

Harmonic/Flicker Analyzer MODEL KHA3000

Supports harmonic and flicker compliance testing of single-phase and three-phase equipment IEC61000-3-2 Ed3.0 (Harmonics for 16A or less) IEC61000-3-3 Ed1.2 (Flicker for 16A or less) IEC61000-3-11 (Flicker for over 16A) IEC61000-3-12 (Harmonics for 75A or less) IEC61000-4-7 Ed2/Ed1 (Interharmonics ON/OFF)

Harmonic /Flicker Analyzer

Capable to handle the single-phase and the three-phase equipment for the test exceeding 16A of current

KHA3000, in addition to the complied standards and features of the KHA1000 (dedicated for single phase), is equipped for the harmonic and flicker compliance test exceeding 16A of the single-phase and the three-phase equipment. With this unit alone, you can take highly accurate simultaneous three-phase measurements up to 40A/phase*. Furthermore, the KHA series is compliant with two measurement technique standards, the existing and the latest versions, so you can simply select to take measurements for the latest standard including interharmonics and for the conventional integral multiple harmonics without using any other device. In addition to the real-time display that can be used like an oscilloscope and FFT analyzer, the unit offers the real-time judgment of compliance with standards. Using this unit alone, you can judge test results and prepare result reports without the use of a PC. On top of that, you can easily set up a standard compliance test system by combining KHA3000 with an AC power supply (PCR-LA Series) and a line impedance network (LIN40MA-PCR-L).

*Support for measurement beyond 40A/phase is scheduled with an external current sensor (option) and an update of the firmware.

Harmonic/Flicker Analyzer

[**Complied standards**] Compliance with the following standards can be tested.

Category	Limit value standard Edition	Measurement technique standard Edition		
	IEC61000-3-2Ed3 [EN61000-3-2:2006]	IEC61000-4-7Ed2		
Harmonic current	IEC61000-3-2Ed2.2 [EN61000-3-2A2:2005]	[EN61000-4-7:2002]		
Harmonic current	JIS C61000-3-2:2005	IEC61000-4-7 Initial version		
	IEC61000-3-12 Initial version [EN61000-3-12:2005]	[EN61000-4-7:1993]		
Flicker/voltage fluctuation	IEC61000-3-3Ed1.2 [EN61000-3-3A2:2005] IEC61000-3-11 Initial version [EN61000-3-11:2000]	IEC61000-4-15Ed1.1 [EN61000-4-15A1:2003]		

Note: The Chinese Standard GB17625.1-2003 conforms to IEC61000-3-2:2001, thus, tests can be carried out using this unit by specifying the nominal voltage (220V/380V) for IEC61000-3-2 Ed2.2.

Applied to the single phase and the three-phases (40A/phase)

	16A/phase or less ¹	16A to 75A/phase ^{*2}
	IEC61000-3-2, -3-3	IEC61000-3-12, -3-11
Single phase	KHA1000 ^{°3} KHA	3000
3 phases	Cove	

*1: The JIS specifies 20A/ phase or less. *2: For measurement of 40A or more phase current, an optional device (external current sensor) is required.

*3: KHA1000 is dedicated for single phase (16A or less).

Installed with the latest standards of both harmonic and flicker limits

Refer to the table [Complied standards] specified on the bottom of left page.

*The latest standard is referred to the DOP(Date of issue)of the EN standard.

Comply with the old and new versions of harmonic measuring instrument standards IEC61000-4-7

To select the standard, your desired combination can be arranged by choosing from the limit value standarad and the testing measurement standard.

Harmonics	Her Her Three Finance Finance File Finance File Finance File Finance File File
	Liver to the old and new standards to view the
Universe U.Snetive Stangetive	Horiset Value Ling a Mass
	To Meas Setting Page Pres / Rest Page 1/8

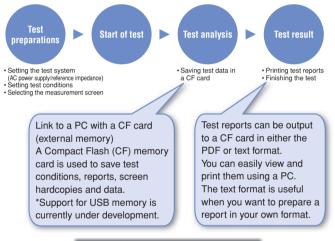
Harmonic measuring instrument standard	IEC61000-4-7Ed2	IEC61000-4-7Ed1
Window width	200ms 10cycle/50Hz 12cycle/60Hz	16cycle
Interharmonics	Interharmonics grouping (unit of 5 Hz)	None Integer order harmonics only

Easy upgrade when standards are modified (supports the latest standards)

The unit can be easily upgraded from the front panel using a CF card.

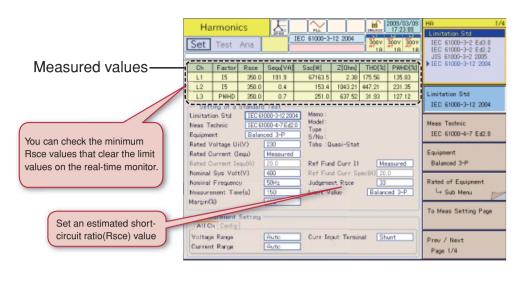
*Users are requested to prepare CF cards.

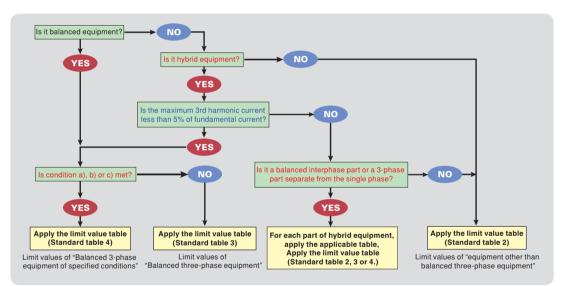
*Support for USB memory is currently under development.



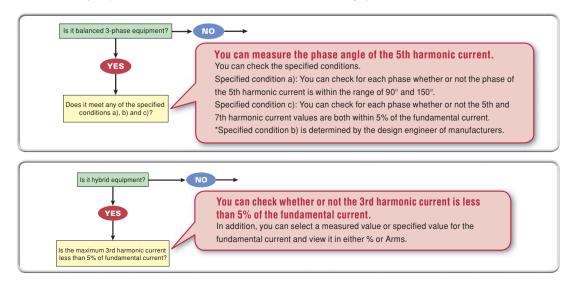
No need for a PC for compliance testing

Using this device alone, you can perform a series of test processes - from setting test conditions and running the test to judging the test results and outputting result reports - without the use of a PC. You can enter comments from the test condition setting screen.


Operation flow using KHA3000 - from test condition setting to report printing


Example of test report (harmonic compliance test)

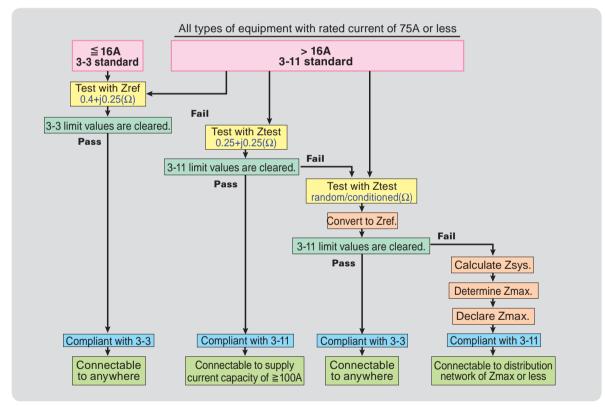
Measurement for harmonic compliance test (16A to 75A/phase) IEC/EN61000-3-12



You can set test conditions while monitoring the measured values. For the equipment not applied within R (33), the minimum short-circuit ratio (Rsce) value that clears the limit values up to R (350) needs to be calculated. KHA3000 can automatically calculate the short-circuit ratio (Rsce) values from its the short-circuit ratio (Rsce) measured values, I_3 , I_5 , I_7 , I_9 , I_{11} , I13, THD and PWHD, and display in real time the minimum short-circuit ratio (Rsce) value of each harmonic order.

[Reference] The test flow of IEC61000-3-12 limit value application procedure

Select a category of the equipment for IEC61000-3-12 (single phase, line, balanced three-phase and unbalanced three-phase) and follow the flowchart. You can select limit values for the category.



Measurement for flicker compliance (voltagee fluctuation) test (16A to 75A/phase) IEC/EN61000-3-11

Volt fluctuation Set Test Ana	2008/03/08 rub 2008/03/08 17-23:34 51000-3-11 Edi.0 300V 300V 18 300V 300V 18 19 19 19	Vf 1/4 Limitation Std IEC 61000-3-3(Pst Auto) IEC 61000-3-3(ManualSw) ▶IEC 61000-3-11 Ed1.0
Setting of a Standard Test Limitation Std IEC61000-3-11Ed10 Meas Technic IEC61000-4-15Ed11 Nominal Voltage 230V Nominal Frequency 50Hz	Memo: Model: Type: S/No:	Limitation Std IEC 61000-3-11 Ed1 0
	Test Impedance Z test Specified(3P) Ra test(Ω) 0.24 Xa test(Ω) 0.15	Meas Technic IEC 61000-4-15 Edl.1
Detailed Setting Pst Meas Time(s) 600 Pst Meas Count 12 dmax Limit Value 6%	Rn test(Ω) 0.16 Xn test(Ω) 0.10 Options of Judgement Judge Factor Judge Factor ✓Pst ✓Plt ✓dc ✓dnax ✓d(t)>3.3%	Nominal Values
Measurement Setting		To Meas Setting Page
Voltage Range Ruto Current Range Ruto	Curr Input Terminal Shunt	Prev / Next Page 1/4

- You can enter the default Ztest prescribed in IEC61000-3-11. It can be used when you declare the current of the connecting power supply is 100A or more per phase or when declaring the maximum allowed system impedance (Zmax).
- Judgment of limit values is not required for some items depending on the equipment. For this reason, KHA3000 is designed to let you select desired items.

[Reference] Outline of IEC61000-3-11 test

◆ You can specify test impedance.

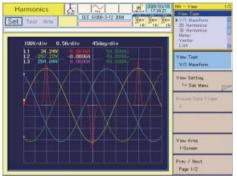
You can select the standard value $(0.25\Omega + j0.25\Omega)$ or specified values.

*You can enter specified values for Z_A test and X_A test (for reactance) in the range of 0.001Ω to 9.999Ω .

In addition, you can enter specified values for neutral line impedance Z_{N} and $X_{\text{N}}.$

KHA3000 automatically calculates the measured values (dc, dmax, Pst and Plt) and makes a judgment whether or not they are below the limit values. When the converted values did not clear the limit values, the unit automatically calculates the system impedance and displays the minimum value of the 4 Zsys values as Zmax. This Zmax is declared for IEC61000-3-11.

In manual switching, KHA3000 can calculate Zsys1 and Zsys2 only and display the smaller of the two as Zmax. (This is possible by switching the display items.)


Zact ≤ Zmax

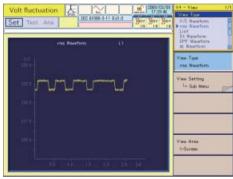
When testing with randomly selected impedance, time measurement d (t) > 3.3% is not necessary. (You can remove it from judgment using the judgment option.)

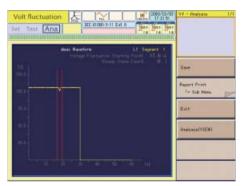
igoplusReal-time display & measurement that gives you a quick grasp of the EUT status

List of view types

	Harmonic current test	Flicker/voltage fluctuation test
Graph display	 V/I waveforms 2D harmonics 3D harmonics THC Current trend Harmonic current trend Vector phases 	 rms waveform St (short time flicker value) waveform CPF (cumulative probability) curve dc waveform dmax waveform d (t) > 3.3% waveform
List display	 List (real-time measured values) Harmonic list Result list 	 Flicker list Result list d measurement (manual switch)

▲ V/I waveforms


▲ 2D harmonics

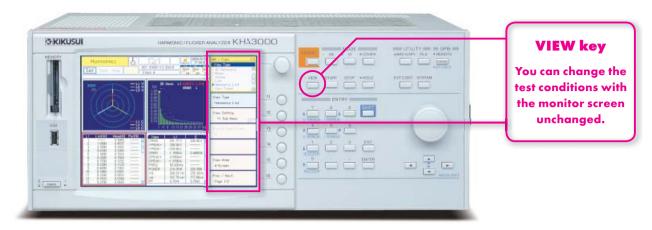

▲ Vectors

_	Test A	166	EE 61800-3-1	2 2004	17.25.40 17.25.40	Hit - View Webs Thee 30 Hartsmics Heter Viector
10	LININ	MeedVa	Republic	netti	Feitht	Homosice List
1.1			346.98		(Annual 1	Curt Trend
2	0.00	0.15	22.25			View Tope
3		94.74	138.05		· · · · · · · · · · · · · · · · · · ·	the second s
4	4.00	0.21	182.17			Hamosice List
5	10.70	96.39	292.42			
4	2.95	0.29	300.01			View Setting
7	7.20	74.90	85.21		() () () () () () () () () ()	1+ Sid Meni
10	2.90	0.33	100.37		Statute C	
2		61.31	238.15	+-+++		Brissent Data Firms
103	1.90	0.73	256.00			Company of the company
11	2.10	む、影	31.01	*****		
12	1.33	0.29	27.97		A	
11	2.00	35.73	103.90		- 17 menter 1	
14		0.25	185.37		1	
15		25.33	136.01		1 (1 Annual 1	
16 I I		0.21	336.01		*****	View Fires
17		17.07	128.69			1-Screen
18		0.17	132.93			1.00400
19		10.93	282.52			and the state of the
21		0.13	207.07			Pres / Next
21		6.64	市会			Fale 5/2

▲ Harmonic list

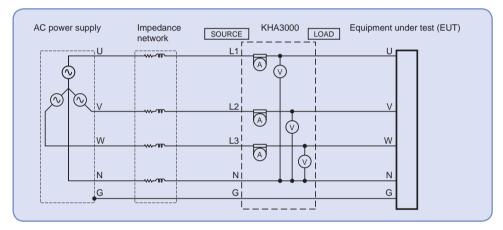
A rms waveform

▲ dmax waveform


Set Te	at An	a	-	0.3-3 (7):1.9	WORK [content	DEN DEN	CPF Naveform at: Raveform
LI	Pet	90.1	PIS	PSS	PIOS	P505	disse Haveform dittil 3.3% Haveform Föcker Lorf
Seg. 1	0.447	0.565	0.515	0.491	0.400	0.132	Renalt Lint
Seg. 2	0.445	0.545	0.515	0.488	0.399	0.131	
Seg. 3	0.450	0.555	0.518	0.497	0.408	0.133	View Tope
Seg. 4	0.448	0.545	0.518	0.497	0.403	0.132	Plider List
Seg. 5	0.444	0.535	0.509	0.485	0.398	0.131	and the second se
Seq. 6	0.445	0.545	0.515	0.485	0.400	0.132	View Setting
Seg. 7	0.443	0.545	0.506	0.482	0.394	0.129	++ Sub Here
Seg. 8	0.444	0.535	0.509	0.485	0.396	0.131	And the second second
Seg. 9	0.447	0.995	0.515	0.491	0.400	0.133	Browne Segnevit
Seg. 10	0.445	0.545	0.512	0.488	0.398	0.131	12
Seg.11	0.449	0.545	0.522	0.497	0.406	0.133	
569.12	0.445	0.555	0.518	0.488	0.399	0.131	
	PIL						
	0.445						View Area
							1-Screen

Flicker list

Volt fl Set Te	uctuati st [An	1.010	100-3	J (Pat Autu)	BUCHACIANON III 23 13 New New New Sta Sta Sta	Vt - Analyziz 1/
Nono Nodel Type Serial				fMargin 100× dMargin 100×	PASS	The state
EI.	Put	denod 70	- del[3]	d(t)[ma]	Autopr	544
Limit	1.000	B.000	3.300	500	10000	1851-1
Sig 1	0.447	0.452	0.374	0	Penn	and an
Seg 2	0.445	0.448	0.374	0	Pass	Report Print
Seg 3	0.450	0.439	0.374	0	Press	L+ Sub Menu
Seg 4	0.448	0.439	0.370	0	Press	
Seg 5	0.444	0.422	0.370	0	Perm	Ext
Seg 6	0.445	0.452	0.374	0	Pass	Lan
Seg 7	0.443	0.426	0.370	0	Pasa	
Seg II	0.444	0.430	0.370	0.	Poss	
Seg 9	0.447	0.443	0.374	0	Pase	Real/rete/V1EW0
Seg10	0.445	0.430	0.370	0	Poss	
Seg11	0.449	0.443	0.374	0	Paso	
Seg 12	0.445	0.443	0.374	0	Press	
	PIt			-Judge	Aiden	
Linit	0,600				LI	
	0.446			Page	Pote	


Result list

Allows changes in the test conditions while monitoring

Capable of simultaneous measurement of the three-phases

The long-time flicker value in all segment time, "Plt" is specified to be 2 hours for the flicker monitoring period. For three-phase equipment, measurement can be taken for each phase, but that will take 2 hours x = 6 hours. Simultaneous measurement of three-phases can shorten the measuring (testing) time to 2 hours.

- In order to fully cover the EUT input methods, you can set the wiring method (single phase, single phase 3-wire, three-phase 3-wire and three-phase 4-wire). In addition, for the setting of L1, L2 and L3 (channels), you can select interlock or independent. This allows appropriate measurement for equipment with largely different phase currents.
- In order to support measurement of each channel for 3 phases, the voltage and current ranges were separated for each channel and AUTO range was established for each.

In addition, you can adjust the DC offset for each range with a single touch.

Supports "repeatability" check

Comparison can be made between the present measurement data and the past measurement data to check whether or not the error is within the specified allowable range. This feature is helpful in evaluating the "repeatability" that is required in harmonic compliance testing.

		Ana		arre D		1.1	Kon Kon	Press of Tarabice Key at open the advector
			agint.	Pe			SS	Courses Mills Fast Law
82	Helling	Means (193		Her-	Bar(103	MARIER	Contract of the	La Stati Marca
1	0.7002	0.70(25)	-6.8	- 7	6.0007	0.0008		
200	0.6652	8.9713	8.8	1040	0.0011	0.0012	Contraction of the	
9	0.6070	0.6071	0.0	8	0.0013	0.0015		
7	0.5242	8.9242	0.0	1.41	0.0015	0.0016		
.9	0.4311	0.4310	0.0	10	0.0015	0.0016		
110	0.3373	8.3373	0.0	12	0.0013	0.0015	-	
13	0.2512	0.2513	4.0	14	0.0011	0.0012		
15	0.1768	0.1700	0.0	18	0.0075	0.0010		
17	0.1199	8.1199	0.0	10	0.0337	0.0007		
19	0.0767	0.0768	0.0	28	8.8005	0.0005		
21	0.0467	0.0467		22	0.0003	0.0004		
23	0.0268	0.0269		24	0.0032	0,0002	10000	
21	0.0147	0.0147		25	0.0001	0.0082	- Property -	
27	0.0076	0.0076		28	0.0001	0.0001		Select View Phase
29	0.0037	8.0037		38	0.0001	0.0001		11
1	0.0017	1.0017		32	0.9001	0.0001	()	1.41
11	0.0007	0.0007		34	0.0001	0.0001		Contractory of the second
30.	0.0003	0.0001		36	0.0001	0.0001	(/.	Batury
37	0.0001	0.0001		38	0.0001	0.0001		
20	0.0001	0.0001		40	0.0001	0.0001		

The IEC requirements

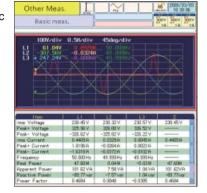
The measurement repeatability shall be within ±5%.

IEC61000-3-12: The repeatability of the fundamental and 7th and lower harmonic orders shall be within $\pm 5\%$.

The repeatability of the harmonics beyond the 7th harmonic order shall be within $\pm 10\%$ or $\pm 1\%$ of the reference fundamental current, whichever is larger.

Equipped with a quality check function for the testing power supply

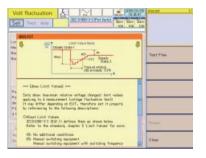
KHA3000 is equipped with a function to measure the voltage, frequency, peak voltage and distortion rate of the AC power used for harmonic compliance testing in order to check whether or not the power supply is adequate for the intended test.


The IEC requirements

IEC61000-3-2: The voltage harmonics must be the following values or less. 3rd (0.9%), 5th (0.4%), 7th (0.3%), 9th (0.2%), even harmonic order between 2nd and 10th (0.2%), 11th to 40th (0.1%)

IEC61000-3-12: Output voltage and harmonic inclusion rate under no load 5th (1.5%), 3rd and 7th (1.25%), 11th (0.7%), 9th and 13th (0.6%), even harmonic orders between 2nd and 10th (0.4%), 12th and 14th to 40th (0.3%)

Providing all major basic measurements

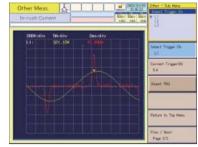

KHA3000 is capable of measuring all major basic items including voltage. current, power, power factor, apparent power, reactive power and frequency. It also provides other measurement functions such as waveform monitoring and measurements of rush current and harmonic current in low frequency zones. These features

make KHA3000 a convenient routine work tool for development and design processes.

The assist function provides guidance on standards and technical terms

KHA3000 is equipped with the "Assist function" that provides guidance on the technical terms used in the standards as well as the equipment class setting procedure. This function can support the users not familiar with the standards to readily get started with a test.

User-friendly terminals and interfaces

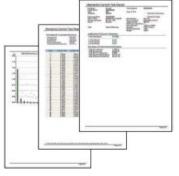

KHA3000 comes standard with GPIB. RS232C and USB. SCPI commands make it possible to use the unit as a generalpurpose power analyzer by connecting it to your computer.

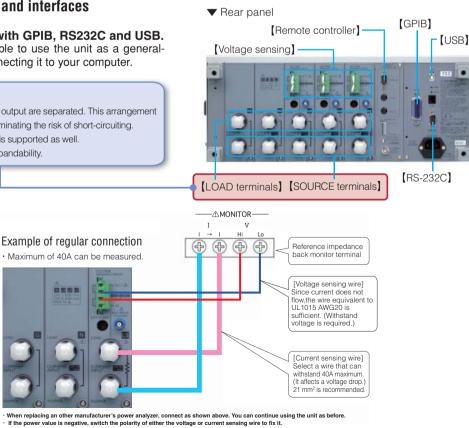
Easy connection

The terminals for power input and load output are separated. This arrangement prevents connection errors, thereby eliminating the risk of short-circuiting. Of course, voltage sensing at the load is supported as well. KHA3000 offers both simplicity and expandability.

Rush current measurement

KHA3000 observes the waveform of the rush current exceeding the trigger level. It can also observe the voltage waveform. It capable to measure a rush current up to 160A peak. The measuring range can be expanded to a high current by using an optional external current




sensor with updating the firmware.

A rush current can be measured while the EUT is connected. This saves you from going through the trouble of preparing an oscilloscope and current probe. Set the input phase angle of the AC power supply using the application software (SD006-KHA), and turn on the unit. The rush current can be measured with good reproducibility. The phase angle can be set in the unit of 1°.

Generates test reports in both PDF and text formats

Reports can be output to a CF card in either PDF or text format You can easily view and print them using a PC. The text format is useful to convert into your own format.

Specifications

Item			Specification		
	Maximum input vol	tage	600Vrms / 900Vpeak (CAT I),400Vrms (CAT II)		
	Maximum input cur	-	40Arms / 100Apeak, whichever is smaller 160Apeak (within 20 ms)		
Common input specifications			3 channels for both voltage input and current input (L1, L2 and L3)		
			Single-phase 2-wire, single-phase 3-wire, three-phase 3-wire and three-phase 4-wire		
	-		150V / 300V / 600V		
	Rated voltage for th	-			
Voltage measurement function	Allowable crest fac	tor	2		
	Display item		TrueRMS and ±peak		
	Accuracy		± (0.4% of rdng+0.04% of range)		
	Rated current for th	ne range	0.5A / 1A / 2A / 5A / 10A / 20A / 40A		
	Allowable crest fac	tor	0.5A to 20A range:4		
	Allowable creating		40A range:2.5, 4 (up to 20 ms)		
Current measurement function	Display item		TrueRMS and ±peak		
		45Hz to 65Hz	0.5A range: ± (0.5% of rdng+0.2% of range)		
	Accuracy		1A to 40A range: ± (0.5% of rdng+0.1% of range)		
	*n indicates frequency.	66Hz to 2.4kHz	0.5A range: ± ((0.5 + 0.417×n kHz) % of rdng+0.2% of range)		
		00112 10 2.41112	1A to 40A range: ± ((0.5 + 0.417×n kHz) % of rdng+0.1% of range)		
Power measurement function	Display item		Effective power, apparent power, reactive power and power factor		
Power measurement function	Effective power ac	curacy	P≥150W (±1% range) , P<150W (±1.5W)		
	Measurement input	t	Independent measurement of frequencies for voltages of L1, L2 and L3		
Frequency measurement function	Measurement frequ	, ,	45Hz to 65Hz / ± (0.15% rdng+2digits) / 0.001Hz		
	accuracy/resolution Measurement item		Voltage / current phases, line voltage phase and harmonic phase		
Phase measurement function					
	Measuring range/resolution		0.00° to 359.99° / 0.01°		
	Conforming standard		IEC 61000-3-2 Ed3.0、IEC 61000-3-2 Ed2.2、JIS C61000-3-2 (2005) IEC 61000-3-12 Ed1.0		
	Poquirements for macauring instrument standard		IEC 61000-3-72 E01.0 IEC 61000-4-7 Ed2.0 (2002) , IEC 61000-4-7 Ed1.0 (1991)		
Harmonic current measurement	Harmonic analysis order		40th (HA mode), 180th (OTHER mode)		
function	Interharmonics processing		Processing ON : IEC 61000-4-7 Ed2.0 (2002)		
	Window function		Processing OFF : IEC 61000-4-7 Ed1.0 (1991)		
			Rectangular		
	Window width		10 cycles (50Hz) 12 cycles (60Hz) , 16 cycles (50Hz / 60Hz)		
	Anti-aliasing filter		Cutoff frequency: 6 kHz, 4th Butterworth type (HA mode), 15kHz 4th Butterworth type (Other mode		
Harmonic voltage measurement	Measurement item		Voltage, frequency and voltage harmonic inclusion rate		
function (Measurement power quality check function)	Voltage harmonic a	analysis order	40th		
	Conforming standard		IEC 61000-3-3 Ed1.2, IEC 61000-3-11 Ed1.0		
	Requirements for measu	ring instrument standard	IEC 61000-4-15 1997+Amd1 (2003)		
		Pst accuracy	1 ± 5%		
Flicker/voltage fluctuation	Flicker	-	30 to 900 seconds		
analysis function	Voltage fluctuation		Selectable between simultaneous measurement with Pst and independent measurement		
	dmax measuremen	1			
	switching equipment		3 to 24 times (Measuring time for each time: 30 to 180 seconds)		
General measurement function			analyzer and In-rush current measurement		
Communication interface	GPIB, RS232C, US		• • • • • • • • • • • • • • • • • • • •		
Removal data storage	Supported media		Compact Flash memory card (CF card), maximum capacity: 512 MB		
External equipment control	Supported media		ostipuot nasi monory card (or card), maximum capacity. 512 MD		
function	PCR-LA control (RS	5232C)	Voltage, frequency, range, ON phase, OUTPUT ON and OFF		
AC Input	Nominal voltage ra	nge	100 to 240V AC 50Hz to 60Hz		
Environmental conditions	Operating tempera	ture and humidity	0℃ to 40℃ , 20%rh to 80%rh (no condensation)		
1400 · · · ·	ranges 1500V AC 1 minute (AC input <> ch		assis), 3550V AC, 1 minute (measuring terminal <> chassis)		
Withstanding voltage	,	· ·	500 Vdc, 100 MΩ or higher		
	AC input <> chas	000			
Insulation resistance	Test terminal <> o	chassis			
Insulation resistance Dimensions (maximum)	Test terminal <> 0 430 (455) W×177 (
Insulation resistance Dimensions (maximum)	Test terminal <> o	chassis			
Withstanding voltage Insulation resistance Dimensions (maximum) Weight Safety	Test terminal <> o 430 (455) W×177 (Approx. 10 kg Low voltage directi	chassis 195) H×270 (330) E ve 2006 / 95 / EC	EN 61010-1 Class I Pollution degree 2		
Insulation resistance Dimensions (maximum) Weight	Test terminal <> c 430 (455) W×177 (Approx. 10 kg Low voltage directi Conforming to the	chassis 195) H×270 (330) E ve 2006 / 95 / EC)mm		
Insulation resistance Dimensions (maximum) Weight Safety	Test terminal <> d 430 (455) W×177 (Approx. 10 kg Low voltage directi Conforming to the EN 61326	chassis 195) H×270 (330) E ve 2006 / 95 / EC following instruction	EN 61010-1 Class I Pollution degree 2		
Insulation resistance Dimensions (maximum) Weight Safety	Test terminal <> d 430 (455) W×177 (Approx. 10 kg Low voltage directi Conforming to the EN 61326 Application require	chassis 195) H×270 (330) E ve 2006 / 95 / EC following instruction ment	EN 61010-1 Class I Pollution degree 2 and standard requirements: EMC instruction 89/336/EEC		
Insulation resistance Dimensions (maximum) Weight	Test terminal <> d 430 (455) W×177 (Approx. 10 kg Low voltage directi Conforming to the EN 61326 Application require All cables and win	chassis 195) H×270 (330) E ve 2006 / 95 / EC following instruction ment res used to connect	EN 61010-1 Class I Pollution degree 2 and standard requirements: EMC instruction 89/336/EEC this product must be shorter than 3 m.		
Insulation resistance Dimensions (maximum) Weight Safety	Test terminal <> d 430 (455) W×177 (Approx. 10 kg Low voltage directi Conforming to the EN 61326 Application require All cables and win	chassis 195) H×270 (330) E ve 2006 / 95 / EC following instruction ment res used to connect	EN 61010-1 Class I Pollution degree 2 and standard requirements: EMC instruction 89/336/EEC		

*1. Limited to products with a CE marking provided on the panel.

KHA3000 Application software [SD006-KHA] Harmonics Analyzing Suite Ver 2.00

This dedicated application software consists of 3 programs. Using this software, you can set test conditions and control the execution of tests. You can also control the AC power supply (PCR-LA) used for tests. Furthermore, you can print the harmonic spectrum, and current and voltage waveforms on your reports.

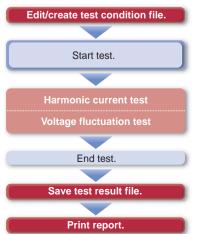
Program configuration of SD006-KHA Harmonics Analyzing Suite

HarmoCapture 3	Offers functions to set conditions for harmonic current tests and volta fluctuation tests, read test conditions, execute tests and save and display test result data. • Test condition setting • Start/stop of test • Retrieval of test result files • Display of measured values • Control of AC source PCR-LA • Entry of comments • Report printing				
HA File Analyzer 3	Offers functions to analyze harmonic test data. Display of test result list Display of graphs (V/I waveforms, 2D harmonics, 3D harmonics, vectors, current trend, harmonic trend and THC trend) Saving of test result files in text format and repeatability check Report printing				
Vf File Analyzer 3	Offers functions to analyze voltage fluctuation test data. • Display of test result list and display of flicker list • Display of graphs (dc%, dmax%, d(t) >3.3%) (CPF) • Saving of test result files in text format • Report printing				

[System requirements]

- Microsoft Windows Vista (HomePremium, Business or Ultimate)
- or XP Service Pack 2 or later Microsoft.NET Framework 2.0
- Minimum 256 MB memory
- Minimum ZGA resolution
- Minimum 100 MB of free hard disk space
- CD-ROM drive
- Mouse or other pointing device
 - VISA library (NI-VISA 3.3.0 or later, Agilent I/O libraries Suite 14.1
- Iter is a start of the start of

HarmoCapture 3


By remotely controlling KHA3000, you can edit the test conditions, execute tests and print reports.

No. No. <th>ran ten</th> <th>Autor Setting Processor</th> <th></th> <th>L N</th> <th>9</th> <th></th> <th></th>	ran ten	Autor Setting Processor		L N	9		
Operations cannot be an	TA		and a state of the	12	12		
Difference Differe	2-						
		O NC 41 200 0 12 2004					
Integritiener	C Derit der © PONA Anget C Der Biogenie Telage Heise Freuenie B Stelle C steller refuge Forgenie	BELEVEN-TELLO CONTRACTORIO TOURISTICS CONTRACTORIO CO	Mannal Induge Name I Happener Heaterment The Magin	0 aw 0 0 ms 0 1 m m m	tanfad alla	18 +	

▲ HarmoCapture 3

Test condition setting screen for harmonic current test

[Workflow: Test flow]

Setting items for test conditions of harmonic current test

Common item setting		-3-2 Ed 2.2 (2004)/I (2005) are selected	
Wiring method setting	Class	Only when class C is selected	Only when class A of JISC 61000-3-2 (2005) is selected
Limitation standard	Nominal voltage	Power factor and fundamental current	600W air conditioner
Measurement technique standard	Nominal frequency	Limit value	
Voltage range	Measurement time		
Current range	Margin		
Current input terminal	Definition of power		
	IEC 61000-3-12 (2004)	
Measurerment time	Single-phase equipment	Unbalanced three- phase equipment	Line and balanced three- phase equipment
Equipment type	Rated voltage (Up)	Rated voltage (Up)	Rated voltage (Ui)
Nominal frequency		Nominal system	Nominal system voltage
Margin		voltage (Unom)	(Unom)
Rated current (lequ)			
Ref. fund current (I1)			
Judgment Rsce			
Limit value			

Setting items of test conditions for flicker and voltage fluctuation test

Common item setting	When Pst Auto is selected	When manual switch is selected	IEC 61000-3-11 Ed1.0
Wiring method setting	Nominal voltage	Nominal voltage	Nominal voltage
Limitation standard	Nominal frequency	Nominal frequency	Nominal frequency
Measurement technique standard	Pst measuring time	d measuring time	Pst measuring time
Voltage range	Pst measurement count	d measurement count	Pst measurement count
Current range	dmax limit value	d max limit value	d max limit Flicker margin d margin
Current input terminal	Flicker margin	d margin	Test impedance
our on input tornindi	d margin	Judgment limit value	Judgment limit value
	Judgment limit value		Value

HA File Analyzer 3

HA File Analyzer 3 is an application program that allows you to analyze the data in the test result files (xxx.hr3) saved by HarmoCapture 3. It is not necessary to connect with KHA3000 to run, so, you can analyze test data anywhere you want.

taget) Coder																		
1.04	(1000)	Lines (new)	(and)	File (second)	Ling Ling Comp(1)	13 Salar	(ares (ares)	(are)	128	1 Samt	12 Line Deel()	LT Julge	(internal states)	10 Invest	12 Maria	AP	HIC .	U) Sube
4			0.7632	0,7825		164			0.0006	0.8900		78.8	-		0.0019	3.8022		1.161
2			U.MET	0.8806		104			0.000	11.0024		144			0.0002	1.0014		163
a.	8.5259	8.0009	0.89%	0.8704	0.8		8:5058	LOUIN	0.0001	0.0004	1.5	Page 1	8.529	10009	9.0000	9,0008	8.0	1911
-8			11.0011	11.0034		104			34224	11.0014		1966			3.0245	3.075		188
3	8,1965	5.4400	0.8610	0.8819	12.4	- 14	8.2998	1.446	008008	12.0004	2.8	440	8.1992	0.4482	0.0000	0.0008	8.0	Per
	1.55	8,2954	0.8110	0.5340	15.4	100	8.153	1204	0.8008	0.8514		Past.	8.1578	8.2564	0.000	3.002	8.0	1415
-	LD4	R.DDP	0.5042	0.999	10.4	104	8.0.9	1.004	DARK	0.000		100	104	8.084	0.000	1,000		191
-	8.0708	8.1100	0.4111	0.4111	18.4	14	8.0108	8.1100	0.0004	0.0014	- 8.8	i dan	8.0786	0.1185	0.000	0.0004	8.0	Far
-	8.07W	0.1340	LHID.	(Lange)	10.4	100		A.1100	1.000	1.000		1		6,1100	0.000	3.004		Task.
11	1/952	8.0028	0.00	0.3174	15.4	. Jud	1.0552	K-OEB	0.00%	0.8004	2.4	Ant	1.0982	0.000	0.000	0.000	80	Part 1
10			0.0013	0.5238		bank.			0.6004	0.0004		1 105	-		3.0382	annt		FBC3
D	1047	8,0708	0.2512	0.2712	12.4	· Ful	8.067	8.0798	0.000	0.0004	0.6	Ter.	1041	80788	8.000E	3.000	80	Des
10		-	10.00711	112025		band. 1		100	1.075	11.000.0		144	-		1.021	1.073		1918
	LEDVING		100			- 1944												
											161							
											111							
						X					111							
				X		X	A	X										
		$\left \right\rangle$		X		X		X										
		\mathbf{P}				X		X										
						X		X										

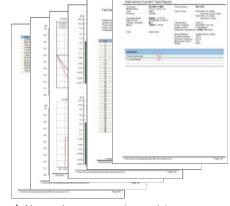
Screen configuration

Result list	Lists the result files of harmonic current tests.
Graphs and data	Displays graphs of the harmonic current test result file.

Repeatability check results

HA File Analyzer displays the judgment results for the files shown in the result list along with the judgment results for each order. The file can be compared from 2 to 15 files.

Saving test result files in the text format


You can save the test result files in the text format and use them in Microsoft Excel and other application programs.

Printing test result file reports

You can generate and print reports (PDF files) from the test result files saved by KHA3000 or HarmoCapture 3.

Bu Da Da	El Garant Transt El THC Transt	MILLAR
E Nutrus E Diverses Ourer Deve Ourer Site Ourer Site Orer Site Orer Site Orer Site Orer Site	El norting pet Ingenetative cet Teams Carer C norting C norting C statuse Character Status Chara	Image: Second
Util Mawbers El THC Resnue Name C Galacter Name C Balacter Name C Bala	Har gan Artis Hanage	

▲ Setting of harmonic test report

▲ Harmonic test report (example)

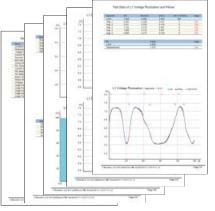
VF File Analyzer 3 is an application program that allows you to analyze the data in the test result files (xxx.vr3) saved by HarmoCapture 3. It is not necessary to connect with KHA3000 to run, so, you can analyze test data anywhere you want.

# 0.uk	incon	10.0	mail.		+ 00			Ent -	
-	7	T			1	1 1	(Arrest)	TT	
-			uer yaayinin						
4 1]			and the party of the		Fail	-		66.76. M	
	Pater Lot 1					13 1.0	1.8		
th sig	100	41%	- :mar(%)	10112.Pojm)	B.C.B.	1%1			
						100			
		3.636							
12:548-1	2.078	252	0.830	908	14				
Litegiz	2.078								
Litegiz	2.078	3.822	4.532	18.0	P.M.	-			
Litegiz	2.078	3.822	4.532	18.0	P.M.	-			
Litegiz	2.078	3.822	4.532	18.0	P.M.	-			
Litegiz	2.078	3.822	4.532	18.0	P.M.	-			
Litegiz	2.078	3.822	4.532	18.0	P.M.				
Litegiz	2.078	3.822	4.532	18.0	P.M.				
U Sec I Li Seç J Li Seç D	2.078	3.822	4.00 5817	18.0	20				
Urine J Line J Line J	2.078	3.822	4.532	18.0	P.M.	• • •	-		

Screen configuration

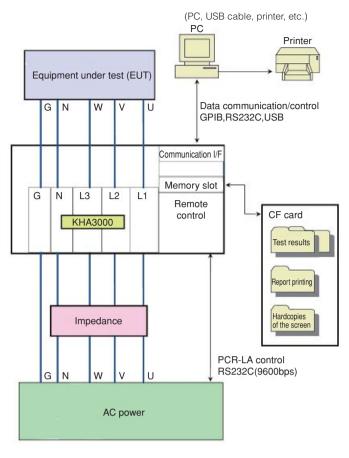
Waveform over entire measuring time	Display the waveforms of voltage fluctuations in individual measuring time periods, each concatenated with another along the time axis.
Result/setting data list	Display the list of the test results, flicker and test conditions.
Graphs and data	Displays the graph of cumulative probability for each phase.

Saving test result files in text format

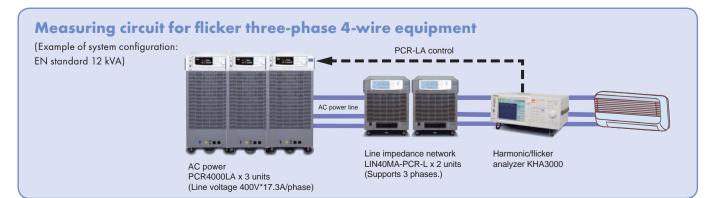

You can save the test result files in text format and use them in Microsoft Excel and other application programs.

Printing test result file reports

You can generate and print reports of the test result files saved by KHA3000 or HarmoCapture 3 in PDF format.



Setting of flicker test report


▲ Flicker test report (example)

System components required for test

KHA3000 test system configuration table [Example of single-phase/three-phase (12 kVA) system]

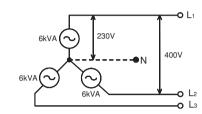
		Model	Quantity	Necessity
	Harmonic/flicker analyzer main unit	KHA3000	1	O
1	External memory (CF card) max 512 MB	Refer to the recommended part listed under the optional items	1	Required for upgrades
	AC input cable (KHA - SOURCE terminal)		1	
	Application software	SD006-KHA	1	○ Useful. Simplifies operation
2	Personal computer		1	
2	Communication cable (KHA main unit)	USB cable	1	
	Printer (supplied with cable)	*As required	1	
	AC power (4kVA × 3)	PCR4000LA	3	 Existing equipment
3	Three-phase output driver (for three-phase output)	3P03-PCR-LA	1	 Existing equipment
3	Parallel operation driver (for parallel operation)	PD03M/S-PCR-LA	3	 Existing equipment
	Parallel terminal	PT02-PCR-LA	1	
4	Reference impedance (for $1\Phi/3\Phi$)	LIN40MA-PCR-L	2	Existing equipment
5	Multi-outlet for single phase load	OT01-KHA	1	
6	Calibration data (traceability certificate)	*As required	1	
7	Harmonic/flicker daily checker	*Under development	1	

AC power [PCR-LA series]

General specifications

Item/model	PCR2000LA	PCR4000LA	PCR6000LA			
Output capacity	Single phase 2kVA	Single phase 4kVA	Single phase 6kVA			
Output rating (AC)	1V	to 150V / 2V to 30	V0V			
Maximum current	20A / 10A	20A / 10A 40A / 20A				
Maximum peak current	4 times the maximum current (rms value)					
Load power factor	0 to 1 (advance or lag)					
Frequency	1Hz to 999.9Hz					
Output stability	Input voltage fluctuation: Within ±0.1%					
Output stability	Output current fluctuation: Within ±0.1V/±0.2V					
Output voltage waveform distortion	0.3% or less					
Output voltage response speed	30) µs (standard valu	ie)			
Input apparent power	Approx.4kVA	Approx.8kVA	Approx.12kVA			
Input current	48A / 24A or less	96A / 49A or less	72A or less 200V system input only			
Weight	Approx.69kg	Approx.120kg	Approx.160kg			
Dimensions		430W × 550Dmm				
Dimensions	484Hmm	839Hmm	1105Hmm			

Impedance network [LIN40MA - PCR-L] *Built to order Specifications

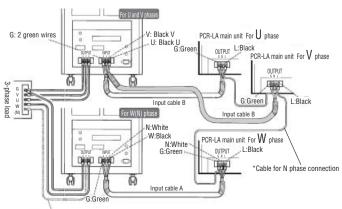

Item		Description			
	Z1	$0.4 \Omega + 0.37 \text{ mH}$, Single phase100V			
Impedance	Z2	0.38 Ω + 0.46 mH, Single phase200V			
(Value when combined with AC power	Z3	0.4 Ω + jn0.25 Ω , Single phase230V			
PCR2000LA or PCR4000LA using	Z4	0.19 Ω + 0.23 mH, 2 elements (Only 1 element can be set to 0.21 Ω + 0.14 mH)			
attached input cable)	Z5	0.24 Ω + jn0.15 Ω , 2 elements (Only 1 element can be set to 0.16 Ω + ju0.1 mH)			
Impedance error	Resistance (DCR)	Z1, Z2, Z3: ± 3% Z4, Z5 : ± (3% + 0.01 Ω)			
(at OUT-PUT terminal)	Reactance (45Hz to 3kHz)	Z1, Z2, Z3: ± 5% Z4, Z5 : ± (5% + ju0.01 Ω)			
	Z1	100V (50Hz / 60Hz) 40.0A, 160.0 Apeak			
Rated voltage, frequency and current	Z2, Z4	200V (50Hz / 60Hz) 20.0A, 80.0 Apeak			
	Z3, Z5	230V (Z3), 400V (Z5) 17.4A, 69.6 Apeak			
Short-time rated curren	t	1.5 times the rated current (10 minutes)			
Voltage monitor		1/20±1% of output terminal voltage (50Hz / 60Hz) Insulation output			
Current monitor		For clamp ammeter. Receptacle current path			
	Terminal panel	M6 screw			
Output terminal	AC receptacle	Compatible with plugs in the following countries: Japan, USA, Canada, Australia, Switzerland, Italy, England and European countries with the DIN standard			
Overheat protection		Detects overheating inside and turns of output of AC power PCR-LA main unit.			
Control power input		85VAC to 250VAC (without switching) 50Hz / 60Hz, Approx.45VA			
Working temperature and h	umidity ranges	23℃ ± 5 ℃, 85 %rh or less			
	AC1.5kV, 1 minute	Output power input vs. case			
Withstand voltage	AC500V, 1 minute	Input vs. case, output vs. case VOLTAGE MONITOR vs. input VOLTAGE MONITOR vs. output			
Dimensions		430W \times 484H \times 550Dmm (excluding protrusions and wheels)			
Weight		Approx.60kg			
Accessories		Input cable A : 1.5m1Input cable B : 1.5m1Control card1Control cable : 2m1Power cord : 2.5m1Operation manual1WEIGHT sticker1			

Current and power capacity

IEC standard	230V	Single phase	3 phases
	75A	Approx. 18kVA (6kVA ×3)	Approx. 54kVA (6kVA ×9)
16A to 75A	40A	Approx. 10kVA (6kVA ×2)	Approx. 30kVA (6kVA ×6)
	26A	6kVA (PCR6000LA Single phase)	18kVA (PCR6000LA ×3)
16A or less	17.3A	4kVA (PCR4000LA Single phase)	12kVA (PCR4000LA ×3)
TOA OF less	8.6A	2kVA (PCR2000LA Single phase)	6kVA (PCR2000LA ×3)

* The models in the PCR-W and PCR-M series can also be used by manual operation.

Note that they cannot be used in locations with open sites.


18kVA system 26A / phase 24kVA system 34A / phase 36kVA system 52A / phase 54kVA system 78A / phase

Supports three-phase 4-wire load with 2 units of LIN40MA-PCR-L.

Simultaneous use of 2 units of LIN40MA-PCR-L (Manual operation)

▼ Three-phase wiring diagram

For 3-phase 4-wire type connection

Accessories and others

■CF (Compact Flash) memory card

Users are requested to prepare the CF card. Note that the maximum supported capacity of a CF card is 512 MB. The following CF cards have been verified:

Туре	Manufacturer	Model Capacity		
Compact Flash	Buffalo	RCF-X64M, RCF-X128M, RCF-X512M	64MB, 128MB, 512MB	
	I/O Data	CF85-128M	128MB	
	San Disk	SDCFB-128-J60	128MB	
	Toshiba	CF-FA128MT	128MB	
	Lexar Media	CF064-231J	64MB	
	Princeton	PCF-64	64MB	

Compact Flash[™] is a registered trademark of Sandisk Corporation in the US.

Multi-outlet (20A or less single phase)

OT01-KHA

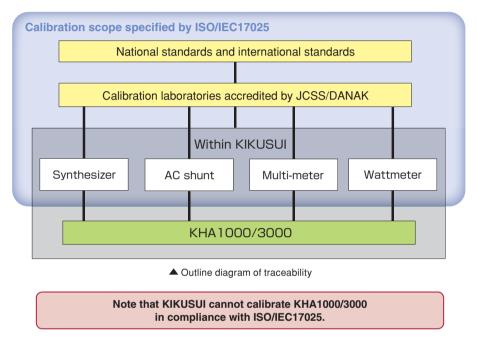
This unit allows you to connect various types of plugs used around the world.

Rack mount brackets

[For KHA3000/1000] KRB4 (inch) KRB200 (millimeter)

[For OT01-KHA] KRB2-TOS (inch) KRB100-TOS (millimeter)

Current sensor for high current Under development


Harmonic/flicker daily checker Under development

Calibration of ISO/IEC17025: Provided with calibration/data (measuring equipment in use)

In order to meet the customers' request for traceabity of the calibration of KHA1000/3000 for ISO/IEC17025, we have established the "traceability system" as shown in the figure below. (It is used for the production and inspection of KHA1000/3000.)

When the "Certificate of traceability with Calibrator Data" is requested, a copy of the "Calibration Certificate" can be also attached as achargeable option. (issued by the organizations shown in _____).

Calibration of KHA1000/3000 is carried out using the measuring instruments calibrated in compliance with ISO/IEC17025.

Thus, the calibration data for KHA1000/3000 that can be provided at the moment does not contain of "the Expression of Uncertainty". A copy of the data that contains of "the Expression of Uncertainty" for the measuring instruments used for calibration can be attached as a chargeable option.

Affiliated Products

Dedicated for single-phase (16A or less) equipment Supports IEC and JIS compliance tests

Harmonic/Flicker Analyzer кна10

Supported standards IEC61000-3-2 Ed3.0 (2005-11) JIS C61000-3-2: revised version (2005-3) IEC61000-3-3 Ed1.2 (2005-10)

- No need for a PC for compliance testing
- Customization function to simplify timeconsuming test condition setting
- Real-time measurement that gives you a guick grasp of the EUT status
- Assist function that guides you on standards and technical terms
- CF card offering smooth interaction with a PC
- Capable of measuring fundamental power source characteristics
- Simplified connection systems with separated power supply input and load power
- Test reports available in both PDF and text formats
- Equipped with GPIB, RS-232C and USB interfaces as standard
- Dedicated application software SD005-KHA (optional)

■KHA1000 Specification

Item			Specification	
Common input	Maximum	input voltage	300 Vrms/560 Vpeak	
specifications	Maximum input current		24 Arms/50 Apeak 80 Apeak (20 ms or less)	
Voltage			150 V, 300 V	
measurement	Allowable crest factor		2	
function	Display item		TrueRMS/±peak	
	Accuracy		± (0.4% rdng + 0.04% range)	
Current	Rated current for the range		0.5, 1, 2, 5, 10, 20A	
measurement	Allowable crest factor		4 (0.5 A to 10 A range) 2.5 (20 A range)	
function	Accuracy		± (0.5% rdng + 0.1% range) *Excluding 0.5 A range	
Power			Effective power, apparent power, reactive power, and	
measurement	Display item		power factor	
function	Accuracy		P ≧ 150 W (±1% range), P < 150 W (±1.5 W)	
Frequency measurement function	Measured frequency range/accuracy		45 Hz to 65 Hz/ ± (0.15% rdng + 2digit)	
	Conforming standards		IEC61000-3-2Ed3.0:2005 IEC61000-3-2Ed2.2:2004 JIS C61000-3-2:2005 JIS C61000-3-2:2003	
			IEC61000-4-7Ed2 (2002)	
	instrument standard		IEC61000-4-7Ed1 (1991)	
Harmonic	Harmonic analysis order		40th/180th (OTHER mode)	
current	Accuracy 45 Hz to 65 Hz 66 Hz to 2.4 kHz		± (0.5% rdng + 0.1% range) *Excluding 0.5 A range ± ((0.5 + 0.417 × nkHz) % rdng + 0.1% range)	
measurement function			IEC61000-4-7Ed2 (2002)	
	Interharm	onics processing	IEC61000-4-7Ed1 (1991)	
	Window function		Rectangular	
	Window width		10 cycles/50 Hz, 12 cycles/60 Hz, or 16 cycles/ (50 or 60 Hz)	
	Anti-alias filter		Cut-off frequency 6 kHz, 4th-Butterworth filter	
	Class D judgment function		Current waveform inclusion rate of 95% or more (equivalent to JIS C61000-3-2:2003 Class D)	
Measurement	Measurement items		Voltage, frequency, and voltage harmonic inclusion rate	
power quality check function	Voltage harmonic analysis		40th	
	order Conforming standards		IEC61000-3-3Ed1.2: (2005)	
	Requirements for Measuring			
Flicker/voltage	instrument		IEC61000-4-15Ed1.1: (2003)	
	Flicker	Pst/Plt accuracy	1±5%	
fluctuation	TICKEI	Pst measarement time		
analysis function	Voltage fluctuation	Measurement method	It shall be possible to choose between measuring voltage fluctuation along with Pst and measuring voltage fluctuation alone.	
	Dmax measurement of		3 - 24 times (one measurement period ranging from 30 to 180 seconds)	
General-purpose				
measurement functions	Current/voltage waveform monitor, FFT analyzer, and In-rush current measurement			
Communication interfaces	GPIB, RS	232C, USB		
Removal data storage	Supported media		Compact flash memory card (CF card)	
External device control function	PCR-LA control (RS-232C)		Voltage, frequency, range, output on and off	
AC Input	Nominal voltage range		100 to 240 VAC 50/60 Hz	
Environmental conditions	Operating temperature and humidity ranges		0 to 40°C, 20 to 80%rh (no dew condensation)	
Withstanding voltage	1500 VAC; one minute			
Dimensions (max.)	430 (455) W × 177 (195) H × 270 (330) Dmm			
Weight	Approx. 8 kg			
Safety	EN61010-1:2001, Classi			
EMC	IEC61326-1 A3:2003 Power cord, junper connector for voltage input connection (with a dedicated			
Accessories	Power cord, junper connector for voltage input connection (with a dedicated screwdriver), and operation manual			

KIKUSUI ELECTRONICS CORPORATION

1-1-3, Higashiyamata, Tsuzuki-ku, Yokohama, 224-0023, Japan Phone: (+81) 45-593-7570, Facsimile: (+81) 45-593-7571, www.kikusui.co.jp

KIKUSUI AMERICA, INC. 1-877-876-2807 www.kikusuiamerica.com 1633 Bayshore Highway, Suite 331, Burlingame, CA 94010

Phone: 650-259-5900 Facsimile: 650-259-5904

KIKUSUI TRADING (SHANGHAI) Co., Ltd. www.kikusui.cn Room, D-01,11F, Majesty Bld, No.138, Pudong Ave, Shanghai City

For our local sales distributors and representatives, please refer to "sales network" of our website.

•Distributor:

All products contained in this catalogue are equipment and devices that are premised on use under the supervision of qualified personnel, and are not designed or produced for home-use or use by general consumers. If Specifications, design and so forth are subject to change without prior notice to improve the quality. It Product names and prices are subject to change and production may be discontinued when necessary. It Product names, company names and brand names contained in this catalogue represent the respective registered trade name or trade mark. It Colors, textures and so forth of photographs shown in this catalogue may differ from actual products due to a limited fidelity in printing. If Although every effort has been made to provide the information as accurate as possible for this catalogue, certain details have unavoidably been omitted due to limitations in space. If you find any misprints or errors in this catalogue, it would be appreciated if you would inform us. Pelease contact our distributors to confirm specifications, price, accessories or anything that may be unclear when our distributors to confirm specifications, price, accessories or anything that may be unclear when placing an order or concluding a purchasing agreement.

Printed in Japan