面插槽: PCI1, PCI2

PCI的意思是「外围组件互连局部总线」,是一种扩充卡插槽的标准规格,以供您安插网络卡、SCSI 卡、声卡等符合此接口规格的适配卡于此PCI接口插槽上。

安装电源供应器 ATX电源输入接头: JATXPWR1、JPATXPWR2

这 2 个接头是用来连接电源供应器的电源连接线。藉由使用电源供应器,本主板可提供多种功能如:调制解调器铃声唤醒、软件关机、立即开机等。而 ATX_PWR 电源输入接头也可与 20-pin 的 电源供应器连接线相连接。

	脚位	信号定义	脚位	信号定义
	1	+3.3V 电源	13	+3.3V 电源
	2	+3.3V 电源	14	-12V 电源
	3	接地	15	接地
	4	+5V 电源	16	PS_ON
	5	接地	17	接地
	6	+5V 电源	18	接地
	7	接地	19	接地
	8	PW_ON	20	-5V 电源
	9	+5V 备用电源	21	+5V 电源
1 00 13	10	+12V 电源	22	+5V 电源
JATXPWR1	12	+3.3V 电源	24	接地
2 00 1	脚位	信号定义	脚位	信号定义
4 00 3	1	+12V 电源	3	接地
JATXPWR2	2	+12v 电源	4	接地
注意				

一般而言,电源供应器连接线的接头具有防呆作用,连接在线的黑 色线为接地线,请将其接至 ATX 电源输入接头的接地位置。

第二章 主板 BIOS 系统设定

<u>简介</u>

本章节为您介绍建立在主板 Flash ROM BIOS 系统里的 PHOENIX-AWARD™ 设定程序。此程 序可让使用者能够修改主板的系统基本设定值,并将其储存在主板的闪存芯片上,即使系统关机, BIOS 的设定数据亦不会消失。

在您计算机系统 Flash ROM (Read Only Memory) 里面的 PHOENIX- AWARD™ BIOS 设定程序是一种标准版本的 BIOS 设定程序。可支持 AMD AthIonTM 64/ SempronTM 处理器的 BIOS 系统。BIOS 程序提供硬件的参数设定,使计算机能正常运作,并达到最佳效能。

以下简略地介绍 BIOS 系统各项功能的内容及设定程序,请以您手上的主板所附的 BIOS 内容为标准。

按键功能说明

您可以使用上、下、左、右箭头键来反白您所选取的项目,按 <Enter> 键以选择进入您想修改的 项目,按 <PgUp> 和 <PgDn> 键来变换选项内容,按 <F1> 键进入 help 画面,最后按 <Esc> 键以离开 BIOS 的设定功能画面。

选单说明

标准CMOS设定 (Standard CMOS Features) 设定日期、时间、软盘机规格及显示器种类。

进阶BIOS功能设定 (Advanced BIOS Features)

设定 BIOS 提供的特殊功能,例如病毒警告、开机磁盘的优先级、磁盘驱动器代号交换等。

进阶芯片组功能设定 (Advanced Chipset Features) 变更芯片组与内存的进阶设定。

整合外围设定(Integrated Peripherals)

此设定画面包括所有外围设备的设定,如 COM Port 使用的 IRQ 位置,LPT Port 使用的模式 SPP、 EPP 或 ECP 以及 IDE 接口使用何种 DMA 模式等。

省电功能设定(Power Management Setup)

设定 CPU、硬盘、Green 屏幕等装置的省电功能运作方式。

随插即用与PCI组态设定(PnP/PCI Configuration)

设定 ISA 之 PnP 随插即用接口,及 PCI 接口的相关参数。

计算机健康状态(PC Health Status) 系统自动侦测电压、温度及风扇转速等。

电压控制(Voltage Control)

设定控制 CPU 时脉及倍频调整。

加载整合默认值(Load Optimized Defaults)

执行此功能可加载整合的 CMOS 默认值,此设定是较能发挥主板速度的设定。

管理者密码(Set Supervisor Password)

设定一个密码,并适用于进入系统或进入设定程序修改 CMOS 设定。

使用者密码(Set User Password)

设定一个密码,并适用于开机使用系统及进入 BIOS 修改设定时使用。

储存并结束(Save & Exit Setup)

储存所有设定结果并离开设定程序。此时BIOS会重新开机,以便使用新的设定值。

不储存而结束设定程序(Exit Without Saving)

不储存修改结果,保持旧有设定值而重新开机。

<u>附录I: 超级 5.1 声道音效设定</u>

声道数设定

1. 在系统进入 Windows 操作系统后,点选屏幕右下方的音效图标 🕺

2. 点选 Speaker Configuration 标签,可看见如下列图示。

3. 点选图标左半边选项即可选择声道数,默认值为2声道;若您的喇叭有支持,您亦可选择4声 道或6声道,如下列图示。

超级 5.1 声道音效 (Super 5.1 Channel Audio Effect)

本主板内建有一个 ALC655 音效芯片,可支持高品质的超级 5.1 声道音效,可以带给您全新的音效体验。藉由 ALC655 音效芯片创新的设计,您不必另外使用任何外接的音效装置,只要用一般标准的音效接头便可以输出立体的环绕音效。要运用此功能,您必须安装支持超级 5.1 声道的音效驱动程序。

测试喇叭

请先确认线路均已确实插妥。

1. 进入 Windows 操作系统后,在画面右下角双击音效图标 🕺。

2. 点选 "Speaker Test" 卷标,图标中的喇叭数目会随着您所设定的声道数而变化,可能出现如下三种图示。

3. 点选图示中的喇叭即可测试各个喇叭。选择并点击想要测试的喇叭即开始测试。

2 Channels

4 Channels

6 Channels

<u>附录II: RAID设定</u>

RAID 简介 (Redundant Array of Independent Disks)

RAID 技术是一个高度发展的磁盘阵列管理系统,它管理数个磁盘装置,提高输入/输出的效能, 也可预防因任一硬盘装置失去作用导致数据流失。本主板支持 RAID 0 (Striping)、RAID 1 (Mirroring) 模式。

RAID 0 磁碟等量讀寫模式 (Disk Striping)

磁盘等量读写模式是以传输效能取向为主,将数据分散到各个硬盘装置中,所以传输速率增加, 没有多余的数据映像技术。运用磁盘等量读写模式时,它并没有提供容错功能。磁盘等量读写模 式是指多个硬盘装置结合为一个硬盘装置,使这个硬盘装置容量变大。做 RAID 0 数组模式最少 要二颗硬盘装置。

RAID 1 鏡像磁碟模式 (Disk Mirroring)

镜像磁盘模式是指两个硬盘装置可做镜像的功能,当数据被写入主硬盘的同时,此笔数据同时也 被写入另一个硬盘;所以另一颗硬盘可说是做为主硬盘的备份硬盘,当主硬盘失效时,您还可由 另一个硬盘找到之前的数据。同样的,若任一硬盘无法读取时,则可由另一个正常的硬盘中读取 数据。做 RAID 1 数组模式最少要二颗硬盘装置,最多也只能使二颗硬盘装置相对应。

新增RAID数组前需注意

在新增 RAID 数组前,您必须先到 BIOS 设定中,将"RAID Config"功能选项开启。在开机之后请 依画面出现讯息指示,在适当时机按下键以进入 BIOS 设定画面,在主画面中可以看到多个 下拉式选单,请利用键盘的<↑><↓><→><←>来将画面移动至 Integrated Peripherals 选单画 面,再由<↑><↓>键来移至 "RAID Config" 选项后,按下<Enter>键,再移至"RAID Enable"选项按下<Enter>键,将"Enable"选项选取。

BIOS 设定路径: Integrated Peripherals >> RAID Config >> RAID Enable >> Enable

在"RAID Config"功能选单画面中,须先将"RAID Enable"选项选取后,以下2个选项才可有效被 设定,将您所想要新增 RAID 数组的硬盘装置选项设定为 Enabled 后,那么此装置支持 RAID 数 组的功能即被开启。(在以下的例子当中,我们将两个 SATA 装置支持 RAID 数组的功能开启。)

NVIDIA RAID 功能设定及配置

当开机进入 POST (Power-On Self Test) 画面时,会出现一个讯息(Press F10 to enter RAID setup utility) 来告知您,按下 "F10" 键可进入 "NVIDIA RAID 功能设定" 画面,就请您按下 "F10" 键以进入 "NVIDIA RAID 功能设定" 画面;如下图:

进入 NVIDIA RAID 功能设定画面后,请按 <Enter> 键,画面将出现如下图;根据您的需求来选择欲新增的数组模式,如 "Mirroring" (RAID 1)、"Striping" (RAID 0)",选定后再按下 <Enter> 键。

注意

在窗口下方的方块中所显示出的有关装置的讯息,如 Loc 及 Disk Model Name,是依您所安装的装置的不同而有所变化。而本章节所 提供的举例画面,也会与您实际设定画面会有些许不同。

接着,先按 <Tab> 键跳至 "Striping Block" 选项并按 <Enter> 键,画面将出现如下图; 在这 个选项您可选择 "每次" 输出/输入数据时,您所想要系统所处理的数据的区块大小,如:4K、8K、16K、32K、64K 及 128K。在此,我们建议您设定为 "Optimal",系统将会为自动选取最佳值。

再来选择您所要做数组模式的硬盘,利用 <→> 键来移动硬盘至数组区;移动完成后,按下 <F7> 键,画面将会出现一再次确认讯息如下图,按下 <Y> 键,以完成 RAID 数组的设定。

当 RAID 数组新增完成后,画面将会出现如下图 4.1 (此画面将会依所新增的数组模式的不同而不同,以下所提供的画面为 RAID 1 模式画面;在此画面按下 <Enter> 键后,您将可以浏览更详细的数组组成情形,如图 4.2。

圖 4.1 RAID 1 模式 (Array List)

刪除已新增的磁碟陣列 (Delete Array)

在已新增的数组详细情形说明的画面中(上页所述图 4.2),按下 <D> 键,画面就会出现一询问是 否要删除数组的讯息,如下图标,请按 <Enter> 键,以删除已新增的数组。

当数组成功的被删除后,会出现如下图所示之画面。(此画面即回复到类似 "NVIDIA RAID 设定" 的第一个画面。)

重建磁碟狀態 (Rebuilding a RAID Mirrored Array)

重建磁盘只提供模式设定为 RAID 1、RAID 0+1 的硬盘装置使用,是将数据从一颗硬盘复制到另一颗硬盘中,通常会做重建磁盘状态是因为硬盘装置损坏或数据流失时所做。

重建磁碟狀態前需注意

在重建磁盘状态前,请先将驱动程序光盘片中的 "NvRaidMan.exe" 执行文件拷贝到 C 槽中。【光 盘内档案路径为 => 光驱: \ Driver \ nForce \ 6.53 \ IDE \ WIN2K 或 WINXP (根据您所安装的操 作系统来选择) \ NvRaidMan.exe】

在已新增的数组详细情形说明的画面中(如图 4.2),按下 <R> 键,并选择欲重建的硬盘装置,再按一次 <R> 键,画面就会出现一询问是否要重建磁盘的讯息,如下图标,请按 <Enter> 键以完成重建磁盘的设定。(下图将会依据您已新增的 RAID 1、RAID 0+1 数组而有所不同。)最后按下 <Ctrl-X> 键以离开 "NVIDIA RAID 设定"画面。

在 "NVIDIA RAID 设定"完成重建磁盘的设定后,重新开机回到 Window 操作系统后,请将之前存在 C 槽的 "NvRaidMan.exe" 档案执行 (将鼠标移至该档案位置,并双击鼠标左键两下即可执行其档案)。执行后画面将会出现如下图,在下图的 "Detail" 方块中将可看到重建磁盘的进度。

System Tasks	Name	Status	Capacity	Channel	Device	
	Mirroring	Healthy	37.28 GB			
move Spare Disk	MAXTOR 6L04032	Healthy	37.28 GB	Primary	Master	
	MAXTOR 6L040L2	Healthy	37.28 GB	Primary	Slave	
Details Partitions: c:\ Rebuilding: 34.54% comolebe						

<u>KM51G-754 主板</u>

如何在已新增RAID陣列的新硬碟中安裝Windows[®] 2000/ XP作業系統?

这个章节中,将告诉您该如何在已新增 RAID 数组的硬盘中,安装 Windows[®] 2000/ XP 操作系统的步骤;若您是在一般没有 RAID 数组模式的硬盘中安装 Windows[®] 2000/ XP 操作系统时,就请依照安装光盘指示进行一般的安装程序即可。

1. 将驱动程序光盘中的 "RAID 驱动程序" 档案拷贝到磁盘中。【 路径为:\驱动程序光盘 \ Driver \ nForce \ 6.53 \ IDE\ Floppy \ *.*】。

2. 将系统电源线拔除,再把欲作 RAID 数组的硬盘装置与主板上的 PATA 或 SATA 插槽连接, 重新接上电源线并开机。

3. 快速将 Windows[®] 2000/XP 原版光盘放入光驱中,待 Windows Setup 画面出现后,按下 "F6" 键。

4. 当画面下方出现 "S=Specify Additional device......" 时,按下 "S"并将先前拷贝好包含有 "RAID 驱动程序"的磁盘放入磁盘驱动器中。

按下 "Enter" 键并选择您所需的操作系统项目,并按 "Enter" 键。

5. 再按下 "Enter" 键以继续安装程序。

6. 接着按照画面中的说明来进行您所需的系统档案分布模式。

7. 当设定程序侦察到光盘档案后,便会开始拷贝档案至硬件中后并重新开机,开机后,系统将 会继续完成安装操作系统。

8. 当 Windows[®] 2000/ XP 安装完成后,系统中虽然已加载了 RAID 的驱动程序,但您必需要再进行安装 nForce 芯片驱动程序,以驱动其它的装置。

