

ZY3690 型

阻波器·结合滤波器自动测试仪

使用说明书

南京中仪电力通信设备有眼公司

1.概述
2.电气和机械结构性能
3.技术特性
4.面板布置
5.使用方法6
6.一般故障处理
7.备附件
8.售后服务
ZY3690 阻波器、结合滤波器现场测试注意事项 ······18

ZY3690型 阻波器·结合滤波器自动测试仪

CHINAMETER

1 概述

ZY3690型阻波器、结合滤波器自动测试仪,采用矢量检测、 对数压缩、数字直接合成(DDS)等国际先进技术,专为测量阻波 器、结合滤波器的高频特性而设计的智能型、全数字化仪表,比传 统的电桥法测量,具有快捷、准确、操作简便等特点。

测量结合滤波器线路侧或电缆侧的回波损耗和工作衰减时, 测量模式电路自动配置,耦合电容器(C')、线路侧标称阻抗(Z₁)和 电缆侧阻抗(Z₂)等测量参数自动接入,测量误差自动校正,避免 了现场测量时杂乱的接线和繁琐的连接转换,实现了全自动测 量。

机内自备可重复充电锂电池,连续工作时间约4小时,微处 理器自动监测电池状态。仪表功能齐全,且体积小,重量轻,便携 式结构极方便于现场测试,若架在电力线上的被测阻波器不吊下 来时,可将仪表直接带至高空测量,既缩短了测试引线,保证了测 量精度,又极大地降低了劳动强度。

仪表采用高清晰屏幕液晶显示器(LCD),汉字图形显示,界 面友好的菜单式操作,测试数据自动储存,历史数据、特性曲线可 随时查询,并通过 RS232C 接口上传 PC 机,以标准文本和图形曲 线打印输出。

产品特点:

◇全数字化,高清晰液晶显示器(LCD),汉字图形显示,菜单式操作。
 ◇数字直接合成器(DDS),可选择点频或扫频方式测量。
 ◇测量阻波器的阻塞阻抗(Z_b)、阻塞电阻 R_b、电抗分量 X_b。
 ◇测量结合滤波器线路侧或电缆侧的回波损耗和工作衰减。
 ◇耦合电容器(C')可选择 3.3nF、3.5nF、4.5nF、5.0nF、6.6nF、

7.5nF、8.0nF、10nF、15nF 或 20nF。

◇线路侧标称阻抗(Z₁)可选择 240Ω、300Ω、320Ω 或 400Ω。

◇电缆侧标称阻抗(Z₂)可选择 75Ω、100Ω。

◇测量模式电路自动配置,测量参数自动接入,测量误差自动校正。

2. 电气和机械结构性能

2.1 仪表整体坚固可靠,体积小、重量轻,适合条件较恶劣的 环境使用。外形如图1所示。

图 1 ZY3690 型阻波器、结合滤波器自动测试仪外形图 - 2 -

CHINAMETER ZY3690型阻波器・结合滤波器自动测试仪

外形尺寸:270mm(宽)×120mm(高)×265mm(深) 质量:约 2.4kg

2.2 面板布置简洁、美观、操作方便。内部电路单元均为独 立的多层印制插件板,排列分明,可靠性高,维修方便。

2.3 电源供给:交流市电 220V ± 10%,50Hz,功耗 3.5W。 直流供电用机内自备可重复充锂电池,连续工作时间约 4 小时。

2.4 环境适应能力:工作温度 0℃~40℃(20~90)%RH 极限工作温度-10℃~+50℃。

2.5 仪表达到工作特性的预热时间为 10min。

3. 技术特性

3.1 信号源

3.1.1 频率范围:40 kHz~500 kHz,最小频率间隔(Δf)1kHz; 可选择点频或扫频工作。

3.1.2 频率误差:±3×10⁻⁶±1 Hz。

3.1.3 频率 100 kHz,75Ω 阻抗匹配时, 输出电平 +4dB ± 0.25dB。

3.1.4 以 100 kHz 频率为基准, 频响误差 ± 0.35dB。

3.1.5 谐波衰减不小于 46dB。

3.2 阻塞阻抗(Z_b)

测量范围: $40\Omega \sim 4k\Omega$,误差±5%。

3.2.1 阻塞电阻(R_b)

电抗分量(X_b)不大于 10 倍阻塞电阻(R_b)时,误差±5%。

3.2.2 电抗分量(X_b)

阻塞电阻(R_b)不大于 10 倍电抗分量(X_b)时,误差±5%。

3.3 回波损耗(Ar)

测量范围: 0dB~14dB,误差±0.5dB;

>14dB~20dB,误差±1dB;

- 3 -

CHINAMETER ZY3690型阻波器·结合滤波器自动测试仪

>20dB~26dB,误差±2dB。

3.4 工作衰减(Ac)

测量范围:0~12dB,误差±0.25dB;

3.5 测量模式与测量参数

3.5.1 测量模式电路自动配置,测量参数自动接入,测量误差 自动校正。

3.5.2 耦合电容器(C')可选择 3.3nF、3.5nF、4.5nF、5.0nF、6.6nF、7.5nF、8.0nF、10nF、15nF或 20nF。

3.5.3 线路侧标称阻抗(Z₁)可选择 240Ω、300Ω、320Ω 或 400Ω。

3.5.4 电缆侧标称阻抗(Z₂)可选择 75Ω、100Ω。

3.6 计时功能

3.6.1 可显示年、月、日、时、分,可对日期/时间进行设定或修改。

3.6.2 历史数据可查询,并自动录入测试时的日期和时间。

3.6.3 扫频测试结束发 " 嘟、嘟、嘟 " 提示音。

3.7 RS232C 串行口

与 PC 机连接:9 针 RS232C 串行插座;

通信传输速率:9600 bit/s。

3.8 测量稳定度

基准条件下,电源电压变化以及连续工作期间不经校正,用 400Ω标准电阻器、4000pF标准电容器和短路线,在点频 100kHz 分别测量阻塞阻抗(Z_b)和工作衰减(Ac)应符合表 1 的规定。

表1稳定度要求

试验项目	阻塞阻抗(Z _b) 显示值变化	工作衰减(Ac) 显示值变化
电源电压变化±10%	±1.5%	±0.15dB
连续工作 8h	±3%	±0.25dB

- 4 -

℃HINAMETER ZY3690型阻波器·结合滤波器自动测试仪

连续试验 8h 结束,经校正,阻塞阻抗 Z_b 和工作衰减 Ac 测量误差应符合 3.2、3.4 的要求。

3.9 电磁兼容性

电磁兼容性符合 GB/T 18268-2000 的规定。

4. 面板布置

4.1 前面板布置见图 1

4.1.1 显示器

显示器(LCD)位于前面板的上半部,汉字图形显示,视域尺 寸 77mm×57mm,LED 背光。白底、黑色字符。面板上有对比度控 制电位器,可用小起子进行调节,直到亮度和清晰度达到满意为 至。

4.1.2 键盘

前面板上键盘共有按键 20个,分数字键、光标键、功能键和 电源开关键。

功能键有清除、返回、确认和校正键共4个。

数字键 0、1~9、小数点"."共 11个,用来设置测量频率、 日期时间设定或修改、输入被测件的编号,输入过程中,若出错 可按"清除"键,此时,显示保留最低位为 0,等待重新输入新的 数据。当输入完一组数据,并确认无误后,应按"确认"键,才能 更新频率或数据。小数点"."没有用。

光标键(↑↓←→)共4个,用于移动光标。在光标处按 " 确 认 " 键,则进行该项设置或执行指定的功能。

4.1.3 测试插座和电源开关

前面板的下方为测试插座和电源开关。

阻波器测试插座一对,通过测试引线,红色线接阻波器上桩 头,黑色线接下桩头。 ℃HINAMETER ZY3690型阻波器·结合滤波器自动测试仪

结合滤波器测试插座两对,分线路侧和电缆侧。通过测试引 线,线路侧红色线接结合滤波器高压端,黑色线连到接地端子。 电缆侧红色线接结合滤波器的电缆芯,黑色线连到电缆地。 RS232C插座,在后面板上,用于连接 PC 机。

电源适配器插座,在后面板上,用于交流供电和给机内的锂 电池充电。

充电灯指示电池充电状态,充电时亮,电池充满时灭。

交、直供电自动切换。

4.2 后面板布置见图 1。

后面板上安装有:

RS232C 串行插座,用于连接 PC 机;

电源适配器插座;

接地柱,用于连接地线。

5. 使用方法

使用前请详细阅读本说明书。

5.1 通电检查

将电源线插入仪表后面板上电源插座,再接入交流 220V ± 10%、50Hz 的电网,此时红色充电指示灯点亮,表示电池处于快速充电状态。

按下电源开关,电源接通,屏幕显示主菜单,如图2所示。

图 2 主菜单

按校正键则进行测量校正,屏幕显示:"仪器正在校正",约 10秒钟自动校正结束返回主菜单,注意校正时不要接被测件。

在主菜单移动光标到时间日期调整,并按 " 确认 " 键,屏幕 显示如图 3 所示。进行日期、时间设置。

图 3 日期与时间设置

按←、→可向左或向右一位一位地移动光标,用数字键输入 修改光标所在位置的值,修改完毕按 "返回 "键返回主菜单。若 直接按 "返回 "键,也返回主菜单,但日期与时间并未修改,保持 原设置,时钟显示在屏幕的右上角。扫频测试会自动记录测试时 的日期和时间。

任何时候按返回键,返回上一级菜单。

经过上述操作和检查说明仪器已正常工作,可以进行测量。

5.2 阻波器测量

5.2.1 阻波器测试时,应距地面一个直径的高度,在一个直径 的范围内无铁磁性物质,测试引线尽可能短,仪表备有一对 2m 长(红、黑)的测试线,一端插到仪表阻波器测试插座,另一端鳄鱼 夹连接到被测阻波器。

阻波器不吊下来测试,应在停电条件下进行,解开阻波器线路侧和母线接头,仪表用机内自备电池供电,可直接带到高空测试。若在地面测试,可将线路侧解开,母线侧通过地刀接地,用一 对红、黑线(12m长)把阻波器两端引下来接入仪表,红、黑线应拉

- 7 -

直,自然下垂,不绞合。测试时仪表用电池供电,仪表外壳不能接 地。

在主菜单中移动光标先指向"阻波器阻抗测量",然后移动 光标选择"点频测量"或"扫频测量",按确认键,进入点频测量 或进入扫频测量,分别如图4、图6所示。

图 4 阻抗点频测量

点频测量频率用数字键输入,输入完毕按 " 确认 " 键更新频率。输入若超出频率范围,则默认为频率的上限值(500kHz)或下 限值(40kHz)。

按启动键单次测量结果随即显示出来。如图 5 所示。

阻波器阻抗	亢测 量	2 00 7/	1 0/ 25	1 0: 26	•
点频测量频率 <u>130</u> kHz					
	测量	结果			
f(kHz)	ΖЪ (Ω)	Rb (Ω)	ХЪСЯ	2)	
130	890.00	800.00	42.0	0	
▶ [点频]	〕扫频				

图 5 阻抗点频测量结果

扫频测量时先要设置扫频参数器件编号、起始频率 fmin、终止频率 fmax 和频率间隔 Δf。移动光标,用数字键更改光标所在 位置参数,输入完毕按 "确认 "键。频率间隔 Δf 最大范围为 - 8 -

100kHz,器件编号提供8位数字输入。扫频参数设置无误后,可按启动键测量,测量结束发"嘟、嘟、嘟"提示音,测量结果自动储存,并以列表形式显示出来。如图7所示。

阻抗超出测量范围(>10kΩ)时,屏幕显示溢出标记 "-----"。

隀波 器隀抗测量	2007/10/25	10:26	
→ 器件编号 0000 起始频率」130 频率间隔 10 终止频率 500	l kHz kHz kHz		
点频 [扫频]			

图 6 阻抗扫频测量

隀波器隀 抗测	틀	2007/10/2	5 1 0: 26	•
▶ 器件编号	0000	1		
起始 频率	130	kHz		
频率间隔	10	kHz		
终止频率	500	kHz		
	测量组	吉果		
f(kHz)	Zb (Ω)	Rb (Ω)	XЪ(Ω)	
130	9999.99	9999.99	0.00	
点频 [扫频	ă)			

图 7 阻抗扫频测量结果

5.3 结合滤波器测量

5.3.1 仪表备有 2 对 2m 长(红、黑)的测试线,严格按线路侧、 电缆侧接上结合滤波器,测试线一端插到仪表滤波器测试插座, 另一端鳄鱼夹连接到被测滤波器。

5.3.2 回波损耗测量

在主菜单中移动光标先指向 " 滤波器回波损耗测量 ",然后

- 9 -

移动光标选择"点频测量"或"扫频测量",按确认键,进入点频测量或进入扫频测量,分别如图8、图10所示。

图 8 回波损耗点频测量

首先要设置结合滤波器参数(耦合电容、电缆侧阻抗、线路侧 阻抗),测量频率的范围和设置同阻波器阻抗测量。 按启动键进行回波损耗测量,测量结果,随即显示出来。如图9所 示。

滤波器 回波损耗	测量 2	007/10/25	10:26	
点频测量频 率	130	kHz		
稿合电容 3.3				
电缆侧阻抗	75			
线 路 侧阻抗 :	240			
		测量结界	Ĺ	
	f (kHz)	测量结果 <u>线路</u> 侧(dB)	<u>电缆侧(</u>	<u>B)</u>
	<u>f (k)(z)</u> 130	测量结果 <u>线路侧(dB)</u> 23.7	<u>电缆侧(</u> 25.6	JB)

图 9 回波损耗点频测量结果

在扫频测量菜单(图 10),按"启动"键进行回波损耗扫频 测量,测量结束发"嘟、嘟、嘟"提示音,测量结果自动储存,并以 列表形式显示出来。如图 11 所示。

滤波器回波损耗测量 2007/10/25 10:26 🔳
▶ 器件编号_0001 起始频率 130 kHz 频率间隔 10 kHz 终止频率 500 kHz 耦合电容 33 电缆侧阻抗 75 线路侧阻抗 240
图 10 回波损耗扫频测量
滤波器画波损耗测量 2007/10/25 10:26 ┏┳┳•
 器件编号 0001 起始频率 130 kHz 频率间隔 10 kHz 终止频率 500 kHz 耦合电容 3.3 电频侧阻抗 75
线路侧阻抗 240
点频 扫频

图 11 回波损耗扫频测量结果

5.3.3 工作衰减测量

在主菜单中移动光标先指向"滤波器工作衰减测量",然后 移动光标选择 " 点频测量 " 或 " 扫频测量 ",按确认键,进入点频 测量或进入扫频测量,分别如图 12、图 13 所示。

具体操作和显示方式同回波损耗测量。 工作衰减超出测量范围(>14dB)时,屏幕显示溢出标记 "____"__

滤波器工作衰减测量 2007/10/25 10:26 🚥
点频测量频率 <u>130</u> kHz 耦合电容 33 电缆侧阻抗 75
线路侧 阻抗 240
测量结果 <u>f(tdt:)</u> <mark>线路侧(43)电缆则(43)</mark> 130 0 1 0.15
・ 「点频」 扫频
图 12 工作衰减点频测量
滤波器工作衰减测量2007/10/25 10:26 🔳
器件编号 0001 起始频率 130 kHz 频率间隔 10 kHz 终止频率 500 kHz
电强侧阻抗 75 线路侧阻抗 240 测层结束
电纯则阻抗,75 线路侧阻抗 240 测量结果 <u>ftbtr1线路侧(48) 电缆则(48)</u> 500 0.1 0.15

图 13 工作衰减扫频测量

5.4 查询和删除

5.4.1 扫频测量结果是按时间顺序自动储存,阻波器阻抗测 量、结合滤波器回波损耗和工作衰减分别可存 99 条记录。若超 出储存空间或记录条数,会将时间排序最早的测量记录自动删 除。

5.4.2 在主菜单按移动光标,先指向 "数据查询 ",然后根据 需要将光标指向查询的项目,如 "阻波器阻抗测量 "。按确认 键,进入查询操作界面。

5.4.3 阻波器阻抗测量结果查询

扫频测量结果是按时间顺序自动储存,而储存空间是有限的,若一次测量不超过46个频点,阻波器阻抗测量结果最多记录20条,结合滤波器回波损耗和工作衰减记录分别为40条。若

超出储存空间或记录条数,会将时间排序最早的测量记录自动 删除。为了节省储存空间便于记录新的测量数据,应该将不需要 的记录预先人工删除。

在主菜单移动↑、→光标键,选择 "数据查询 "并按确认 键,进入测量数据查询,移动↑、→光标键,选择 "阻抗 "、"回波 损耗 "、"工作衰减 ",分别进入阻抗查询、回波损耗查询、工作衰 减查询。

图 14 阻波器阻抗测量结果查询菜单

图 15 阻抗测量列表

图 16 阳抗测量曲线

移动 \uparrow 、 \downarrow 光标键,选择需要查询的记录,此时测量数据将 以列表形式显示阻抗测量结果如图 15 所示,也可以曲线形式显 示阻抗测量结果如图 16 所示。在图 14 中 \uparrow 、 \downarrow 光标键可上下翻 页查看测量数据。在图 16 中按 \uparrow 、 \downarrow 光标键可以轮流显示 Z_b 、 R_b 和 X_b 的曲线。

CHINAMETER

在阻抗测量结果查询菜单中,对不需要保存的记录,按清除键可 以删除光标所在位置的记录。

5.4.4 回波损耗测量结果查询

回波损耗测量结果查询方法和对不需要保存记录的删除均 与阻波器阻抗测量结果查询相同。回波损耗测量结果查询,界面 操作如图 17、图 18 和图 19 所示。

数据查	询	2007/10/25 10:26	
•	隀抗	回波損耗 工作衰减	
01	000002	2006 - 07 - 08 10:23	
02	000002	2006 - 07 - 08 10:23	
03	000002	2006 - 07 - 08 10:23	
04	000002	2006 - 07 - 08 10:23	
05	000004	2006 - 09 - 01 10:35	
06	000003	2006 - 19 - 12 12:24	
07	000001	2007 - 01 - 01 10:35	
08	000002	2006 - 07 - 08 10:23	
09	000002	2006 - 07 - 08 10:23	
10	000002	2006 - 07 - 08 10:23	

图 17 回波损耗测量结果查询

数据查询	2	007/10/25	10:26	 数据查询	2007/10/25	10:26	
回波损耗	扫频测量	结果		电缆侧		回波损	耗
f (kHz)	(3)(dB)((dB)	电缆侧(dB)					
130	23.7	25.6					
130	23.7	25.8					
130	23.7	25.8				4:	影路侧
130	23.7	25.6					
130	23.7	25.6				E	s缆侧
130	23.7	25.8					
130	23.7	25.8					
130	23.7	25. 6					
130	23.7	25.6					-
130	23.7	25.6		40 50 60 70 80 9	0 100 110 120 130		

图 18 回损测量列表 图 19 回波损耗测量曲线

5.4.5 工作衰减测量结果查询

工作衰减测量结果查询,界面操作如图 20、图 21 和图 22 所示。

ZY3690型阻波器·结合滤波器自动测试仪

数据查询			2007/	10/25	10:26	
	۰,	隀抗	回波損耗	[工 作	衰减	
	01	000002	2006 - 07 -	08 10	: 23	
	02	000002	2006 - 07 -	08 10	: 23	
	03	000002	2006 - 07 -	08 10	: 23	
	04	000002	2006 - 07 -	08 10	: 23	
	05	000084	2006 - 09 -	01 10	: 35	
	06	000003	2006 - 19 -	12 12	: 24	
	07	000001	2007 - 01 -	01 10	: 35	
	08	000002	2006 - 07 -	08 10	: 23	
	09	000002	2006 - 07 -	08 10	: 23	
	10	000002	2006 - 07 -	08 10	: 23	

图 20 工作衰减测量结果查询

5.5 与 PC 机通信

本仪表提供 PC 机软件(光盘一张):ZY3690 型阻波器、结合 滤波器自动测试仪数据分析系统,可在 Windows98、WindowsXP 操作系统上安装,通信方式支持标准 RS232 接口,波特率 9600bps。

当 RS232 串口电缆连接正确后,在主菜单选择"数据上传", 移动光标指向"数据上传"并按确认键,则仪表进入通信状态。三 组测量数据可分别上传 PC 机,并整理成表格或图形曲线打印输 出。具体操作见 PC 机软件帮助文件。

5.6 电池

仪表内有可重复充电锂电池和智能化充电管理电路,插上电源适配器,无论电源开关与否,面板上充电指示灯(红)亮,即为电池快速充电,打开电源开关,电源指示灯亮,仪表可在交流供电下

- 15 -

ZY3690 型 阻波器·结合滤波器自动测试仪

边操作边充电,电池充满后,充电指示灯自动熄灭,快速充电时间约4小时。

用电池供电进行测试时,只要拔掉电源插头,断开交流电,打 开电源开关即可,电池供电连续工作时间约4小时。当屏幕上电 池图标闪烁显示,表明电池电压低,应停止测试进行充电。

6. 一般故障处理

常见故障及处理方法见表 2。

故障现象	可能原因	处理方法	
开机无显示	电源适配器故障	更换电源适配器	
阻波器不能正常测量	阻波器插座连接 电缆线脱焊	打开下盖板,找到电 缆脱焊点重新焊好	
结合滤波器不能正常 测量	滤波器插座连接 电缆线脱焊	打开下盖板,找到电 缆脱焊点重新焊好。	

表2 常见故障及处理

7. 备附件

ZY3690型阻波器·结合滤波器自动测试仪备附件清单见表3。

表3 备附件清单

编号	代 号	名 称	数 量	
1		阻波器测试线(红、黑)	各1根	
2		结合滤波器测试线(红、黑)	各2根	
3		RS232 串口线(交叉)	1根	
4		电源适配器	1 只	
5		使用说明书	1本	
6		上位机软件(光盘)	1张	

8. 售后服务

8.1 产品使用保修期为壹年。在此期间内,凡用户遵守运输、贮存和使用规则,仪表损坏由生产厂免费修理;保修期过后损坏生产厂负责修理,按规定收取修理费。

8.2 本仪表为精密贵重仪表,电路复杂、结构紧凑,如发生故障 要及时和生产厂取得联系,请不要私自拆修。

ZY3690 阻波器、结合滤波器现场测试注意事项

● 阻波器测试:

◇必须在线路停电的情况下进行测试。

- ◇ 拉开阻波器与母线的连接开关,使阻波器与母线断开。
- ◇ 将阻波器靠母线端的接地刀闸接地。

◇拆开阻波器与线路的连接端子,使阻波器与线路断开。

◇把测试线夹头夹在阻波器两端(可借助检修班组常用的 接线杆),就可进行阻波器测试了。

测试接线如图一所示:

图一 阻波器测试接线图

◇ 测试阻波器时,测试线不要缠绕,自然下垂;测试线的夹 头尽量靠近阻波器,夹头应接触可靠,以免测试误差过大。

◇当发现阻波器测试结果不合格或异常时,检查测试线是否 接触可靠,换一下测试线夹头的部位,多测试几次,以确定测试结 果。

- 18 -

● 结合滤波器测试:

◇必须在线路停电的情况下进行测试。

◇拆开结合滤波器高压端与线路的连接线。

◇拆开结合滤波器与高频电缆的连接线。

◇将测试线(2对)按下图连接,注意线路侧、电缆侧不要接 错接反。

◇按仪器的提示正确输入结合滤波器的参数(参见结合滤波 器的铭牌参数:耦合电容、线路阻抗、电缆阻抗、工作频率范围)。 便可开始对结合滤波器进行测试。

测试接线如图二所示:

图二 结合滤波器测试接线图

国家标准中对阻波器、结合滤波器的要求 ◇电力线载波结合设备》GB/T 7329-1998 中要求: ① 工作衰减:

通 信<2dB

继电保护<1.3dB

◇ 回波损耗:

通 信>12dB

继电保护>20dB

◇《交流电力系统阻波器》GB/T 7330-1998 中指出:

对阻塞电阻的要求:"相当于阻塞电阻为输电线特性阻抗的 1.41 倍 "。若线路阻抗为 400 Ω ,则:阻塞电阻 R 为 570 Ω 。

-19-

南京中仪电力通信设备有限公司

地址:南京市鼓楼区湖南路马台街 70 号 国家大学科技园 电话:(025)83530971 传真:(025)83530971 邮编:210009 E-mail:zhongyidianLi@sina.com Http://www.njzydt.com