

ibm.com/redbooks

Deploying and Customizing
IBM Sales Center for
WebSphere Commerce V6

Rufus Credle
Rajesh Adukkadukkath

Amit Jain
Lorilee Jarosinski

Ravindra Pratap Singh
Mojca Spazzapan

Dagmara Ulanowski

Automated deployment with IBM
Tivoli Configuration Manager and IBM
WebSphere Everyplace Deployment

User interface and
role-based customization

Customer Care integration
with Sametime

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM Sales Center for WebSphere Commerce V6

April 2007

International Technical Support Organization

SG24-7249-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2007)

This edition applies to Microsoft Windows XP, Microsoft Windows 2000 Server, Microsoft
Windows 2003 Server, IBM Rational Application Developer V6.0.1.1, WebSphere Application
Server Test Environment V6.0.2.5, IBM Sales Center for WebSphere Commerce V6.0, IBM
WebSphere Commerce Developer V6.0, WebSphere Commerce Enterprise V6.0, DB2 Universal
Database V8.2.3, IBM HTTP Server V6.0, WebSphere Application Server Network Deployment
V6.0.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this IBM Redbook . xii
Become a published author . xiv
Comments welcome. xv

Part 1. Introduction . 1

Chapter 1. IBM Sales Center for WebSphere Commerce V6.0 3
1.1 Introduction . 4
1.2 IBM Sales Center features . 6
1.3 IBM Sales Center benefits. 7

Chapter 2. Overview of the IBM Sales Center environment 9
2.1 IBM Sales Center’s high-level architecture . 10
2.2 IBM Sales Center’s functionality . 11

2.2.1 Working with stores. 11
2.2.2 Creating new customers and working with existing customers. 12
2.2.3 Performing order-related actions. 12
2.2.4 Performing quote-related activities . 13
2.2.5 Performing product-related activities. 13
2.2.6 Understanding ticklers. 14
2.2.7 Understanding returns. 15
2.2.8 User experience features . 15
2.2.9 IBM Support Assistant. 16

2.3 IBM Sales Center default workflows . 17
2.4 Comparing IBM Sales Center with WebSphere Commerce Accelerator . 20

Part 2. Installation . 23

Chapter 3. IBM Sales Center development environment installation 25
3.1 WebSphere Commerce Developer requirements 26

3.1.1 Hardware requirements. 26
3.1.2 Operating system requirements . 27
3.1.3 Networking requirements . 28

3.2 Prerequisites for WebSphere Commerce Developer installation 29
3.2.1 IBM Rational Application Developer V6.0 installation 30
© Copyright IBM Corp. 2007. All rights reserved. iii

3.2.2 Applying the IBM Rational Application Developer fixes 34
3.2.3 Applying the WebSphere Application Server Test Environment fixes35
3.2.4 IBM Sales Center for WebSphere Commerce installation 38

3.3 WebSphere Commerce Developer install . 38
3.3.1 Installing both the toolkits on the same machine 40
3.3.2 Installing the IBM Sales Center toolkit in the WebSphere Commerce

development environment . 42
3.3.3 Installing only the IBM Sales Center toolkit . 43

Chapter 4. IBM Sales Center production environment installation 45
4.1 IBM Sales Center client requirements. 46

4.1.1 Hardware requirements. 46
4.1.2 Operating system requirements . 46
4.1.3 Networking requirements . 47

4.2 Prerequisites to use the IBM Sales Center client 47
4.2.1 WebSphere Commerce server . 48
4.2.2 IBM Sales Center client security considerations 49
4.2.3 IBM Sales Center distribution mechanisms 49

4.3 IBM Sales Center Quick Install . 50
4.3.1 IBM Sales Center for WebSphere Commerce interactive install. . . . 52
4.3.2 Manual installation of the IBM Sales Center updates using the Eclipse

Update Manager . 55
4.4 Manual installation of customizations using

the Eclipse Update Manager . 59
4.5 Automatic installation of customizations and updates. 61

4.5.1 The production installation of IBM Sales Center 61
4.5.2 Automatically deploying customizations using IBM Tivoli Configuration

Manager . 62
4.5.3 Automatically deploying customizations using WebSphere Everyplace

Deployment. 77

Part 3. IBM Sales Center customizations . 93

Chapter 5. Requirements and design . 95
5.1 Planning and designing IBM Sales Center customizations 96

5.1.1 Phase 1: Requirements gathering. 96
5.1.2 Phase 2: Fit-gap analysis . 97
5.1.3 Phase 3: Solution design . 97
5.1.4 Phase 4: Macro design and micro design . 98
5.1.5 Phase 5: Post-design activities . 99

5.2 An example using IBM Sales Center. 100
5.2.1 Requirements gathering . 100
5.2.2 Fit-gap analysis . 101
5.2.3 Solution design . 101
iv IBM Sales Center for WebSphere Commerce V6

5.2.4 Macro design and micro design . 106

Chapter 6. Customization scenarios . 109
6.1 IBM Sales Center client changes . 111
6.2 WebSphere Commerce server changes . 113
6.3 IBM Sales Center and WebSphere Commerce changes 114
6.4 Integration customization scenarios . 116

Chapter 7. Developing customizations for IBM Sales Center 119
7.1 Skill prerequisites . 120
7.2 IBM Sales Center architecture . 121

7.2.1 The Eclipse framework . 125
7.2.2 The IBM Sales Center user interface framework 125

7.3 Steps to develop customizations. 126
7.4 Developing the IBM Sales Center client components 128

7.4.1 User interface organization . 128
7.4.2 User interface elements . 129
7.4.3 IBM Sales Center framework user interface elements 139
7.4.4 Service requests and Service request handlers 142
7.4.5 Model object . 142
7.4.6 UserData property. 144
7.4.7 UserData support for the command extension 144
7.4.8 Dynamic extension ID resolvers . 145
7.4.9 System configurators . 146
7.4.10 Resources . 147

7.5 Developing IBM Sales Center server components 148
7.5.1 Message mappers. 148
7.5.2 Response builders . 150
7.5.3 WebSphere Commerce server customizations. 151

Chapter 8. Development tools and customization deployment 153
8.1 Development tools. 154

8.1.1 Deciding on the development environment to use 154
8.1.2 Widget hover logging . 155
8.1.3 Enabling the task of showing the contents 158
8.1.4 Debugging in the IBM Sales Center development environment . . . 160
8.1.5 Tracing in the IBM Sales Center development environment 161
8.1.6 Enabling tracing and debugging in the IBM Sales Center client . . . 161

8.2 Deploying the customizations . 163
8.2.1 Exporting the client code from the development environment 163
8.2.2 Exporting the server code from the development environment. . . . 166
8.2.3 Deploying the customizations . 167

Part 4. Customization scenario examples . 169
 Contents v

Chapter 9. User interface customization. 171
9.1 Introduction . 172
9.2 Implementing the customization . 175
9.3 Developing the WebSphere Commerce server backend 176

9.3.1 Defining the new table. 176
9.3.2 Implementing the new ExtPet EJB and ExtPetAccessBean 177
9.3.3 Implementing the new commands . 178

9.4 Developing the Sales Center client customization base 179
9.4.1 Defining the configurator and the properties 179
9.4.2 Defining the new model objects . 180

9.5 Developing the new customer pet editor page . 186
9.5.1 Implementing the user interface components 187
9.5.2 Implementing the integration code on the client side (part 1) 205
9.5.3 Implementing the integration code on the server side 214
9.5.4 Implementing the integration code on the client side (part 2) 220

9.6 Developing the new add pet dialog box . 222
9.6.1 Implementing the user interface components 223

9.7 Developing the find customer by pet dialog box 230
9.7.1 Implementing the user interface components 231
9.7.2 Implementing the integration code on the server side 234
9.7.3 Implementing the integration code on the client side 241

9.8 Loading the customizations into WebSphere Commerce Developer . . . 244
9.8.1 Installing the WebSphere Commerce Developer 6.0.0.1 Fix Pack . 244
9.8.2 Creating the XPET table on the WebSphere Commerce toolkit . . . 245
9.8.3 Loading the access control policies . 246
9.8.4 Mapping a modified Business Object Document message. 247
9.8.5 Importing the EJB JAR file . 249
9.8.6 Importing the commands and the new bodreply messages 250
9.8.7 Loading the client code into the IBM Sales Center toolkit 251

9.9 Testing the customized code. 251

Chapter 10. Role-based customizations . 257
10.1 Duplicating an existing role . 258

10.1.1 Creating a new role and a user in the Organization Administration
console . 258

10.1.2 Revising and loading the access control policies 259
10.1.3 Extending the server code for ShowStore. 262
10.1.4 Extending the client side for the new role 266
10.1.5 Testing the new role . 268

10.2 Chapter checkpoint . 269
10.3 Displaying the menu items based on the roles 269

10.3.1 Installing the samples . 269
10.3.2 Extending the samples to display the context menu 270
vi IBM Sales Center for WebSphere Commerce V6

10.3.3 Creating the activities and activity sets and mapping
them to roles . 274

10.3.4 Testing your changes . 280
10.3.5 Deploying to production for both the server and the client 283

Part 5. Integration customization scenario examples . 285

Chapter 11. Customer Care integration with Lotus Sametime 287
11.1 Introduction to Customer Care . 288
11.2 Installation and configuration. 288

11.2.1 Software prerequisites . 288
11.2.2 Installing IBM Lotus Sametime . 289
11.2.3 Changing the default Hypertext Transfer Protocol port for the

Sametime server. 289
11.2.4 Installing the Customer Care component 290
11.2.5 Enabling Customer Care in WebSphere Commerce 291
11.2.6 Configuring the Lotus Sametime self-registration feature 294
11.2.7 Enabling the flex flow for the Customer Care feature 296

11.3 Adding Customer Care to your store. 297
11.4 Integrating Customer Care with IBM Sales Center 299

11.4.1 Use case example. 300
11.4.2 Prerequisites . 301
11.4.3 Sample integration application implementation. 301
11.4.4 Scope for further expansion . 312

Part 6. Reports . 313

Chapter 12. Installing, configuring, and running the WebSphere Commerce
Analyzer . 315

12.1 Introduction to WebSphere Commerce Analyzer 316
12.2 Installing the WebSphere Commerce Analyzer. 317

12.2.1 WebSphere Commerce databases supported by WebSphere
Commerce Analyzer . 317

12.2.2 Hardware and software prerequisites . 317
12.2.3 The WebSphere Commerce Analyzer installation program 318

12.3 Preparing WebSphere Commerce for analytics 324
12.3.1 Configuring WebSphere Commerce to record analytics data 324
12.3.2 Verifying the currency conversions setup in

WebSphere Commerce . 329
12.3.3 Collecting the information required for WebSphere Commerce

Analyzer configuration . 329
12.4 WebSphere Commerce Analyzer configuration 330
12.5 Integrating the WebSphere Commerce Analyzer with WebSphere

Commerce . 341
 Contents vii

12.6 Running the WebSphere Commerce Analyzer 343
12.6.1 Running the capture program on the WebSphere

Commerce database . 343
12.6.2 Running the replication and the extract, transform,

and load processes. 345

Chapter 13. Developing and customizing customer service reports . . . 347
13.1 WebSphere Commerce customer service reports 348
13.2 Developing customer service reports . 350

13.2.1 Writing the JavaServer Page files . 350
13.2.2 Writing the Extensible Markup Language files 358
13.2.3 Updating the common files to reflect the new report 361
13.2.4 Loading the access control policies for new reports 366

13.3 Displaying the customer service reports in the WebSphere Commerce
Accelerator . 368

Appendix A. Additional material . 375
Locating the Web material . 375
Using the Web material . 376

How to use the Web material . 376

Related publications . 377
IBM Redbooks . 377
Online resources . 377
How to get IBM Redbooks . 382
Help from IBM . 382

Index . 383
viii IBM Sales Center for WebSphere Commerce V6

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
developerWorks®
eServer™
i5/OS®
xSeries®
AFS®
BladeCenter®
Cloudscape™
Domino Designer®

Domino®
DB2 Universal Database™
DB2®
Everyplace®
IBM®
Lotus Notes®
Lotus®
Notes®
Rational®

Redbooks™
Sametime®
System x™
Tivoli Enterprise™
Tivoli®
WebSphere®
Workplace™
Workplace Managed Client™

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

Enterprise JavaBeans, EJB, Java, Javadoc, JavaBeans, JavaServer, JavaServer Pages, JDBC, JSP, JVM,
J2EE, Solaris, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Internet Explorer, Microsoft, Windows Server, Windows, Win32, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM Sales Center for WebSphere Commerce V6

Preface

The IBM Sales Center for WebSphere Commerce V6 is an application for
customer service representatives to capture and manage customer orders. This
IBM® Redbook helps you understand IBM Sales Center for WebSphere
Commerce and provides you with how-to instructions to deploy the business
solution, customize it, and integrate the Sales Center with other applications.

This IBM Redbook helps you install, tailor, and configure the Sales Center
development environment and production environment for creating and
deploying the Sales Center customizations. In addition, this book discusses the
use of IBM Tivoli Configuration Manager and IBM WebSphere Everyplace
Deployment, to perform automated deployment.

This book discusses how to plan and design Sales Center customizations.
Examples are provided to help you through this process. The customization
scenarios that include the integration of additional IBM software and original
equipment manufacturer (OEM) software are described.

This book provides user interface and role-based customization examples to
demonstrate customization within the user interface framework and the
role-based tools.

This book also provides code sample that you can use to integrate IBM Lotus
Sametime V7.5 into Sales Center, where live help and customer care
functionality are achieved.

IBM WebSphere Commerce Analyzer allows you to view analytical data and
provide customer service reports. This book provides instructions about how to
use this tool to gather information for analyzing data in order to help the
marketing, sales, and customer service representative supervisors take more
informed business decisions.

This book is useful for IT architects, IT specialists, application designers,
application developers, application deployers, and consultants because it
contains information that is necessary to design, develop, deploy, and
customize.
© Copyright IBM Corp. 2007. All rights reserved. xi

The team that wrote this IBM Redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO),
Poughkeepsie Center, USA.

Rufus Credle is a Certified Consulting IT Specialist at the ITSO, Raleigh Center.
In his role as Project Leader, he conducts residencies and develops IBM
Redbooks™ on network operating systems, enterprise resource planning (ERP)
solutions, voice technology, high availability, and clustering solutions, Web
application servers, pervasive computing, IBM and OEM e-business
applications, IBM System x™, IBM eServer™ xSeries®, and IBM BladeCenter®.
The various positions he has held during the course of his career at IBM include
assignments in administration and asset management, systems engineering,
sales and marketing, and IT services. He holds a BS degree in Business
Management from Saint Augustine's College. He has been employed at IBM for
26 years.

Rajesh Adukkadukkath is a Staff Software Engineer in India Software Labs,
Bangalore, India. He has six years of experience in software design and
development of e-business, network management systems, and client-server
technologies. He holds a degree in Master of Computer Applications from
Bharathiar University, Coimbatore, India. He has worked extensively on IBM
Sales Center development for WebSphere Commerce and his areas of expertise
include Java™ and Java 2 Platform, Enterprise Edition (J2EE™) technologies,
including plug-in development on the Eclipse framework.

Amit Jain is a Technical Architect in the Portal and eCommerce competency at
IBM India. He has nine years of experience in consulting, software design, and
development of e-business and client-server technologies. He has carried out
extensive work on WebSphere Commerce customizations for several IBM
customers. He has been with IBM since 2000. He holds a degree in Computer
Science from Rohailkhand University, India. His areas of expertise include
solution design, analysis, and development of Java and J2EE applications, and
IBM WebSphere® technologies. He has practical experience in problem
determination and resolution.

Lorilee Jarosinski is a Staff Software Developer at the IBM Toronto Lab. She is
responsible for programming and customizing tutorials for WebSphere
Commerce. She has five years of experience working on the build, development,
and technical writing teams. She has written extensively on IBM Sales Center
customization, including tutorials, samples, and a white paper. Lorilee holds a
degree in Computer Science from York University, Toronto.
xii IBM Sales Center for WebSphere Commerce V6

Ravindra Pratap Singh is a Software Engineer in IBM India. He has over three
years of experience in the WebSphere Commerce field. He holds a Master of
Computer Applications degree from Jawaharlal Nehru University, New Delhi,
India. His areas of expertise include WebSphere Commerce Analyzer. He has
written several articles and tutorials in IBM developerWorks® about WebSphere
Commerce and WebSphere Commerce Analyzer.

Mojca Spazzapan is an Advisory Product Services Specialist for WebSphere
Commerce in the Europe, Middle East, and Africa (EMEA) support team, working
in IBM Slovenia since 2001. She has four years of experience in diverse
WebSphere Commerce products areas, with practical experience in problem
determination and resolution. She holds a Master’s degree in Electrical
Engineering from the University of Ljubljana, Slovenia. Mojca’s areas of
expertise include software programming, middleware applications, and
e-commerce. She has co-authored an IBM Redbook, WebSphere Commerce
V5.4 Handbook: Architecture and Integration Guide, SG24-6567, and an IBM
Redpaper, WebSphere Commerce V5.4 for Solaris and Oracle9i, Infrastructure
and Deployment Patterns, REDP-0316.

Dagmara Ulanowski is a WebSphere Commerce Consultant with the IBM
Software Services for WebSphere team, working in IBM Canada. She has
several years of experience in consulting and developing e-commerce solutions
using WebSphere Commerce. She has worked on implementing the WebSphere
Commerce solution for various IBM customers. She holds an Honors degree in
Computer Science from York University, Toronto, Canada. Her areas of
expertise include IBM Sales Center and IBM WebSphere Commerce Accelerator
customization.

Thanks to the following people for their contributions to this project:

Carolyn Sneed, Tamikia Barrow
ITSO, Poughkeepsie Center

Brian Nolan, IT Architect, WebSphere Business Integration Services Planning
IBM Research Triangle Park

Bill MacIver, WebSphere Commerce Suite Sr Development Manager
IBM Markham, Canada

Carl Kaplan, Worldwide e-Commerce Sales
IBM Waltham

Anthony Tjong, Manager, WebSphere Commerce Development
IBM Markham, Canada
 Preface xiii

Michael Au, Manager, WebSphere Commerce Foundation Development
IBM Markham, Canada

Peter Swithinbank, ITSO Project Leader
IBM Hursley, UK

Andy Kovacs, Support, Quality, and Measurements
IBM Markham, Canada

Tack Tong, Markham Lab
IBM Markham, Canada

Judy Chan, WebSphere Commerce Business-to-Business Solutions
IBM Markham, Canada

Brian Thomson, STSM Performance, Scalability, Availability
IBM Markham, Canada

Glenn Jones, SWG VoIP Infrastructure, Backup AFS® Cell Admin
IBM Markham, Canada

Wai-Kong Ho, Senior IT Specialist
IBM, Australia

Jegathasan Thambipillai, End User Support
IBM Toronto

Ramya Rajendiran, Associate Software Engineer
IBM India

Become a published author
Join us for a two-week to six-week residency program! Help write an IBM
Redbook dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You will have the opportunity to team
with IBM technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xiv IBM Sales Center for WebSphere Commerce V6

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other IBM Redbooks in one of the following ways:

� Use the online Contact us review IBM Redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi IBM Sales Center for WebSphere Commerce V6

Part 1 Introduction

This part introduces IBM Sales Center for WebSphere Commerce V6 and
discusses the functionality and value of this product.

Part 1
© Copyright IBM Corp. 2007. All rights reserved. 1

2 IBM Sales Center for WebSphere Commerce V6

Chapter 1. IBM Sales Center for
WebSphere Commerce V6.0

This chapter describes the most common call center pains and how you can
resolve them using IBM Sales Center for WebSphere Commerce.

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 Introduction

IBM Sales Center for WebSphere Commerce is a new and separately orderable
feature that leverages the catalog, order management, promotions, and
merchandising capabilities of WebSphere Commerce to provide call center
representatives with the functionalities they require to service and up-sell to
cross-channel customers.

More than two-thirds of customers were unsatisfied with agent-assisted phone
support. Many companies are finding that their existing call center applications
are failing to accommodate the high volume of requests they receive and that the
call center representatives have inadequate access to customer data and order
data from other channels. In addition, most call center representatives are not
equipped to perform cross-sell and up-sell activities, losing additional revenue
opportunities. IBM Sales Center for WebSphere Commerce helps address these
issues and contributes to a more efficient call center operation.
4 IBM Sales Center for WebSphere Commerce V6

Figure 1-1 shows a sample IBM Sales Center customer editor.

Figure 1-1 IBM Sales Center customer editor
 Chapter 1. IBM Sales Center for WebSphere Commerce V6.0 5

Figure 1-2 shows a sample IBM Sales Center order editor.

Figure 1-2 IBM Sales Center order editor

1.2 IBM Sales Center features

IBM Sales Center’s key features include the following:

� Works with multiple stores, orders, and customers simultaneously
� Views cross-sell, up-sell, and promotion information
� Finds and compares products, and views product availability
� Views and takes control of customers’ shopping carts
� Creates quotes and turns them into orders
� Overrides contract and list pricing
� Creates, updates, cancels orders, and processes payments
� Creates and manages profiles and ticklers (reminders)
� Integrates with other applications
6 IBM Sales Center for WebSphere Commerce V6

1.3 IBM Sales Center benefits

IBM Sales Center provides the following benefits:

� Improves the productivity of call center employees

� Increases sales in call center through cross-sell and up-sell

� Improves service for cross-channel customers

� Reduces IT cost and complexity by using a central server for both the call
center and the Web, and by reducing the number of systems requiring
replicated catalog, customer, promotion, and order data
 Chapter 1. IBM Sales Center for WebSphere Commerce V6.0 7

8 IBM Sales Center for WebSphere Commerce V6

Chapter 2. Overview of the IBM Sales
Center environment

This chapter discusses the IBM Sales Center architecture and the functions of
the IBM Sales Center environment. It also provides a comparison with the IBM
WebSphere Commerce Accelerator tool.

2

© Copyright IBM Corp. 2007. All rights reserved. 9

2.1 IBM Sales Center’s high-level architecture

IBM Sales Center for WebSphere Commerce consists of the IBM Sales Center
client component and the WebSphere Commerce server. A large number of IBM
Sales Center clients can connect to the WebSphere Commerce server using
Web services. Multiple customer service representatives (CSRs) can use IBM
Sales Center clients simultaneously to perform their daily tasks. IBM Sales
Center accesses and updates the data in the WebSphere Commerce database.
This data, for example, order and product information, is the same data
accessed and updated through the storefront and the WebSphere Commerce
Accelerator tool.

Figure 2-1 shows a high-level view of the IBM Sales Center clients and the
WebSphere Commerce server. The IBM Sales Center clients are installed
directly on the CSRs’ machines unlike browser-based tools.

Figure 2-1 A high-level view of IBM Sales Center

Interactive
Voice

Response

Telephone
Network

Switch CTI Server
Database

Server
WebSphere
Commerce

IVR

Agent Desktop
with IBM Sales
Center

Telephone

Agent Desktop
with IBM Sales
Center

Telephone

Agent Desktop
with IBM Sales
Center

Telephone

Network Line

Phone Line
10 IBM Sales Center for WebSphere Commerce V6

2.2 IBM Sales Center’s functionality

IBM Sales Center provides various functionalities for CSRs to work easily and
efficiently with WebSphere Commerce. The following sections describe some of
these functionalities.

2.2.1 Working with stores

With IBM Sales Center, you can work with any of the stores your role has access
to, for example, WebSphere Commerce might contain a consumer direct store
and a business-to-business direct store (Figure 2-2). If your role is to service the
customers of the consumer direct store, you may be restricted from viewing the
business-to-business direct store. Any of the stores with which you are working
are listed in the Stores view. Figure 2-2 shows an example of the Stores view
with three stores open, Business-to-business Direct, Consumer Direct, and
Sample Business-to-business Reseller.

Figure 2-2 A Stores view
 Chapter 2. Overview of the IBM Sales Center environment 11

2.2.2 Creating new customers and working with existing customers

You can create new customers and work with existing customers in IBM Sales
Center. Existing customers might have registered themselves through the
storefront or might have been created by another CSR.

When the Customer editor opens, the customer name and login ID is displayed in
the Stores view, as shown in Figure 2-3.

Figure 2-3 The Stores view and the Customer editor

2.2.3 Performing order-related actions

In IBM Sales Center, you can perform the following order-related actions:

� Create an order for a new or existing customer by beginning with a new order
or by using the information from an existing order or quote

� Modify many of the details in an existing order such as item quantities,
shipping addresses, and payment methods after the order is submitted, but
before all the items in the order are fulfilled

� View and work with the merchandising associations that are related to the
items in an order, and view the marketing promotions that might be of interest
to the customer

� Create guest orders for direct customers who have not registered or do not
want to register with the consumer direct store

� Manage manually blocked orders (A CSR can resolve manual blocks, but
automatic blocks must be removed by an authorized administrator using the
WebSphere Commerce Accelerator tool.)

Note: Guest orders cannot be created in a business-to-business store.
12 IBM Sales Center for WebSphere Commerce V6

2.2.4 Performing quote-related activities

A customer might want to get a cost quotation before deciding about whether to
place an order. You can perform the following quote-related activities:

� Create a quote for a new or existing customer by beginning with an empty
quote or based on the information in an existing quote or order. You can also
modify many of the details in an existing quote, such as item quantities and
shipping addresses.

� View and work with merchandising associations relating to the items in a
quote, and view marketing promotions that might be of interest to the
customer.

� Blocks can be placed on a quote automatically, and you can work with these
blocks to resolve any issues. Blocks on quotes do not halt the quote life cycle.
However, when an order gets generated from a quote, any blocks that are
applicable are transferred to the order and prevent it from being released to
fulfilment until the blocks are removed by an authorized person.

2.2.5 Performing product-related activities

You can search for products, add products to an order, and perform side-by-side
product comparisons (Figure 2-4) in the IBM Sales Center. The products might
be grouped into bundles, packages, and static and dynamic kits, in the same way
in which they are grouped in the online store. Products can also be related to
each other using merchandising associations such as cross-sells and up-sells.
 Chapter 2. Overview of the IBM Sales Center environment 13

Merchandising associations are displayed in a view next to the Order editor so
that CSRs can see both at the same time. This functionality allows CSRs to drive
revenue by suggesting associated products to customers at the same time as
working on an order.

Figure 2-4 Side-by-side comparison of two products

2.2.6 Understanding ticklers

Ticklers are notifications and reminders for CSRs to take action. Ticklers can be
created automatically, for example, when a CSR exceeds the price override limit,
the order is automatically blocked and the CSR Supervisor receives a tickler to
follow up on the blocked order. Ticklers can also be created manually, for
example, to remind a CSR to follow up with a dissatisfied customer, a tickler can
be created and assigned to the corresponding CSR. Ticklers can be assigned to
self, to a specific person, to a specific group, or to a specific person within a
group, depending on the system setup.
14 IBM Sales Center for WebSphere Commerce V6

2.2.7 Understanding returns

A return, which is also referred to as a Return Merchandise Authorization, is
created when a customer wants to return a product purchased earlier from a
store. A CSR can create, view, and edit the returns. Editing a return includes
adding items to the return, removing items from the return, and changing the
credit method, credit amount, and other key information, and approving it for
further processing.

2.2.8 User experience features

In addition to typical features such as logging in, logging out, and changing
passwords, the IBM Sales Center offers the following functionalities:

� Views and perspectives

Views support the editors and are used to navigate information or display the
properties for an active editor. In IBM Sales Center, for example, the Stores
view displays open stores, customers, orders, and quotes. Each view has its
own toolbar, and can have its own context menu. Views can be opened,
closed, resized, and moved to suit the work environment and habits.

Perspectives contain a set of views used to accomplish a specific type of
task, for example, in the IBM Sales Center, the IBM Sales Center - Order
Management Perspective contains the views that are required by a CSR to
perform daily tasks in a call center.

� Setting preferences

Several preferences can be set in the IBM Sales Center to facilitate daily
tasks, for example, if you work frequently with one store, you can set a
preference so that this store opens immediately after login.
 Chapter 2. Overview of the IBM Sales Center environment 15

� Keyboard navigation and shortcut keys

IBM Sales Center is accessible from a keyboard instead of the mouse to
support people with disabilities and those who prefer the keyboard to the
mouse. The F10 key in the keyboard, for example, accesses the menus on
the main menu bar, and the combination of Ctrl+L opens the logon dialog box.
You can customize the keyboard shortcuts based on your requirements. The
default keyboard shortcuts are listed next to the menu items they represent,
as shown in Figure 2-5.

Figure 2-5 The Ctrl+L combination opens the logon dialog box

For a complete list of the default keyboard shortcuts, refer to the following
Web site:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.tsr.doc/concepts/ctrhotkeys.htm

2.2.9 IBM Support Assistant

The IBM Support Assistant is an application that helps you find answers to your
questions regarding IBM software products. Launch the IBM Support Assistant
by selecting Help → IBM Support Assistant in the IBM Sales Center client
running in the administrator mode. Use the IBM Support Assistant to perform the
following tasks:

� Search technical notes and IBM Web resources, including newsgroups and
developerWorks

� Submit service requests through a link to the IBM software support Web site,
where you can create a new service request or problem management record
(PMR) using the Electronic Service Request (ESR) tool.

Note: You require a valid ESR user ID and password to use the ESR tool.
16 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.tsr.doc/concepts/ctrhotkeys.htm

2.3 IBM Sales Center default workflows

IBM Sales Center supports a variety of functions. To understand these functions,
many documented business process workflows exist. Workflows are a pictorial
representation of processes that help users understand the steps and their
sequence in the process. An orange box in a workflow represents a high-level
grouping of activities that take place in a business process. It may contain other
task objects and subprocesses, creating a hierarchy. The details of the
subprocesses are documented in a separate page.

As an example, the Sales Center workflow (Figure 2-6) describes the CSR tasks,
the objectives and features of this process, and the customization and links to its
subprocesses. CSRs inquire about how they may help customers and respond
with the most appropriate actions.

Figure 2-6 The Sales Center workflow
 Chapter 2. Overview of the IBM Sales Center environment 17

The identify customer workflow (Figure 2-7) describes the steps a CSR follows
to find a customer, given certain search criteria.

Figure 2-7 The identify customer workflow

Following is the identify customer process:

1. The CSR enters the search criteria.

The CSR chooses the key information that is to be used to find a customer
profile, and then enters the key information about a customer in order to
determine whether the customer profile has already been entered into the
system.

2. The CSR examines the search result.

The CSR looks at the customer profiles that are a potential match to the
customer.

3. If the customer is in the search result, the CSR performs the Select customer
task.

The CSR chooses the customer profile that matches the customer from
among the list of potential matches, and the customer profile loads.

4. If the customer is not in the search result, the CSR can perform the Add
customer task.

The orange box indicates that the Add Customer workflow is described in a
separate document.
18 IBM Sales Center for WebSphere Commerce V6

The work with return workflow (Figure 2-8) describes the steps a CSR follows to
work with a return.

Figure 2-8 The work with return workflow

Following is the work with return process:

� If the return is a new return, the Capture return with prior approval process is
followed. The orange box indicates that this process may contain other task
objects and subprocesses that are explained in a separate page.

If a new tickler is required, the Create tickler process is followed. The orange
box indicates that this process may contain other task objects and
subprocesses that are explained in a separate page.

� If the return is an existing return, the CSR can update the return.

If a new tickler is required, the Create tickler process is followed. The orange
box indicates that this process may contain other task objects and
subprocesses that are explained in a separate page.

Note: To view all the workflows of the business processes, refer to the
WebSphere Commerce V6 Information Center:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.business_process.doc/concepts/processSales_Center.htm
 Chapter 2. Overview of the IBM Sales Center environment 19

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.business_process.doc/concepts/processSales_Center.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.business_process.doc/concepts/processSales_Center.htm

2.4 Comparing IBM Sales Center with WebSphere
Commerce Accelerator

There may be some amount of confusion about when to use IBM Sales Center
and when to use the WebSphere Commerce Accelerator. Both are WebSphere
Commerce tools, but they are targeted at different users.

IBM Sales Center must be used by CSRs who require a highly efficient user
interface for day-to-day call center tasks. It can also be used for in-store
customer service tasks, where in-store staff can use it to find a user account
quickly and work with a customer’s privileges, for example, promotions and
coupons. IBM Sales Center helps implement online order pick-up in-store and
provide the in-store staff with all the information pertaining to cross-sell,
promotions, and so on.

The WebSphere Commerce Accelerator tool is targeted at roles that maintain
online stores, hubs, and catalogs by completing various store operations, from
managing the look and feel of an online store, to creating and maintaining orders,
and tracking store activities. With the WebSphere Commerce Accelerator tool,
you can, for example, manage the catalogs, create marketing campaigns, and
view operational reports. The WebSphere Commerce Accelerator can be used
for some call center tasks. However, it does not provide the same rich and
high-performance user experience as the IBM Sales Center.

Many of the functionalities of IBM Sales Center are also available in WebSphere
Commerce Accelerator. However, not all the functionalities of WebSphere
Commerce Accelerator are available in IBM Sales Center.

Table 2-1 shows a comparison of the IBM Sales Center and WebSphere
Commerce Accelerator functionalities.

Table 2-1 Comparison of IBM Sales Center and WebSphere Commerce Accelerator functionalities

Category IBM Sales Center WebSphere Commerce
Accelerator

Rich client-based or
browser-based

Eclipse rich client that is installed
on the user’s machine

Browser-based Web application

Audience CSRs who require an efficient
graphical user interface (GUI)

Roles responsible for store
maintenance such as Marketing
Managers, Product Managers,
and Returns Administrators
20 IBM Sales Center for WebSphere Commerce V6

Multitasking Can multitask by working on
multiple stores, customers, and
orders simultaneously. Can see
multiple views (orders, ticklers,
up-sells, and so on) at the same
time.

Multitasking is not possible. The
user must work on one customer,
order, product, and so on at a
time.

Efficiency tools and role-based
GUIs

Efficiency tools such as
drag-and-drop, closing and
hiding views that are not wanted
or required for viewing, and hot
keys. GUI elements can be
suppressed or shown depending
on the user’s role.

Menu items can be displayed or
hidden based on the user’s role

Creating customers Can create customers in IBM
Sales Center

Cannot create a customer in
Accelerator. Must use
Organization Administration
Console and have the proper
user authority to create
customers.

Performing customizations Customizations performed by
using the Eclipse framework and
Standard Widget Toolkit (SWT)
or by using the WebSphere
Commerce's own customization
framework, and Extensible
Markup Language (XML) files to
manipulate the user interface.

Customizations performed by
using JavaServer™ pages
(JSP™) and XML files

Viewing merchandising
associations and promotions
when taking an order

When creating an order in Sales
Center, appropriate promotions
and merchandising associations
(up-sells, cross-sells) display in
an adjacent view. CSRs do not
have to remember what
promotions and merchandising
associations are available.

Not available in Accelerator

Reminders Ticklers are reminders or tasks
that can be assigned to other
users or departments

Not available in Accelerator

Quotes Can create quotes for a customer Not available in Accelerator

Category IBM Sales Center WebSphere Commerce
Accelerator
 Chapter 2. Overview of the IBM Sales Center environment 21

22 IBM Sales Center for WebSphere Commerce V6

Part 2 Installation

This part discusses and describes the installation and building of the IBM Sales
Center for WebSphere Commerce development environment and production
environment.

Part 2
© Copyright IBM Corp. 2007. All rights reserved. 23

24 IBM Sales Center for WebSphere Commerce V6

Chapter 3. IBM Sales Center
development environment
installation

IBM Sales Center development environment and WebSphere Commerce
development environment are the recommended tools for creating the IBM Sales
Center client and the WebSphere Commerce server customizations.

This chapter describes the hardware, software, and networking requirements. It
also addresses the development environment installation prerequisites.

This chapter describes how to install the development environment with the IBM
Sales Center toolkit and the WebSphere Commerce toolkit, both as components
of WebSphere Commerce Developer product installation. It then outlines the
installation steps involved in different installation scenarios.

Refer to Chapter 7, “Developing customizations for IBM Sales Center” on
page 119 to determine which installation scenario is appropriate for the type of
customization that you plan to develop.

3

© Copyright IBM Corp. 2007. All rights reserved. 25

3.1 WebSphere Commerce Developer requirements

The development environment must comply with the hardware requirements,
operating system requirements, and networking requirements described in this
section.

3.1.1 Hardware requirements

This section describes the hardware requirements of the WebSphere Commerce
Developer.

Depending on which development environment component you are installing
(IBM Sales Center, WebSphere Commerce, or both), ensure that the minimum
hardware requirements for WebSphere Commerce Developer are as follows:

� An Intel® Pentium® III IBM-compatible personal computer with a minimum of
800 MHz processor

� A minimum of 1.5 GB of RAM

� A minimum of 6.1 GB of free disk space on the target installation drive,
broken down as follows:

– IBM Rational Application Developer V6.0 requires 4.2 GB
– WebSphere Commerce Developer requires 1.9 GB

Tip: For updates, refer to the Technote IBM WebSphere Commerce
Developer, V6.0 hardware prerequisites, which is available in the following
Web site:

http://www-1.ibm.com/support/docview.wss?uid=swg27007490

Note: A 1.6 GHz Intel Pentium 4 processor is recommended.

Note: A 2.0 GB of RAM is recommended.

Note: If you choose to install WebSphere Commerce Developer only with
the IBM Sales Center toolkit component (without the WebSphere
Commerce toolkit), the free disk space that is required is about 100 MB.
26 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?uid=swg27007490

� Enough free disk space to install the Rational Application Developer 6.0.1.1
Fix Pack:

– 906 MB to install the fix pack directly from the IBM update server or 1.7
GB to download, extract, and install the fix pack from a compressed file if
you already have Rational Application Developer Refresh Pack 6.0.1 or
later installed.

– 3.5 GB to install the fix pack directly from the IBM update server or 6.5 GB
to download, extract, and install the fix pack from a compressed file if you
do not already have Rational Application Developer Refresh Pack 6.0.1 or
later installed.

� A graphics-capable monitor with a screen resolution of 800 x 600 display
resolution

� A CD-ROM drive or another media for installing the software, that is, network
drive

3.1.2 Operating system requirements

This section describes the operating system requirements of the WebSphere
Commerce Developer.

Ensure that the WebSphere Commerce Developer system is running on one of
the following operating systems:

� Microsoft® Windows® 2000, Server Edition with Service Pack 4
� Microsoft Windows 2000, Advanced Server Edition with Service Pack 4
� Microsoft Windows 2000, Professional Edition with Service Pack 4
� Microsoft Windows XP Professional with Service Pack 2

Note: A 1024 x 768 display resolution is recommended.

Tip: For updates, refer to the Technote IBM WebSphere Commerce
Developer Version 6.0 operating system prerequisites, which is available on
the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007488
 Chapter 3. IBM Sales Center development environment installation 27

http://www-1.ibm.com/support/docview.wss?uid=swg27007488

3.1.3 Networking requirements

This section describes the networking requirements of the WebSphere
Commerce Developer.

Depending on which development environment component you are installing
(IBM Sales Center, WebSphere Commerce, or both), ensure that the network
configuration of the system meets the following requirements:

� The system must have a resolvable, fully qualified host name. This host name
is the host name combined with the domain name. If, for example, the host
name is system1 and the domain is mydomain.com, the fully qualified host
name is system1.mydomain.com

Issue the following command from a command prompt to return the IP
address of the system:

nslookup fully_qualified_host_name

The result must be a reply with the correct IP address of the system.

� The IP address of the system must resolve to a host name, including a
domain. To determine if the IP address is mapped to a fully qualified host
name, start a command prompt session and issue the following command:

nslookup IP_address

The result must be a reply with the correct, fully qualified host name of the
system.

Note: In addition to the required operating system service pack levels, ensure
that the system has the following:

� All the latest critical fixes issued by Microsoft

� Microsoft Internet Explorer® 6.0 Service Pack 1 or higher with the latest
critical security updates

To obtain the latest service packs and critical fixes, refer to the Microsoft
Windows Update Web site:

http://windowsupdate.microsoft.com

Tip: For updates, refer to the Technote WebSphere Commerce Developer
Version 6.0 Networking Prerequisites, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007489
28 IBM Sales Center for WebSphere Commerce V6

http://windowsupdate.microsoft.com
http://www-1.ibm.com/support/docview.wss?uid=swg27007489
http://www-1.ibm.com/support/docview.wss?uid=swg27007489

� Ensure that all the nodes in the configuration can be reached from other
machines in the network by pinging the fully qualified host name of each node
in the configuration.

3.2 Prerequisites for WebSphere Commerce Developer
installation

Depending on which development environment component you are installing
(IBM Sales Center, WebSphere Commerce, or both), have the following software
installed and configured at a minimum fix pack level:

� IBM Rational Application Developer V6.0 updated to 6.0.1.1 Fix Pack level

� WebSphere Application Server Test Environment V6.0 updated to a minimum
6.0.2.5 Fix Pack level, with the necessary fixes installed (required for
WebSphere Commerce toolkit only)

� Eclipse-based IBM Sales Center for WebSphere Commerce V6.0 rich client
(required for IBM Sales Center toolkit only)

In our case, we followed the installation guide WebSphere Commerce Developer
Enterprise and Professional Version 6.0 Installation Guide (GC10-4255-03) to
install IBM WebSphere Commerce Developer Enterprise 6.0 with the
WebSphere Commerce toolkit and the IBM Sales Center toolkit, both on the
same system, running the Windows XP SP2 operating system. The following
installation guide describes how to install and configure IBM WebSphere
Commerce Developer V6.0, and is available for download from the IBM
Publications Center site:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibi
n/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104255

Note: If you choose to install both the toolkits on the same system, you
might have only one node in your configuration.

If you choose to install only the IBM Sales Center toolkit, the IBM Sales
Center client in the IBM Sales Center development environment is required
to connect to the WebSphere Commerce server (testing environment or
development environment) for customization development testing
purposes, possibly running on another node in your configuration.

Note: IBM Sales Center is only available for WebSphere Commerce
Professional and WebSphere Commerce Enterprise.
 Chapter 3. IBM Sales Center development environment installation 29

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104255
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104255

The following sections outline the installation process of the WebSphere
Commerce Developer V6.0 prerequisite software.

3.2.1 IBM Rational Application Developer V6.0 installation

Regardless of whether you install only the IBM Sales Center toolkit, only the
WebSphere Commerce toolkit, or both the toolkits on a machine, the first step in
preparing the environment for WebSphere Commerce Developer installation is to
install the Rational Application Developer V6.0 on the same machine.

During the installation process, you might see the options to install software that
do not ship with WebSphere Commerce Developer. The only options of Rational
Application Developer that are available for install from the WebSphere
Commerce Developer CDs are:

� Rational Application Developer 6.0
� WebSphere Application Server 6.0 Integrated Test Environments
� Remote Agent

To install Rational Application Developer V6.0, perform the following tasks:

1. Log in as a user with Administrator privileges.

2. Run launchpad.exe and select Install IBM Rational Application Developer
V6.0 (Figure 3-1).

Tip: All the product documentation is available for download from the
WebSphere Commerce Developer product library page:

http://www-306.ibm.com/software/genservers/commerce/commercestudio/l
it-tech-general-be-en.html#v60

Tip: If you already have Rational Application Developer installed, proceed to
3.2.2, “Applying the IBM Rational Application Developer fixes” on page 34.
30 IBM Sales Center for WebSphere Commerce V6

http://www-306.ibm.com/software/genservers/commerce/commercestudio/lit-tech-general-be-en.html#v60

Figure 3-1 Selecting Install IBM Rational Application Developer V6.0

Note: You can install Rational Application Developer by running
launchpad.exe in the disk1 directory or by running setup.exe in the
disk1\setup directory.
 Chapter 3. IBM Sales Center development environment installation 31

3. In the Welcome window, click Next.

4. In the window that appears, ensure that you specify a short directory name
such as C:\RAD601 and click Next (Figure 3-2).

Figure 3-2 Specifying a short directory name to install Rational® Application Developer

Notes:

� Do not accept the default installation path for IBM Rational Application
Developer V6.0. The default installation path is too long for
configuration with the WebSphere Commerce development
environment.

� Specify a short directory name such as C:\RAD601. Avoid using periods
(.), spaces, or dollar signs ($) in the directory names.
32 IBM Sales Center for WebSphere Commerce V6

5. When prompted to select the features that are to be installed, ensure that you
select IBM WebSphere Application Server V6.0 Integrated Test
Environment, and click Next (Figure 3-3).

Figure 3-3 Selecting IBM WebSphere Application Server V6.0 Integrated Test Environment

6. Review the summary information (Figure 3-4) and click Next to begin the
installation.

Figure 3-4 Summary information of the IBM Rational Application Developer V6.0 installation
 Chapter 3. IBM Sales Center development environment installation 33

7. After the Rational Application Developer installation is completed, you are
prompted to install the Agent Controller feature (Figure 3-5). If you do not want
to install this component at this juncture, deselect Launch Agent Controller
Install and click Finish to exit the wizard. (In our case, we did not install this
feature.)

Figure 3-5 Prompt to launch the Agent Controller install

3.2.2 Applying the IBM Rational Application Developer fixes

After the installation of IBM Rational Application Developer V6.0, apply the
Rational Application Developer fixes to update it to a minimum level of 6.0.1.1.

To install the IBM Rational Application Developer fix pack and fixes, perform the
following tasks:

1. Open the Rational Product Updater by selecting Start → Programs → IBM
Rational → Rational Product Updater.

2. Select IBM Rational Application Developer → Find Updates.

3. The Rational Product Updater detects all the applicable fixes. Choose Select
All → Install Updates.

Tip: If you already have the Rational Application Developer V6.0 fixes
installed, proceed to 3.2.3, “Applying the WebSphere Application Server Test
Environment fixes” on page 35.
34 IBM Sales Center for WebSphere Commerce V6

4. Accept the license agreement and click Finish.

5. Follow the prompts to install all the updates.

3.2.3 Applying the WebSphere Application Server Test Environment
fixes

If you choose to install the WebSphere Commerce toolkit, update the
WebSphere Application Server Test Environment V6.0 to the minimum 6.0.2.5 fix
pack level and apply the required fixes before installing the WebSphere
Commerce toolkit. The recommended way to update the WebSphere Application
Server Test Environment 6.0 is by using the WebSphere Commerce installation
wizard.

Note: Incremental updates might be required. To apply these updates, run
the Rational Product Updater multiple times.

Note: Install the fix pack and the fixes directly from the IBM update server
as described earlier. However, updates are also available for download.
Download and install the fix pack in certain situations, such as the
following:

� You have a slow or unstable Internet connection and want to use a
download manager that can resume the download

� You have difficulty accessing the live IBM update servers from behind a
firewall

� You prefer to download the fix pack and install it later

For information about how to download and install the fix pack, refer to the
Technote IBM Rational Application Developer Fix Pack 6.0.1.1, which is
available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg24010926

Tip: If you are installing only the WebSphere Commerce toolkit, and you
already have the IBM WebSphere Application Server V6.0 Test Environment
6.0.2.5 or later Fix Pack, and have all the required fixes installed, proceed to
3.3, “WebSphere Commerce Developer install” on page 38.

If you are installing only the IBM Sales Center toolkit or both the toolkits, and
you already have the required WebSphere Application Server Test
Environment fixes installed, proceed to 3.2.4, “IBM Sales Center for
WebSphere Commerce installation” on page 38.
 Chapter 3. IBM Sales Center development environment installation 35

http://www-1.ibm.com/support/docview.wss?uid=swg24010926

There are several WebSphere Application Server Test Environment fix pack and
fix installation scenarios that are possible. Each scenario requires the application
of specific fixes in order to bring it to the appropriate level. Apply the WebSphere
Application Server Test Environment fixes that are specific to your installation
scenario. Refer to the Technote WebSphere Commerce Developer, V6.0
required maintenance, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg21236356

If you have, for example, manually applied the 6.0.2.5 Fix Pack to your
WebSphere Application Server Test Environment, and no required fixes were
applied, refer to the Technote Required Maintenance Scenario: WebSphere
Application Server was manually installed at the version 6.0.2.5 level, which is
available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg21237197

Furthermore, WebSphere Application Server Test Environment can be updated
to a Fix Pack V6.0.2.5 or later. If this update is made to 6.0.2.10 or later, apply
one of the three solutions as described in the Technote Installation of
WebSphere Commerce Developer with WebSphere Application Server Fix Pack
6.0.2.11 fails, before proceeding to 3.3, “WebSphere Commerce Developer
install” on page 38. The Technote is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg21243206

Perform the following tasks to install the required fixes to the WebSphere
Application Server V6.0 Test Environment by using the WebSphere Commerce
installation wizard:

1. Log in as a user with Administrator privileges.

2. Stop all the Java applications running on the machine.

3. Insert the WebSphere Application Server CD disk2 from the WebSphere
Commerce package, which is provided with WebSphere Commerce
Developer, into the CD-ROM drive of the machine on which Rational
Application Developer is installed. Run install.exe and click Next in the
welcome window.

4. Accept the terms and conditions shown in the agreement window and click
Next.

5. After verifying that your system has completed the prerequisites check
successfully, click Next.
36 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?uid=swg21236356
http://www-1.ibm.com/support/docview.wss?uid=swg21237197
http://www-1.ibm.com/support/docview.wss?uid=swg21243206

6. When prompted by the install wizard, select Apply maintenance and add
features (Figure 3-6). Ensure that you select the WebSphere Application
Server that is used by Rational Application Developer, for example,
<RAD_installdir>\runtimes\base_v6. Click Next.

Figure 3-6 Selecting the Apply maintenance and add features option

7. When the update installation wizard is completed, click Finish.

Tip: If your WebSphere Application Server V6.0 Test Environment is not
detected properly as <RAD_installdir>\runtimes\base_v6, that is,
C:\RAD601\runtimes\base_v6, verify whether the WebSphere Application
Server Test Environment was selected to be installed at the time of
Rational Application Developer installation (Figure 3-3 on page 33).

If the WebSphere Application Server Test Environment was not installed
during the Rational Application Developer installation, install the IBM
WebSphere Application Server V6.0 Test Environment manually.

Refer to WTE V6 MANUAL INSTALL instructions in the Technote Install of
the Rational Application Developer 6.x WebSphere Test Environment 6.0
server failed on Windows Operating System, which is available on the Web
at:

http://www-1.ibm.com/support/docview.wss?uid=swg21209120
 Chapter 3. IBM Sales Center development environment installation 37

http://www-1.ibm.com/support/docview.wss?uid=swg21209120

3.2.4 IBM Sales Center for WebSphere Commerce installation

If you choose to install the IBM Sales Center toolkit, install the IBM Sales Center
for WebSphere Commerce client before installing the IBM Sales Center toolkit.

Install the IBM Sales Center for WebSphere Commerce client by using
interactive install:

1. Insert the IBM Sales Center for WebSphere Commerce CD into the CD-ROM
drive.

2. Browse the CD-ROM drive and run the setup.exe.

3. Follow the prompts in the installation wizard.

For detailed information about installing the client IBM Sales Center for
WebSphere Commerce, refer to Chapter 4, “IBM Sales Center production
environment installation” on page 45.

3.3 WebSphere Commerce Developer install

IBM Sales Center toolkit and WebSphere Commerce toolkit are the components
of the WebSphere Commerce Developer product, and are used to create IBM
Sales Center and WebSphere Commerce customizations, as described in
Chapter 7, “Developing customizations for IBM Sales Center” on page 119.

Note: Microsoft Windows XP is the only supported platform for the IBM Sales
Center client. For updates, refer to the Technote IBM WebSphere Commerce,
version 6.0 operating system prerequisites, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007429

Note: The IBM Sales Center toolkit is only available for WebSphere
Commerce Developer Professional and WebSphere Commerce Developer
Enterprise. Use the WebSphere Commerce Developer that matches your
WebSphere Commerce server version:

� WebSphere Commerce Developer Enterprise with WebSphere Commerce
Enterprise

� WebSphere Commerce Developer Professional with WebSphere
Commerce Professional

� WebSphere Commerce Developer Express with WebSphere Commerce -
Express
38 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?uid=swg27007429

Depending on the type of the customizations you will be developing, you can
install only the IBM Sales Center toolkit, the WebSphere Commerce toolkit, or
both the toolkits. Also, depending on your hardware performance, you can install
the IBM Sales Center toolkit and the WebSphere Commerce toolkit on the same
system, or can have the two development environments installed on two different
machines.

The WebSphere Commerce Developer is built on Rational Application Developer
V6.0. In addition to Rational Application Developer V6.0.1.1, which is required for
both the toolkits, the WebSphere Commerce development environment requires
a WebSphere Application Server Test Environment at a minimum 6.0.2.5 Fix
Pack level, with all the required fixes installed. The IBM Sales Center
development environment requires IBM Sales Center for WebSphere Commerce
(Eclipse-based rich client) to be installed on the same machine.

The IBM Sales Center development environment is configured to launch the
plug-in development environment perspective (default). The target platform is set
to the IBM Sales Center client, and a runtime workbench configuration is
available to launch the IBM Sales Center application (either in debug or normal
mode). No projects are available in the workspace initially.

The WebSphere Commerce development environment is configured to launch
the Java 2, Enterprise Edition (J2EE) perspective (default). The WebSphere
Commerce Test Server is created as part of the WebSphere Commerce
Developer installation in order to deploy and test the customized code. You can
start and stop the WebSphere Commerce Test Server within the Rational
Application Developer graphical user interface (GUI). However, you might want
to run the WebSphere Commerce Test Server without running the Rational
Application Developer GUI. You might, for example, want to test the code in your
development environment and do not want to examine or change the code.
Running the WebSphere Commerce Test Server without the Rational Application
Developer GUI reduces the resources used on your system and may result in
better performance.

Note: The IBM Sales Center development environment is launched in another
workspace that is separate from the WebSphere Commerce development
environment workspace. If you choose to install both the toolkits in the same
Rational Application Developer (on the same system), you will be able to
launch each development environment separately.
 Chapter 3. IBM Sales Center development environment installation 39

3.3.1 Installing both the toolkits on the same machine

For moderate and extensive customizations, install both the toolkits, the IBM
Sales Center toolkit and the WebSphere Commerce toolkit, either on two
separate machines, or on the same machine, depending on your hardware
performance.

To install WebSphere Commerce Developer Enterprise V6.0 with the
WebSphere Commerce toolkit and the IBM Sales Center toolkit components,
both on the same machine using GUI installation, perform the following tasks:

1. Log in as a user with Administrator privileges.

2. Install the prerequisite software as outlined in 3.2, “Prerequisites for
WebSphere Commerce Developer installation” on page 29.

3. Ensure that no Java applications are running and insert the WebSphere
Commerce Developer CD in the CD-ROM of the Rational Application
Developer machine. (If the WebSphere Commerce toolkit installation wizard
does not start automatically, run setup.exe in the root of the WebSphere
Commerce Developer CD.)

4. Select the Language to be used for the install wizard, and click OK.

5. In the welcome window click Next.

6. Accept the terms in the agreement window and click Next.

7. Specify a short directory name such as C:\WCToolkit60 and click Next.

Note: For information about starting the WebSphere Commerce Test Server
from the command prompt, refer to the topic “Starting and stopping the
WebSphere Commerce Test Server via command line” in the WebSphere
Commerce information center, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.doc/tasks/tsrwcdevnogui.htm

For information about launching the IBM Sales Center development
environment, refer to the topic “Launching the IBM Sales Center development
environment” in the WebSphere Commerce information center, which is
available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tasks/ttrdevlaunch.htm
40 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrdevlaunch.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/tasks/tsrwcdevnogui.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrdevlaunch.htm

8. Select the WebSphere Commerce development environment and the IBM
Sales Center development environment components (Figure 3-7) and click
Next.

Figure 3-7 Selecting the components to install

9. Verify the summary information and click Next.

10.Verify that the installation is successful and click Finish.

Note: Long installation paths can cause errors with some WebSphere
Commerce additional software. Use a short directory name such as
C:\WCToolkit60 or C:\WebSphere\WCToolkit60.
 Chapter 3. IBM Sales Center development environment installation 41

3.3.2 Installing the IBM Sales Center toolkit in the WebSphere
Commerce development environment

To develop moderate and extensive IBM Sales Center customizations, you may
choose to install the IBM Sales Center toolkit on a machine with an existing
WebSphere Commerce Developer, where you already have the WebSphere
Commerce toolkit installed.

To add the IBM Sales Center toolkit to an existing WebSphere Commerce
Developer, perform the following tasks:

1. Preinstall IBM Sales Center for WebSphere Commerce client. For more
information, refer to 3.2.4, “IBM Sales Center for WebSphere Commerce
installation” on page 38.

2. Run the WebSphere Commerce Developer installation wizard as described in
3.3.1, “Installing both the toolkits on the same machine” on page 40. When
performing the task described in step 8 on page 41, opt to install only the IBM
Sales Center development environment component.

3. Open the file <WCDE_installdir>/bin/setenv.bat in a text editor. Ensure that
the RAD_HOME environment variable points to the correct Rational
Application Developer installation location, for example,
RAD_HOME=C:\RAD601.

Tip: To verify whether the installation is successful, perform the following
tasks:

1. For the WebSphere Commerce development environment installation,
examine the contents of the <WCDE_installdir>/logs/setup.log

For the IBM Sales Center development environment installation,
examine the contents of <WCDE_installdir>/logs/setupmsc.log

2. If these logs do not exist, are empty, or have errors, try running
<WCDE_installdir>/bin/setup.bat and
<WCDE_installdir>/bin/setupmsc.bat manually from the command line.

3. Examine the <WCDE_installdir>/bin/setenv.bat file to ensure that the
RAD_HOME environment variable points to the correct Rational
Application Developer installation location, and that the WED_HOME
environment variable points to the correct IBM Sales Center for
WebSphere Commerce (rich client) location, for example, setenv.bat
sets these variables to:

RAD_HOME=C:\RAD601
WED_HOME=C:\WebSphere\SalesCenter60
42 IBM Sales Center for WebSphere Commerce V6

Ensure that the WED_HOME environment variable points to the correct IBM
Sales Center for WebSphere Commerce client location, for example,
WED_HOME=C:\WebSphere\SalesCenter60

4. Save the file and exit.

3.3.3 Installing only the IBM Sales Center toolkit

For moderate and extensive customizations where you choose to install the IBM
Sales Center toolkit and the WebSphere Commerce toolkit on two separate
machines, and for simple customizations where you only require the IBM Sales
Center toolkit, you can install the IBM Sales Center toolkit on a machine only as
part of the WebSphere Commerce Developer installation.

To install only the IBM Sales Center toolkit, perform the following tasks:

1. Preinstall Rational Application Developer as outlined in 3.2, “Prerequisites for
WebSphere Commerce Developer installation” on page 29.

2. Preinstall IBM Sales Center for WebSphere Commerce. For more information
about this, refer to 3.2.4, “IBM Sales Center for WebSphere Commerce
installation” on page 38.

3. Run the WebSphere Commerce Developer installation wizard as described in
3.3.1, “Installing both the toolkits on the same machine” on page 40. When
you perform the task described in step 8 on page 41, opt to install only the
IBM Sales Center development environment component.

Note: You can create the IBM Sales Center development environment without
the WebSphere Commerce toolkit component. However, in order to test the
customized IBM Sales Center code, you must log in from the IBM Sales
Center client, which is a part of the IBM Sales Center development
environment, to the WebSphere Commerce server. This can be a WebSphere
Commerce Test Server running within the WebSphere Commerce toolkit on
the same system or on another system as the IBM Sales Center toolkit. It can
also be a runtime WebSphere Commerce server, running on the same system
or on another system as the WebSphere Commerce Developer when no
WebSphere Commerce customizations are required, for example, when
developing simple IBM Sales Center customizations.
 Chapter 3. IBM Sales Center development environment installation 43

44 IBM Sales Center for WebSphere Commerce V6

Chapter 4. IBM Sales Center production
environment installation

The IBM Sales Center production environment may involve anywhere from tens
to thousands of clients. The enterprise requires a scalable and repeatable way in
which to distribute and update IBM WebSphere Everyplace® Deployment for
Windows and Linux® (WED4WL) and the IBM Sales Center components, and to
distribute their customizations.

This chapter describes the basic hardware, software, and networking
requirements for the IBM Sales Center production environment. It provides
details about the production environment installation prerequisites, security
considerations, and different distribution mechanisms.

The chapter then outlines the quick install of the client with manual installation
tasks, and the manual installation of IBM Sales Center customizations and IBM
Sales Center updates, for example, fix pack installation using the Eclipse Update
Manager.

The last part of this chapter describes how to create a fully automated production
environment using automated deployment with IBM Tivoli Configuration Manager
and IBM WebSphere Everyplace Deployment.

4

© Copyright IBM Corp. 2007. All rights reserved. 45

4.1 IBM Sales Center client requirements

The production environment must comply with the hardware requirements,
operating system requirements, and networking requirements described in this
section.

4.1.1 Hardware requirements

This section describes the hardware requirements for installing IBM Sales Center
for WebSphere Commerce:

� An Intel Pentium III IBM-compatible personal computer with the following
minimum hardware requirements:

– A minimum of 384 MB of RAM
– A minimum of 350 MB of free disk space on the target installation drive

� A graphics-capable monitor with a screen resolution of 1024 x 768 display
resolution

4.1.2 Operating system requirements

This section describes the operating system requirements to install the IBM
Sales Center for WebSphere Commerce.

Ensure that you have Microsoft Windows XP with Service Pack 1, which is the
minimum operating system, installed.

Tip: For updates, refer to the Technote IBM WebSphere Commerce, version
6.0 hardware prerequisites, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007428

Tip: For updates, refer to the Technote IBM WebSphere Commerce V6.0
operating system prerequisites, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007429

Note: In addition to the required operating system service pack levels, ensure
that your system has all the latest critical fixes issued by Microsoft. To obtain
the latest service packs and critical fixes, refer to the Microsoft Windows
Update Web site:

http://windowsupdate.microsoft.com
46 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?uid=swg27007428
http://www-1.ibm.com/support/docview.wss?uid=swg27007429
http://windowsupdate.microsoft.com

4.1.3 Networking requirements

This section describes the networking system requirements that are required to
create the IBM Sales Center production environment.

In addition to the hardware and software requirements, ensure that the network
configuration of the systems involved meets the following requirements:

� The WebSphere Commerce server in your configuration can be reached from
all IBM Sales Center clients in the network by pinging the fully qualified host
name of the server from the client computer.

� The communication port is opened.

4.2 Prerequisites to use the IBM Sales Center client

The prerequisites for using the IBM Sales Center client in a production
environment are as follows:

� The WebSphere Commerce V6.0 server must be installed and running
� At least one store must exist

Also consider the security precautions with regard to the machines on which the
IBM Sales Center client is installed. For more information about this, refer to the
IBM Sales Center client security considerations.

The next section briefly describes the installation and configuration processes
pertaining to the WebSphere Commerce V6.0 server environment.

Note: The default port for communication between the IBM Sales Center
client and the WebSphere Commerce server is 8000.

Note: IBM Sales Center is only available for WebSphere Commerce
Professional and WebSphere Commerce Enterprise.
 Chapter 4. IBM Sales Center production environment installation 47

4.2.1 WebSphere Commerce server

The first step in creating the IBM Sales Center production environment is to
ensure that WebSphere Commerce V6.0 is installed, and that at least one store
exists.

In our case, we followed the IBM WebSphere Commerce V6.0 Enterprise and
Professional Installation Guide for Windows (GC10-4261-00) to install
WebSphere Commerce Enterprise V6.0 on the Windows 2003 Server Standard
Edition operating system platform. This installation guide describes how to install
and configure IBM WebSphere Commerce V6.0, and is available for download
from the IBM Publications Center site:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibi
n/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104261

We installed WebSphere Commerce V6.0 on a clean system, as a stand-alone
one-tier server, by following the instructions in the product installation guide,
using the WebSphere Commerce Quick Install. The Quick Install performs the
following tasks:

� Installs DB2® Universal Database™ V8.2.3
� Installs IBM HTTP Server V6.0
� Installs WebSphere Application Server Network Deployment V6.0.2.5
� Installs Web server plug-ins for the WebSphere Application Server
� Installs WebSphere Commerce V6.0
� Creates a WebSphere Commerce instance named demo

After the server was installed, we published two starter stores using the
WebSphere Commerce Administration Console:

� Consumer Direct B2C starter store (ConsumerDirect.sar) with housewares
catalog. In our case, we chose the Available to Promise-enabled inventory
option for the store in the store publish wizard.

� Advanced Business-to-business Direct starter store (AdvancedB2BDirect.sar)
under Seller Organization with the electronics catalog. In our case, we chose
the Available to Promise-enabled inventory option for the store in the store
publish wizard.

Tip: If you already have WebSphere Commerce V6.0 installed and
configured, proceed to 4.2.2, “IBM Sales Center client security considerations”
on page 49.
48 IBM Sales Center for WebSphere Commerce V6

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104261
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104261
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104261

For the most current list of the required maintenance, refer to the Technote
WebSphere Commerce required maintenance, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg21232042

For details about the recommended fixes for the IBM WebSphere Application
Server, refer to the Technote Recommended fixes for WebSphere Application
Server, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60

4.2.2 IBM Sales Center client security considerations

Security is an important concern whenever technology and commerce are
involved. The IBM Sales Center client is no exception. It is important that you
take the following precautions with regard to the machines on which the IBM
Sales Center client is installed:

� Ensure that the client is behind a firewall
� Physically secure the machine from intruders
� Use a password-protected screen saver

Without these precautions, an intruder can install software on the client machine,
which can, in turn, compromise the security of the information in the IBM Sales
Center for WebSphere Commerce.

4.2.3 IBM Sales Center distribution mechanisms

Depending on the number of clients and the frequency of the updates required,
you have several choices for installing and updating the IBM Sales Center.

The IBM Sales Center for WebSphere Commerce Quick Install installer provides
a one time (one-off) install capability for the Eclipse-based rich client and the IBM
Sales Center components. Installation scenarios requiring more scalability or

Tip: By default, Windows 2003 Internet Explorer enables tight security. If you
see a blank page when accessing the tools (Accelerator, Adminconsole,
Organization Adminconsole), verify and modify the Internet Explorer security
settings, for example, add the server site to your trusted sites.

Note: Treat the files under the IBM Sales Center installation path
<SC_installdir> with care because their exposure can cause security
problems. Ensure that proper file permissions and access control settings are
set to protect these files.
 Chapter 4. IBM Sales Center production environment installation 49

http://www-1.ibm.com/support/docview.wss?uid=swg21232042
http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60

automation use servers that provide local area network (LAN) booting,
reimaging, software installation, and inventory tracking so that the software
installed on a large number of clients can be remotely managed completely.

Updates are distributed and managed through a similar group of manual and
automated technologies, as are IBM Sales Center client preference settings.

Table 4-1 indicates the different tasks for which the different technologies
described in this chapter are suitable.

Table 4-1 Different technologies to distribute code

4.3 IBM Sales Center Quick Install

For simple deployment, IBM provides a Quick Install package that installs the
complete IBM Sales Center for WebSphere Commerce client and the full
WebSphere Everyplace Deployment for Windows and Linux V6.0 (WED4WL)
runtime on a single machine.

Quick Install has a graphical user interface-based (GUI-based) installer
packaged on a single CD, and supports manual installation. It is appropriate for
the following circumstances:

� Irregular and occasional installation, including installing for evaluation
purposes

� Generally, ad hoc installation and uninstallation

IBM Sales
Center Quick
Install

Image install
mechanisms

Manual install
with Eclipse
Update
Manager

IBM Tivoli®
Device
Management
Server

Other
software
distribution
systems

Initial client
installation

Easy, limited
flexibility,
manual

Better for high
volumes

N/A N/A N/A

Installing
customizations

N/A N/A Yes, manual Yes,
automated

Yes,
automated

Applying
updates

N/A N/A Yes, manual Yes,
automated

Yes,
automated

Centrally
managing the
client
configuration

N/A N/A N/A Yes Yes
50 IBM Sales Center for WebSphere Commerce V6

� Production use only in very limited deployments

� Under difficult circumstances, for example, to replace or rebuild a client on
site when the usual software deployment mechanisms are not available

� For developers, to install an instance of IBM Sales Center on the
development environment, as described in Chapter 3, “IBM Sales Center
development environment installation” on page 25

This type of installation is not appropriate under the following circumstances:

� You require manual installation of only a subset of WED4WL.

The WED4WL installer provides the flexibility that the IBM Sales Center
Quick Install does not expose. You can, for example, initially install a minimal
WED4WL, and then add the optional features.

IBM Sales Center for WebSphere Commerce requires the WED4WL
International Components for Unicode for Java (ICU4J) optional feature,
which must be installed before IBM Sales Center can be added.

For more information, refer to the installation instructions in WebSphere
Everyplace Deployment System Administrator's Guide, which is available on
the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27006861

� You have to install WED4WL with the Enterprise Management Agent already
enabled.

As part of the IBM Sales Center installation, WebSphere Everyplace
Deployment for Windows and Linux V6.0 (WED4WL) containing the
Enterprise Management Agent is installed. However, by default, this
component is not enabled in IBM Sales Center when Quick Install is used.

Note: IBM Sales Center Quick Install cannot be used to install user
customizations. The customizations must be built in the form of an Eclipse
update site. Any of the postdeployment provisioning mechanisms can then be
used to install custom extensions to the IBM Sales Center installed using
Quick Install. If Quick Install was chosen to perform an ad hoc install in the
absence of a deployment infrastructure, the manual installation of
customizations using the Eclipse Update Manager can be used because this
method does not require installation servers or deployment infrastructure to be
in place.
 Chapter 4. IBM Sales Center production environment installation 51

http://www-1.ibm.com/support/docview.wss?uid=swg27006861

You can install IBM Sales Center for WebSphere Commerce manually in the
following ways:

� Install IBM Sales Center for WebSphere Commerce interactively from a CD

� Install IBM Sales Center for WebSphere Commerce silently from a CD, the
instructions for which are available in the following Web site:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.admin.doc/tasks/ttrin_silent.htm

For this book, we installed IBM Sales Center for WebSphere Commerce using an
interactive GUI install, as described in the next section.

4.3.1 IBM Sales Center for WebSphere Commerce interactive install

To interactively install IBM Sales Center for WebSphere Commerce from a CD,
complete the following tasks:

1. Ensure that the computer on which you are installing the IBM Sales Center for
WebSphere Commerce meets the hardware, operating system, and
networking requirements (4.1, “IBM Sales Center client requirements” on
page 46).

2. Ensure that you are logged in as a user with sufficient system privileges to
install new software, and that the basic IBM Sales Center client security is set
(4.2.2, “IBM Sales Center client security considerations” on page 49).

3. Collect the following information:

– The directory in the computer on which you want to install the IBM Sales
Center

– WebSphere Commerce server information:

• Fully qualified host name for WebSphere Commerce

This is the host name that you will use when accessing WebSphere
Commerce tools such as WebSphere Commerce Accelerator

• Port number for communication with WebSphere Commerce

The default port is 8000

– (Optional) The Uniform Resource Locator (URL) for the Update Manager
site. This URL is used to update the IBM Sales Center components and
can be set at any time.

– The starting language for IBM Sales Center. This is the language that IBM
Sales Center displays in when it starts.
52 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.admin.doc/tasks/ttrin_silent.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.admin.doc/tasks/ttrin_silent.htm

4. Insert the IBM Sales Center for WebSphere Commerce CD into the CD-ROM
drive, browse the CD-ROM drive, and run setup.exe.

5. Select the Language to be used for the install wizard, and click OK.

6. In the welcome window, click Next.

7. In the agreement window, accept the terms and click Next.

8. In the page that appears, specify a short directory name such as
C:\WebSphere\SalesCenter60 and click Next.

Note: The application starts the first time using the default language
properties file if no locale setting is detected on the client machine. The
language that IBM Sales Center uses to display menus and labels is set
by the -nl argument on the command line or, if no such argument is
provided, by the operating system language setting (Regional Settings
in Windows).

Refer to the information center topic “Globalization in the IBM Sales
Center”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/co
m.ibm.commerce.telesales.developer.doc/concepts/ctrglobalizatio
n.htm
 Chapter 4. IBM Sales Center production environment installation 53

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrglobalization.htm

9. Verify the summary information (Figure 4-1) and click Next.

Figure 4-1 Summary information of IBM Sales Center for WebSphere Commerce V6 installation
54 IBM Sales Center for WebSphere Commerce V6

10.The installation starts. After the installation is complete, verify if the
installation is successful, and click Finish (Figure 4-2).

Figure 4-2 IBM Sales Center for WebSphere Commerce installation completed

After the installation process is complete, review the
<SC_installdir>\log\tsinstall.log file to ensure that no errors occurred during the
installation. (In our example, the <SC_installdir> install directory was
C:\WebSphere\SalesCenter60.)

4.3.2 Manual installation of the IBM Sales Center updates using the
Eclipse Update Manager

To install the IBM Sales Center client updates, for example, the IBM Sales
Center fix pack using the Eclipse Update Site, perform the following tasks:

1. Open the IBM Sales Center client in administrator mode, using the
-clientAdmin parameter.

Add the -clientAdmin parameter inside the startup.bat file (if you are using it)
in order to start the IBM Sales Center client, or add to the command that is
used to start IBM Sales Center.
 Chapter 4. IBM Sales Center production environment installation 55

This mode provides access to administrative functions that are normally
hidden at start. It is neither necessary to log in to IBM Sales Center nor to
launch the Order Capture application to install the fix pack.

We created a copy of startup.bat located in the <SC_installdir>,
C:\WebSphere\SalesCenter60, and edited it to add the -clientAdmin
parameter. Our copy of startup.bat, renamed to, for example,
Adminstartup.bat, contains the following command in one line:

"%~dp0rcp\rcplauncher.exe" -product
com.ibm.commerce.telesales.TelesalesWorkbenchProduct -clientAdmin

2. From the menu, select Application → Install → Add Remote Location.

3. The New Remote location window appears with the Field Name and the URL.

– In the Name field, enter a name for the update location, for example, IBM
Sales Center v6.0 updates

– In the URL field, enter the following:

ftp://ftp.software.ibm.com/software/websphere/commerce/60/salesce
nter/update/

4. The new update site is defined in the Location List (Figure 4-3). Select the
newly created update site and click Next.

Figure 4-3 Application install locations
56 IBM Sales Center for WebSphere Commerce V6

5. Select the features to install. You can, for instance, select all of them. Click
Next (Figure 4-4).

Figure 4-4 Search Results window

6. Accept the terms in the license agreements and click Next.

7. If you are presented with an optional features page, click Next.
 Chapter 4. IBM Sales Center production environment installation 57

8. Select the installation location for the features (Figure 4-5). Click Finish to
perform the update.

Figure 4-5 Install Location window

Note: IBM Sales Center fix pack updates are not enabled to change the
location of the installed feature.
58 IBM Sales Center for WebSphere Commerce V6

9. If presented with a Jar Verification window (Figure 4-6) after feature
verification, click Install.

Figure 4-6 Feature Verification window

10.When the installation is completed, you will be prompted to restart the
WebSphere Everyplace Deployment workbench. Click Restart.

4.4 Manual installation of customizations using
the Eclipse Update Manager

The WED4WL platform has the built-in ability to install the features packaged in
an Eclipse Update Site. The installation of updates can be initiated manually by
an IBM Sales Center client user if the administrator mode option is enabled.

The following list includes the prerequisites for the manual installation of
customizations using the Eclipse Update Manager:

� WED4WL must be installed on the client

WED4WL can be installed using the WED4WL installer or the IBM Sales
Center Quick Install. For production install by client imaging, install WED4WL
 Chapter 4. IBM Sales Center production environment installation 59

on the prototype client using either of these methods, so that it becomes a
part of the initial client image.

� WED4WL must not be using Enterprise Management Agent

The update manager's GUI is not available after the Enterprise Management
Agent is enabled.

� The update site must be available to the client

It may be on the client's local hard disk, CD-ROM, a file server, the Web, or
the File Transfer Protocol (FTP) server accessible from the client.

To manually install your customizations and updates, perform the following
tasks:

1. Open the IBM Sales Center client in administrator mode using the
-clientAdmin parameter. (For instructions about this, refer to step 1 on
page 55.)

2. Select Application → Install.

3. If the update site directory is available on the client hard disk, CD-ROM, or on
a shared file server, click Add Folder Location in the Application Locations
dialog box and enter the path to the update site directory. Otherwise, click
Add Remote Location and enter the URL to the update site if it is available
on an FTP server, Hypertext Transfer Protocol (HTTP) server or Hypertext
Transfer Protocol Secure (HTTPS) server. Click OK.

4. In the Application Locations dialog box, ensure that the new update site is
selected. Click Next.

5. From the update site, select the features you want to install, and click Next.

6. Accept the license agreement and click Next.

7. At the Install Location prompt, select the features to install and the location.
(Do not select the check box labeled Show base WebSphere Everyplace
Deployment location.) Click Finish.

8. The feature verification window is shown. Click Install.

9. A dialog box will ask you whether you want to restart the workbench. Click
Yes.

Note: If you select Show base WebSphere Everyplace Deployment
location, other base WebSphere Everyplace Deployment locations are
displayed. However, if you choose to install features to the base
WebSphere Everyplace Deployment location, they cannot be updated,
disabled, nor uninstalled using the Application Manager.
60 IBM Sales Center for WebSphere Commerce V6

4.5 Automatic installation of customizations and
updates

As discussed earlier, the production use of IBM Sales Center is expected to
involve anywhere from tens to thousands of IBM Sales Center clients. The
enterprise requires a scalable and repeatable way of distributing and updating
WebSphere Everyplace Deployment for Windows and Linux (WED4WL) and
IBM Sales Center components, and to distribute their customizations. This
chapter provides the recommendations pertaining to this activity. These
recommendations involve exploiting the capabilities of Eclipse and the
management capabilities built into WED4WL.

The automation of this process requires additional software, which is available
from IBM, external parties, and from the Eclipse Web site:

http://www.eclipse.org

This process also requires additional setup, including installing and configuring
the management and software distribution servers. The automation process is
attractive when this activity is spread over a sufficient number of clients.
Otherwise, manual installation is recommended.

4.5.1 The production installation of IBM Sales Center

The production installation of the IBM Sales Center client is performed in two
stages:

1. First, the base image consisting of Windows XP and an initial load of the
client software is installed.

2. The client is then deployed and further provisioned with the remaining client
application (if any), using one of the supported automated software
distribution mechanisms. (Over the lifetime of the client, updates and
additional features are installed using the same automated mechanisms.)

Tip: To uninstall or disable updates, perform the following tasks:

1. Launch IBM Sales Center in administrator mode (see instructions in step 1
on page 55).

2. Select Application → Application Management → <the feature> to
uninstall.

3. In the right panel click Uninstall.
 Chapter 4. IBM Sales Center production environment installation 61

http://www.eclipse.org
http://www.eclipse.org

Deciding about where to draw the line between the initial load of the client
software that occurs before client deployment and the further provisioning that
happens afterwards is a customer design decision. The competing factors that
contribute to this decision are:

� The initial load must include a minimal enabling software for postdeployment
provisioning. What this enabling software consists of depends on the
provisioning method.

� The initial load might require a significant setup effort that is repeated for each
choice of initial load content. This argues the point that the initial load must
contain only components that are relatively stable and common to all the
supported configurations in order to minimize the number of times the setup is
to be performed.

� If postdeployment provisioning involves a low bandwidth channel or a channel
whose bandwidth is already committed to a high-priority business function, it
is advantageous to make the initial load as complete as possible. In an
extreme situation, the initial load may contain all the software that is
necessary for a fully functioning client, and postdeployment provisioning only
applies updates to sections of the client that have changed since the time the
initial load image was created.

� If the deployed client has a high bandwidth channel to the provisioning server,
it is possible to deploy the bare hardware and perform both the initial load and
the subsequent provisioning at the deployment site. This method is also
useful to reimage a client that has been corrupted in the field.

The next section describes how to automatically deploy customizations to IBM
Sales Center.

4.5.2 Automatically deploying customizations using IBM Tivoli
Configuration Manager

Many third-party enterprise software management systems are capable of
moving a set of files to a managed system and issuing a command on that
system or running a native installer there. Use these management systems to
install and maintain IBM Sales Center for WebSphere Commerce and the
customizations you build.

IBM Tivoli Configuration Manager is used to illustrate this. Tivoli Configuration
Manager is a highly scalable system for monitoring, installing, and controlling IT
resources across an enterprise. Its software distribution and inventory monitoring
can be implemented over large numbers of geographically distributed clients.
62 IBM Sales Center for WebSphere Commerce V6

Relevant concepts are referred to using their Tivoli Configuration Manager
nomenclature. The following descriptions of the nomenclature will help you
identify the corresponding terms in your software management product:

� Tivoli management region

In a Tivoli environment, a Tivoli server and the set of clients that it serves form
a Tivoli management region. An organization can have more than one region.

� Tivoli server

The server for a specific Tivoli management region that holds or references
the complete set of Tivoli software, including the full object database.

� Managed node

A management server on which the Tivoli Management Framework is
installed, and which can therefore participate in providing management
services to endpoints.

� Gateway

The software that provides communication services between endpoints and
the rest of the Tivoli environment. The gateway is a managed node. In a
minimal configuration, a single machine hosts a Tivoli server and a gateway.

� Repeater

A managed node or gateway that caches and transmits data through a
repeater hierarchy to designated targets. Repeaters are used for multiplexed
distribution and collection operations. A repeater is a managed node.

� Endpoint

The final recipient of any type of Tivoli operation. IBM Sales Center clients in
a Tivoli management region are endpoints, not managed nodes. For
scalability reasons, endpoints communicate with gateways instead of directly
with the Tivoli server.

Endpoints require an endpoint agent installed as a Windows service. The
agent communicates with a gateway to send and receive data and to perform
actions. Tivoli Configuration Manager uses the Tivoli Management
Framework endpoint agent, lcfd.

In contrast to the Device Management Server whose agent is included as part
of the Workplace™ Managed Client platform, a Tivoli Management
Framework agent is not included in the client and must be installed
separately. Although this involves an extra component, it has the advantage
of the agent being active and managing the client even when the IBM Sales
Center client is not running. It is also possible to use Tivoli Configuration
Manager to perform the base Workplace Managed Client™ install, in addition
to distributing Eclipse update sites to the client.
 Chapter 4. IBM Sales Center production environment installation 63

There are several ways of installing an agent, including CD installation and
remote installation methods. For more information about this, refer to the “Tivoli
Enterprise™ Installation Guide” section under “Installing endpoints”. The Tivoli
Enterprise Installation Guide is part of the Tivoli Management Framework
documentation, and is available for download from the following Web site:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.ti
voli.frmwrk.doc/instguid.htm

In the rest of this section, it is assumed that the Tivoli Configuration Manager
server and the gateway is installed and configured, and that an endpoint agent is
installed and running on the client.

Environment
In our environment, we installed and configured the following components:

� The Tivoli server and gateway are installed and configured with at least the
Tivoli Configuration Manager Software Distribution, Inventory, Activity
Planner, and Change Manager features. Our Tivoli server ran on a Windows
2000 Server machine.

� An endpoint agent is running on the target client and successfully connecting
with the gateway. We used a desktop machine with Windows XP Professional
as the target machine to run the endpoint.

� The endpoint machine or the machine where the server is running, or any
other machines connected to the same network that can also be used as a
the development client, has a copy of the Tivoli Configuration Manager
Software Package Editor component installed. The Software Package Editor
is a part of the software distribution function of the Tivoli Configuration
Manager. We used the same machine on which the Tivoli server was running
to run the Software Package Editor and the Tivoli desktop.

� The IBM Sales Center client install CD image is available to the development
client, which, in our case, was installed and configured on the Tivoli server.

Note: The endpoint agent must be configured to run under the Windows
user identity, and not under the Local Server identity. Eclipse Update Site
installations fail if the agent runs as Local Server.
64 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.tivoli.frmwrk.doc/instguid.htm

Figure 4-7 shows our laboratory environment.

Figure 4-7 Tivoli Management Framework environment

Creating and distributing a WED4WL software package
This section discusses how to create and distribute a WED4WL software
package using the Tivoli Configuration Manager. Use the method described here
to remotely distribute a large number of WED4WL clients in a Tivoli environment.

To create, test, and distribute the WED4WL software package, perform the
following tasks:

1. On the development client, run the WED4WL installer with the option to
generate a prototype response file:

setupwin32.exe -options-template c:\response.txt

2. Use a text editor to customize the generated response file by following the
instructions provided in the WED4WL System Administrator's Guide. Do not
set the installLocation product bean property. Set the following product bean
properties in the responses file:

– -G licenseAccepted=true
– -W launchPlatformPanel.launchPlatform="0"

3. Launch the Software Package Editor on the development client.
 Chapter 4. IBM Sales Center production environment installation 65

4. In the Software Package Editor Selector window (Figure 4-8), select Generic
Software Package and click OK.

Figure 4-8 Software Package Editor Selector window

5. In the page that opens, right-click Noname package in the left-hand
navigator and select Properties.

6. In the General tab, set the Package Name to WMC and the Version to 6.0. Click
Condition.
66 IBM Sales Center for WebSphere Commerce V6

7. In the Condition Editor window, double-click os_name, click ==, and type
Windows_NT in the text window, as shown in Figure 4-9. Click OK.

Figure 4-9 Condition Editor

Note: In Tivoli Configuration Manager, Windows_NT is the name used to
refer to all the supported Windows operating systems. Refer to the Tivoli
Configuration Manager Reference Manual for Software Distribution for
information about the condition variables.
 Chapter 4. IBM Sales Center production environment installation 67

8. In the Package Properties editor (Figure 4-10), select Variable list. In the
variable editor, type install_location in the Name field and
$(program_files)\IBM\WED in the Value field, and click Set. This creates a
variable and its default value, which you can use in the installation script to
control the place where the WED4WL will install. Also create another variable
install_temp with the value $(install_location)\temp (Figure 4-10). This
directory will be used to temporarily hold the install image files. Click OK.

Figure 4-10 Package Properties editor
68 IBM Sales Center for WebSphere Commerce V6

9. In the Software Package Editor page, right-click the package icon again and
select Insert → Program → Execute program (Figure 4-11).

Figure 4-11 The Software Package Editor

10.The Execute Program Properties editor opens. In the Install tab of the
Execute Program Properties editor, type cmd in the Path field. This is the
program that will run the Windows Command Interpreter.
 Chapter 4. IBM Sales Center production environment installation 69

11.Click Advanced and fill in the properties listed in Table 4-2, including the
quotes that are provided. Click OK.

Table 4-2 Property information

12.In the Execute Program Properties window, click Add in the Corequisite Files
section. Navigate to the local file system location where the WED4WL install
images are present, and select the install directory. Click Open. Select the
directory icon that has just been created and click Edit.

13.In the Add Directory Properties window (Figure 4-12), change the Destination
Location to $(install_temp). This temporarily copies the install directory and
all the files and subdirectories to the path $(install_temp)/install. Click OK.

Figure 4-12 Add Directory Properties window

Arguments “$(install_location)”

Inhibit parsing Not checked

Working directory $(install_temp)

Reporting standard error file on server Check
70 IBM Sales Center for WebSphere Commerce V6

14.Ensure that the Directory icon is not selected and click Add again. This time,
copy the updates directory to $(install_temp)/updates.

15.Deselect any unwanted icons once again and click Add one more time.
Navigate to the response.txt file created in step 1 on page 65. Edit the created
file entry to again set the Destination location to $(install_temp). The editor
looks similar to Figure 4-13. Click OK.

Figure 4-13 Execute Program Properties settings

16.In the main editor window, from the menu, select File → Save as. Select the
Software Package Block file type and provide the name wmc6 for the file.

17.To test the package locally on the development client, open a command shell
window, with the software distribution command line environment
established. Your Start menu must contain a shortcut named SWDIS ENV
that will open this. Issue the following command:

wdinstsp -Dinstall_location=c:\WMC6 wmc6.spb

In this command, wmc6.spb is the software package block file created earlier.
The property C:\WMC6 overrides the default install location of C:\Program
Files\IBM\WED and the package installs in the C:\WMC6 directory.
 Chapter 4. IBM Sales Center production environment installation 71

18.When the software package is ready, it is distributed to the endpoint using the
Tivoli desktop.

Creating and distributing an Eclipse Update Site
software package

This section discusses how to create and distribute an IBM Sales Center feature
using Tivoli Configuration Manager. Use the method described here to remotely
distribute a large number of IBM Sales Center clients in a Tivoli environment. A
software package bundle is created in a Tivoli environment for packaging and
distributing any software you want to distribute.

Perform the following tasks to create a software package from an Eclipse Update
Site. For this book, the IBM Sales Center Update Site was used. However, the
same procedure can be used to distribute update sites built with your own
customizations:

1. Launch the Software Package Editor on the development client.

2. In the Software Package Editor Selector window, select Generic Software
Package and click OK.

3. In the window that opens, right-click the Noname package icon in the
left-hand navigator and select Properties.

4. Enter the Name as Sales Center and the Version as 1.0. Click Condition.

5. In the Condition Editor window, double-click os_name, click the == button,
and type Windows_NT in the text window. Click OK.

6. In the Package Properties editor, click the Variable list tab. In the variable
editor, type install_location in the Name field and
$(program_files)\IBM\WED in the Value field, and click Set. When the
distribution is installed, this variable must be set to the path where WED4WL
has already been installed. Also create a variable install_temp with the value
$(install_location)\temp. This directory will be used to temporarily hold the
install image files. Click OK.

7. In the Software Package Editor, right-click the Package icon again and select
Insert → Program → Execute.

Tip: Refer to the IBM Tivoli Configuration Manager Reference Manual for
Software Distribution for more information about disconnected
command-line interface commands and the software package change
management states.
72 IBM Sales Center for WebSphere Commerce V6

8. An Execute Program Properties editor opens. In the Install tab of the Execute
Program Properties editor, type installfeature.bat in the Path field. This is
the name of the Windows batch file that will be executed. Click Advanced
and fill in the properties as shown in Table 4-3, including the quotes that are
provided. Click OK.

Table 4-3 Property information

9. Create a copy of installfeature.bat (Example 4-1) and copy it to a location in
the development client.

Edit this file by replacing the text FEATUREID with the name of the feature to
install and the VERSION with its version number.

To install Sales Center, replace FEATUREID with the name of the primary
feature, com.ibm.commerce.telesales.impl.feature, and VERSION with
6.0.0. Any nested features in the update site will also be installed. If your site
has more than one primary feature, replicate those lines and replace
FEATUREID and VERSION with the corresponding values for the other
features as many times as necessary.

This script takes one command-line argument, that is, the path where an
instance of WED4WL is already installed. The script assumes that it will be in
the same directory in which the update site's site.xml file is located. It
implicitly creates an install site named sc. You might encounter errors if you
attempt to use an existing install site instead. In particular, the site in
%WED_HOME%\shared\eclipse path cannot be installed into using this
mechanism.

Example 4-1 installfeature.bat

setlocal enableextensions
set WED_HOME=%1
set CUR_DIR=%~dp0

%WED_HOME%\rcp\rcplauncher -application
org.eclipse.update.core.standaloneUpdate -nosplash -os win32 -arch x86
-command install -featureId FEATUREID -version VERSION -from
"file:/%CUR_DIR%/" -to %WED_HOME%\sc\eclipse -rcpLauncherWait
-consolelog -data "%CUR_DIR%/data"
set rc=%ERRORLEVEL%
if errorlevel 1 goto :error

Arguments “$(install_location)”

Inhibit parsing Not checked

Working directory $(install_temp)

Reporting standard error file on server Check
 Chapter 4. IBM Sales Center production environment installation 73

rem replicate previous lines to add other features

:error
rem endlocal is implied by end of script
exit %rc%

10.In the Execute Program Properties window, select Add in the Corequisite
Files section. Navigate to the local file system location of the Eclipse update
site and select its directory. Click Open. Select the directory icon just created,
and click Edit.

11.In the Add Directory Properties window (Figure 4-14), change the Destination
Location to $(install_temp) and the Destination Name to ".", and select the
Descend directories option. This maps the Update Site directory and all the
files and subdirectories it contains, to the path $(install_temp). Click OK.

Figure 4-14 Add Directory Properties window
74 IBM Sales Center for WebSphere Commerce V6

12.In the Execute Program Properties window (Figure 4-15), deselect all the
icons and click Add. Navigate to the customized installfeature.bat file and
select Open. Click Edit and set the Destination Location as $(install_temp).
Click OK.

Figure 4-15 Adding installfeature.bat file properties

13.Configure the actions to be uninstalled. Select the Remove tab and type
uninstallfeature.bat in the Path field. Click Advanced and set the fields in
such a way that they are identical to the way they were set for the Install
action.
 Chapter 4. IBM Sales Center production environment installation 75

14.Create a copy of uninstallfeature.bat (Example 4-2) and copy it to a location in
the development client. Again, customize the FEATUREID and VERSION and
the install site location. Duplicate the text if more than one feature is to be
uninstalled. Because features must be disabled before they can be
uninstalled, this script performs two actions for each feature.

Example 4-2 uninstallfeature.bat

setlocal enableextensions

set WED_HOME=%1
set CUR_DIR=%~dp0

%WED_HOME%\rcp\rcplauncher -application
org.eclipse.update.core.standaloneUpdate -nosplash -os win32 -arch x86
-command disable -featureId FEATUREID -version VERSION -to
%WED_HOME%/sc/eclipse -rcpLauncherWait -consolelog -data
"%CUR_DIR%/data"
set rc=%errorlevel%
if errorlevel 1 goto :error

%WED_HOME%\rcp\rcplauncher -application
org.eclipse.update.core.standaloneUpdate -nosplash -os win32 -arch x86
-command uninstall -featureId FEATUREID -version VERSION -to
%WED_HOME%/sc/eclipse -rcpLauncherWait -consolelog -data
"%CUR_DIR%/data"
set rc=%errorlevel%
if errorlevel 1 goto :error

:error
rem endlocal implied by end of script
exit %rc%

15.Select Add in the Execute Program Properties editor and map the
customized uninstallfeature.bat file to the directory $(install_temp). Click OK.

16.As in the previous example, save in the Software Package Block format.

17.Test using the wdinstsp command on the development client to install
features into a previously installed WED4WL. The install succeeds
irrespective of whether the client is running or not, but the installed features
become accessible only after the client is restarted.

Test the uninstall action on the development client using the following
software distribution disconnected command:

wdrmvsp "Sales Center^1.0"
76 IBM Sales Center for WebSphere Commerce V6

The Tivoli desktop can now be used to import the software distribution packages
built in this section into a Profile Manager in the management region, and
activities can be scheduled to distribute them to endpoints. There are other
variations in the distribution mechanism where, for example, the corequisite files
are served from a file server instead of being copied to each endpoint, or the
package is served from a repeater depot.

4.5.3 Automatically deploying customizations using WebSphere
Everyplace Deployment

IBM Workplace Managed Client includes an Enterprise Management Agent that
can be used in conjunction with a Tivoli Device Management Server to install,
upgrade, and configure applications running on the WED4WL client. The agent
and the server can also manage other aspects of the client machine, such as
installing or upgrading native applications or manipulating the contents of the
Windows registry.

For information about installing and configuring the Device Management Server,
and the full set of capabilities it provides, refer to the documentation supplied
with the product. In this case, we assume that the server is already configured
and the objective is to use it to install or uninstall the Eclipse features in a
WED4WL runtime.

The Device Management Server is capable of running a number of different
types of management operations on a variety of different device types. In Device
Management Server terms, the distribution of IBM Sales Center or of customized
Eclipse features to install on a WED4WL Windows XP client uses a native
software distribution job targeting a Windows 32-bit device. This device is a
subset of the Open Services Gateway initiative (OSGi) devices, which in turn, are
a type of Open Mobile Alliance Device Management (BaseOMA DM) device.

Note: If the features are removed when the client is running, the results are
unpredictable. Therefore, uninstalls must normally be scheduled when the
client is not in use.

Note: The Tivoli Device Management Server is not supplied with WebSphere
Commerce, but is a component of several IBM products that may be
separately acquired. The Enterprise Management Agent in WED4WL requires
a Device Management Server V1.8 or later. An appropriate Device
Management Server is available in the IBM products WebSphere Everyplace
Deployment V6.0 and WebSphere Everyplace Device Manager V6.0.
 Chapter 4. IBM Sales Center production environment installation 77

To distribute software to the client platform, use the NativeAppBundle tool that is
provided as part of the Device Management Server distribution to wrap the
Eclipse update site in an OSGi bundle. After this, create and schedule a software
distribution job targeting the client. When the created bundle is received on the
client by the agent, it programmatically invokes the Eclipse Update Manager to
install the features packaged in the update site.

Prerequisites
The following components were installed and configured on our environment:

� WebSphere Everyplace Deployment 6.0 Server

This is installed and configured on a server whose port 80 is accessible from
the client. Enable WebSphere Application Server security on the Device
Management Server. Although the Device Manager Installation Guide
indicates that enabling security is optional, security is mandatory to correctly
support Windows 32-bit devices.

Before starting the WebSphere Everyplace Deployment Server, apply IBM
WebSphere Everyplace Deployment V6.0 Interim Fix 2.

For information about applying IBM WebSphere Everyplace Deployment V6.0
Interim Fix 2 and the location information, refer to the following Web site:

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D
400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en

� WebSphere Everyplace Deployment for Windows and Linux (WED4WL) 6.0

Install WED4WL on the client either by using the WED4WL installer or the
IBM Sales Center Quick Install.

Apply the following fixes on the WED4WL:

– Fix Pack 1 for WebSphere Everyplace Deployment for Windows and Linux
6.0

For information about applying Fix Pack 1 for WebSphere Everyplace
Deployment for Windows and Linux 6.0 and the location information, refer
to the following Web site:

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&d
c=D400&q1=wedfpintfx&uid=swg24012062&loc=en_US&cs=utf-8&lang=en
78 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24012062&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24012062&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en

– WebSphere Everyplace Deployment for Windows and Linux 6.0 Interim
Fix 3

For information about applying the WebSphere Everyplace Deployment
for Windows and Linux 6.0 Interim Fix 3 and the location information, refer
to the following Web site:

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&d
c=D400&q1=wedfpintfx&uid=swg24013807&loc=en_US&cs=utf-8&lang=en

Following are the tasks that we performed (each of these tasks are described
subsequently):

� Enabling the Enterprise Management Agent
� Creating an Eclipse NativeAppBundle
� Registering the NativeAppBundle with the Device Management Server
� Scheduling a software distribution job
� Uninstalling using a bundle control job

Enabling the Enterprise Management Agent
To enable the Enterprise Management Agent, perform the following tasks:

1. Start the IBM Sales Center client with the -clientAdmin command-line option.
For instructions, refer to step 1 on page 55.

2. In the Preferences window (Figure 4-16):

– Select the Enterprise Management Agent preferences page.

– Select the check box against Enable Enterprise Management Agent. A
dialog box pops up asking you to confirm whether you want to enable the
Enterprise Management Agent. Click OK.

– In the Server IP Address field, enter the following:

http://<hostname>/dmserver/SyncMLDMServerAuthRequired

– <hostname> represents the Device Management Server host name.

– For the Device User Name and Device User Password fields, provide valid
information for a user authorized to access the Device Management
Server. These users are defined in the user registry selected during the
WebSphere Application Server configuration. You can test a user and
password combination by accessing the server URL with a Web browser.

– Review the polling configuration. The Enterprise Management Agent
contacts the Device Management Server based on a start and stop polling
window. When the Enterprise Management Agent is enabled for the first
time, it attempts to contact the Device Management Server regardless of
the polling window settings. On each subsequent restart, the agent will not
contact the Device Management Server if it is outside the polling window.
 Chapter 4. IBM Sales Center production environment installation 79

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013807&loc=en_US&cs=utf-8&lang=en

The polling configuration is not changeable in this window. It can be
changed by a Device Management Server Configuration Job.

Click OK.

Figure 4-16 Agent Preferences page

Creating an Eclipse NativeAppBundle
Following is the process involved in creating an Eclipse NativeAppBundle:

1. Log in to the server where the Device Management Server is installed and
copy the Eclipse update site to a directory on that machine.

2. Change the current directory to <DM Server install directory>/bin.

3. Run the command shown in Example 4-3 to create your software bundle.

Example 4-3 Creating a software bundle

NativeAppBundle -BundleName=<bundle_name> -InputDirectory=<path to your
update site> -InstallDirectory=<temporary_install_directory>
-BuildDirectory=<HTTP server document directory>/bundles
-Eclipse=default -BundleVersion=<version> -CleanupAfterInstall=yes
-RemoveOnUninstall=no
80 IBM Sales Center for WebSphere Commerce V6

In this command:

– <bundle_name> is a name of the bundle that will be generated to wrap
the Eclipse update site.

The bundle name may not contain spaces or periods. Each bundle that
you define using the NativeAppBundle tool must use a unique bundle
name, for example, if you have created a distribution bundle with a
BundleName of MyApp, containing V1.0.0 of your application, you must use
a different BundleName when creating a distribution bundle containing
V2.0.0. This refers only to the BundleName specified as parameters to the
NativeAppBundle program, and not to the features or plug-ins contained in
the update site.

– <path to your update site> is the location of the input update site on the
Device Management Server machine.

– <temporary_install_directory> is the name of the directory that will be
used on the client, and is operating system-specific. This value may
contain a variable reference that will be replaced on the client during
bundle installation. The manifest file generated for this bundle uses % as
the delimiter surrounding the variable name. The search order for the
variable value is the operating system environment, followed by the Java
system properties.

If the NativeAppBundle command is being run on a Windows system,
escape characters are required, for example, in order to use the value of
the environment variable TEMP on the client system, you must specify
-InstallDirectory=^%^%TEMP^%^%.

The variable name is case-sensitive, unlike the usual behavior on
Windows systems.

– <HTTP Server document directory> is the destination where the OSGi
bundle jar will be written. Because the client has to access it using either
the HTTP or the FTP protocol, it is most convenient to generate it directly
into a document directory served by a Web server or an FTP server. An
example path would be C:/Program Files/IBM HTTP
Server/htdocs/en_US/bundles.

– The -Eclipse parameter indicates that the target bundle contains an
Eclipse update site for installation into an Eclipse extension framework. Its
value defines the Eclipse install site into which the features will be
installed. The special value default installs the features into the default
install site for WED4WL. Any other value must be an absolute file system
path to the Eclipse subdirectory of the install site, for example,
-Eclipse=c:/Program Files/IBM/WED/SalesCenter/eclipse.
 Chapter 4. IBM Sales Center production environment installation 81

Example 4-4 shows the command that we ran.

Example 4-4 Targeted bundle command

NativeAppBundle -BundleName=MCSC1 -InputDirectory=C:\WED-SW-Dump\ISCWC
-installDirectory=C:\Temp\mcsc -BuildDirectory=c:\IBM\IBM HTTP
Server\htdocs\en_US\bundles -Eclipse=default -BundleVersion=1.0.0
-CleanupAfterInstall=yes -RemoveOnUninstall=noand on successful
execution generates the response

After the command has run successfully, the output is as follows:

SMF bundle: c:\Program Files\IBM HTTP
Server\htdocs\en_US\bundles\MCSC1+1_0_0.jar successfully created

Registering the NativeAppBundle with the Device
Management Server

To register the NativeAppBundle with the Device Management Server, perform
the following tasks:

1. Start the Device Manager console. The console is automatically installed on
the Device Management Server, but may also be installed on other Windows
systems using a browser. For instructions, refer to the topic “Installing the
Device Manager console” in the Device Management Server documentation.

Ensure that the Device Manager Server field contains the Device Manager
Server host name.

2. Log in to the Device Manager console with the appropriate user ID and
password:

– In a WebSphere Everyplace Deployment server, use the WebSphere
Everyplace Deployment administrator user ID and password.

– In a WebSphere Everyplace Device Management server, the default
Subscription Manager authorizes the user ID dmadmin with the password
dmadmin.

If you have implemented a custom Subscription Manager on the server, it will
determine which IDs and passwords are valid.
82 IBM Sales Center for WebSphere Commerce V6

3. In the Device Manager page, right-click Software and select New Software
(Figure 4-17).

Figure 4-17 Adding new software bundle in Device Manager
 Chapter 4. IBM Sales Center production environment installation 83

4. In the page that appears (Figure 4-18), perform the following tasks:

– Select NativeWin32OSGiBundle software type.

– Specify the URL where the previously created native application bundle is
served from.

– Click Fetch.

Click Next.

Figure 4-18 Fetching the software-created bundle
84 IBM Sales Center for WebSphere Commerce V6

5. In the page that appears (Figure 4-19), select all the operations for the Device
Class = Win32®, and click OK.

Figure 4-19 Selecting all the devices

Scheduling a software distribution job
To schedule a software distribution job, perform the following tasks:

1. Start and log in to the Device Manager console.

2. In the Device Manager console, perform the following tasks:

– Select Devices.
– Select Use New Query and Return anything as your search criteria.

Click OK.
 Chapter 4. IBM Sales Center production environment installation 85

3. The Device Manager console (Figure 4-20) shows a list of the enrolled
devices. Select the device or devices you want to distribute the software
package to, right-click it, and select Submit Job.

Figure 4-20 The list of devices enrolled
86 IBM Sales Center for WebSphere Commerce V6

4. In the page that appears (Figure 4-21), under Job Type, select Native Bundle
Software Distribution. Use the default settings for all the other job attributes,
and click Next.

Figure 4-21 Submit Job: Attributes window
 Chapter 4. IBM Sales Center production environment installation 87

5. In the Submit Job:Job Parameters page (Figure 4-22), perform the following
tasks:

– Select Add Group.

– Select the relevant registered software package from the list of available
software.

– Set Auto start install program to True.

Click Next.

Figure 4-22 Adding a group
88 IBM Sales Center for WebSphere Commerce V6

6. In the Submit Jobs:Summary page (Figure 4-23) click OK.

Figure 4-23 Job summary

7. After the job is submitted, click Close.

The job runs on each targeted client according to the parameters set in its polling
configuration. (WED4WL must be running for the polling to occur.)

To check the status of the Job in the Device Manager console, perform the
following tasks:

1. Select Jobs in the left-hand navigation pane.

2. Select Return anything and click OK.

3. Right-click the Native Bundle Software Distribution job and select View
Job Progress... or View Job Progress Summary...
 Chapter 4. IBM Sales Center production environment installation 89

After the distribution job is completed, the features provided in the update site is
installed on the file system on the client. The WEDWL prompts the user for an
update when it finds a new update in the server (Figure 4-24).

Figure 4-24 Agent prompt for new update install

After the update is completed, WEDWL restarts the client. A few features will
then be accessible.
90 IBM Sales Center for WebSphere Commerce V6

Uninstalling using a bundle control job
To uninstall the features, perform the following procedure within the Device
Manager console:

1. Right-click Device and select Submit Job.

2. Select Bundle Control as the Job type (Figure 4-25) and click Next.

Figure 4-25 Selecting bundle control

3. In the page that appears, click Add Step.

4. In the page that appears, select Uninstall against Action.
 Chapter 4. IBM Sales Center production environment installation 91

5. Select the feature or features to be uninstalled from either the OSGi bundles
from Inventory field or the OSGi bundles from repository not listed in inventory
field selection list, and click Next (Figure 4-26).

Figure 4-26 Selecting Uninstall and the bundle name

6. Click OK.

7. Click Close.

8. The feature is uninstalled when the job is received at the client end. Stop and
restart the client after the feature is uninstalled.

You can distribute any additional customizations by using the procedure
described in this section.
92 IBM Sales Center for WebSphere Commerce V6

Part 3 IBM Sales
Center
customizations

This part lists and discusses the requirements and the design of IBM Sales
Center and the process involved in installing and building the IBM Sales Center
for WebSphere Commerce development environment and production
environment.

Part 3
© Copyright IBM Corp. 2007. All rights reserved. 93

94 IBM Sales Center for WebSphere Commerce V6

Chapter 5. Requirements and design

This chapter explains how to plan IBM Sales Center customizations. The first
section explains the phased approach to planning customizations. The second
section demonstrates the use of the phases within the example of a call center
environment, including customer requirement scenarios and solution design.

5

© Copyright IBM Corp. 2007. All rights reserved. 95

5.1 Planning and designing IBM Sales Center
customizations

Following are the planning and design phases of IBM Sales Center
customizations:

1. Requirements gathering
2. Fit-gap analysis
3. Solution design
4. Macro design and micro design
5. Postdesign activities

5.1.1 Phase 1: Requirements gathering

In the requirements gathering phase, participants provide the requirements
pertaining to the customization.

Participants include the following categories of people:

� Technical staff who understand the software and hardware systems used in
the business process. These include architects, developers, and database
administrators. This group may include people from the company that
requires the customizations, people from a partner organization that is
planning to implement customizations, and people from a software vendor
organization, such as IBM.

� Businesspersons who understand the business and its processes such as
business analysts and project managers

� Other stakeholders such as users, CEOs, and CIOs

The topics that are discussed in this phase include the following:

� Integration with systems outside WebSphere Commerce such as an
interactive voice response (IVR) software or a product inventory system

� Existing business processes and the vision for the solution

� Project milestones, target milestones, and launch dates

� Nonfunctional requirements such as performance targets

The following requirements are considered specifically for IBM Sales Center:
96 IBM Sales Center for WebSphere Commerce V6

� Business requirements

– Changing the workflow within IBM Sales Center to match the flow of the
existing business processes and to minimize the impact on customer
service representatives (CSRs) when learning the new workflow

– Viewing reports to analyze CSR productivity, for example, the number of
calls processed by a CSR in 60 minutes

� Integration requirements

– Integrating with a customer relationship management (CRM) system to
load the additional customer data into IBM Sales Center

– Providing live help capability to allow CSRs to send and receive instant
messages to and from customers

� Nonfunctional requirements

– A CSR must be able to find a product within 15 seconds and place an
order within 60 seconds

– Two hundred CSRs must be able to access IBM Sales Center
concurrently with no performance degradation

5.1.2 Phase 2: Fit-gap analysis

In the fit-gap analysis phase, participants analyze each requirement to determine
if the requirement already exists by default (“fit”) or if customization is required
(“gap”).

Participants include technical implementors or product architects or both.

Fit-gap analysis includes the following:

� Determining which requirements are already met from the base install, and
which are customizations. The participants might consider using as much of
the out-of-the-box functions as possible in order to reduce customization
costs and migration complexity. It might be easier for a business process to
adapt to the product’s default process rather than implement extensive
product customizations.

� Categorizing each customization as small, medium, or large according to the
complexity

� Deciding on high-level implementation details

5.1.3 Phase 3: Solution design

The solution design describes the customizations at a high level, including any
assumptions, dependencies, and the end goals of the solution. The solution
 Chapter 5. Requirements and design 97

design must contain enough details to continue the design because it is the basis
for the rest of the design phases.

The solution design document is presented back to the stakeholders from the
requirements gathering phase for approval in order to ensure that everybody’s
requirements are fulfilled and that everyone understands what will be
implemented.

Solution design includes the following information:

� Architecture, including components and their interaction, and software
version levels

� Storyboards outlining any new or modified user interfaces

� Modified business processes and high-level use cases

� Sizings and time lines for the implementation

5.1.4 Phase 4: Macro design and micro design

In this phase, macro design and micro design documents are created to outline
the technical aspects of the implementation in different levels of detail.

Macro design includes the high-level details of the solution. The information in
the macro design document might include the following:

� A site map of a newly designed Web site
� Functional use cases
� A short description of any new or extended commands
� Summary diagrams detailing integration with original equipment manufacturer

(OEM) software
� Database schema changes
� User interface mockups, wire frames, and screen captures

The micro design includes the lower-level technical details required for the
customizations. The goal of micro design is to contain enough technical details
for coding and unit testing to begin. A micro design document might, for example,
contain the following:

� Specific information about new and extended commands, including input and
output parameters, command logic, and the exceptions thrown

� New entity beans, finder methods, and data beans

� Any messages created for OEM software integration

� Eclipse extension points to be used

� New or modified Business Object Documents (BODs) required to pass
custom data between the WebSphere Commerce server and the client and
98 IBM Sales Center for WebSphere Commerce V6

any code that is required to handle this data, such as message mappers,
request handlers, and response builders

5.1.5 Phase 5: Post-design activities

After the macro design and micro design phase, the following activities take
place. The participants of these activities can include business partners, users,
software vendor representatives, and people from the company that requires the
customizations:

1. Development and unit test

In this phase, developers write the code to implement the customizations.
Developers also perform unit tests on their code to ensure that it works as
expected.

Developers must ensure that they write the proper Javadoc™ so that their
code can be understood and extended by other developers.

2. Build

In this phase, the build team collects all the code from multiple developers
and packages the code to make it available for testing

3. Test

In this phase, testers test the package created by the build team to ensure
that all the different developers’ customizations work together as expected.
After testing is completed successfully, the package can be deployed to the
production systems. Depending on the software, there might be multiple
packages. In the context of IBM Sales Center customizations, two packages
might be required, one to update the IBM Sales Center client, and one to
update the WebSphere Commerce server.

4. Information development

In this phase, information developers or technical writers write documentation
for the users. They may, for example, create a user guide for the new
functions or a customization guide so that developers can, in the future,
further enhance the new code.

5. Deploy and verify

In this step, the customizations are deployed to the IBM Sales Center rich
clients and to the WebSphere Commerce server. Whether the customizations
work as expected after deployment must be verified because of possible
differences between the test environment and the production environment.
 Chapter 5. Requirements and design 99

5.2 An example using IBM Sales Center

This section demonstrates the design phases described in the previous section,
using WebSphere Commerce and IBM Sales Center.

5.2.1 Requirements gathering

In this example, the business users and the development team meet to discuss
enhancements to the IBM Sales Center. The participants who are involved in the
requirements gathering phase include architects, developers, business analysts,
and a project manager from a call center company, and architects and
developers from IBM, who help implement WebSphere Commerce and IBM
Sales Center solutions.

The business analyst and the project manager provide the following
requirements:

� CSRs must be able to find a customer record by searching for the customer’s
e-mail address

� CSRs must be prompted, possibly with a pop-up, to mention the promotions
available at the store, for example, “Free shipping on orders over $50”.

� A new loyalty points program requires that each customer record is
associated with a loyalty points number and balance. Each time a customer
makes a purchase, points are added to their loyalty points balance. The points
can be redeemed against free merchandise.

� If a customer’s order contains a back-ordered item, the customer must send
an e-mail when the back-ordered product becomes available.

The technical users provide the following software and hardware requirements:

� The database system is DB2

� The operating system for the Sales Center clients is Windows XP, and the
operating system for the WebSphere Commerce server is Windows 2003
Server

� Enhance the tax calculation process by integrating with a OEM taxation
software package
100 IBM Sales Center for WebSphere Commerce V6

5.2.2 Fit-gap analysis

In this example, the participants involved in this phase are technical
implementors or product architects or both. Table 5-1 shows a fit-gap analysis
summary.

Table 5-1 Fit-gap analysis summary

5.2.3 Solution design

The solution design is the basis for the rest of the design phase and is presented
to all the stakeholders for approval before the implementation begins. The
solution design for this set of requirements is described in detail in the following
sections.

Approach
For each requirement, the methodology for the solution is described at a high
level, for example:

� Some requirements are available from the base install, and therefore, no
work is required

Requirement Fit or Gap Implementation details

Find customer by e-mail
address

Fit None

Prompt CSR to mention
promotions

Gap Involves customizing the IBM Sales Center
client only

Loyalty points number and
balance

Gap Involves customizing both the IBM Sales
Center and the WebSphere Commerce
server

Send e-mail to customer
when back-ordered
product becomes available

Gap Involves customizing the WebSphere
Commerce server only

The database system is
DB2

Fit None

The operating system is
Windows XP

Fit None

Integration with a
third-party taxation
software

Gap Involves customizing the IBM Sales Center
client and the WebSphere Commerce
server, and integration with OEM software
 Chapter 5. Requirements and design 101

� Some requirements require customization of only IBM Sales Center, and not
of WebSphere Commerce server. These types of customizations do not
require custom data to be transferred between the client and the server. Also,
this type of customization does not require any change to the commands that
run on the WebSphere Commerce server side. The requirement of a pop-up
prompting CSRs to mention store promotions is an example of this type of
customization. This approach section must mention that an implementation
detail from the fit-gap section, the promotion listed in the pop-up, is relative to
the items in the order and not related to other attributes such as the
customer’s demographic information.

� Some requirements require customization of only WebSphere Commerce
server. These type of customizations do not affect the user interface in the
IBM Sales Center. Sending an e-mail notification when a back-ordered
product is in stock is an example of this type of customization. This section
must mention any implementation details, for example, the necessity for a
user to have a valid e-mail address, and a description of the software used to
manage the outbound e-mails.

� Some requirements require customization of both the IBM Sales Center client
and the WebSphere Commerce server. The loyalty points requirement is an
example of this type of customization. This type of customization requires
changes to the business logic or Web storefront JavaServer Pages™ (JSP)
on the WebSphere Commerce server side and changes to the business logic
or user interface on the IBM Sales Center side. This section must describe
implementation details, including the following:

– Requirement details

• Loyalty points are automatically calculated based on the order’s total
price

• Loyalty points are deducted if an order is returned

• Loyalty points redemption is handled by an OEM company and is out of
scope of this project

• CSRs must be able to view a customer’s loyalty points number and
balance

• CSRs must be able to update a customer’s loyalty points number

• Customers must be able to register for a loyalty points number or add a
loyalty points number to their profile on the store’s Web page

• Customers must be able to view their loyalty points balance on the
store Web page

– WebSphere Commerce server customizations

• The name of the database table where the loyalty points number and
balance are stored
102 IBM Sales Center for WebSphere Commerce V6

• Any new entity beans required to fetch and update the database table

• How the point value is calculated when an order is completed, for
example, before or after tax is added to the item

• Calculating and deducting the loyalty points when an item is returned,
for example, whether to deduct the points when the customer calls to
create the return or when the physical goods are received

• Changes to the JSP pages in the storefront to display or collect
information

• Code required to handle any new or modified BODs

– IBM Sales Center customizations

• Modified or new editor pages to capture and display the loyalty points
number and balance

• Modified or new BODs to transfer custom data between the
WebSphere Commerce server and the IBM Sales Center client

Scope of the work
Following is the scope of the work of the project (this is to ensure that everyone
understands what will and will not be completed):

� The work provided as part of the customization includes design, coding,
testing, and documentation. Deployment to client machines will be tested but
not implemented to the actual users.

� Deployment and user training of the new functionality is not within the scope
of this work

� The redemption of loyalty points is not within the scope of this project

Testing requirements beyond the functional test
Functional test ensures that each new customized function works as expected. In
addition to the functional test, following are the other types of test that might be
required:

� User acceptance test

This ensures that the functions implemented by the technical team is what the
other stakeholders expect, for example, is the number of loyalty points
calculated as expected?

� Usability test

This ensures that IBM Sales Center is easy to use for a user, for example, in
the graphical user interface (GUI), if the user expects the keyboard shortcut
Ctrl+Q to quit the program, but the actual function creates a new quote, the
user might be confused.
 Chapter 5. Requirements and design 103

� Performance and scalability test

Because IBM Sales Center will be used by many users in a call center, and
the success of the call center is partially judged by how quickly customer calls
are resolved, it is important to test the performance of the IBM Sales Center
under different conditions, such as adding more CSRs or handling a high call
volume.

Architecture and back-end system integration
Architecture and back-end system integration includes the following:

� System architecture details are explained here. This example does not
require much architectural change. However, other scenarios may include
information about how asset stores are used and the catalog hierarchy in the
implementation.

� The requirement to use OEM software for tax calculation is considered as
back-end integration, that is, this change must be invisible to the user. In this
example, architectural information about how integration is implemented is
explained.
104 IBM Sales Center for WebSphere Commerce V6

Physical topology
This section details the physical hardware required for the solution. The
hardware and software for the WebSphere Commerce server, the database, the
Web server, the load balancers and firewalls, and the source control repositories
for production, development, and test are described, including machine
specifications such as types, operating systems, and the amount of RAM
(Figure 5-1).

Figure 5-1 Sample diagram of physical topology

Deployment plan
The deployment plan includes the organization, strategy, resources, and
methods used to deploy the customization. In this example, the term deployment
means to make the customizations available in the production environment for
use by the users. In this example, deployment is tested in a test environment, but
not rolled out to the user CSRs. This section provides recommendations about
how best to deploy the customizations. Deployment can also include user
training or notification about the new functions.

Machine 1 (AIX)

Database

Machine 2 (Windows 2003 Server)

WebSphere Application Server

Commerce Server

Machine 3
(Windows 2003 Server)

Web Server

Online Shoppers

Internet

Firewall

Firewall

Firewall

n CSR Workstations
in a call center

Machine 4
Windows XP

Machine n-1
Windows XP

Machine n
Windows XP

. . .

Web
Service
 Chapter 5. Requirements and design 105

5.2.4 Macro design and micro design

This section describes macro design and micro design by using the loyalty points
requirement as an example.

Macro design
Macro design includes the order capture flow in which a CSR encounters the
loyalty points option. The flow diagram shown in Figure 5-2 helps you understand
where the loyalty points option fits in a macro design.

Figure 5-2 Example of IBM Sales Center flow with the loyalty points option

Start
Log in to

IBM Sales
Center

Register
customer calls to
add loyalty points

to account

Look up
customer
account

In the Details page of
the customer editor,
enter the customer's

loyalty points number.
Click Update to save

the changes.

EndCustomer
editor displays
106 IBM Sales Center for WebSphere Commerce V6

Mockups of the user interface are included here to provide you with a general
idea about what the users will see. In this scenario, customers see the modified
JSP pages, and the CSRs see the modified IBM Sales Center pages, as shown
in Figure 5-3.

Figure 5-3 IBM Sales Center user interface mock-up (The label “Telephone number 1”
has been changed to “Day Telephone”)

Use cases are provided in the macro design to detail the tasks to be performed
by a CSR in order to use the loyalty points functionality. These use cases must be
used by the test teams to ensure that the function behaves as expected.
Following are the use cases:

� Storefront

– Registered customer adds loyalty points number to the existing account

– New customer registers in the store and creates a new loyalty points
number

– Registered customer views the loyalty points balance

– Registered customer makes purchase through the store Web site. Loyalty
points balance must be updated appropriately.

� IBM Sales Center

– CSR adds loyalty points number to the existing account on behalf of a
registered customer

– CSR registers and creates a new loyalty points number on behalf of a new
customer

– CSR looks up loyalty points balance for customer
 Chapter 5. Requirements and design 107

– CSR places an order on behalf of customer. Loyalty points balance must
be increased appropriately.

– CSR creates a return on behalf of customer. Loyalty points balance must
be decreased appropriately.

Micro design
The micro design for the loyalty points requirement contains low-level details
about implementation, including new or extended controller and task commands,
database tables, entity beans, JSP pages, and any messages required for
integration with systems that are external to WebSphere Commerce.

In the loyalty points example, the following customizations are required on the
WebSphere Commerce server:

� A new database table is required to store the loyalty points number and
balance. The database table name is X_LOYALTY.

� A new entity bean, access bean, and a data bean are required to access the
data from the X_LOYALTY table.

� The following store JSPs must be modified to capture and display loyalty
points information:

– UserRegistrationAddForm.jsp
– MyAccountDisplay.jsp

� New commands are required to calculate the number of loyalty points and to
add or subtract from a customer’s points total as required, including input and
output and exceptions that can be thrown.

The following customizations are required for the IBM Sales Center:

� The Customer editor must be modified to display the customer’s loyalty
number and balance.

� When the customer editor is open for editing, there must be an input text box
for a CSR to input a customer’s loyalty number.

� BODs will be modified to use the user data method of transferring custom
data between the WebSphere Commerce server and the IBM Sales Center in
order to transfer the loyalty points information.

� Code must be written on the WebSphere Commerce server to send and
receive the loyalty points information.

After the macro design and micro design documents are complete, the
implementation phase and the test phase begin.
108 IBM Sales Center for WebSphere Commerce V6

Chapter 6. Customization scenarios

Customization implicitly references the set of features that are currently available
by default. In this context, there are two types of customizations in WebSphere
Commerce:

� The first type is more a configuration than a customization. This type includes
setting up custom groups and templates, associating the existing policies to
groups, and creating new promotion types using the existing components.

� The second type requires Java code to be written. An implied step in the
second type of customization is that all your new or changed Java code must
be available on the classpath of your WebSphere Commerce server for the
Java Virtual Machine class loader to load the customized code properly.

In IBM Sales Center for WebSphere Commerce, there is a set of user interface
panels, views, and dialog boxes that contain the most commonly used features.
You can add to or reconfigure the user interface to suit your requirements. You
can also change the content and the format of the data that is passed between
the client and the server.

Thus, in addition to the WebSphere Commerce customization types mentioned
at the beginning of this chapter, IBM Sales Center customization may be a
simple, moderate, or extensive modification of the IBM Sales Center code, as
described in Chapter 7, “Developing customizations for IBM Sales Center” on
page 119.

6

© Copyright IBM Corp. 2007. All rights reserved. 109

This chapter describes three different customization scenario types depending
on which components are required to be customized, IBM Sales Center client
only, WebSphere Commerce server only, or both, and their high-level
implementation.

This chapter also describes an additional type of IBM Sales Center
customization scenario, the integration customization scenario, where integration
with additional or OEM software is required.
110 IBM Sales Center for WebSphere Commerce V6

6.1 IBM Sales Center client changes

This is the type of customization scenario where only the IBM Sales Center client
changes are required. To implement some of the requirements (see Chapter 5,
“Requirements and design” on page 95), only the IBM Sales Center client must
be customized, and no modification of the WebSphere Commerce server is
required. These may be simple, or even extensive modifications of the IBM Sales
Center client code, as discussed in Chapter 7, “Developing customizations for
IBM Sales Center” on page 119.

User interface changes do not always affect the WebSphere Commerce server.
In other words, in some cases, the server does not have to be involved in the
user interface display, the way data is captured, or any processing that may be
implemented on the client side. These customizations do not require any
additional (existing or custom) data to be transferred between the client and the
server.

Following are the customizations that affect only the IBM Sales Center:

� Changing the look and feel

– Implementing the new images and modifying the existing images

– Implementing the new images and modifying the existing text (property
files)

� Reorganizing the layout

� Changing the user interface logic

� Hiding and showing the existing widgets

� Creating new widgets that rely on data that is already available to the IBM
Sales Center client

Refer to the information center topic “Tutorial: Customizing the appearance of
the IBM Sales Center”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/tutorial/ttrsalescentercustomization_1.h
tm

A specific example of this type of customization is to prompt and remind the CSR
to mention promotions to customers during order creation. The CSR will be
prompted about all the available promotions in a pop-up before the CSR asks
customers for payment information. The promotions listed in the pop-up will be
relative to the items in the order that is placed, and will not be related to other
attributes such as the customer’s demographic information.
 Chapter 6. Customization scenarios 111

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttrsalescentercustomization_1.htm

This customization involves IBM Sales Center client code changes only because
the marketing promotions view and data are already available in IBM Sales
Center. The customization simply displays all the applicable promotions in a new
pop-up window in order to remind the CSR to offer them to customers.

Another specific example of this type of customization is the IBM Sales Center
language. IBM Sales Center has a large set of displayable text in various parts of
its user interface, such as window titles, dialog box messages, labels, button text,
and table column headers. These text strings are externalized from the code and
placed in properties files called resource bundles. The properties files exist for
the default language and the various supported locales.

By default, the English language IBM Sales Center resources are located in the
com.ibm.commerce.telesales.resources plug-in in the resources directory in the
telesalesResources_en_US.properties file. Alternative locale files are located in
the com.ibm.commerce.telesales.resources.nl1 plug-in in the resources
directory. However, note that not all the modifiable and translatable text and
images are in the telesalesResources file.

When adding a new translation, you can define a fragment that extends the
plug-in containing the original properties file. IBM Sales Center provides
fragments with names containing nl1, which illustrates this. You can follow this
pattern in these fragments to add fragments of your own, extending the same
plug-ins.

Note that the data coming to the client from the server side may have to be
translated on the server side. Thus, adding additional languages to the
WebSphere Commerce and IBM Sales Center may require server side
customization as well.

Refer to the information center topic “Globalization in the IBM Sales Center”,
which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/concepts/ctrglobalization.htm

Refer to the information center topic “Resources”, which is available on the Web
at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/concepts/ctrresources.htm
112 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrglobalization.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrglobalization.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrresources.htm

6.2 WebSphere Commerce server changes

This is the type of customization scenario where only the WebSphere Commerce
server changes are required. To implement some of the requirements in some
cases only, as discussed in Chapter 5, “Requirements and design” on page 95,
the WebSphere Commerce server side must be changed. However, no changes
to the IBM Sales Center client are required.

Business logic changes do not necessarily affect the IBM Sales Center user
interface, for example, the client side does not have to be involved in a scheduled
job that runs on the server side. Another example is when the tax calculation on
the server side is changed, and this modification does not affect the way the
result is displayed on the client side; only the calculated result is changed on the
client side. Some customizations may require changes only to the commands
that run on the WebSphere Commerce server side.

These are the customizations that are required when only the WebSphere
Commerce server must be modified, and no additional data has to be collected
from the customer, as a result of which no additional data (either existing or
custom) is to be transferred between the client and the server.

Following are the customizations that affect only the WebSphere Commerce
server side:

� Sending an e-mail to the customer when a back-ordered product becomes
available or when the order is shipped

� Changing the tax calculation, which does not affect the display of the result on
the client side

� Automatic updating of the order state

Refer to the information center topic “Tutorial: Conducting an e-mail campaign”,
which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.samples.doc/tutorial/tcpemail1.htm

Refer to the information center topic “Tutorial: Importing and exporting contracts”,
which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.samples.doc/tutorial/tctcontractimportexport_1.htm
 Chapter 6. Customization scenarios 113

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tcpemail1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tctcontractimportexport_1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tctcontractimportexport_1.htm

A specific example of this type of customization is sending an e-mail notification
to all the affected customers when a back-ordered product becomes available. A
scheduled job is running on the server and is checking the inventory table. When
the inventory level becomes sufficient, the server sends e-mails to all the
corresponding customers through the outbound messaging system, assuming
that valid e-mail IDs have been provided to the CSR.

These customizations involve changing the WebSphere Commerce server side
only. There is no requirement for any additional data to be collected from the
customer in the IBM Sales Center client. This type of customization does not
affect or require changes to the IBM Sales Center client user interface.

6.3 IBM Sales Center and WebSphere Commerce
changes

This is the type of the customization scenario where IBM Sales Center client and
WebSphere Commerce server changes are required. These may be moderate or
extensive modifications, as discussed in Chapter 7, “Developing customizations
for IBM Sales Center” on page 119.

To implement most of the requirements (see Chapter 5, “Requirements and
design” on page 95), the IBM Sales Center client side user interface must be
changed along with the business logic and the Web storefront JSP pages on the
WebSphere Commerce server side.

These customizations are required when changes in the WebSphere Commerce
server side affect the IBM Sales Center client behavior and display.

Also, when additional data (custom or existing) is to be collected from the
customer and the data is to be transferred between the client and the server,
these customizations affect both the display in the IBM Sales Center client and
the processing in the WebSphere Commerce server side.

Following are the examples of customizations that affect both the IBM Sales
Center client and the WebSphere Commerce server:

� Gift wrap order

� Loyalty points

� Adding customer pet information to the customer record (Chapter 9, “User
interface customization” on page 171)

� Changing user interface behavior based on the IBM Sales Center user role
(Chapter 10, “Role-based customizations” on page 257)
114 IBM Sales Center for WebSphere Commerce V6

Refer to the information center topic “Tutorial: Adding a new search option in the
IBM Sales Center”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/tutorial/ttrfinddialog.htm

Refer to the information center topic “Tutorial: Modifying a page in an editor”,
which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/tutorial/ttradvanced_1.htm

Refer to the information center topic “IBM Sales Center-Adding a column to the
order items table” in the information center, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/tutorial/ttravaildate.htm

Refer to the information center topic “Tutorial: Creating new business logic” in the
information center, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.developer.tutorial.doc/tutorial/ttd09.htm

Refer to the information center topic “Tutorial: Creating a multicultural store” in
the information center, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.samples.doc/tutorial/tgbglobilization1.htm

A specific example of this type of customization is to enable the gift wrap offer for
an order. The entire order is gift-wrapped and the gift-wrapping charge is
calculated automatically based on the size of the ordered items. When creating
the order, the CSR is given the option of selecting gift wrap to be added to the
order. Based on the size of the items, the charge is calculated automatically on
the server side and transferred to the client side. The gift wrap is then added to
the order as a separate product.

Another specific example of this type of customization is loyalty points:

� The loyalty points are automatically calculated based on the order’s total price
before tax, and added when an order is completed.

� Loyalty points are deducted if an order is returned.

� The customer editor page is modified to enable the CSR to view and display
the customer’s loyalty points number and balance. When the customer editor
page is open for editing, there is an input text box for a CSR to input a
customer’s loyalty number.
 Chapter 6. Customization scenarios 115

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttrfinddialog.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttradvanced_1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttravaildate.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.tutorial.doc/tutorial/ttd09.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tgbglobilization1.htm

� Business Object Documents (BODs) are modified to transfer custom data
(the loyalty points information) between the WebSphere Commerce server
and the IBM Sales client. A new code is created to handle new or modified
BODs.

� New commands are created to calculate the number of loyalty points and to
add or subtract from a customer’s point total as required.

� The loyalty points number and loyalty points balance are stored in a new
database table. A new entity bean, access bean, and a data bean are created
to fetch and update the new database table.

� Loyalty points are deducted when the returned physical goods are received.

� Storefront JSPs are changed to allow the customer to register for the loyalty
points program and to view and display the loyalty points number and loyalty
points balance on the store Web page.

These customizations require both IBM Sales Center client and WebSphere
Commerce server modifications.

6.4 Integration customization scenarios

Integration customization scenario is a customization scenario where, in addition
to the three different customization scenarios types already discussed (IBM
Sales Center client only, WebSphere Commerce server only, or both),
integration with an additional software or an additional system might be required.

Following are the customizations that involve integration:

� Integration with a OEM taxation software

� Customer Care integration with Lotus Sametime (See Chapter 11, “Customer
Care integration with Lotus Sametime” on page 287)

� Customer Service Report generation using WebSphere Commerce Analyzer
(See Chapter 12, “Installing, configuring, and running the WebSphere
Commerce Analyzer” on page 315 and Chapter 13, “Developing and
customizing customer service reports” on page 347)

Refer to the information center topic “Integrating with back-end systems and
external applications”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.integration.doc/concepts/ccvcapabilities.htm
116 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.integration.doc/concepts/ccvcapabilities.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.integration.doc/concepts/ccvcapabilities.htm

A specific integration customization scenario example is integration with a OEM
taxation software. More complicated taxing structures may be implemented on
the server and displayed on the client side, such as ship-to state, city, or zip code
level. After integrating the WebSphere Commerce server with a third-party
taxation software, the additional tax breakdown information is displayed on the
IBM Sales Center client user interface.
 Chapter 6. Customization scenarios 117

118 IBM Sales Center for WebSphere Commerce V6

Chapter 7. Developing customizations
for IBM Sales Center

This chapter introduces IBM Sales Center customizations and provides an
overview of the IBM Sales Center components and the customization framework.

7

© Copyright IBM Corp. 2007. All rights reserved. 119

7.1 Skill prerequisites

In order to start customizing IBM Sales Center, the developer must be familiar
with the following:

� Working with Extensible Markup Language (XML)

� Java programming

� Understanding the IBM Sales Center user interface (UI) framework

� Understanding the Eclipse framework

� Knowledge of WebSphere Commerce programming model

� Familiarity with IBM Sales Center development environment and WebSphere
Commerce development environment.

The knowledge required for IBM Sales Center customization depends on those
parts of the IBM Sales Center that are to be customized.

Performing simple modifications
To perform simple modifications to the UI, for example, removing a page from an
editor or changing a key binding, you only have to know how to work with XML
files.

Performing moderate modifications
To perform moderate modifications to IBM Sales Center, for example,
customizing an editor and changing the data that is passed between the IBM
Sales Center client and the WebSphere Commerce server, you require a
knowledge of Java programming and must be able to work with XML files.

Performing extensive modifications
To perform extensive modifications to the UI, for example, adding a new editor
and moving several UI elements to the pages of this editor, a general knowledge
of the Eclipse platform is highly recommended. In particular, it is critical to
understand the use of extension points. Passing additional data between the IBM
Sales Center client and the WebSphere Commerce server and adding new
business logic requires a knowledge of the WebSphere Commerce programming
model.
120 IBM Sales Center for WebSphere Commerce V6

7.2 IBM Sales Center architecture

The IBM Sales Center architecture comprises the IBM Sales Center client, the
WebSphere Commerce server, and a messaging architecture. The information is
transferred between the IBM Sales Center client and the WebSphere Commerce
server in the form of Business Object Documents (BODs).

Business Object Documents
A BOD is an open standard of a common, horizontal message architecture
developed by the Open Application Group. For more information about this, refer
to the following Web site:

http://www.oagi.org

BODs are business messages exchanged between software applications or
components. In this case, they are exchanged between the IBM Sales Center
client and the WebSphere Commerce server.

The BOD informs the receiving system about what kind of message is there in
the data area and the status and error conditions. The BOD comprises two parts,
a noun and a verb. The noun is a common business object. The actions
performed on the noun are the verbs. BODs are designed to be extensible when
providing a common underlying architecture for integration (Figure 7-1).

Figure 7-1 BOD structure

Application area

Business Object Document (BOD)

Verbs

Data area

Nouns

Components

Fields

Compounds
 Chapter 7. Developing customizations for IBM Sales Center 121

http://www.oagi.org

The BOD architecture is independent of the communication mechanism. The
default transport protocol is SOAP over Hypertext Transfer Protocol Secure
(HTTPS), but the BOD architecture can be used with many transport
mechanisms, including the following:

� Hypertext Transfer Protocol (HTTP)
� Simple Mail Transfer Protocol (SMTP)
� SOAP
� electronic business XML (ebXML)

IBM Sales Center messaging architecture
The IBM Sales Center client contains a UI, a view into the WebSphere
Commerce server data. The WebSphere Commerce server contains the
business logic and data. The messaging architecture provides the integration
between the two components.
122 IBM Sales Center for WebSphere Commerce V6

Figure 7-2 illustrates the IBM Sales Center architecture and shows how the
messages are passed between the IBM Sales Center client and the WebSphere
Commerce server.

Figure 7-2 IBM Sales Center architecture

Following is the process involved:

1. The IBM Sales Center client performs a service request.

2. The service request handler prepares a BOD message.

3. The message is sent from the client to the server.

4. The message mapper receives the message and maps the BOD to a
WebSphere Commerce BOD command.

5. The WebSphere Commerce BOD command is invoked.

6. The WebSphere Commerce BOD command calls a WebSphere Commerce
Controller command, which might in turn call one or more task commands.

WebSphere
Commerce

BOD
Commands

IBM Sales Center Client

Controller Request
Handler

Message
Mapper

65

74

83

9

2

1 10

Reply
Builder

Firewall

Controller
Commands

Task
Commands

WebSphere
Commerce
Database

Entity
Beans

WebSphere
Commerce Server
 Chapter 7. Developing customizations for IBM Sales Center 123

7. The reply or response builder constructs the response BOD.

8. The response is returned to the client machine.

9. The request handler receives and handles the response BOD.

10.The client UI is updated on the screen.

IBM Sales Center client architecture details
Figure 7-3 demonstrates the interaction between the IBM Sales Center client
components and their response, resulting in the UI display changes.

Figure 7-3 IBM Sales Center client architecture

Following is the process involved:

1. A UI element launches a request.

2. The Job Scheduler sends the request to the Controller.

3. The Controller performs the service request by passing it to the Request
Handler.

User Interface Request Handlers

Controller

Communication
Services

Model

UI element

Model
object

Request
Handler

Communication
Service

Job Scheduler

Notify
event
listeners

Launch
request

Perform
service
request

Send
message

Return
response

Handle
response

Prepare
message

Update
model
124 IBM Sales Center for WebSphere Commerce V6

4. The Request Handler handles the request, prepares the BOD message, and
sends it to the Controller.

5. The Controller sends the message and receives the response message using
the Communication Services.

6. The Request Handler handles the response message (reply BOD) and
updates the model.

7. The event listeners notify the UI elements to update the data with the model
change.

7.2.1 The Eclipse framework

The IBM Sales Center client relies heavily on the use of the Eclipse platform.
Eclipse is a platform that has been designed for building integrated Web and
application development tooling. The platform is extremely popular based on
what it supports. It encourages the rapid development of integrated features
based on a plug-in model.

Eclipse provides a common UI model for working with tools. Plug-ins can
program to the Eclipse portable application programming interfaces (APIs) and
run unchanged on any of the supported operating systems. At the core of Eclipse
is an architecture for dynamic discovery, loading, and running of plug-ins.

You can customize IBM Sales Center by defining an extension in a customization
plug-in and then using the system configurator to indicate that the application will
use this new definition. Changes to the extensions in the XML files are read at
the start and maintained in the Eclipse plug-in runtime registry.

Plug-ins contain units of function called extensions. You can customize the IBM
Sales Center by adding new extensions defined in the customization plug-in by
removing (suppressing) the existing extensions or by replacing the existing
extensions with new ones.

7.2.2 The IBM Sales Center user interface framework

The IBM Sales Center UI framework is built on top of the Eclipse framework to
make the customization of IBM Sales Center easier.

Wherever the Eclipse framework requires Java coding to develop UI elements,
the IBM Sales Center framework allows the writing of simple XML tags to define
the widgets and their layout.

The framework simplifies the sending and receiving of simple data (name-value
pairs) by automating the common coding tasks.
 Chapter 7. Developing customizations for IBM Sales Center 125

The framework supports a system configurator that allows each plug-in to
identify which extensions will be used in addition to or instead of the default IBM
Sales Center extensions. The system configurator file is a text file that allows you
to provide a substitute extension ID that will be used to replace a standard IBM
Sales Center extension ID. The framework provides an extension point to specify
the location of the system configurator file in each plug-in.

The IBM Sales Center framework must always be used to extend the existing
IBM Sales Center UIs, for example, to reorder the layout, to remove a section, or
to add new sections to an existing UI.

When creating new UI elements, there is a choice between using the base
Eclipse framework or the IBM Sales Center UI framework. Create the new UI
components by extending from the base Eclipse Java classes or from the Sales
Center base classes. Customizing IBM Sales Center using the Eclipse
framework involves creating Java classes to represent UI elements and the UI
behavior when using the Sales Center UI framework.

7.3 Steps to develop customizations

Development of IBM Sales Center customizations involves customizing the two
parts, the IBM Sales Center client and the WebSphere Commerce server.

Customizing the IBM Sales Center client
The customization of the IBM Sales Center client involves the following steps:

1. Create a plug-in project in the Sales Center development environment to
contain the customizations.

When customizing IBM Sales Center, place all the extensions in one or more
plug-ins that you created specifically for your customizations.

Note: Do not place your customizations in the default IBM Sales Center
plug-ins. These plug-ins may be changed in a migration or fix pack and
your customizations might be lost.
126 IBM Sales Center for WebSphere Commerce V6

To create a new plug-in for the IBM Sales Center workspace, perform the
following tasks:

a. Ensure that the current perspective is the Plug-in Development
perspective. If it is not, select the Window → Open Perspective menu
item, and switch to the Plug-in Development perspective (under Other).

b. Create a new plug-in project. Click New in the toolbar and select Plug-in
Development → Plug-in Project. This launches the Plug-in Project
wizard.

Alternately, from the Eclipse File menu, launch the Plug-in Project wizard
in the Eclipse environment.

c. Enter the required information using the Eclipse platform documentation
as a guide. The Project name for your plug-in must follow the Java
package conventions, for example,
com.mycompany.salescenter.extensions.

Ensure that you select the check box against Create an OSGi bundle
manifest for the plug-in. Click Next.

d. Validate the information and click Finish.

2. Define the new system configurator for your plug-in. The system configurator
identifies which extensions will be used over the default IBM Sales Center
extensions for this plug-in.

a. Create the system configurator config.ini file in the config directory:

i. In the Package Explorer view, right-click the plug-in project and select
New → Folder.

ii. In the Folder name field, enter config, and click Finish.

iii. Right-click the config folder and select New → File.

iv. In the File name field, enter config.ini, and click Finish.

b. Add the system configurator extension point to the plug-in to identify which
extensions will be used over the default IBM Sales Center extensions:

i. From the Package Explorer view, double-click the plugin.xml file.

ii. Click the plugin.xml tab.

iii. Add the text shown in Example 7-1 to define the config.ini as the new
system configurator.

Example 7-1 Defining the config.ini as the new system configurator

<extension point="com.ibm.commerce.telesales.configurator">
<configurator path="config"/>
</extension>
 Chapter 7. Developing customizations for IBM Sales Center 127

3. Develop new extensions extending the IBM Sales Center client components.
In this step, all the customization code will be developed to implement the
new IBM Sales Center features. Refer to 7.4, “Developing the IBM Sales
Center client components” on page 128 for customization details.

Customizing the WebSphere Commerce server
The customization of the WebSphere Commerce server involves developing
WebSphere Commerce server components. In this step, all the customization
code will be developed to implement the new IBM Sales Center features on the
server side. Refer to 7.5, “Developing IBM Sales Center server components” on
page 148 for customization details.

7.4 Developing the IBM Sales Center client components

This section discusses the development of various IBM Sales Center client
elements that you may have to use in your day-to-day customization activities.

7.4.1 User interface organization

Figure 7-4 shows how the IBM Sales Center UI is organized. Most of these UI
elements can be extended or replaced according to customer requirements. The
Workbench consists of the following:

� Title bar

This displays the program title and the icon.

� Menu bar

This contains a set of actions provided either by the default Workbench or by
the IBM Sales Center.

� Banner bar

This optionally displays a graphic and an application name.

� Switcher bar

This lists each running application as an icon from which a user can select
applications.

� Data area

This is the primary data area that contains the editors and the views for an
application.

� Cool bar/Tool bar

This optionally displays icons for the available actions.
128 IBM Sales Center for WebSphere Commerce V6

� Status bar

This is used by the application to display its status. It is at the bottom of the
window.

Figure 7-4 IBM Sales Center UI organization

7.4.2 User interface elements

IBM Sales Center has a workbench that contains the following high-level UI
elements:

� Editors
� Dialogs
� Views
� Perspectives
� Preference pages
� Menus
 Chapter 7. Developing customizations for IBM Sales Center 129

Editors
Editors can consist of one or more editor pages. You can open any number of
editors at a time, but only one can be active. In addition, multiple instances of the
same editor can be opened. However, if an editor is opened for a specific store
or order, a second instance of the editor for that store or order cannot be opened.

Many editors are provided with IBM Sales Center, such as the Store Summary
editor, the Order editor, the Customer editor, the Quote editor, and so on. Define
an editor by using the org.eclipse.ui.editors extension point.

To add a new editor and editor pages to IBM Sales Center, perform the following
tasks:

1. Define a new editor using the org.eclipse.ui.editors extension point, which is a
base Eclipse extension point, as shown in Example 7-2.

Example 7-2 Defining a new editor using the org.eclipse.ui.editors extension point

<extension point="org.eclipse.ui.editors">
<editor
name="<editor name>"
icon="<editor icon>"
class="<editor class>"
id="<editor identifier>">
</editor>

2. Define a new method in the factory (extended from TelesalesEditorFactory) to
instantiate and return the new editor that is defined, as shown in Example 7-3.

Example 7-3 Defining a new method in the factory

public static IEditorPart open<New>Editor(IEditorInput input) {
return openEditor(input, "<Newly created editor identifier>");
//$NON-NLS-1$
}

3. To ensure that the pages your editor uses can be modified using the
com.ibm.commerce.telesales.editorPages extension point, create an editor
implementation Java class that extends the TelesalesMultiPageEditor
abstract class. The IBM Sales Center has a number of base classes in the
com.ibm.commerce.telesales.ui.editors package that can be subclassed to
create editors and editor pages:

– TelesalesMultiPageEditor

This is a base class for a multipage editor.
130 IBM Sales Center for WebSphere Commerce V6

– EditorPage

This is a base class that all the pages in a TelesalesMultiPageEditor must
subclass.

– TelesalesEditorPage

This is a subclass of the EditorPage that provides support for the common
toolbar and the button bar area.

– TelesalesConfigurableEditorPage

This is a subclass of the TelesalesEditorPage that provides support for
defining the editor page using managed composites.

– TelesalesEditorPart

This is a base class for a single page editor.

– TelesalesConfigurableEditorPart

This is a subclass of the TelesalesEditorPart that provides support for
defining the editor using managed composites.

4. Create the page you want to add to the editor. TelesalesEditorPage or
TelesalesConfigurableEditorPage are useful superclasses to extend. Add
editor pages to the new editor (note that these pages must implement the
EditorPage interface), as shown in Example 7-4.

Example 7-4 Creating a page to add to the editor

<extension
id="com.ibm.commerce.telesales.ui.impl.editors"
name="<editor pages name>"
point="com.ibm.commerce.telesales.ui.editorPages">
<editor
editorId="com.ibm.commerce.telesales.orderEditor"
id="com.ibm.commerce.telesales.orderEditorPages">
<page
name="<editor page name>"
class="<editor page class name>"
id="<editor page identifier>">
</page>
<page>
<!-- Next page -->
</page>
<!--More pages -->
</editor>
</extension>
 Chapter 7. Developing customizations for IBM Sales Center 131

5. Use the following TelesalesEditorFactory Java class to open your editor:

<New>TelesalesEditorFactory.open<New>Editor(<Model object
instance>);

Dialogs
Dialogs are common UI elements in IBM Sales Center. They are used when a
user performs an action and has to provide additional information. The contents
of a dialog are UI elements known as controls and managed composites.

To define and invoke a new dialog from IBM Sales Center, perform the following
tasks:

1. Define a new dialog using the dialogs extension point. Using this extension
point allows others to replace or extend your dialog. It allows you to reuse the
same mechanism for launching and managing the dialog that the IBM Sales
Center uses. Create a new plugin.xml (or add to your plugin.xml) as shown in
Example 7-5.

Example 7-5 Defining a new dialog using the dialogs extension point

<extension point="com.ibm.commerce.telesales.ui.dialogs">
<dialog
class="<Custom dialog class>"
id="<Custom dialog identifier>">
</dialog>
</extension>

2. Create a new Java class extending the Eclipse framework
org.eclipse.jface.dialogs.Dialog or the Sales Center UI framework dialog base
classes in the com.ibm.commerce.telesales.ui.dialogs package:

– Dialog

This is a base class for a dialog.

– ConfiguredDialog

This is a subclass of a dialog that provides support for the managed
composites.

– ConfiguredMessageLineDialog

This is a subclass of dialog that provides support for the managed
composites and message-line area.
132 IBM Sales Center for WebSphere Commerce V6

– TitleAreaDialog

This is a base class for dialogs with a title area.

– ConfiguredTitleAreaDialog

This is a subclass of TitleAreaDialog that provides support for the
managed composites.

3. Provide a way to open your new dialog. You can open it programmatically or
add a menu action or button. Dialogs are instantiated using the getDialog
method in the com.ibm.commerce.telesales.ui.dialogs.DialogFactory class,
as shown in Example 7-6.

Example 7-6 Opening a new dialog

IDialog myDialog =
DialogFactory.getDialog("extension.customDialog");

myDialog.open(); //show the dialog

Views
Different views are available for customization in IBM Sales Center. These views
are defined in the com.ibm.commerce.telesales.ui.impl plug-in using the base
Eclipse product org.eclipse.ui.views extension point. The different views
available in IBM Sales Center are Store view, Marketing Promotions, Ticklers,
and so on.

Perform the following tasks to create a new view:

1. Define an extension to the org.eclipse.ui.views extension point, as shown in
Example 7-7.

Example 7-7 Defining an extension to the org.eclipse.ui.views extension point

<view
name="<view label>"
icon="<icon file>"
category="<category of view>"
class="<view class>"
id="<view id>">
</view>

2. To have this new view appear on the IBM Sales Center perspective, extend
the IBM Sales Center perspective.
 Chapter 7. Developing customizations for IBM Sales Center 133

Perspectives
A perspective is a particular rendering of IBM Sales Center that contains a
predefined combination of views and editors. There are two perspectives in IBM
Sales Center, the Orders perspective and the Web Browser perspective, which
enables different sets of tasks. Both perspectives can be open and visible, but
only one can be active at a time.

Perspectives are represented in the WebSphere Everyplace Deployment
platform (and in the IBM Sales Center client) as applications, and are launched
from the Application menu.

The Orders perspective is used to create and manage orders, quotes,
customers, and organizations, and to view and work with merchandising
associations, marketing promotions, and ticklers. It is the default perspective that
opens each time you log in to IBM Sales Center and it is where users perform a
majority of their work.

To add a new perspective, perform the following tasks:

1. Define an extension to the base Eclipse extension point
org.eclipse.ui.perspectives (this declaration contains the basic elements such
as ID, name, and class), as shown in Example 7-8.

Example 7-8 Defining an extension to the base Eclipse extension point

<extension
 point="org.eclipse.ui.perspectives">
 <perspective
 name="<New perspective name>"
 class="<New perspective class>"
 id="<New perspective id">
 </perspective>
</extension>

2. Create a new perspective class to define the initial layout of the perspective.
You can write this class from scratch or from the subclass
com.ibm.commerce.telesales.ui.impl.OrdersPerspective. (Refer to the class
API information (Javadoc) for more details.) This class must implement
org.eclipse.ui.IPerspectiveFactory and its method, createInitialLayout.
134 IBM Sales Center for WebSphere Commerce V6

Implementers can add views, folders, actions, action sets, and other objects
to the page layout. In this example, com.xyz.perspective.NewPerspective is
the class that defines the initial layout of the perspective, as shown in
Example 7-9.

Example 7-9 Creating a new perspective class to define the initial layout of the perspective

package com.xyz.perspective;
import org.eclipse.ui.IPageLayout;
import org.eclipse.ui.IPerspectiveFactory;
public class PerspectiveFactory implements IPerspectiveFactory {
public void createInitialLayout(IPageLayout layout) {
defineActions(layout);
 }
}

3. Define an application to select the perspective. In the WebSphere Everyplace
Deployment platform, perspectives are accessed by selecting an application.
Applications are defined using the WebSphere Everyplace Deployment
com.ibm.eswe.workbench.WctApplication extension point, as shown in
Example 7-10.

Example 7-10 Defining an application to select the perspective

<extension
id="<New application extension id>"
point="com.ibm.eswe.workbench.WctApplication">
<DisplayName>New application</DisplayName>
<Icon>icons/full/eview16/new_perspective.gif</Icon>
<PerspectiveId>
<!-- Perspective identifier-->
</PerspectiveId>
<Version>6.0.0</Version>
<Description>This is a new application</Description>
</extension>

Note: The method defineActions defines the actions associated with this
new perspective. An alternate method is to supply an IPerspectiveFactory
that does nothing, and then use the perspective extension mechanism to
define its contents in XML instead of in code.
 Chapter 7. Developing customizations for IBM Sales Center 135

Preference pages
You can set preferences in the IBM Sales Center UI to make the process of
working with orders, customers, and stores easier. You can, for example, set a
preference to auto select a particular store or create customers by default with
certain country, currency, and language attributes. There are preference pages
for communication preferences, login preferences, customer preferences, order
preferences, store preferences, search preferences, and image preferences.
Preference page definitions for default preference pages are in the
com.ibm.commerce.telesales.config plug-in manifest file (plugin.xml).

Preference pages in IBM Sales Center are defined using the
org.eclipse.ui.preferencePages extension point.

Menus
The default IBM Sales Center actions are defined by the
com.ibm.commerce.telesales.ui.actionSetGroups extension point. This
extension point allows you to specify a list of actionSet IDs and an ID for the
whole group. When an IBM Sales Center perspective is loaded, it uses a
predefined ID to determine which action set group to use. You can use the
system configurator plug-in to override an entire action set group or a specific
action set that is already defined as part of the action set. All the out-of-the-box
IBM Sales Center menu items delegate their actual work to an action that is
registered with the com.ibm.commerce.telesales.ui.actions extension point. This
allows you to use the system configurator to replace the implementation of a
single action.

Perform the following tasks to define a new menu action:

1. Define your actions using the base Eclipse extension point,
org.eclipse.ui.actionSets. The sample shown in Example 7-11 defines a
single action in an action set.

Example 7-11 Defining actions using the base Eclipse extension point

<extension point="org.eclipse.ui.actionSets">
<actionSet
label="<Action set name>"
id="extensions.extendedActionSet">
<action
label=""
class="<Extended workbench action delegate identifier>"
136 IBM Sales Center for WebSphere Commerce V6

menubarPath="<Menu bar path>"
id="<Action identifier>">
</action>
</actionSet>
</extension>

2. When writing a new workbench action delegate class, ensure that you extend
from the
com.ibm.commerce.telesales.ui.actions.TelesalesWorkbenchActionDelegate
class. The real work for an IBM Sales Center workbench action is performed
in an action registered with the com.ibm.commerce.telesales.ui.actions
extension point, as shown in Example 7-12.

Example 7-12 Writing a new workbench action delegate class

package extensions;
import org.eclipse.jface.action.Action;
public class ExtendedAction extends Action {
public void run() {
System.out.println("running extended action");
}
}

The ExtendedWorkbenchActionDelegate.java looks as shown in
Example 7-13.

Example 7-13 ExtendedWorkbenchActionDelegate.java

package extensions;
import org.eclipse.jface.action.IAction;
import
com.ibm.commerce.telesales.ui.actions.TelesalesWorkbenchActionDelegate;
public class ExtendedWorkbenchActionDelegate extends
TelesalesWorkbenchActionDelegate {
public void init(IAction action) {
//Initialize the actions
}
public String getDelegateActionId() {
return "extensions.ExtendedAction";
}
}

 Chapter 7. Developing customizations for IBM Sales Center 137

3. Indicate the ID of the delegate action in your getDelegateActionId method.

4. To include the new action in the action set group for a perspective, perform
the following tasks:

a. Define a new action set group

b. Use the system configurator to indicate that your action set group will be
used instead of the default one. Under normal circumstances, you must
include all the default action sets and your new one. This can be done by
referencing the default action set group in your action set group definition.
Example 7-14 is a new action set group definition for the Orders
perspective, which includes the test.actionSet action set.

Example 7-14 New action set group definition for the Orders perspective

<extension
name="<Extended Orders Perspective ActionSet Group>"
point="com.ibm.commerce.telesales.ui.actionSetGroups">
<actionSetGroup id="extensions.actionSetGroup.orders">
<actionSetGroupContribution
actionSetGroupId="com.ibm.commerce.telesales.actionSetGroup.orders"/>
<actionSetContribution
actionSetId="extensions.extendedActionSet"/>
</actionSetGroup>
</extension>

This example also requires you to add the following entry to your system
configurator file:

com.ibm.commerce.telesales.actionSetGroup.orders=<new action set
group defined>
138 IBM Sales Center for WebSphere Commerce V6

7.4.3 IBM Sales Center framework user interface elements

The elements in the layout of IBM Sales Center dialog boxes and editors are
constructed using configured control.

Configured control
A configured control is an UI extension point that is declared by using the
controls extension point. The definition of a configured control includes a unique
identifier, the type of control, and additional attributes and properties that are
specific to the type of control being defined. Configured control can be a button, a
text field, or a text area. The control type is used to locate the control factory for
creating a new configured control. Define a configured control, as shown in
Example 7-15.

Example 7-15 Defining a configured control

<extension point="com.ibm.commerce.telesales.widgets.controls">
<control
id="<control identifier>"
type="text"
tooltip="<tooltip text>"
label="<text>"
managerType="<widget manager>"
required="true"
editable="true">
<property name="<custom property name>" value="<custom property
value>"/>
</control>
</extension>

Composite control
A composite control is a control that has child controls. The layout of the children
of a composite control are defined using the compositeDefinition extension point.
Composite definitions can be arranged as either a grid layout or a form layout. A
composite definition looks as shown in Example 7-16.

Example 7-16 Composite definition

<extension
point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<gridCompositeDefinition id="<Composite definition identifier>"
layoutId="defaultLayout">
 Chapter 7. Developing customizations for IBM Sales Center 139

<row id="<row identifier>">
<control controlId="<control identifier>"
dataId="fillHorizontalGridData"/>
</row>
</gridCompositeDefinition>
</extension>

Managed composites and widget managers
A managed composite is a composite control along with one or more widget
managers. A managed composite is generated using the managed composite
factory. The initialization information is passed to the managed composite factory
and is available to the widget managers. The composite and its child controls are
constructed and the life cycle events delegated to the widget managers. There
are several levels of composite controls, including other composite controls,
before you reach a top-level composite control that will be the composite referred
to in the managed composite. The widget managers are responsible for defining
the behavior of all the controls under this top-level composite.

The behavior of the controls on the IBM Sales Center UI is managed by the
widget managers. These managers initialize, refresh, save, and dispose the
configured controls. They are also responsible for providing the content of table
cells. Widget managers can add complex behavior to controls by adding listeners
and handlers to the controls during initialization.

A standard widget manager is provided with the IBM Sales Center, and is used
with standard controls and tables. When a configured control is defined, it can be
declared with a manager type. The manager type is read by the widget manager
to decide if the control must be managed by the widget manager. Widget
managers will only manage the controls that have a manager type they
recognize. If a control does not declare a manager type, it is assumed to be
standard. Define a managed composite as shown in Example 7-17.

Example 7-17 Defining a managed composite

<managedComposite id="<managed composite identifier>"
compositeId="<composite identifier extended from>"><widgetManager
id="<widget manager identifier>"/><widgetManager id="<default standard
widget manager>"/></managedComposite>
140 IBM Sales Center for WebSphere Commerce V6

The defined managed composite identifier must be referred to in the configurable
page of the editor. The code fragment in Example 7-18 shows how the managed
composite is referred to in the associated configurable page.

Example 7-18 Referring a managed composite in the associated configurable page

public static final String <CUSTOM>_MANAGED_COMPOSITE_ID =
"com.ibm.commerce.telesales.ui.impl.<managed composite identifier>";
//$NON-NLS-1$

protected String getPageContentManagedCompositeId() {
return <CUSTOM>_MANAGED_COMPOSITE_ID;

}

The XML fragment displayed in Example 7-19 shows how the widget manager is
defined.

Example 7-19 Defining a widget manager

<widgetManager id="<widget manager identifier>" managerClass="<Custom
widget manager>"/>

Figure 7-5 shows the relationship between the editor and dialog and their
managed composite.

Figure 7-5 Relationship between the editor and the dialog and their managed composite

Sales Center UI

Editors/Dialogs

Managed Composite

Managed by

Composite Definitions

Composed of one

Widget Managers

Managed by multiple
 Chapter 7. Developing customizations for IBM Sales Center 141

7.4.4 Service requests and Service request handlers

These classes can be extended to construct the BOD and interpret the response.
An implementation must be provided for the interface ITelesalesRequestHandler
by extending the TelesalesRequest.

Each type of service request in IBM Sales Center has its own service request
handler. To customize the BOD format, create a subclass and customize this
class. All the service request handlers are defined in the
com.ibm.commerce.telesales.core.impl plug-in manifest file (plugin.xml). The
plug-in manifest file has the list of the service requests and the corresponding
request handler class, and the communication service ID. A service request
handler definition looks as shown in Example 7-20.

Example 7-20 Service request handler definition

<extension
point="com.ibm.commerce.telesales.core.serviceRequests">

<serviceRequest
label="<Service request logon>"
requestHandlerClass="<Request class>"
id="<Service request identifier>"
commServiceId="<Communication service identifier>">

</serviceRequest>
</extension>

7.4.5 Model object

A model object can be extended by subclassing the ModelObject class. The
model object must be registered with the model object extension point, and the
instance created using the TelesalesModelObject factory.

Add instances of your new class to the model as properties of other model
objects. If your model object is at the root level, add it as a property of
ModelRoot. If your model objects are actually a list of model objects, use the
ModelObjectList to group your model objects to a list. Add ModelObjectList as a
property of the parent object, ModelObject.

An additional property can be added by the IBM Sales Center model object as
follows:

1. Select a unique property name. To ensure that the property name does not
clash with a default property name, prefix the property name with ext_.

2. Use the setData and getData methods in the ModelObject class to add,
remove, and reference your new property.
142 IBM Sales Center for WebSphere Commerce V6

If the new property is actually a list, use the ModelObjectList class to collect the
list of values together. This ensures that the change notification is sent to the
objects listening when changes are made to the list or to any of the model
objects in the list.

Retrieve the IBM Sales Center client model objects by using
TelesalesModelManager as follows:

TelesalesModelManager myModelManager =
TelesalesModelManager.getInstance();

Usually, data model implementation involves the following tasks:

1. To create an implementation of a model listener, register the listener to the
model object that you want to listen to, as shown in Example 7-21.

Example 7-21 Registering the listener to the model object

public class <custom>ModelListener implements IModelListener
{
public void modelChanged(ModelEvent modelEvent)
{
// Do some thing with the property
}
}

2. Create an extension to the org.eclipse.ui.startup extension point in the
extensions plug-in (plugin.xml) as shown in Example 7-22.

Example 7-22 Creating an extension to the org.eclipse.ui.startup extension point

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>
 <extension point="org.eclipse.ui.startup">
 <startup class="extensions.ExtendedStartup"/>
 </extension>
</plugin>

3. To hear all the changes to the model, add your listener to the ModelRoot
object, as shown in Example 7-23.

Example 7-23 Adding the listener to the ModelRoot object

package extensions;
import org.eclipse.ui.IStartup;
import com.ibm.commerce.telesales.model.TelesalesModelManager;
public class ExtendedStartup implements IStartup {
 Chapter 7. Developing customizations for IBM Sales Center 143

public void earlyStartup() {

TelesalesModelManager.getInstance().getModelRoot().addModelListener(new
ExtendedModelListener());
 }

7.4.6 UserData property

Use the UserData element to pass the user-specific information to the server as
name-value pairs and back to the client. The UserData properties can be added
as parameters to the model object that is being passed to the service request
handler through the TelesalesProperties. Any property added to the model object
as a UserData property is automatically added as a UserData element in the
BOD request:

<ModelObject >.setData(<property name>,<property value>);
<Model Object>.addUserDataProperty(<property name>);

If you have a model object instance for a customer and want to add a property
called place_of_birth, perform the task as shown in Example 7-24.

Example 7-24 Adding a property called place_of_birth

public static final String PLACE_OF_BIRTH="place_of_birth";
customer.setData(PLACE_OF_BIRTH,"toronto");
customer.addUserDataProperty(PLACE_OF_BIRTH);

7.4.7 UserData support for the command extension

There are two types of extensions that are supported with BODs in IBM Sales
Center, which do not require a change to the BOD schema definitions. For the
create and sync BOD messages, you can add new name-value pairs to the
UserData element. By default, the create and sync BODs map the name-value
pairs in the UserData element to the request properties of the mapped controller
command. For the get BOD messages, you can add new search criteria to the
ReturnCriteria element.
144 IBM Sales Center for WebSphere Commerce V6

7.4.8 Dynamic extension ID resolvers

The dynamic extension ID resolvers are responsible for resolving a dynamic ID
into the ID of a valid extension declaration.

Following are the customization tasks involved:

1. In the plugin.xml file of your new plug-in, declare the dynamic IdResolver
using the com.ibm.commerce.telesales.dynamicIdResolvers extension point
as shown in Example 7-25.

Example 7-25 Declaring the dynamic IdResolver

<extension point="com.ibm.commerce.telesales.dynamicIdResolvers">
 <dynamicIdResolver
 id="<CustomIdResolver>"
 class="<extension Id resolver class>"/>
</extension>

2. After you define a dynamic ID resolver, define a new dynamic ID against the
composite definition that you are going to use, as shown in Example 7-26.

Example 7-26 Defining a new dynamic ID

<extension point="com.ibm.commerce.telesales.dynamicIds">
<dynamicId
id="<CustomCompositeDefinition>"
resolverId="<CustomIdResolver>"/>
</extension>

The composite definitions appear as shown in Example 7-27.

Example 7-27 Composite definitions

<extension
point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<gridCompositeDefinition id="<CustomCompositeDefinition.type1>"
layoutId="defaultLayout">
<row id="orderGeneralPageCustomerInfoHeaderRow">
<!-- controls here--->
</row>
<!-- Additional rows here-->
</gridCompositeDefinition>
<gridCompositeDefinition id="<CustomCompositeDefinition.type2>"
layoutId="defaultLayout">
<row id="orderGeneralPageOrganizationInformationRow">
 Chapter 7. Developing customizations for IBM Sales Center 145

<!-- controls here--->
</row>
<!-- Additional rows here-->
</gridCompositeDefinition>
</extension>

3. The composite definitions are loaded based on the code in the ID resolver
class, as shown in Example 7-28.

Example 7-28 Loading composite definitions

public String resolveId(String dynamicId, Set candidateIds,
ResolverContext context) {
String resolvedId = null;
if (TelesalesModelManager.getInstance().getActiveStore() != null) {
StringBuffer strBuf = new StringBuffer(dynamicId);
strBuf.append(".");
strBuf.append(TelesalesModelManager.getInstance().getActiveStore().getT
ype());
String id = strBuf.toString();
if (candidateIds.contains(id)) {
resolvedId = id;
}
}
if (resolvedId == null) {
/*
return either
StringBuffer(dynamicId).append(".type1").toString();
or
new StringBuffer(dynamicId).append(".type2").toString();
*/

7.4.9 System configurators

The IBM Sales Center platform provides the ability to specify a system
configurator for each plug-in to identify which extensions will be used over the
default IBM Sales Center extensions. The purpose of this extension point is to
allow plug-ins to specify the location of their system configurator file. The file
name must be config.ini. This file is a text file that allows you to provide a
substitute extension ID that will be used to replace a standard IBM Sales Center
extension ID.
146 IBM Sales Center for WebSphere Commerce V6

The configurator file, config.ini, must be located in a directory called config, which
is located in the root directory of the plug-in that is defining the extension.
Example 7-29 shows a sample system configurator extension definition.

Example 7-29 Sample system configurator extension definition

<extension point="com.ibm.commerce.telesales.configurator">
 <configurator path="config"/>
</extension>

The following sample line in the config.ini file assumes that you have defined an
alternative version of the login dialog box by using the dialogs extension point. It
indicates that you want to replace the default login dialog box
(com.ibm.commerce.telesales.logonDialog) with your own dialog box
(com.mycompany.logonDialog):

com.ibm.commerce.telesales.logonDialog=com.mycompany.logonDialog

7.4.10 Resources

A common customization scenario involves replacing the terminology used by
the application with the terminology that is more appropriate to the organization
where the application is deployed. You may also want to replace application
images with your own images. To ensure that these customizations are possible,
the IBM Sales Center application is designed to allow you to replace the text and
the images that appear on the UI.

By default, the English language IBM Sales Center resources are located in the
com.ibm.commerce.telesales.resources plug-in in the resources directory in the
telesalesResources_en_US.properties file. Alternative locale files are located in
the com.ibm.commerce.telesales.resources.nl1 plug-in in the resources
directory.

Note: The system configurator is an IBM Sales Center extension mechanism,
and not an Eclipse extension mechanism.
 Chapter 7. Developing customizations for IBM Sales Center 147

However, not all the modifiable and translatable text and images are in the
telesalesResources file. The following list contains the other possible changes
that you may want to perform:

� Changing client branding (banner images and so on) involves creating a
plug-in that defines a new extension to the org.eclipse.core.runtime.products
extension point, a plugin_customization.ini file, and an about.ini file. For more
information, refer to the WebSphere Everyplace Deployment Developer
Guide.

� Changing the system level text such as menu names and entries, view or
application names, or preference page names (any text that appears in a
plugin.xml or its companion plugin.properties) involves recreating the
extension declaration in your own plug-in and then supplying the text.

� When adding a new translation, define a fragment that extends the plug-in
containing the original properties file. IBM Sales Center provides fragments
with names containing nl1 that illustrate this. You can follow that pattern in
these fragments to add fragments of your own, extending the same plug-ins.

7.5 Developing IBM Sales Center server components

This section discusses the development of various IBM Sales Center server
components.

Refer to the information center topic “WebSphere Commerce integration”, which
is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.telesales.developer.doc/concepts/ctrcommerceintegration.htm

7.5.1 Message mappers

BOD messages sent from IBM Sales Center to the WebSphere Commerce
server are mapped to the WebSphere Commerce Controller command through
the WebSphere Commerce message mapper. A message mapper is a
mechanism that takes XML messages and converts them into a command
property object. A message mapper provides a common interface for messages
to be converted to CommandProperty objects, and can be used by all the
WebSphere Commerce commands.

The command property object is a representative of the controller command. The
object contains the controller name to be run, the command properties when
running the command, and the parameters of the command. The purpose of a
message mapper is to convert inbound request messages to controller
148 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrcommerceintegration.htm

commands to be run by an adapter. Although a message mapper can be used by
all the components of WebSphere Commerce to map data into an extended
TypedProperty object, the main purpose of a message mapper is to convert XML
objects to common Java objects that represent the controller commands.

To map an extended BOD message to a new or modified command, perform the
following tasks:

1. Identify the current mapping file and make a new copy of it. The IBM Sales
Center mapping files are by default located in the XML configuration
directory, <WCDE_installdir>\xml\messaging.

The file naming convention used by IBM Sales Center is
<noun><verb>BODMapping.xml, for example,
CreateCustomerBODMapping.xml. The copy of the file must be in the same
directory as the original, and must be uniquely identified as a file used for
extensions, for example, ExtendedCreateCustomerBODMapping.xml.

2. Add the modified attributes of the BOD information to the copied version.

3. WebSphere Commerce uses !ENTITY declarations to include different files
for each of the document command mappings, and has extended the
message mapper declaration to include a file for extensions called
webservice_SOABOD_template.extension.xml. You can update this file to
include your own extensions. This allows you to easily create your own
message mapper file and include those documents that you want to leave
alone and any additional or changed mappings that you want to define. The
message mapper files are located in the XML configuration directory
WCDE_installdir\xml\messaging.

The new extension file must be included in
webservice_SOABOD_template.extension.xml (Example 7-30). Perform this
task by using the !ENTITY directive, for example, after you modify the file to
add the webservice_SOABOD_template.extension.xml definition.

Example 7-30 Including a new extension file

<!DOCTYPE ECTemplate SYSTEM 'ec_template.dtd' [<!-- Source comment:
this [is required, do not remove -->
<!ENTITY ExtendedCreateCustomerMappingDefinition SYSTEM
'ExtendedCreateCustomerBODMapping.xml'>
]> <!-- Source comment: this]> is required, do not remove -->
<ECTemplate>
&ExtendedCreateCustomerMappingDefinition;
</ECTemplate>
 Chapter 7. Developing customizations for IBM Sales Center 149

7.5.2 Response builders

To create a BOD reply message, create a class that implements the
com.ibm.commerce.telesales.messaging.bodreply.ITelesalesResponseBuilder
interface. After that, add an entry to the custom registry to register the new
response builder created.

To add a new BOD reply message, perform the following tasks:

1. Create a new class that implements the
com.ibm.commerce.telesales.messaging.bodreply.ITelesalesResponseBuilde
r interface.

2. Add an entry to the custom registry to register the new response builder. To
do this, modify the existing TelesalesRegistry.xml file at location
(WCDE_installdir/xml/messaging). However, this is not recommended
because it may change during fix pack or migration.

Therefore, in the same directory, create a new registry file,
TelesalesRegistry-ext.xml, which overrides the existing TelesalesRegistry.xml
file.

3. Enter the following (Example 7-31) in the new file, TelesalesRegistry-ext.xml.

Example 7-31 Adding an entry to the custom registry

<WCTBodResponseBuilderRegistry>
 <Noun name="<Noun Name>">
 <Verb name="<Action name eg. Get>">
 <ClassName><!-- The reply class name--></ClassName>
 </Verb>
 </Noun>
</WCTBodResponseBuilderRegistry>

4. Modify the wc-server.xml file in such a way that the extended file is also
loaded with the existing entries in the TelesalesRegistry.xml (Example 7-32).

Example 7-32 Modifying the wc-server.xml file

<property
 baseRegistryFileName="TelesalesRegistry.xml"
 baseRegistryFilePath="messaging"
 customRegistryFileName="<!--The extended registry XML file name-->"
 customRegistryFilePath="messaging"
 display="false" enableBaseRegistryOverride="true" />

5. Restart the WebSphere Commerce Test Server for the server to reflect the
change to the wc-server.xml file.
150 IBM Sales Center for WebSphere Commerce V6

7.5.3 WebSphere Commerce server customizations

Perform WebSphere Commerce server customization in order to support most of
the customizations performed in IBM Sales Center. WebSphere Commerce
server customization includes creating new commands, Enterprise JavaBeans™
(EJBs), and associated database tables. You can invoke these through data
beans, with proper access control from the reply builder or the response builder.

For details about WebSphere Commerce server customization, refer to the
WebSphere Commerce Information Center at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

Also refer to the information center topic “Tutorials”, which is available on the
Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.base.doc/concepts/ctdtutorials.htm
 Chapter 7. Developing customizations for IBM Sales Center 151

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.base.doc/concepts/ctdtutorials.htm

152 IBM Sales Center for WebSphere Commerce V6

Chapter 8. Development tools and
customization deployment

This chapter provides useful customization details and tools.

8

© Copyright IBM Corp. 2007. All rights reserved. 153

8.1 Development tools

This section discusses the development tools that can be used when creating
IBM Sales Center customizations.

8.1.1 Deciding on the development environment to use

IBM Sales Center customization involves creating different assets that are a part
of either the IBM Sales Center client or the WebSphere Commerce server. The
development environment to be used to develop these assets depend on the
type of asset being created.

All IBM Sales Center client assets are developed using the IBM Sales Center
development environment using the plug-in development perspective. These
assets include the plug-in projects that contain the customization extensions.
The plug-ins contain the following:

� New and extended user interface (UI) definitions
� New and extended model objects
� New and extended request handlers
� New and extended resource bundles

All the WebSphere Commerce server code assets for the IBM Sales Center are
developed using the WebSphere Commerce development environment. These
assets include the following:

� New and extended response builders

� New and extended WebSphere Commerce commands, Enterprise
JavaBeans (EJBs), and access beans

Update the following assets in the file system on the WebSphere Commerce
development machine:

� Response builder registry
� Message mappers
� Commerce instance configuration file (WC_instancename.xml)
154 IBM Sales Center for WebSphere Commerce V6

8.1.2 Widget hover logging

An important first step in most customization tasks is to determine the identifier of
the object you want to customize. To facilitate the task of locating the identifiers
of an UI element on an editor page or dialog box in the IBM Sales Center client, a
debugging option called widget hover logging has been added to the
com.ibm.commerce.telesales.widgets plug-in. This debugging option prints out
the ID of the Sales Center UI widgets to the console when you hover over them,
in the following format:

<namespace>.<element ID>

When you hover over an object in the IBM Sales Center client, for example, the
output is written to the console prompt in Rational Application Developer as
follows:

� Mouse hover control ID is:

com.ibm.commerce.telesales.ui.impl.orderPaymentPageComposite

� The namespace for all default IBM Sales Center UI widgets is:

com.ibm.commerce.telesales.ui.impl

To enable widget hover logging, perform the following tasks:

1. In the IBM Sales Center development environment, select Run ... from the
Run menu.

2. In the left-hand pane, expand Run-time Workbench and select Sales
Center.

3. Select the Tracing tab.

4. Select the Enable tracing for the selected plug-ins check box.

5. Select the com.ibm.commerce.telesales.widgets plug-in.

Note: The namespace printed out in the console is not necessarily the
plug-in fragment that the element ID is defined in.

Note: Only when you select a plug-in in the left-hand pane will the tracing
options be displayed in the right-hand pane, where it can be edited.
 Chapter 8. Development tools and customization deployment 155

6. Select the debug/widgetHoverLogging check box and the Debug check
box as shown in Figure 8-1.

Figure 8-1 Enabling widget hover logging

7. Click Apply.

8. Click Run.

After you have found the element ID, search on the ID in the IBM Sales Center UI
plug-ins.
156 IBM Sales Center for WebSphere Commerce V6

Making plug-ins searchable
The IBM Sales Center UI plug-ins and plug-in fragments can be made
searchable in the IBM Sales Center development environment by importing them
as binary projects. This allows you to search on the ID of a UI element and find
its fragment.xml file. To make the IBM Sales Center UI plug-ins searchable,
perform the following tasks:

1. In the IBM Sales Center development environment, select the Plugins view
tab.

2. Select all the plug-ins and fragments with names that begin with
com.ibm.commerce.telesales.ui.impl.

3. After selecting the plug-ins, right-click and select Import → As binary
project.

These plug-ins will now be visible under the Package Explorer View tab.

Searching for the user element ID
To search for the definition of a UI element, perform the following tasks:

1. Using widget hover logging to determine the ID of the UI you want to search
on. You can also search in the contents of the comments or an extension
point type, for example, widget or managedComposite.

2. In the IBM Sales Center development environment, select Search → File ...

3. Enter your search term in the Containing text field.
 Chapter 8. Development tools and customization deployment 157

4. Enter *.xml in the File name patterns field. This searches through all the
plugin.xml and fragment.xml files in the workspace. Click Search. Figure 8-2
shows a file search dialog box.

Figure 8-2 Searching for the ID using file search

5. In the page that appears on clicking the Search tab, expand the plug-ins
where matches have been found and double-click a file to examine it.

8.1.3 Enabling the task of showing the contents

When passing custom data between the WebSphere Commerce server and the
IBM Sales Center client, sometimes, the data does not display as expected.
Ensure that the Business Object Document (BOD) files really contain the custom
data by viewing the contents of the BODs.

Note: In most cases, when you search on a UI element ID such as a widget
ID, you will be opening a file called fragment.xml. Do not modify the default
IBM Sales Center fragment.xml files, because they will be overwritten when
you migrate the IBM Sales Center development environment or when you
install fix pack updates. Examine the file for customizing and extending the UI
and then create your own new plug-in for packaging and deploying the
customizations.
158 IBM Sales Center for WebSphere Commerce V6

To view the contents of a BOD, perform the following tasks:

1. Within the IBM Sales Center development environment, select Run → Run.

2. Under the Arguments tab, make a note of the Workspace Data Location (by
default, the location is
<WCDE_installdir>/mscworkspace/runtime-workspace). This is the location
in which the BOD files will be stored.

3. Under the Tracing tab, perform the following tasks:

– Select Enable tracing for the selected plug-ins.

– Select the com.ibm.commerce.telesales.core.impl plug-in.

– Select all the debug options. The Tracing tab must look as shown in
Figure 8-3.

Figure 8-3 Enabling the options to show the contents of a BOD

c. Click Apply.

d. Click Run.
 Chapter 8. Development tools and customization deployment 159

4. When the IBM Sales Center client opens, perform the action that generates
the BOD, for example, open the IBM Sales Center - Order Management
application and select File → Logon from the menu to log in to the
WebSphere Commerce server.

5. In the file system, navigate to the Workspace Data Location you noted in step
2. Within this directory, navigate to the Workspace Data Location
debug/bodmessages subdirectory (by default, the location is
<WCDE_installdir>/mscworkspace/runtime-workspace). All the BODs
exchanged between the client and the server are stored in this directory.

6. Locate the appropriate BOD file. Each file name contains the name of the
command that generated the BOD and a time stamp. The
ShowElectronicCatalog command's BOD, for example, is called
wc.ShowElectronicCatalog_timestamp.xml, where timestamp is the time
when the BOD was created.

7. In the file, find the <wc:UserData> tag. The manufacturer part number is, for
example, passed from the server to the client (Example 8-1).

Example 8-1 Finding the <wc:UserData> tag

<wc:UserData>
<wc:UserDataField name="manufacturerPartNumber">
myMFPartNumber
</wc:UserDataField>
</wc:UserData>

8. Disable tracing under the Tracing tab when you no longer have to view the
BODs.

8.1.4 Debugging in the IBM Sales Center development environment

To debug IBM Sales Center, a preconfigured Runtime Workbench configuration
is available in the debug dialog box. To debug the IBM Sales Center, perform the
following tasks:

1. Select Debug... from the Run menu.

2. In the left-hand pane, expand Runtime Workbench and select Sales
Center.

3. Click Debug to debug the application.

4. Set the breakpoints as appropriate.
160 IBM Sales Center for WebSphere Commerce V6

8.1.5 Tracing in the IBM Sales Center development environment

To enable tracing in IBM Sales Center, perform the following tasks:

1. In the IBM Sales Center development environment, select Run ... from the
Run menu.

2. In the left-hand pane, expand Runtime Workbench and select Sales Center.

3. Click the Tracing tab.

4. Select the Enable tracing for the selected plug-ins check box.

As a result of this change, when you select a plug-in in the left-hand pane, its
tracing options will be displayed in the right-hand pane and can be edited
there.

5. Select the plug-ins you want to trace.

8.1.6 Enabling tracing and debugging in the IBM Sales Center client

When working within the IBM Sales Center development environment, you can
enable tracing and debugging. However, there may be situations in which you
want to enable tracing and debugging in the IBM Sales Center client that is not
running in the development environment.

To enable tracing and debugging in the IBM Sales Center client that is running
outside the development environment, perform the following tasks:

1. Create an .options file. The .options file contains information about which
plug-ins you want to debug and trace. It is possible to create an .options file
manually, but it is difficult to know all the different plug-ins and what debug
options are available for each one. This step uses the IBM Sales Center
development environment to help you generate this file. This step is only
required when you first enable tracing and debugging or when you want to
add new plug-ins and have to regenerate the .options file.

To create an options file, perform the following tasks:

a. Enable tracing in the IBM Sales Center development environment using
the instructions provided in 8.1.5, “Tracing in the IBM Sales Center
development environment” on page 161.

b. Select Run → Sales Center to launch the IBM Sales Center client and
automatically generate the .options file with the tracing options as
selected.
 Chapter 8. Development tools and customization deployment 161

c. Locate the .options file in the
<WCDE_installdir>\mscworkspace\plugins\.metadata\.plugins\org.eclipse.
pde.core\Sales Center directory. Example 8-2 shows an .options file.

Example 8-2 An .options file

#Master Tracing Options
com.ibm.commerce.telesales.core.impl/debug/bod/dumpLocation/initialdelay=120
com.ibm.commerce.telesales.core.impl/debug/bod/request/dump=true
com.ibm.commerce.telesales.widgets/debug/logging=false
com.ibm.commerce.telesales.core.impl/debug=true
com.ibm.commerce.telesales.core.impl/debug/bod/response/dump=true
com.ibm.commerce.telesales.core.impl/debug/logging=true
com.ibm.commerce.telesales.core.impl/debug/bod/request=true
com.ibm.commerce.telesales.widgets/debug=true
com.ibm.commerce.telesales.widgets/debug/widgetHoverLogging=true
com.ibm.commerce.telesales.core.impl/debug/bod/dumpMaxFiles=200
com.ibm.commerce.telesales.core.impl/debug/bod/dumpLocation/cleanintervel=600
com.ibm.commerce.telesales.core.impl/debug/bod/dumpLocation/clean=true
com.ibm.commerce.telesales.core.impl/debug/bod/dumplocation=debug/bodmessages/
com.ibm.commerce.telesales.core.impl/debug/bod/response=true

d. Select the IBM Sales Center client and the development environment.

2. Place a copy of the .options file in <SC_installdir>. Open the
<SC_installdir>/startup.bat file and add -debug at the end of the line. The
resulting command line must be similar to the following:

"%~dp0rcp\rcplauncher.exe" -product
com.ibm.commerce.telesales.TelesalesWorkbenchProduct -debug

3. Save your changes.

4. Run the <SC_installdir>/startup.bat file to start the IBM Sales Center client.

5. The tracing and debugging output is created in the C:\Documents and
Settings\<your_windows_logon_id>\IBM\RCP\<random_numbers>\<your_wi
ndows_logon_id>\.metadata\.log file. If you have enabled BOD requests and
response dumping, then the BOD files are created in the directory you
specified within the
com.ibm.commerce.telesales.core.impl/debug/bod/dumplocation option. By
default, this directory is C:\Documents and
Settings\<your_windows_logon_id>\IBM\RCP\<random_numbers>\<your_wi
ndows_logon_id>\debug\bodmessages.
162 IBM Sales Center for WebSphere Commerce V6

8.2 Deploying the customizations

This section describes the process involved in deploying the customizations from
the IBM Sales Center development environment to the IBM Sales Center runtime
client.

8.2.1 Exporting the client code from the development environment

Exporting the client code from the IBM Sales Center development environment
includes the following steps:

1. Preparing the plug-in for packaging
2. Creating the feature project
3. Creating an update site project

Preparing the plug-in for packaging
To prepare the plug-in for packaging, perform the following tasks:

1. Open the IBM Sales Center development environment if it is not already
open.

2. In the Package Explorer view, navigate to your plug-in project.

3. In your project, locate the plugin.xml file. Double-click the file to open it for
editing.

4. Click the Build tab.
 Chapter 8. Development tools and customization deployment 163

5. In the Binary Build section of the Build Configuration editor, keep all the
default selections and select the config directory containing the configuration
file to include it in your exported plug-in. The other assets are automatically
included from the default build selections. The binary build selections must
look as shown in Figure 8-4.

Figure 8-4 Binary build settings

6. Save your changes.

Creating the feature project
Before you create an Update Site project in Rational Application Developer,
create one or more feature projects that will refer to all the plug-ins you want to
deploy.

To create a feature project for your plug-ins in Rational Application Developer
V6.0, perform the following tasks:

1. In the Package Explorer view, select New → Feature Project.

2. Enter a project name and click Next. (Optionally, you can also enter the
Feature Provider’s name after entering the Project Name, and then click
Next.)

3. Select the desired plug-ins and fragments and click Finish.

4. The feature.xml editor opens. Right-click the Update URLs entry in the
Feature URLs and select New → Update URL.
164 IBM Sales Center for WebSphere Commerce V6

5. In the Properties view, change the Uniform Resource Locator (URL) to the
Web server URL where you have an update site. If you do not know where
the update site is, or if there are multiple update sites when the feature is
deployed, enter an arbitrary, unique URL such as http://<featureName>.URL.
As long as a nonempty update URL is supplied, it can be mapped to the
correct URL later.

6. Optionally, provide other feature information and press Ctrl+S to save.

You must decide whether you want to create one feature or several features. The
feature defines the granularity for installation and update. Populating an update
site with several small features instead of one large feature allows for selective
installation, for example, one base feature that is always installed can provide the
functional plug-ins, and several optional features can each provide fragments
containing message text translated into a different language. Different clients can
be installed with lesser or more optional features, and new language features
can be developed and deployed as necessary without changing the base
feature.

Creating an update site project
After you create a feature project in Rational Application Developer, create an
update site by performing the following tasks:

1. Select New → Project → Update site project from the list of plug-in
development project types.

2. Enter a name for the site project and click Finish.

3. The site.xml editor opens. Click Add and select a desired feature.

4. Right-click the feature and select Publish.

5. Click the Build All button in the editor.

6. In the Package Explorer, right-click the newly created update site project and
select Export.

7. Select File system as an export destination.

8. Click Next.

9. Enter a path to the directory.

10.Click Finish.

Note: Unlike most projects in Rational Application Developer, update site
projects are neither built automatically nor can they be built from build
actions in the project menu. Only the corresponding button in the site.xml
editor will build the site.
 Chapter 8. Development tools and customization deployment 165

8.2.2 Exporting the server code from the development environment

After you create the customized code in WebSphere Commerce Developer and
test it with the IBM Sales Center client and the WebSphere Commerce Test
Server, deploy the code to a target WebSphere Commerce server running
outside the WebSphere Commerce Developer. This target WebSphere
Commerce server can run locally on your development machine, or it can be on
another machine (using the same operating system or a different operating
system).

Following are the types of WebSphere Commerce customized code you can
create:

� Enterprise beans

Enterprise beans are compressed and exported from Rational Application
Developer as Enterprise JavaBeans (EJB™) JAR files, and then deployed to
the IBM WebSphere Application Server.

� Commands and data beans

Commands and data beans are compressed and exported from Rational
Application Developer as a JAR file, and then deployed to the WebSphere
Application Server.

� Store assets

Store assets such as JavaServer Page (JSP) files and properties files are
compressed and exported from Rational Application Developer as a JAR file,
and then deployed to the WebSphere Application Server.

� Schema changes

Updates to the database, such as new tables and inserted rows, must be
made on the WebSphere Commerce server database.

� All the other changes

All the other customized code changes are updates or new files that are
stored outside the enterprise archive (EAR), such as XML input files for
access control policies. These types of code changes must be transferred to
the WebSphere Commerce server environment using a file transfer utility.

To export the customized WebSphere Commerce server assets from the
Rational Application Developer, follow the high-level process:

� If the customized code is a command or data bean, export the code from
Rational Application Developer as a JAR file.

� If the customized code is an enterprise bean, export the bean from Rational
Application Developer as an EJB JAR file.
166 IBM Sales Center for WebSphere Commerce V6

� If the customized code is a store asset, export the code as a single file for one
file, and a compressed file or a JAR file for multiple files.

Ensure that you export all the assets relating to the IBM Sales Center
customizations:

� Commands

– WebSphere Commerce commands
– Response builders

� Database objects

– WebSphere Commerce EJBs and AccessBeans

� XML files

– Instance configuration file
– Response builder registry
– Message mappers

8.2.3 Deploying the customizations

After the code is exported from the development environment, it is ready to be
installed on the IBM Sales Center client and WebSphere Commerce server
machines.

Refer to Chapter 4, “IBM Sales Center production environment installation” on
page 45 for information about the manual and automatic installation of IBM Sales
Center customizations.

To deploy WebSphere Commerce server customizations relating to the IBM
Sales Center client customizations, follow the instructions provided in the topic
“Customized code deployment” in the WebSphere Commerce V6 Information
Center, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.developer.doc/concepts/cdedeploycustomcode.htm
 Chapter 8. Development tools and customization deployment 167

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/concepts/cdedeploycustomcode.htm

168 IBM Sales Center for WebSphere Commerce V6

Part 4 Customization
scenario
examples

This part provides examples of customization scenarios.

Part 4
© Copyright IBM Corp. 2007. All rights reserved. 169

170 IBM Sales Center for WebSphere Commerce V6

Chapter 9. User interface customization

This chapter demonstrates a complex user interface (UI) customization of IBM
Sales Center, which involves customizing each of the Sales Center’s
customizable components. The example referred to in this chapter requires a
modification of the Sales Center UI and the WebSphere Commerce Server.

9

© Copyright IBM Corp. 2007. All rights reserved. 171

9.1 Introduction

During the requirements phase, one of the business requirements requested by
our clients was a new functionality that supports additional information about the
customer’s pets, including the following:

� The ability to display information pertaining to customers' pet, that is, name,
type, and so on

� The ability to add, remove, and update information pertaining to customers

� The ability to find customers by the type of pets they own

To implement this customization, several UI modifications are required:

� Adding a new customer editor page to facilitate the inclusion of details
pertaining to a customer’s pets, as shown in Figure 9-1

Figure 9-1 The customer pet editor page

Note: Refer to Chapter 5, “Requirements and design” on page 95 for more
information about gathering customization requirements.
172 IBM Sales Center for WebSphere Commerce V6

� A dialog box to add a new pet (Figure 9-2) facilitating the addition of new pets
to the customer editor pet page

Figure 9-2 Adding a pet
 Chapter 9. User interface customization 173

� Modification of the Find Customer page (Figure 9-3) to include a new search
field, Pet Type

Figure 9-3 Finding customers by pet type

Because WebSphere Commerce does not support the base software install
handling of information pertaining to customers’ pets, several customizations
must be performed on the server side:

� Creating a new table to store information pertaining to a customer’s pets

� Writing new Enterprise JavaBeans (EJB) and an access bean to access
information pertaining to a customer’s pets from the new table

� Writing a new command to add and update information pertaining to a
customer’s pets

� Writing a new command to delete information pertaining to a customer’s pets
174 IBM Sales Center for WebSphere Commerce V6

To enable the passing of data between the IBM Sales Center client and the
WebSphere Commerce server, implement the following components:

1. Create a new model to represent a pet.

2. Extend the customer model to store the list of a customer’s pets.

3. Extend the GetCustomer request handler and its ShowCustomerRequest
response builder to handle the finding and receiving of customer information
by pet type.

4. Extend the SyncCustomerUpdate request handler and its ConfirmCustomer
response builder to handle the process of sending information pertaining to
pets, to the server.

9.2 Implementing the customization

The following sections explain how each of the customizations were developed.
They contain snippets of the code along with explanations about the main parts
of the customization. The customization is broken down as follows:

1. Developing the WebSphere Commerce server backend
2. Developing the Sales Center client customization base
3. Developing the new customer pet editor page
4. Developing the new add pet dialog box
5. Developing the find customer by pet dialog box

Note: The implementation of the code is provided as a sample that is not fully
functional and is provided “as is” for demonstration purposes. Refer to 9.8,
“Loading the customizations into WebSphere Commerce Developer” on
page 244 at the end of this chapter for instructions about how to load the code
into your development for analysis, and 9.9, “Testing the customized code” on
page 251 for use case scenarios relating to the demonstration of the
implemented functionalities.
 Chapter 9. User interface customization 175

9.3 Developing the WebSphere Commerce server
backend

This section describes at a high level, the assets created for the WebSphere
Commerce server backend to support the additional functionality pertaining to
customers’ pets.

9.3.1 Defining the new table

In our case, we defined a new table, XPET, in order to store information
pertaining to the pets, with column definitions, as shown in Table 9-1.

Table 9-1 The XPET table

The Structured Query Language (SQL) shown in Example 9-1 creates Table 9-1.

Example 9-1 SQL to create table

CREATE TABLE XPET
 (PET_ID BIGINT NOT NULL,
 USERS_ID BIGINT NOT NULL,
 NAME VARCHAR(32) NOT NULL,

TYPE VARCHAR(32) NOT NULL,
OPTCOUNTER SMALLINT NOT NULL);

ALTER TABLE XPET
 ADD CONSTRAINT xpet_p1 PRIMARY KEY (PET_ID);

ALTER TABLE XPET
 ADD CONSTRAINT xpet_f1 FOREIGN KEY (users_id) REFERENCES users
(users_id) ON DELETE CASCADE;

Column Type Restrictions

PET_ID BIGINT PRIMARY KEY

USERS_ID BIGINT NOT NULL
FOREIGN KEY TO USERS_ID in
USERS table

NAME VARCHAR(32) NOT NULL

TYPE VARCHAR(32) NOT NULL

OPTCOUNTER SMALLINT NOT NULL
176 IBM Sales Center for WebSphere Commerce V6

9.3.2 Implementing the new ExtPet EJB and ExtPetAccessBean

In our case, we defined a new EJB, ExtPet, and an AccessBean,
ExtPetAccessBean, to provide access to the XPET table. Table 9-2 provides the
ExtPet EJB definitions.

Table 9-2 ExtPet EJB definitions

Example 9-2 shows the ExtPetAccessBean methods.

Example 9-2 ExtPetAccessBean methods

ExtPetAccessBean()
void ExtPetAccessBean(Long usersId, String name, String type)

void setInitKey_petId(Long petId)
Long getPetId()

String getType()
void setType(String type)

Long getUserId()
void setUserId(Long usersId)

String getName()
void setName(String name)

The ExtPet EJB was written to automatically generate a key using the
ECKeyManager. To enable this feature, an entry is added to the KEYS table
using an SQL, as follows:

insert into KEYS (TABLENAME, COLUMNNAME, COUNTER , KEYS_ID) values
('xpet', 'pet_id', 0, 1);

Attribute Type

petId java.lang.Long key field

usersId java.lang.Long

name java.lang.String

type java.lang.String

optCounter short
 Chapter 9. User interface customization 177

9.3.3 Implementing the new commands

In our case, we created two new commands to support the customers’ pets
functionality:

� The command ExtPetUpdateCmd to add pets and update information
pertaining to pets, with the input parameters and behavior specified in
Table 9-3.

Table 9-3 ExtPetUpdateCmd input parameters

� The command ExtPetDeleteCmd to delete pets, with the input parameters
and behavior specified in Table 9-4.

Table 9-4 ExtPetDeleteCmd input parameters

When writing WebSphere Commerce commands, it is important to think about
their usage in the commerce solution. If it is to be used only by IBM Sales Center,
it is not necessary to specify the Uniform Resource Locator (URL) to redirect to
its response properties. However, if these commands are also going to be used
by Web clients, for example, the storefront or IBM Gift Center, the URL must be
specified. In our implementation, the URL is not specified because we only used
it in IBM Sales Center.

Input
parameter

Type Description

petId Long The primary key of the pet. If it is provided, it is an
update. If it is not provided, a new pet is created.
The added or updated petId is returned in the
response properties.

userId Long The pet owner ID. Mandatory for pet additions.

name String The name of the pet. Mandatory for pet additions.

type String The type of pet. Mandatory for pet additions.

Input
parameter

Type Description

petId Long The primary key of the pet to delete. Mandatory parameter.
It is also returned in the response properties.
178 IBM Sales Center for WebSphere Commerce V6

9.4 Developing the Sales Center client customization
base

Before starting to develop the specific UI parts, create the commonly used
customization assets.

9.4.1 Defining the configurator and the properties

This section shows you how to define the system configurator and the property
bundle.

The system configurator
To override any UI components, the system configurator file is used. To define
the system configurator for this customization, perform the following tasks:

1. Create the configurator file config.ini in the config folder under the plug-in
project.

2. Define the configurator location by specifying the extension shown in
Example 9-3 in the plugin.xml file. The path parameter specifies the folder
name of the configuration file.

Example 9-3 Defining the configurator location by specifying the extension

<extension point="com.ibm.commerce.telesales.configurator">
<configurator path="config" />

</extension>

Property bundle
This customization requires the addition of new resource properties to define the
labels, dialog names, titles, and so on. In order to enable the addition of new
properties, define a new resource bundle as follows:

1. In the com.ext.commerce.telesales.resources package, create a new file,
extTelesales.properties.

2. Register the new property bundle by specifying the extension shown in
Example 9-5, in the plugin.xml file.

Example 9-4 Registering the new property bundle by specifying the extension

<extension point="com.ibm.commerce.telesales.resources.resources">
<resourceBundle
 baseName="com.ext.commerce.telesales.resources.extTelesales" />

</extension>
 Chapter 9. User interface customization 179

9.4.2 Defining the new model objects

This section describes the process involved in defining a new model object and a
new model object list to encapsulate the pet information.

ExtPet model object
To store the information pertaining to pets, define a new model object.

Define a new model object class, ExtPet, representing a pet. This object
provides convenience methods to set and get the model object properties
relating to the pet object. This class also provides an additional marking property
that allows marking the object with the action taken on an object (existing, new,
edited, and deleted) in such a way that the entire list of pets can be processed at
one time and the appropriate action (add, update, or delete) be taken on the
server side, depending on the object’s marking. Example 9-5 shows the definition
of the ExtPet model object.

Example 9-5 New model object: ExtPet

package com.ext.commerce.telesales.model;

/**
 * ExtPet is a ModelObject that represents a pet. The default
 * properties of the Pet object are described in this class.
 */
public class ExtPet extends ModelObject {

 /**
 * Constant for the pet name property. The data stored under the "name" property

* is a String that contains the pet's name.
 */
 public static final String PROP_NAME = "name";

 /**
 * Constant for the pet id property. The data stored under the "petId" property

* is a String that contains the pet's primary id.
 */
 public static final String PROP_PET_ID = "petId";

 /**
 * Constant for the pet type property. The data stored under the "type" property

* is a String that contains the pet's type.
 */
 public static final String PROP_TYPE = "type";
180 IBM Sales Center for WebSphere Commerce V6

 /**
 * Constant for the marking property name.
 * The data stored under the "marking" property is a String that
 * is set to one of the following values:
 *
 * "MARKED_EXISTING"
 * "MARKED_NEW"
 * "MARKED_EDITED"
 * "MARKED_DELETED"
 *
 */
 public static final String PROP_MARKING = "marking";

 /**
 * Constant for the MARKED_DELETED value.This is one of the possible values

* of the "marking" property.
 */
 public static final String MARKED_DELETED = "MARKED_DELETED";

 /**
 * Constant for the MARKED_EDITED value.
 * This is one of the possible values of the "marking" property.
 */
 public static final String MARKED_EDITED = "MARKED_EDITED";

 /**
 * Constant for the MARKED_EXISTING value.
 * This is one of the possible values of the "marking" property.
 */
 public static final String MARKED_EXISTNG = "MARKED_EXISTNG";

 /**
 * Constant for the MARKED_NEW value.
 * This is one of the possible values of the "marking" property.
 */
 public static final String MARKED_NEW = "MARKED_NEW";

 /**
 * Constructor for ExtPet New model objects are initialized with a marking of
 * MARKED_NEW value.
 */
 public ExtPet() {
 super();
 setData(PROP_MARKING, MARKED_NEW);
 }
 Chapter 9. User interface customization 181

 /**
 * This method is a convenience method for retrieving the "petId" property
 * @return the primary ID of the pet
 */
 public String getId() {
 return (String) getData(PROP_PET_ID, "");
 }

 /**
 * This method is a convenience method for retrieving the current setting of the
 * "marking" property. If the value has not been set, then this method will
 * return an empty string.
 * @return The marking of the pet.
 */
 public String getMarking() {
 return (String) getData(PROP_MARKING, "");
 }

 /**
 * This method is a convenience method for retrieving the "name" property
 * @return
 */
 public String getName() {
 return (String) getData(PROP_NAME, "");
 }

 /**
 * This method is a convenience method for retrieving the "type" property
 * @return
 */
 public String getType() {
 return (String) getData(PROP_TYPE, "");
 }

 /**
 * This method is a convenience method for setting the "petId" property
 * @param petId
 */
 public void setId(String petId) {
 if (petId != null) {
 setData(PROP_PET_ID, petId);
 }
 }
182 IBM Sales Center for WebSphere Commerce V6

 /**
 * This method is a convenience method for setting the "marking" property.
 * @param marking The new marking for the pet.
 */
 public void setMarking(String marking) {
 setData(PROP_MARKING, marking);
 }

 /**
 * This method is a convenience method for setting the "name" property
 * @param name The name of the pet
 */
 public void setName(String name) {
 if (name != null) {
 setData(PROP_NAME, name);
 }
 }

 /**
 * This method is a convenience method for setting the "type" property
 * @param type the type of the pet
 */
 public void setType(String type) {
 if (type != null) {
 setData(PROP_TYPE, type);
 }
 }
}

To use the new model object, declare it in the plugin.xml by inserting the
extension shown in Example 9-6.

Example 9-6 Declaring the new model object in the plugin.xml

<extension point="com.ibm.commerce.telesales.core.modelObjects">
<modelObject class="com.ext.commerce.telesales.model.ExtPet"

id="com.ext.commerce.telesales.customer.extPetModel" />
</extension>
 Chapter 9. User interface customization 183

ExtPetList model object list
A customer might own several pets. Therefore, a list of pets has to be maintained
for each customer. A convenient ExtPetList model object list is defined in order to
work with a list of ExtPet objects. The model object list definition is specified in
Example 9-7.

Example 9-7 New model object list: ExtPetList

package com.ext.commerce.telesales.model;

/**
 * ExtPetList is a ModelObjectList that represents a list of pets.
 */
public class ExtPetList extends ModelObjectList {
 /**
 * Constructor for ExtPetList
 */
 public ExtPetList() {
 super();
 }

 /**
 * This method is a convenience method for adding an ExtPet to the list. The
 * specified ExtPet object is added to the ModelObjectList.
 * @param pet The pet.
 */
 public void addPet(ExtPet pet) {
 addData(pet);
 }

 /**
 * This method retrieves the pet at specified index
 * @param index the index of the pet to be fetched
 * @return the pet at specified index
 */
 public ExtPet getPet(int index) {
 return (ExtPet) getData(index);
 }

 /**
 * This method is a convenience method for retrieving the pet with the specified

* primary ID.
 * @return a pet with the specified primary ID
 * @param petId The pet id to get the pet for
 */
184 IBM Sales Center for WebSphere Commerce V6

 public ExtPet getPetForPetId(String petId) {

 for (int i = 0; i < size(); i++) {
 if (((ExtPet) getData(i)).getId().equals(petId)) {
 return (ExtPet) getData(i);
 }
 }

 return null;
 }

 /**
 * This method returns a vector of pets in the list.
 * @return A vector of all the customer's pets
 */
 public Vector getPets() {
 Vector petsVector = new Vector();

 for (int i = 0; i < size(); i++) {
 petsVector.add(getData(i));
 }
 return petsVector;
 }

 /**
 * This method removes the ExtPet object with the specified primary ID from the
 * pet list.
 * @param petId The pet's primary ID
 */
 public void removePetForPetId(String petId) {

 for (int i = 0; i < size(); i++) {
 ExtPet pet = (ExtPet) getData(i);
 if (pet.getId().equals(petId)) {
 removeData(pet);
 }
 }
 }

 /**
 * This method updates the list of pets.
 * @param pets an array of pet
 */
 Chapter 9. User interface customization 185

 public void setPets(ExtPet[] pets) {
 clear();
 for (int i = 0; i < pets.length; i++) {
 addData(pets[i]);
 }
 }
}

9.5 Developing the new customer pet editor page

This section demonstrates the steps involved in implementing the new customer
pet editor page shown in Figure 9-4.

Figure 9-4 The customer pet editor page
186 IBM Sales Center for WebSphere Commerce V6

9.5.1 Implementing the user interface components

This section shows you how to define the UI and the basic UI behavior for the
customer pet editor page.

User interface definition
Create the UI elements by performing the following tasks:

1. Define the new customer pet editor page by creating a new editor page Java
class, ExtCustomerPetsPage.java, as shown in Example 9-8.

To inherit the existing customer editor page behavior such as the button bar,
we extended from the TelesalesCustomerPage, which in turn extends from
the base Sales Center UI framework class, TelesalesConfigurableEditorPage.

Extending from the Sales Center UI framework class allows the definition of
controls on the page using Extensible Markup Language (XML) by providing
methods that specify which managed composite content area and which
managed composite button bar that are defined in plugin.xml will be used to
render the editor page. In our case, because we extended from the
TelesalesCustomerPage, the button bar is already set. We only have to
specify the content area by implementing the protected String
getPageContentManagedCompositeId() method to the ID of our content area,
which is defined in the plugin.xml. (The plugin.xml is defined later in this
section.)

The getHelpContextId() method is an abstract method that must be defined to
return a non-null value. It returns the (F1) help context ID so that the
EditorPart Page can have help information pop-up windows. In our case, for
brevity, we set the value to a dummy value.

The getTitle() method is an optional method to personalize the title of the
editor page.

Example 9-8 ExtCustomerPetsPage.java implementation

package com.ext.commerce.telesales.ui.impl.editors.customer;

public class ExtCustomerPetsPage extends TelesalesCustomerPage {

protected String getPageContentManagedCompositeId() {
 return "com.ext.commerce.telesales.customer.customerPetsManagedComposite";
 }

public String getHelpContextId() {
 return "__DUMMY__";
 }
 Chapter 9. User interface customization 187

public String getTitle() {
 return Resources.getString("CustomerPetPage.title");
 }
}

Figure 9-5 shows the result of the new customer pet editor page, provided the
specified composites are defined in the plugin.xml.

Figure 9-5 Customer pet editor page

2. Redefine the new customer pet editor page to include the new pet dialog box
as part of the editor by adding the extension shown in Example 9-9 to the
plugin.xml.

This definition is an exact replica of the existing definition, with a new ID and
with the addition of the “Pets” section (highlighted in bold in Example 9-9)
specifying the new ExtCustomerPetsPage created earlier to be added after
the Details page.

Example 9-9 Redefining the new customer pet editor page to include the new pet dialog box

<extension point="com.ibm.commerce.telesales.ui.editorPages">
<editor editorId="com.ext.commerce.telesales.customer.customerEditor"

id="com.ext.commerce.telesales.customer.customerEditorPages">
<page name="%customerIdentityPageName"
188 IBM Sales Center for WebSphere Commerce V6

class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerIdentityPage"
id="com.ibm.commerce.telesales.customerIdentityPage" />

<page name="%customerDetailsPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerDetailsPage"
id="com.ibm.commerce.telesales.customerDetailsPage" />

<page name="Pets"
class="com.ext.commerce.telesales.ui.impl.editors.customer.ExtCustomerPetsPage"

id="com.ext.commerce.telesales.customerPetPage" />

<page name="%customerShippingPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerAddressesPage"

id="com.ibm.commerce.telesales.customerAddressesPage" />

<page name="%customerOrdersPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerOrdersPage"
id="com.ibm.commerce.telesales.customerOrdersPage" />

<page name="%customerQuotesPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerQuotesPage"

id="com.ibm.commerce.telesales.customerQuotesPage" />

<page name="%customerReturnsPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerReturnsPage"
id="com.ibm.commerce.telesales.customerReturnsPage" />

<page name="%customerCommentsPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerCommentsPage"

id="com.ibm.commerce.telesales.customerCommentsPage" />

<page name="%customerTicklersPageName"
class="com.ibm.commerce.telesales.ui.impl.editors.customer.CustomerTicklersPage"

id="com.ibm.commerce.telesales.customerTicklersPage" />
</editor>

</extension>

3. Point to the redefinition of the customer pet editor page by creating the
following entry in the config.ini file:

com.ibm.commerce.telesales.customerEditorPages=
com.ext.commerce.telesales.customer.customerEditorPages
 Chapter 9. User interface customization 189

4. Define and lay out the controls for the customer pet form. Figure 9-6 displays
the result of this task.

Figure 9-6 Layout defined by the customerPetCompositeDefinition

To define the controls, insert the extension shown in Example 9-11into the
plugin.xml. This is the pet input form named customerPetComposite and its
fields.

The Name and Type fields are required fields. The Sales Center UI framework
automatically handles the processing of the required fields, enabling or
disabling the Submit button depending on whether the required field is filled
in. This is shown as a red asterisk (*) next to the label.

In order to enable the Sales Center UI framework to automatically handle the
required fields, specify the following for the controls:

– The label and field must be connected with the use of the fieldId in the
label control specifying the related input field ID

– The input field must have the required=”true” parameter specified

– The behavior of each of the fields is specified and controlled by a widget
manager whose type is “pet”. (The process of defining this widget
manager is described later in the section.)

– The composite specifies the “compositeType” property of the value
“petForm”, which allows the widget manager to identify the control.

– The control’s text parameter specifies the resource property key that
resolves to the resource property value at runtime.

Example 9-10 Defining the pet form controls

<extension point="com.ibm.commerce.telesales.widgets.controls">
<!-- pet composite -->
<control id="customerPetComposite" type="composite"

compositeDefinitionId="customerPetCompositeDefinition"
managerType="pet">
<property name="compositeType" value="petForm" />

</control>
<!-- pet information composite components -->
<control text="CustomerPetPage.petGroup" type="label"

id="customerPetGroupLabel" font="org.eclipse.jface.bannerfont" />
<control text="CustomerPetPage.petName" type="requiredLabel"
190 IBM Sales Center for WebSphere Commerce V6

id="customerPetNameLabel" fieldId="customerPetNameField" />
<control required="true" type="text" id="customerPetNameField"

modelPath="pet.name" managerType="pet"
tooltip="AddPetDialog.tooltip.petName" />

<control text="CustomerPetPage.petType" type="requiredLabel"
id="customerPetTypeLabel" fieldId="customerPetTypeField" />

<control required="true" type="combo" id="customerPetTypeField"
modelPath="pet.type" managerType="pet"
tooltip="AddPetDialog.tooltip.petType">
<property name="list">

<value>CustomerFindPetPage.petType1</value>
<value>CustomerFindPetPage.petType2</value>
<value>CustomerFindPetPage.petType3</value>
<value>CustomerFindPetPage.petType4</value>
<value>CustomerFindPetPage.petType5</value>
<value>CustomerFindPetPage.petType6</value>
<value>CustomerFindPetPage.petType7</value>

</property>
</control>

</extension>

Adding the extension shown in Example 9-11 into the plugin.xml defines the
layout of the customerPetComposite pet form.

Example 9-11 Layout of the pet form

<extension
point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<!-- pet form content -->
<gridCompositeDefinition id="customerPetCompositeDefinition"

layoutId="com.ibm.commerce.telesales.ui.impl.standardGridLayout">
<row id="customerPetGroupLabelRow">

<control controlId="customerPetGroupLabel"
dataId="com.ibm.commerce.telesales.ui.impl.headerLabelGridData" />

</row>
<row id="customerPetNameRow">

<control controlId="customerPetNameLabel"
dataId="com.ibm.commerce.telesales.ui.impl.requiredLabelGridData" />

<control controlId="customerPetNameField"
dataId="com.ibm.commerce.telesales.ui.impl.requiredFieldGridData" />

</row>
<row id="customerPetTypeRow">

<control controlId="customerPetTypeLabel"
dataId="com.ibm.commerce.telesales.ui.impl.requiredLabelGridData" />

<control controlId="customerPetTypeField"
 Chapter 9. User interface customization 191

dataId="com.ibm.commerce.telesales.ui.impl.requiredFieldGridData" />
</row>

</gridCompositeDefinition>
</extension>

5. Define and lay out the controls for the list buttons. Figure 9-7 displays the
result of this task.

Figure 9-7 Layout of the customerPetListButtonCompositeDefinition list buttons

To define the controls, insert the extension shown in Example 9-13 into the
plugin.xml, the list button composite named customerPetListButtonComposite
and its buttons.

Example 9-12 Defining the list buttons

<!-- Pet editor pet list button components -->
<extension point="com.ibm.commerce.telesales.widgets.controls">

<control id="customerPetListButtonComposite" type="composite"
compositeDefinitionId="customerPetListButtonCompositeDefinition"

/>
<control id="customerPetAddButton"

text="CustomerPetPage.button.add" type="pushButton"
managerType="pet">
<property name="buttonType" value="addPet" />

</control>
<control id="customerPetDeleteButton"

text="CustomerPetPage.button.delete" type="pushButton"
managerType="pet">
<property name="buttonType" value="deletePet" />

</control>
</extension>

Adding the extension shown in Example 9-13 into the plugin.xml defines the
layout of the list button composite customerPetListButtonComposite.

Example 9-13 Lay out the buttons by defining
customerPetListButtonCompositeDefinition

<!-- Define the Pet List Buttons composite -->
<extension

point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
192 IBM Sales Center for WebSphere Commerce V6

<gridCompositeDefinition
id="customerPetListButtonCompositeDefinition"
layoutId="com.ibm.commerce.telesales.ui.impl.standardGridLayout">
<row id="customerPetAddButtonRow">

<control controlId="customerPetAddButton"
dataId="com.ibm.commerce.telesales.ui.impl.buttonGridData"

/>
</row>
<row id="customerPetDeleteButtonRow">

<control controlId="customerPetDeleteButton"
dataId="com.ibm.commerce.telesales.ui.impl.buttonGridData"

/>
</row>

</gridCompositeDefinition>
</extension>

6. Define the new pet list controls and lay them out with the defined buttons
composite. Figure 9-8 displays the result of this task.

Figure 9-8 Layout of the pet list composite as defined by
customerPetListCompositeDefinition

To define new pet list controls, insert the extension from Example 9-14 into
the plugin.xml. This consist of the list of pets composite named
customerPetListComposite, the list field, and the group label.

Example 9-14 List of pet controls

<extension point="com.ibm.commerce.telesales.widgets.controls">
<control id="customerPetListComposite" type="composite"

compositeDefinitionId="customerPetListCompositeDefinition" />
<control id="customerPetListGroupLabel" type="label"

text="CustomerPetPage.customerPetListGroup"
font="org.eclipse.jface.bannerfont" />

<control id="customerPetList" type="list" managerType="pet">
<property name="listType" value="pets" />

</control>
</extension>
 Chapter 9. User interface customization 193

Adding the extension shown in Example 9-15 into the plugin.xml defines the
layout of the customer pet list composite containing the pet list area and the
action buttons.

Example 9-15 Laying out the pet list composite

<extension
point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<gridCompositeDefinition id="customerPetListCompositeDefinition"

layoutId="com.ibm.commerce.telesales.ui.impl.standardGridLayout">
<row id="customerPetListGroupLabelRow">

<control controlId="customerPetListGroupLabel"
dataId="com.ibm.commerce.telesales.ui.impl.headerLabelGridData"

/>
</row>
<row id="customerPetListRow">

<control controlId="customerPetList"
dataId="com.ibm.commerce.telesales.ui.impl.standardGridData"

/>
<control controlId="customerPetListButtonComposite"
dataId="com.ibm.commerce.telesales.ui.impl.standardGridData"

/>
</row>

</gridCompositeDefinition>
</extension>

7. Define and lay out the pet page content area. Figure 9-9 displays the result of
this task.

Figure 9-9 Lay out the pet page content area defined by the customerPetsCompositeDefinition

Insert the two extensions from Example 9-16 into the plugin.xml to define the
new control, the pets composite named customerPetsComposite, and its
layout, customerPetsCompositeDefinition, which lays out all the composites
defined in the earlier steps.

Example 9-16 Laying out the pet page using all the defined composites

<extension point="com.ibm.commerce.telesales.widgets.controls">
<control id="customerPetsComposite" type="composite"
194 IBM Sales Center for WebSphere Commerce V6

compositeDefinitionId="customerPetsCompositeDefinition">
</control>

</extension>

<!-- pet editor page layout of all top level components -->
<extension

point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<formCompositeDefinition id="customerPetsCompositeDefinition"

layoutId="com.ibm.commerce.telesales.ui.impl.standardFormLayout">
<control controlId="customerPetListComposite">

<leftAttachment offset="0" numerator="0" />
<rightAttachment offset="-15" numerator="50" />

</control>
<control controlId="customerPetComposite">

<leftAttachment offset="15"
relativeControlId="customerPetListComposite" />

<rightAttachment numerator="100" offset="-15" />
</control>

</formCompositeDefinition>
</extension>

User interface behavior
Now that the interface elements are defined, define the basic UI behavior:

1. The behavior of the controls is managed by using widget managers. The
Customer Pet Page content area controls are managed by the widget
managers defined by the ExtPetWidgetManager class.

Data sharing between the controls, request handlers, and the widget
managers is performed with the property mechanism. The properties are
saved and retrieved on an as-is required basis.

The customer is a saved property with a name “customer” and contains the
data of type Customer Model Object, which is used throughout the customer
editor parts.

In our extension, we defined the local “pets” property to maintain the current
pet list of type ExtPetList, the “pet” property to maintain the currently selected
item and displayed in the pet form. Also, all the pet-specific controls defined in
the plugin.xml specify a property to identify the control during the custom
widget manager initialization.

Example 9-17 shows some of the methods dictating the behavior relating to
the customer pet page.
 Chapter 9. User interface customization 195

– The constructor specifies the manager type to be “pet”. This ensures that
only those controls that are defined as pet controls are to be managed by
this widget manager.

– The initControl() method initializes all the pet controls managed by this
widget manager calling the specific control intialization method, mainly
specifying the listeners that will handle any events relating to the control
(initControlPetList(), selectionListener_petList_).

– The refreshControl() method extends the default implementation to refresh
the pet controls, enable and disable the buttons, coordinate the selected
item in the list with the displayed information in the pet form, and so on.

– The saveControl() method extends the default implementation to save the
pet controls to the customer model object. It saves any changes to the
item displayed in the pet form to the “pet” property and saves the pet list
changes into the customer object set in the “customer” property.

Example 9-17 ExtPetWidgetManager.java partial implementation

package com.ext.commerce.telesales.ui.impl.customer.pet;

public class ExtPetWidgetManager extends StandardWidgetManager {

 /**
 * Constructor for ExtPetWidgetManager. Initializes the manager of type "pet".
 */
 public ExtPetWidgetManager() {
 super();
 setManagerType(PROP_PET);
 }

public void initControl(ConfiguredControl configuredControl) {

 // initialize all the controls with the specified model path
 String modelPath = configuredControl.getModelPath();
 if (modelPath != null && modelPath.startsWith(PROP_PET_MODEL_PATH)) {

modelPath = PROP_PET + modelPath.substring(PROP_PET_MODEL_PATH.length() - 1);
configuredControl.setProperty(ControlDescriptor.ATT_MODEL_PATH, modelPath);

 }
 // initialize all the "pet" controls
 String compositeType = (String)
configuredControl.getProperty(PROP_COMPOSITE_TYPE);
 String buttonType = (String) configuredControl.getProperty(PROP_BUTTON_TYPE);
 String listType = (String) configuredControl.getProperty(PROP_LIST_TYPE);

 if (configuredControl != null
196 IBM Sales Center for WebSphere Commerce V6

 && configuredControl.getManagerType().equals(getManagerType())) {

 // init the pet editor page controls
 if (BUTTON_TYPE_ADD_PET.equals(buttonType)) {
 initControl_AddPetButton(configuredControl);
 } else if (BUTTON_TYPE_DELETE_PET.equals(buttonType)) {
 initControl_DeletePetButton(configuredControl);
 } else if (LIST_TYPE_PETS.equals(listType)) {
 initControl_PetList(configuredControl);
 } else if (COMPOSITE_TYPE_PET_FORM.equals(compositeType)) {

initControl_PetFormComposite((ConfiguredComposite) configuredControl);
 }
 // init the add pet dialog controls
 else if (BUTTON_TYPE_OK.equals(buttonType)) {
 initControl_OkButton(configuredControl);
 } else if (BUTTON_TYPE_CANCEL.equals(buttonType)) {
 initControl_CancelButton(configuredControl);
 }

 }
 super.initControl(configuredControl);
 }

/**
 * Initialize the pet list control
 * @param petsControl
 */
 protected void initControl_PetList(ConfiguredControl petsControl) {
 if (petsControl != null && petsControl.getControl() instanceof List) {
 control_PetList_ = petsControl;
 // listen in on selection events
 List list = (List) petsControl.getControl();
 list.addSelectionListener(selectionListener_petList_);
 }
 }
/**
 * Selection Listener handles the selection of pet list.
 */
 protected final SelectionListener

selectionListener_petList_ = new SelectionAdapter() {
 public void widgetSelected(SelectionEvent event) {
 selected_PetList(event);
 }
 };
 Chapter 9. User interface customization 197

 /**
 * Refresh the specified control
 * @param configuredControl the configured control
 */
 public void refreshControl(ConfiguredControl configuredControl) {
 if (configuredControl != null && configuredControl.getControl() != null) {

 // refresh the pet specific controls

 // refresh the pet editor page controls
 if (configuredControl == control_PetList_) {
 refreshControl_PetList();
 } else if (configuredControl == control_PetFormComposite_) {
 refreshControl_PetFormComposite();
 } else if (configuredControl == control_deletePetButton_) {
 refreshControl_DeletePetButton();
 }
 // refresh the add dialog button controls
 else if (configuredControl == control_OKButton_) {
 refreshControl_OkButton();
 } else {
 super.refreshControl(configuredControl);
 }
 }
 }
/*

* save the control data
*/

 public void saveControl(ConfiguredControl configuredControl) {
 if (configuredControl != null) {
 if (configuredControl.getManagerType().equals(getManagerType())) {
 // save existing objects
 ExtPet pet = null;
 Object object = getInputProperties().getData(PROP_PET);
 if (object instanceof ExtPet) {
 pet = (ExtPet) object;
 if (ExtPet.MARKED_EXISTNG.equals(pet.getMarking())
 && configuredControl.isDirty()) {
 pet.setMarking(ExtPet.MARKED_EDITED);
 }
 } else {
 // first selection or when returning from add_pet dialog
 pet = (ExtPet) TelesalesModelObjectFactory
 .createModelObject(ExtCustomerContants.MODEL_OBJECT_PET);
 getInputProperties().setData(PROP_PET, pet);
198 IBM Sales Center for WebSphere Commerce V6

 }
 }
 // Save the Pet List
 if (configuredControl == control_PetList_) {
 // save the list into the customer object
 Customer customer = getCustomerObject();
 if (customer != null) {
 // Pets
 ExtPetList pets = getPetsObject();
 ExtPetList mpets = new ExtPetList();
 mpets.setPets((ExtPet[]) pets.toArray(new ExtPet[pets.size()]));
 customer.setData(ExtCustomerContants.PROP_CUSTOMER_PETS, mpets);
 }
 } else {
 super.saveControl(configuredControl);
 }
 }
 }
}

2. Register the pet widget manager by adding the extension shown in
Example 9-18 into the plugin.xml.

Example 9-18 Defining the pet widget manager

<!-- add pet editor page widget manager -->
<extension

point="com.ibm.commerce.telesales.widgets.widgetManagers">
<widgetManager

managerClass="com.ext.commerce.telesales.ui.impl.customer.pet.ExtPetWid
getManager"
id="customerPetWidgetManager" />
</extension>

3. Specify the customer pets composite to be managed by the pet widget
manager by adding the extension shown in Example 9-19 into the plugin.xml.

Example 9-19 Defining the customer pets managed composite

<extension
point="com.ibm.commerce.telesales.widgets.managedComposites">
<managedComposite id="customerPetsManagedComposite"

compositeId="customerPetsComposite">
<widgetManager id="customerPetWidgetManager" />
<!-- are these below really needed? -->
<widgetManager
 Chapter 9. User interface customization 199

id="com.ibm.commerce.telesales.ui.impl.customerEditorWidgetManager" />
<widgetManager

id="com.ibm.commerce.telesales.widgets.standardWidgetManager"
/>

</managedComposite>
</extension>

4. Extend the existing customer editor, CustomerEditor class, to handle the
additional customer pet data by creating the ExtCustomerEditor class:

a. Extend the initialization, and save, update, and refresh the methods to
save and refresh the pet lists into the customer object as defined in
Example 9-20.

intializePets() reads the pet information from the customer object and
saves the read list into the “pets” property.

initializePets() is called on the customer editor save with the doSave()
method and any customer model change with modelChanged() method
(using the refreshPetWidgetManagerInputProperties() method).

Example 9-20 ExtCustomerEditor.java: Handling data implementation

package com.ext.commerce.telesales.ui.impl.editors.customer;

public class ExtCustomerEditor extends CustomerEditor {

 /**
 * Save the "pets" property with the pets stored in the customer object.
 * @param customer
 * @param widgetManagerInputProperties
 */
 protected void initializePets(Customer customer,
 WidgetManagerInputProperties widgetManagerInputProperties) {
 ExtPetList customerPets = ((ExtPetList) customer
 .getData(ExtCustomerContants.PROP_CUSTOMER_PETS));
 ExtPetList pets = new ExtPetList();
 for (int i = 0; customerPets != null && i < customerPets.size(); i++) {
 ExtPet pet = customerPets.getPet(i);
 try {
 pets.addPet((ExtPet) pet.clone());
 } catch (CloneNotSupportedException e) {
 UIImplPlugin.log(e);
 }
 }
 widgetManagerInputProperties.setData(ExtPetWidgetManager.PROP_PETS, pets);
200 IBM Sales Center for WebSphere Commerce V6

 }

 /**
 * Refresh the "pets" property with the customer object.
 */
 protected void refreshPetWidgetManagerInputProperties() {
 WidgetManagerInputProperties widgetManagerInputProperties =
getWidgetManagerInputProperties();
 Customer customer = getCustomer(widgetManagerInputProperties);
 if (customer != null) {

 ExtPetList pets = (ExtPetList) widgetManagerInputProperties
 .getData(ExtPetWidgetManager.PROP_PETS);
 if (pets != null) {
 boolean petsChanged = false;
 for (int i = 0; i < pets.size(); i++) {
 ExtPet pet = pets.getPet(i);
 // changed after fetch from database
 if (!ExtPet.MARKED_EXISTNG.equals(pet.getMarking())) {
 petsChanged = true;
 break;
 }
 }

 if (!petsChanged) {
 initializePets(customer, widgetManagerInputProperties);
 }
 }
 }
 }

public void modelChanged(ModelObjectChangedEvent event) {

 super.modelChanged(event);
 refreshPetWidgetManagerInputProperties();
 }

 // ****** the two methods below should have only required update of
 // initWidgetManagerInputProperties() but that causes an infinite loop
 // **********

public WidgetManagerInputProperties getWidgetManagerInputProperties() {
 WidgetManagerInputProperties widgetManagerInputProperties = super
 .getWidgetManagerInputProperties();
 Chapter 9. User interface customization 201

 // initialize the "pets" property with customer object "pets"
 // NOTE: this step would have not been necessary if extending
 // initWidgetManagerInputProperty did not result in an unavoidable
 // infinite loop
 if (widgetManagerInputProperties != null
 &&

widgetManagerInputProperties.getData(ExtPetWidgetManager.PROP_PETS) == null)
{

 Customer customer = getCustomer(widgetManagerInputProperties);
 initializePets(customer, widgetManagerInputProperties);
 }
 return widgetManagerInputProperties;
 }

public boolean doSave() {
 // save the "pets" property with customer object "pets" upon save
 // NOTE: this step would have not been necessary if extending
 // initWidgetManagerInputProperty did not result in an unavoidable
 // infinite loop
 boolean savedResult = super.doSave();

 Customer customer = (Customer) getEditorInput().getAdapter(Customer.class);
 customer.suspendListenerNotification();

 if (savedResult) {
 Object[] pages = getPages();
 WidgetManagerInputProperties widgetManagerInputProperties

= getWidgetManagerInputProperties();
 Customer customerProp = getCustomer(widgetManagerInputProperties);
 //
 initializePets(customerProp, widgetManagerInputProperties);
 // unmark as dirty
 for (int i = 0; i < pages.length; i++) {
 ISaveablePart page = (ISaveablePart) pages[i];
 page.doSave(null);
 }
 }

 customer.resumeListenerNotification();
 return savedResult;
 }

b. Implement the ExtCustomerEditor methods that send the updated pet
changes to the WebSphere Commerce Suite server (Example 9-21),
initiated by clicking the Update button in the customer editor:
202 IBM Sales Center for WebSphere Commerce V6

• ExtCustomerEditor.java only shows the add task snippets. The update
and delete methods are implemented in a similar manner.

• The update() method is extended to process the pet list using the
updatePetChanges() method.

• The updatePetChanges() method calls the appropriate task method
depending on the marking on the pet object (addPet method,
updatePet method, and deletePet method).

• The addPet() method calls the service request (with the ID
com.ext.commerce.telesales.customer.addPet) to execute the addPet
task and send the data to the server.

Example 9-21 ExtCustomerEditor.java: Send to server implementation

/*
 * Extend the customer object to update Pet changes.
 */
 public TelesalesRequestStatus update(Customer customer) {

 TelesalesRequestStatus status = super.update(customer);
 // save pet changes if customer object saved without problems
 if (status != null && status.isOK()) {
 ExtPetList petList = (ExtPetList) customer
 .getData(ExtCustomerContants.PROP_CUSTOMER_PETS);
 if (petList != null) {
 Vector pets = petList.getPets();
 updatePetChanges(pets);
 }
 }
 return status;
 }

 /**
 * This method processes the pet changes, adds, updates or deletes the marked pet
objects.
 * @param pets list of pets to be checked if need to be updated
 */
 protected void updatePetChanges(Vector pets) {

 for (int i = 0; i < pets.size(); i++) {
 // ExtPet
 ExtPet pet = (ExtPet) pets.get(i);
 if (pet.getMarking().equals(ExtPet.MARKED_NEW)) {
 addPet(pet);
 } else if (pet.getMarking().equals(ExtPet.MARKED_EDITED)) {
 Chapter 9. User interface customization 203

 updatePet(pet);
 } else if (pet.getMarking().equals(ExtPet.MARKED_DELETED)) {
 deletePet(pet);
 }
 }
 }

 /**
 * Issues an Add action.
 *
 * The TelesalesCustomerPage implementation of this framework method sends a new
 * pet request to WebSphere Commerce issuing the action ID of
 * ExtCustomerContants.SERVICE_REQUEST_ADD_PET to the TelesalesJobScheduler.
 */
 public void addPet(ExtPet pet) {
 TelesalesProperties parms = getParameters_AddPet(pet);

 try {
 TelesalesRequestStatus status = TelesalesJobScheduler.getInstance().run(
 ExtCustomerContants.SERVICE_REQUEST_ADD_PET, parms, true);
 TelesalesJobScheduler.handleErrors(status, this, true);
 } catch (InterruptedException ie) {
 UIImplPlugin.log(ie);
 } catch (Exception e) {
 UIImplPlugin.log(e);
 }
 }

 /**
 * Constructs the parameters for the ExtCustomerContants.SERVICE_REQUEST_ADD_PET
 * telesales action.
 * @param pet the pet
 * @return parameters for the add pet action
 */
 protected TelesalesProperties getParameters_AddPet(ExtPet pet) {
 TelesalesProperties parms = new TelesalesProperties();
 parms.put("username",TelesalesModelManager.getInstance().getActiveOperator().

getUID());
 parms.put("store", TelesalesModelManager.getInstance().getActiveStore());

 Customer customer = (Customer) getEditorInput().getAdapter(Customer.class);
 parms.put("customer", customer);
 parms.put("pet", pet);

 return parms;
204 IBM Sales Center for WebSphere Commerce V6

 }

5. Redefine the customer editor to use the extended ExtCustomerEditor.java
class by adding the extension shown in Example 9-22 into the plugin.xml.

Example 9-22 Redefining the customer editor

<extension point="org.eclipse.ui.editors">
<editor name="%customerEditorName"

icon="icons/ctool16/edit_customer.gif"
class="com.ext.commerce.telesales.ui.impl.editors

.customer.ExtCustomerEditor"
contributorClass="com.ibm.commerce.telesales.ui.impl.editors

.customer.CustomerEditorActionBarContributor"
id="com.ext.commerce.telesales.customer.customerEditor">

</editor>
</extension>

6. Point to the new customer editor definition by inserting the following entryinto
the config.ini:

com.ibm.commerce.telesales.customerEditor =
com.ext.commerce.telesales.customer.customerEditor

9.5.2 Implementing the integration code on the client side (part 1)

Now that the UI and its basic behavior (add, update, and remove) are created,
you must be able to send the updated pet information to the server.

Request handler
Request handlers are responsible for creating the Business Object Document
(BOD) messages with the information to be sent to the WebSphere Commerce
server. They also handle the response BODs that are sent as response to the
request from the server.

When you click the Update button in the customer editor, if customer information
changes have occurred, the main request handler handling the sending of data
to the WebSphere Commerce server is the SyncCustomerUpdateRequest that
creates the SyncCustomer BOD message. Extend this request handler to add
the pet information into the BOD message.
 Chapter 9. User interface customization 205

Request handler: Business Object Document message format
The passing of data between the server and the client is through the use of BOD
messages. Extend the SyncCustomerUpdateRequest to generate the
pet-specific components identified by the bold text in Example 9-23 for the Add
Pet BOD message, Example 9-24 on page 207 for the Update Pet BOD
message, and Example 9-25 on page 208 for the Delete Pet BOD message to be
sent to the WebSphere Commerce server.

Business Object Document message: Adding a customer’s pet
Example 9-23 shows the SyncCustomer BOD message for the Add Customer’s
Pet task.

Example 9-23 SyncCustomer BOD message for the Add Customer’s Pet task

<?xml version="1.0" encoding="UTF-8"?>
<wc:SyncCustomer .. ">

<oa:ApplicationArea>
..

</oa:ApplicationArea>
<wc:DataArea>

<oa:Sync confirm="Always">
<oa:SyncCriteria expressionLanguage="XPath">

<oa:SyncExpression action="Add">
CustomerPet

</oa:SyncExpression>
</oa:SyncCriteria>

</oa:Sync>
<wc:Customer>

<oa:CustomerParty>
..

</oa:CustomerParty>

Note: The customer editor requires two integrations with the server:

� Send pet updates to the server
� Receive the existing customers’ pet lists from the server

The first integration is documented in this section when discussing the
development of the customer editor. The second integration is explained in
9.7, “Developing the find customer by pet dialog box” on page 230.

Note: To enable the showing of the generated BOD messages being passed
between the client and the server, refer to the instructions provided in 8.1.3,
“Enabling the task of showing the contents” on page 158.
206 IBM Sales Center for WebSphere Commerce V6

<wc:CommerceArea>
..

</wc:CommerceArea>
<wc:UserAccount>

..
</wc:UserAccount>
<wc:CustomerDemographics>

...
</wc:CustomerDemographics>
<wc:UserData />
<Pets>

<Pet>
<petName>Gigi</petName>
<petType>Dog</petType>

</Pet>
</Pets>

</wc:Customer>
</wc:DataArea>

</wc:SyncCustomer>

Business Object Document message: Changing a customer’s pet
Example 9-24 shows the SyncCustomer BOD for the Change Customer Pet task.

Example 9-24 SyncCustomer BOD for the Change Customer Pet task

<?xml version="1.0" encoding="UTF-8"?>
<wc:SyncCustomer ...>

<oa:ApplicationArea>
...

</oa:ApplicationArea>
<wc:DataArea>

<oa:Sync confirm="Always">
<oa:SyncCriteria expressionLanguage="XPath">

<oa:SyncExpression action="Change">
CustomerPet

</oa:SyncExpression>
</oa:SyncCriteria>

</oa:Sync>
<wc:Customer>

<oa:CustomerParty>
...

</oa:CustomerParty>
<wc:CommerceArea>

...
</wc:CommerceArea>
 Chapter 9. User interface customization 207

<wc:UserAccount>
...

</wc:UserAccount>
<wc:CustomerDemographics>

...
</wc:CustomerDemographics>
<wc:UserData />
<Pets>

<Pet>
<petId>183</petId>
<petName>Ginger</petName>
<petType>Dog</petType>

</Pet>
</Pets>

</wc:Customer>
</wc:DataArea>

</wc:SyncCustomer>

Business Object Document message: Deleting a customer’s pet
Example 9-25 shows the SyncCustomer BOD message for the Delete Customer
Pet task.

Example 9-25 SyncCustomer BOD message for Delete Customer Pet task

<?xml version="1.0" encoding="UTF-8"?>
<wc:SyncCustomer ... ">

<oa:ApplicationArea>
...

</oa:ApplicationArea>
<wc:DataArea>

<oa:Sync confirm="Always">
<oa:SyncCriteria expressionLanguage="XPath">

<oa:SyncExpression action="Delete">
CustomerPet

</oa:SyncExpression>
</oa:SyncCriteria>

</oa:Sync>
<wc:Customer>

<oa:CustomerParty>
...

</oa:CustomerParty>
<wc:CommerceArea>

...
</wc:CommerceArea>
<wc:UserAccount>
208 IBM Sales Center for WebSphere Commerce V6

,,,
</wc:UserAccount>
<wc:CustomerDemographics>

...
</wc:CustomerDemographics>
<wc:UserData />
<Pets>

<Pet>
<petId>164</petId>
<petName>Spot</petName>
<petType>Small Animal</petType>

</Pet>
</Pets>

</wc:Customer>
</wc:DataArea>

</wc:SyncCustomer>

Request handler implementation: Sending the request
Implement a code to send the update request to the server by performing the
following tasks:

1. To handle the task of sending the additional pet update data, extend
SyncCustomerUpdateRequest by creating a new
ExtSyncCustomerUpdateRequest request handler to generate the additional
BOD message content.

Example 9-28 shows the ExtSyncCustomerUpdateRequest request handler
implementation. This request handler is only run to update the information
pertaining to pets. The customer update information continues to be handled
by the out-of-the-box SyncCustomreUpdateRequest request handler.

The createSyncCriteriaElement() method overwrites the parent
implementation to create the pet-specific sync criteria element (with the help
of the getSyncExpressionAction() method) that will be read on the server side
by the message mapper to determine which WebSphere Commerce
command is to be executed to process the pet data, as shown in
Example 9-26.

Example 9-26 The getSyncExpressionAction() method

<oa:SyncCriteria expressionLanguage="XPath">
<oa:SyncExpression action="Delete/Add/Change">

CustomerPet
</oa:SyncExpression>

</oa:SyncCriteria>
 Chapter 9. User interface customization 209

The overridden createCustomerElement() adds the pet data section after the
existing elements within the Customer elements, with the use of the
createPetsElement() and createPetElement() methods, as shown in
Example 9-27.

Example 9-27 The createPetsElement() and createPetElement() methods

<Pets>
<Pet>

<petId>164</petId>
<petName>Spot</petName>
<petType>Small Animal</petType>

</Pet>
</Pets>

Example 9-28 shows the ExtSyncCustomerUpdateRequest: Send the request
implementation.

Example 9-28 ExtSyncCustomerUpdateRequest: Send the request implementation

package com.ext.commerce.telesales.core.impl.request;

/**
 * Extend to send customer pet add/delete/update requests and response.
 */
public class ExtSyncCustomerUpdateRequest extends SyncCustomerUpdateRequest {

 /**
 * petsElement_ contains the request document's Pets element. It
 * is initialized by the createPetsElement method.
 */
 protected Element petsElement_;

 /**
 * Builds the SyncCriteria element and adds it as a child of
 * syncElement_. The element is stored in syncCriteriaElement_.
 *
 * The following sample shows the structure of the SyncCriteria element and its
 * construction:
 * <oa:SyncCriteria expressionLanguage="XPath">
 * <oa:SyncExpression action="Change">CustomerPet</oa:SyncCriteria>
 * </oa:SyncCriteria>
 * @return The SyncCriteria element.
 */
 protected Element createSyncCriteriaElement() {
 syncCriteriaElement_ = createOADocumentElement(syncElement_,
210 IBM Sales Center for WebSphere Commerce V6

 IRequestConstants.BOD_TAG_OA_SYNC_CRITERIA);
syncCriteriaElement_.setAttribute(
IRequestConstants.BOD_ATT_EXPRESSION_LANGUAGE,

 IRequestConstants.BOD_VALUE_XPATH);
 Element syncExpressionElement = createOADocumentElement(syncCriteriaElement_,
 IRequestConstants.BOD_TAG_OA_SYNC_EXPRESSION, "CustomerPet");
 syncExpressionElement.setAttribute(IRequestConstants.BOD_ATT_ACTION,
 getSyncExpressionAction());
 return syncCriteriaElement_;
 }

 /**
 * Returns the action attribute for the SyncExpression element. This is
 * determined by the service request ID.
 *
 * If the service request ID=ExtCustomerContants.SERVICE_REQUEST_ADD_PET,
 * it returns the value "Add".
 * If the service request ID=ExtCustomerContants.SERVICE_REQUEST_DELETE_PET,
 * it returns the value "Delete".
 * If the service request ID=ExtCustomerContants.SERVICE_REQUEST_CHANGE_PET,
 * it returns the value "Change".
 *
*/
 protected String getSyncExpressionAction() {
 if
(ExtCustomerContants.SERVICE_REQUEST_ADD_PET.equals(serviceRequest_.getId())) {
 return IRequestConstants.BOD_VALUE_ADD;
 } else if
(ExtCustomerContants.SERVICE_REQUEST_DELETE_PET.equals(serviceRequest_.getId())) {
 return IRequestConstants.BOD_VALUE_DELETE;
 } else if
(ExtCustomerContants.SERVICE_REQUEST_CHANGE_PET.equals(serviceRequest_.getId())) {
 return IRequestConstants.BOD_VALUE_CHANGE;
 }
 return null;
 }

 /**
 * Builds the Customer element and adds it as a child of
 * dataAreaElement_. The element is stored in customerElement_.
 *
 * Extended to create the pets element The following outline shows the structure

* of the Customer element and its construction:
 * <Customer>
 * <oa:CustomerParty> <!-- constructed by createCustomerPartyElement() -->
 Chapter 9. User interface customization 211

 * .
 * </oa:CustomerParty>
 * <CommerceArea> <!-- constructed by createCommerceAreaElement() -->
 * .
 * </CommerceArea>
 * <UserAccount> <!-- constructed by createUserAccountElement() -->
 * .
 * </UserAccount>
 * <CustomerDemographics> <!-- constructed by
createCustomerDemographicsElement() -->
 * .
 * .
 * </CustomerDemographics>
 * <UserData> <!-- constructed by createUserDataElement() -->
 * .
 * .
 * </UserData>
 * * <Pets> <!-- constructed by createPetsElement() -->
 * .
 * .
 * </Pets>
 * </Customer>
 *
 * @return The Customer element.
 */
 protected Element createCustomerElement() {

 Element element = super.createCustomerElement();
 element = createPetsElement(element);
 return element;

 }

 /**
 * Builds the Pets element and adds it as a child of
 * customerElement_. The element is stored in petsElement_.
 *
 * The following outline shows the structure of the Pets element and its
 * construction:
 * <Pets>
 * <Pet> <!-- constructed by createPetElement(). -->
 * .
 * .
 * </Pet>
 * </Pets>
212 IBM Sales Center for WebSphere Commerce V6

 * The pet passed to the createPetElement() method is determined by the
 * "pet" TelesalesProperties property.
 * @return The Pets element.
 */
 protected Element createPetsElement(Element customerElement) {
 petsElement_ = createOADocumentElement(customerElement,
ExtRequestConstants.BOD_TAG_PETS);
 createPetElement((ExtPet) getTelesalesProperties().get("pet"));
 return petsElement_;
 }

 /**
 * Builds the ExtPet element and adds it as a child of petsElement_.
 * The following sample shows the structure of the ExtPet element and its
 * construction:
 * <Pet>
 * <PetId>4052</PetId> - excluded if adding a new pet

* <Name>Rock</Name>
 * <Type>Dog</Type>
 * </Pet>
 * @param pet The com.ext.commerce.telesales.model.ExtPet data bean.
 * @return The ExtPet element.
 */
 protected Element createPetElement(ExtPet pet) {
 Element petElement = createWCDocumentElement(petsElement_,
ExtRequestConstants.BOD_TAG_PET);

 //only use pet id when updating or deleting a pet
 String petId = pet.getId();
 if (petId != null && petId.trim().length() > 0) {
 createOADocumentElement(petElement,

ExtRequestConstants.BOD_TAG_PET_ID, petId);
 }

 createOADocumentElement(petElement,
ExtRequestConstants.BOD_TAG_PET_NAME, pet.getName());

 createOADocumentElement(petElement,
ExtRequestConstants.BOD_TAG_PET_TYPE, pet.getType());

 return petElement;
 }
}

2. Register the service requests, specifying which request handler is to be called
to run the service request task, as shown in Example 9-29. The service
request, com.ext.commerce.telesales.customer.addPet, which is called from
 Chapter 9. User interface customization 213

within the customerEditor.java class to run pet updates, must be processed by
the ExtSyncCustomerUpdateRequest request handler.

Example 9-29 Defining the pet command service requests

<!-- Add Pet -->
<serviceRequest label="Add Pet"

requestHandlerClass=
"com.ext.commerce.telesales.core.impl.request.ExtSyncCustomerUpdateRequest"

id="com.ext.commerce.telesales.customer.addPet"
commServiceId="com.ibm.commerce.telesales.services.TsCommunication">

</serviceRequest>
<!-- Delete Pet -->
<serviceRequest label="Delete Pet"

requestHandlerClass=
"com.ext.commerce.telesales.core.impl.request.ExtSyncCustomerUpdateRequest"

id="com.ext.commerce.telesales.customer.deletePet"
commServiceId="com.ibm.commerce.telesales.services.TsCommunication">

</serviceRequest>
<!-- Update Pet -->
<serviceRequest label="Update Pet"

requestHandlerClass=
"com.ext.commerce.telesales.core.impl.request.ExtSyncCustomerUpdateRequest"

id="com.ext.commerce.telesales.customer.updatePet"
commServiceId="com.ibm.commerce.telesales.services.TsCommunication">

</serviceRequest>
</extension>

9.5.3 Implementing the integration code on the server side

The pet update information has been sent by the client and is now ready to be
received by the server. Update the server side to recognize the new message
that is being received.

Business Object Document message mapping
When the BOD message is received on the server side, it passes through the
message mapper that determines the command that is to be run. The command
is defined in the BOD message mapping files.

Provide the pet update BOD message mapping by extending the
SyncCustomerBODMapping.xml as follows:

1. Copy SyncCustomerBODMapping.xml into a new file,
ExtSyncCustomerBODMapping.xml.
214 IBM Sales Center for WebSphere Commerce V6

2. Add the three new pet actions as defined in Example 9-31 within the
<CommandMapping> tag of the XML definition shown in Example 9-30.

Example 9-30 Adding the three new pet actions

<TemplateDocument>
<DocumentType version="8.1">SyncCustomer</DocumentType>
<StartElement>SyncCustomer</StartElement>
<TemplateTagName>SyncCustomer81Map</TemplateTagName>

<CommandMapping>To add here</CommandMapping>

In Example 9-31, the TemplateTagName defines the new parameter map for
this command mapping, the CommandName defines the WC command that
will handle this request, and the Condition specifies that the BOD message’s
syncExpression action and commerceObject identifies this as a customer pet
action and must match what we have specified in our BOD Message format.

Example 9-31 Command mapping

<Command
CommandName="com.ext.commerce.usermanagement.commands.ExtPetUpdateCmd"
TemplateTagName="SyncCustomerPet81"
Condition='action="Change" AND commerceObject="CustomerPet"'>
</Command>

<Command
CommandName="com.ext.commerce.usermanagement.commands.ExtPetUpdateCmd"
TemplateTagName="SyncCustomerPet81"
Condition='action="Add" AND commerceObject="CustomerPet"'>
</Command>

<Command
CommandName="com.ext.commerce.usermanagement.commands.ExtPetDeleteCmd"
TemplateTagName="SyncCustomerPet81" Condition='action="Delete" AND
commerceObject="CustomerPet"'>
</Command>

3. Add the <TemplateTag> definition from Example 9-32 into the
ExtSyncCustomerBODMapping.xml file to define the parameter mapping for
the required parameters of the WebSphere Commerce pet update
commands.

Example 9-32 ExtSyncCustomerBODMapping: Command parameters

<TemplateTag name="SyncCustomerPet81">
<!-- Command Parameters -->
<Tag XPath="DataArea/Sync/SyncCriteria/SyncExpression@action"
 Chapter 9. User interface customization 215

Field="action" FieldInfo="COMMAND"/>
<Tag XPath="DataArea/Sync/SyncCriteria/SyncExpression"

Field="commerceObject" FieldInfo="COMMAND"/>
<!--Command Parameters for pet info-->
<Tag XPath="DataArea/Customer/Pets/Pet/petName" Field="name"/>
<Tag XPath="DataArea/Customer/Pets/Pet/petType" Field="type"/>
<Tag XPath="DataArea/Customer/Pets/Pet/petId" Field="petId"/>
<Tag XPath="DataArea/Customer/CustomerParty/PartyId/Id"

Field="userId"/>
<Tag XPath="DataArea/Customer/UserData/UserDataField"

XPathType="USERDATA"/>
</TemplateTag>

4. Add the extended mapping file ExtSyncCustomerBODMapping.xml into the
webservice_SOABOD_template.extension.xml to register the new definiton,
as shown in Example 9-33, with the newly added items displayed in bold text.

Example 9-33 webservice_SOABOD_template.extension.xml

<!-- If you are viewing with browser (IE for example), select View Source to see
actual source of file -->
<!DOCTYPE ECTemplate SYSTEM 'ec_template.dtd' [<!-- Source comment: this [is
required, do not remove -->

<!ENTITY ExtSyncCustomerMappingDefinition SYSTEM 'ExtSyncCustomerBODMapping.xml'>

]> <!-- Source comment: this]> is required, do not remove -->

<ECTemplate>
&ExtSyncCustomerMappingDefinition;
</ECTemplate>

Response builder
Response builders are responsible for creating BOD messages with the
information to be sent to the Sales Center client. The response to the
SyncCustomer BOD message is the ConfirmCustomer BOD message generated
by the ConfirmCustomer response builder.

Response Business Object Document message
Extend the ConfirmCustomer response builder to generate the pet-specific
response identified by the bold text in Example 9-34, for the confirm pet action
message to be sent to the Sales Center client. The message contains the petId
of the added, updated, or deleted pet.
216 IBM Sales Center for WebSphere Commerce V6

Example 9-34 Response BOD: ConfirmCustomer

<?xml version="1.0" encoding="UTF-8"?>
<wc:ConfirmBOD .. >

<oa:ApplicationArea>
..

</oa:ApplicationArea>
<wc:DataArea>

<wc:Confirm />
<wc:BOD>

<wc:BODHeader>
..

</wc:BODHeader>
<wc:NounOutcome>

<oa:DocumentIds>
<oa:DocumentId>

<oa:Id />
</oa:DocumentId>
<wc:AddressId>

<oa:Id>NOT FOUND</oa:Id>
</wc:AddressId>
<petId>

<oa:Id>183</oa:Id>
</petId>

</oa:DocumentIds>
<oa:NounSuccess />
<oa:UserArea />

</wc:NounOutcome>
</wc:BOD>

</wc:DataArea>
</wc:ConfirmBOD>

Response builder implementation
Modify the response builder to create a response to the pet update. In our case,
we extended the ConfirmCustomer BOD response builder to add the <petId> tag
by creating the ExtConfirmCustomer response builder, as defined in
Example 9-35.

The createDocumentIDsElement() method adds the new <petId> element
section into the <DocmentIds> element. The ConfirmCustomer response builder
generates the confirmation for all the SyncCustomer BOD messages, including
the CustomerPet and Customer and CustomerAddress object updates.
Therefore, care must be taken not to break the original response.
 Chapter 9. User interface customization 217

determinePetId() fetches the petId passed in the response properties by the
execute WebSphere Commerce pet commands.

Example 9-35 ExtConfirmCustomer.java implementation

package com.ext.commerce.telesales.messaging.bodreply;

/**
 * Extended ConfirmCustomer to return the customerPet object petId that was added,
deleted or
 * updated.
 */
public class ExtConfirmCustomer extends ConfirmCustomer {

 /**
 * Creates the DocumentIds element for the given parent element and document ID.
 *
 * Calls the createDocumentIdsElement method to create the
 * DocumentIds element.
 *
 * This extension will include the PetId element into the
 * DocumentIds element when the syncObject is "customerPet".

*/
 protected Element createDocumentIdsElement(Element aParentElement, String

astrDocumentId) throws ECException {

 Element documentIdsElement = super.createDocumentIdsElement(
aParentElement, astrDocumentId);

 String syncObject = null;
 String taskName = getTaskName();

 syncObject = getElementValueByLocalName(getRequestBod(),
BodConstants.TAG_LOCAL_SYNC_CRITERIA,
BodConstants.TAG_LOCAL_SYNC_EXPRESSION);

 // add this section if customerPet was updated
 if (null != syncObject

&& syncObject.equalsIgnoreCase(ExtBODConstants.WC_OBJECT_CUSTOMER_PET)){

 Element petIdElement = createWCDocumentElement(documentIdsElement,
 ExtBODConstants.BOD_TAG_PET_ID);
 String astrPetId = determinePetId();
 createOADocumentElement(petIdElement, BodConstants.TAG_OA_ID, astrPetId);
 }
218 IBM Sales Center for WebSphere Commerce V6

 return documentIdsElement;
 }

 /**
 * Gets the pet ID to be used for the response Business Object Document.
 * @return the pet ID.
 */
 protected String determinePetId() {
 String strPetId = "";

 /* If a CustomerId after successful add of a customer, return that value */
 if (getRequestProperties().containsKey(ExtBODConstants.KEY_PET_ID)) {
 try {

strPetId = getResponseProperties().getString(
ExtBODConstants.KEY_PET_ID);

 } catch (ParameterNotFoundException e) /* Should not occur catch */
 { strPetId = BodConstants.TAG_NOT_FOUND; }
 } else {
 strPetId = BodConstants.TAG_NOT_FOUND;
 }
 return strPetId;
 }
}

Response builder registration
The response builder must be registered for it to be recognized.

To register the response builder, perform the following tasks:

1. Create a new TelesalesRegistry-ext.xml file in the <Toolkit>/xml/messaging
folder.

2. Add the text shown in Example 9-39.

Example 9-36 Adding a new TelesalesRegistry-ext.xml file

<WCTBodResponseBuilderRegistry>
<Noun name="Customer">

<Verb name="Sync">

Note: For instructions about registering the new response builders, refer to the
information center topic “Modifying an existing Business Object Document
reply message”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tasks/ttrmodifybodreply.htm
 Chapter 9. User interface customization 219

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrmodifybodreply.htm

<ClassName>
 com.ext.commerce.telesales.messaging.bodreply.ExtConfirmCustomer

</ClassName>
</Verb>

</Noun>
</WCTBodResponseBuilderRegistry>

3. Update wc-server.xml in the <Toolkit>/xml/config folder by modifying the entry
shown in Example 9-36 to match the definition shown in Example 9-37. Note
the modified text identified by the bold text.

Example 9-37 Updating the wc-server.xml

<property
 baseRegistryFileName="TelesalesRegistry.xml"
 baseRegistryFilePath="messaging"
 customRegistryFileName="TelesalesRegistry-ext.xml"
 customRegistryFilePath="messaging"
display="false" enableBaseRegistryOverride="true" />

9.5.4 Implementing the integration code on the client side (part 2)

The server response has been sent back to the client. The client must be
modified to react to the response from the server, reporting on the success of the
pet updates.

Request handler implementation: Unmarshalling the response
Request handlers not only handle the data to be sent to the server but also the
data in the response BODs sent as a response to the request from the server.

In our scenario, the existing SyncCustomerUpdateRequest also handles the
response (Example 9-38) from the ConfirmCustomer response builder
(ConfirmCustomer BOD message), specifying the success or failure messages
and the passed data. To process the pet-specific confirmation information
returned in the response BOD, extend the ExtSyncCustomerUpdateRequest.

To handle the additional pet-specific confirmation information, implement the
additional methods in the ExtSyncCustomerUpdateRequest class created in
“Request handler implementation: Sending the request” on page 209:

1. Read the response BOD petId by overriding the parent method
unmarshallDocumentIds() to unmarshall the pet ID section, and
unmarshallPetId() to fetch the petId and update the petId if the request is an
add request. Because the ExtSyncCustomerUpdateRequest will only be
220 IBM Sales Center for WebSphere Commerce V6

called for pet-specific service requests, you can disregard the other document
IDs being passed in the message.

2. Extend the updateModel() method to update the model on successful
syncCustomer execution, by removing the deleted pet from the model and
changing the marking to existing for the added or updated pets.

Example 9-38 ExtSyncCustomerUpdateRequest: Unmarshalling the response to the request

/**
 * Unmarshalls the DocumentIds element. The following sample indiates the
 * structure of the DocumentIds element and how it is unmarshalled. Extended to
 * unmarshall the tag "petId".
 *
 * <oa:DocumentIds>
 * <oa:DocumentId> <!-- unmarshalled by unmarshallDocumentId() -->
 * .
 * .
 * </oa:DocumentId>
 * </oa:DocumentIds>
 *
 * @param documentIdsElement The element that is unmarshalled.
 */

protected void unmarshallDocumentIds(Element documentIdsElement) {
 if (documentIdsElement != null) {
 if (ExtCustomerContants.SERVICE_REQUEST_ADD_PET.equals(

serviceRequest_.getId())) {
 unmarshallPetId(getChildElement(

documentIdsElement, ExtRequestConstants.KEY_PET_ID));
 }
 }
 }
 /**
 * Unmarshall the response BOD document ID
 * @param petIdElement
 */
 protected void unmarshallPetId(Element petIdElement) {
 if (petIdElement != null) {
 String petId = getChildElementValue(petIdElement,
IRequestConstants.BOD_TAG_GEN_ID);
 ExtPet pet = (ExtPet) getTelesalesProperties().get("pet");
 pet.setId(petId);
 }
 }
 /**
 * Updates the model after the action has completed. The Customer object that was
 Chapter 9. User interface customization 221

 * passed in as a the "customer" TelesalesProperties parameter is
 * updated to reflect the change in the pet list.
 */
 protected void updateModel(Object databean) {
 TelesalesRequestStatus status = getResponseStatus();
 if (status == null || status.getSeverity() != IStatus.ERROR) {
 ExtPet pet = (ExtPet) getTelesalesProperties().get("pet");
 // if item was to be deleted - remove it from the list
 if
(ExtCustomerContants.SERVICE_REQUEST_DELETE_PET.equals(serviceRequest_.getId())) {
 ExtPetList pets = (ExtPetList) customer_
 .getData(ExtCustomerContants.PROP_CUSTOMER_PETS);
 pets.removePetForPetId(pet.getId());
 customer_.setData(ExtCustomerContants.PROP_CUSTOMER_PETS, pets);
 }
 // add/update requests change it to existing
 else {
 pet.setMarking(ExtPet.MARKED_EXISTNG);
 }
 }
 }

9.6 Developing the new add pet dialog box

This section describes the actions required to implement the new Add Pet dialog
box shown in Figure 9-10.

Figure 9-10 Add pet dialog box
222 IBM Sales Center for WebSphere Commerce V6

9.6.1 Implementing the user interface components

This section defines the UI and the basic UI behavior for the add pet dialog box.

User interface definition
To create the UI elements, perform the following tasks:

1. Create the dialog box by performing these tasks:

a. Define the new Add Pet dialog box by creating a new dialog Java class,
ExtAddPetDialog.java, which must be similar to that shown in
Example 9-39.

In our case, to reuse the Sales Center UI framework, we extended from
the ConfiguredTitleAreaDialog that provides support for the managed
composites and contains a title area. Most Sales Center dialog boxes
extend from this class.

Extending from the Sales Center UI framework classes allows the defining
of controls on the page using XML, by providing the methods that specify
which managed composite content area and which managed composite
button bar defined in plugin.xml will be used to render the dialog box. The
content area is specified by implementing the protected String
getDialogAreaManagedCompositeId() method to the ID of the content
area, and the protected String getButtonBarManagedCompositeId()
method to the ID of the button bar, which is defined later in this section.

The configureShell() and getDefaultMessage() methods have been
implemented to personalize the dialog box with a custom title and a
message informing the user through a default message about what to
enter in the dialog box.

cancelPressed() and okPressed() are extended methods to provide add
pet dialog box-specific actions to the buttons, cancelling the window
without providing a result and returning the pet model object.

Example 9-39 ExtAddPetDialog.java

package com.ext.commerce.telesales.ui.impl.dialogs;

public class ExtAddPetDialog extends ConfiguredTitleAreaDialog {

 /**
 * Field to store the dialog result - the new pet
 */
 private Object data_ = null;

 /**
 * Constructor for ExtAddPetDialog
 Chapter 9. User interface customization 223

 */
 public ExtAddPetDialog() {
 super();
 getWidgetManagerInputProperties().

setData(ExtPetWidgetManager.PROP_ADD_PET_DIALOG, this);
 }

protected String getDialogAreaManagedCompositeId() {
return "com.ext.commerce.telesales.customer.addPetDialogAreaManagedComposite";

 }

protected String getButtonBarManagedCompositeId() {
 return "com.ext.commerce.telesales.customer.addPetButtonBarManagedComposite";
 }

 /*
 * Return the newly created pet
 */
 public Object getResult() {
 return this.data_;
 }

 /**
 * Set the newly created pet
 * @param data
 */
 public void setResult(Object data) {
 this.data_ = data;
 }

 // ** //
 /**
 * Configures the given shell in preparation for opening this window in it.
 * @param newShell shell
 */
 public void configureShell(Shell newShell) {
 newShell.setText(Resources.getString("AddPetDialog.shellTitle"));
 }

 /**
 * Returns the default message for this dialog.
 * @return the default message
 */
 protected String getDefaultMessage() {
 return Resources.getString("AddPetDialog.petDefaultMessage");
224 IBM Sales Center for WebSphere Commerce V6

 }

 // ***//
 /**
 * Notifies that the Cancel button of this dialog has been pressed.
 */
 public void cancelPressed() {
 setResult(null);
 super.cancelPressed();
 }
public void okPressed() {
 // save the data
 getDialogAreaManagedComposite().save();
 ExtPet newPet = (ExtPet) getWidgetManagerInputProperties().getData(
 ExtPetWidgetManager.PROP_PET);
 setResult(newPet);
 super.okPressed();
 }
}

b. Declare the new dialog box by adding the extension defined in
Example 9-40 to the plugin.xml.

Example 9-40 Declaring the dialog box

<extension point="com.ibm.commerce.telesales.ui.dialogs">
<dialog
 class="com.ext.commerce.telesales.ui.impl.dialogs.ExtAddPetDialog"

id="com.ext.commerce.telesales.customer.extAddPetDialog" />
</extension>

2. Define and lay out the controls for the dialog box buttons by performing the
following tasks (Figure 9-11 displays the result of this step):

Figure 9-11 addPetDialogButtonsCompositeDefinition

a. Insert the extension shown in Example 9-41 into the plugin.xml to define
the controls, the buttons composite (named
addPetdialogButtonsComposite), and the buttons.

Example 9-41 Defining the dialog box button controls

<!-- Control and composite definitions for the add pet dialog buttons
-->
 Chapter 9. User interface customization 225

<extension point="com.ibm.commerce.telesales.widgets.controls">
<!-- add pet dialog button composite -->
<control id="addPetDialogButtonsComposite" type="composite"

compositeDefinitionId="addPetDialogButtonsCompositeDefinition" />
<!-- add pet dialog button composite components -->
<control id="addPetOkButton" type="pushButton"

text="AddPetDialog.button.ok" managerType="pet">\-
<property name="buttonType" value="ok" />

</control>
<control id="addPetCancelButton" type="pushButton"

text="AddPetDialog.button.cancel" managerType="pet">
<property name="buttonType" value="cancel" />

</control>
</extension>

b. Add the extension shown in Example 9-42 to the plugin.xml to define the
layout of the addPetDialogButtonComposite button bar.

Example 9-42 Laying out the add pet dialog box button bar

<!-- add pet dialog buttons composite layout definition -->
<extension

point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<!-- add pet dialog buttons composite layout definition -->
<gridCompositeDefinition

id="addPetDialogButtonsCompositeDefinition"
 layoutId="com.ibm.commerce.telesales.ui.impl.buttonBarGridLayout">

<row>
<control controlId="addPetOkButton"

dataId="com.ibm.commerce.telesales.ui.impl.buttonGridData"
/>

<control controlId="addPetCancelButton"
dataId="com.ibm.commerce.telesales.ui.impl.buttonGridData"

/>
</row>

</gridCompositeDefinition>
</extension>

3. Define and lay out the content area for the Add Pet dialog box. This content
area is the same area that was defined in Figure 9-6 on page 190, which will
be reused for rendering the dialog box content area (described later in this
section).
226 IBM Sales Center for WebSphere Commerce V6

User interface behavior
Now that the interface elements are defined, define the basic UI behavior.

1. The behavior of the Add Pet dialog box is defined with the use of a widget
manager. In our scenario, the widget manager ExtPetWidgetManager class is
the same as that for the customer pet page.

Example 9-43 shows some of the methods that dictate the behavior relating
to the Add Pet dialog box:

– The Add Pet button in the Customer Pet page is initialized to listen to the
selectionListener_AddPetButton listener, which launches the add pet
dialog box on clicking it (first through the pressedButton_AddPet method
and then the openDialog_AddPet method).

– The openDialog_AddPet() method instantiates and then opens the dialog
box. It also processes the returned dialog box result, adding the new pet to
the maintained pet list (“pets” property).

– All the Add Pet dialog box buttons are initialized using the widget manager
that specifies a listener for each button and an appropriate action to be
taken on clicking the button. The actual action that is called is the one
defined in the dialog class (see the selectionListener_OKButton selection
listener and the pressedButtonOK method in Example 9-43).

Example 9-43 ExtPetWidgetManager.java: Add pet dialog methods

/**
 * Selection Listener handles the button click of the Add Pet Button.
 */
 protected SelectionListener

selectionListener_AddPetButton_ = new SelectionAdapter() {
public void widgetSelected(SelectionEvent arg0) {

pressedButton_AddPet();
}

};

/**
 * This method handles pressing the Add Pet Dialog button. It opens the dialog.
 */
 protected void pressedButton_AddPet() {
 openDialog_AddPet();
 }

/**
 * Opens the add pet dialog and processes its result.
 */
 protected void openDialog_AddPet() {
 Chapter 9. User interface customization 227

 IDialog myDialog = DialogFactory
 .getDialog("com.ext.commerce.telesales.customer.extAddPetDialog");
 myDialog.open(); //show the dialog

 if (myDialog.getResult() != null) {
 // save the added pet
 ExtPet pet = (ExtPet) myDialog.getResult();
 pet.setMarking(ExtPet.MARKED_NEW);
 getPetsObject().addPet(pet);
 getInputProperties().setData(PROP_PET, pet);
 }
 }

 /**
 * Opens the add pet dialog and processes its result.
 */
 protected void openDialog_AddPet() {
 IDialog myDialog = DialogFactory
 .getDialog("com.ext.commerce.telesales.customer.extAddPetDialog");
 myDialog.open(); //show the dialog

 if (myDialog.getResult() != null) {
 // save the added pet
 ExtPet pet = (ExtPet) myDialog.getResult();
 pet.setMarking(ExtPet.MARKED_NEW);
 getPetsObject().addPet(pet);
 getInputProperties().setData(PROP_PET, pet);
 }
 }

/**
 * Selection Listener handles the button click of add pet dialog OK button.
 */
 protected final SelectionListener

selectionListener_OKButton_ = new SelectionAdapter() {
public void widgetSelected(SelectionEvent arg0) {

pressedButton_OK();
 }
 };

 /**
 * this method is called when the ok button is pressed on the add pet dialog.
 */
 protected void pressedButton_OK() {
 if (control_AddPetDialog_ != null) {
228 IBM Sales Center for WebSphere Commerce V6

 control_AddPetDialog_.okPressed();
 }
 }
}

2. Register the Add Pet dialog box widget manager by adding the extension
shown in Example 9-44 into the plugin.xml.

Example 9-44 Defining the add pet dialog box widget manager

<!-- add pet dialog widget manager -->
<extension

point="com.ibm.commerce.telesales.widgets.widgetManagers">
<widgetManager

managerClass="com.ext.commerce.telesales.ui.impl.customer.pet.ExtPetWid
getManager"

id="addPetWidgetManager" />
</extension>

3. Specify the button bar composite to be managed by the add pet widget
manager by adding the extension shown in Example 9-45 into the plugin.xml.
This managed composite, addPetButtonBarManagedComposite, is the one
that is specified in the class ExtAddPetDialog.java as the button bar to be
rendered.

Example 9-45 Defining the add pet dialog box button bar

<!-- Add pet dialog button bar managed composite -->
<extension

point="com.ibm.commerce.telesales.widgets.managedComposites">
<managedComposite id="addPetButtonBarManagedComposite"

compositeId="addPetDialogButtonsComposite">
<widgetManager id="addPetWidgetManager" />

</managedComposite>

4. Specify the dialog box content area composite to be managed by the add pet
widget manager by adding the extension shown in Example 9-46 into the
plugin.xml. Note that the content area customerPetComposite defined in
Figure 9-6 on page 190 is being reused in this definition. This managed
composite, addPetDialogAreaManagedComposite, is the one that is specified
in the class ExtAddPetDialog.java as the content area to be rendered.

Example 9-46 Defining the dialog box content managed composite

<!-- Add pet dialog managed composite -->
<extension

point="com.ibm.commerce.telesales.widgets.managedComposites">
 Chapter 9. User interface customization 229

<managedComposite id="addPetDialogAreaManagedComposite"
compositeId="customerPetComposite">
<widgetManager id="addPetWidgetManager" />
<widgetManager

id="com.ibm.commerce.telesales.widgets.standardWidgetManager"
/>

</managedComposite>
</extension>

9.7 Developing the find customer by pet dialog box

This section demonstrates the steps involved in implementing the find customer
by pet dialog box that is shown in Figure 9-12.

Figure 9-12 Find customer by pet dialog box
230 IBM Sales Center for WebSphere Commerce V6

9.7.1 Implementing the user interface components

This section defines the UI and the basic UI behavior for the Find Customer by
Pet page.

User interface definition
Create the UI elements by performing the following tasks:

1. Define and lay out the controls for the Find Customer by Pet dialog box
(Figure 9-13 displays the result of this step) by performing the following tasks:

Figure 9-13 Layout of the find customer by pet form

a. Insert the extension shown in Example 9-47 into the plugin.xml to define
the controls, the form composites
(customerWithStoreFindPetPageCompositeDefinition and
customerFindPetPageComposite), labels, and fields. (In our case, we
followed the way the existing pages are defined in the plugin.xml to define
the new search type form.)

Specifying the managerType=”find” on the
customerFindPetPageComposite helps reuse the existing widget manager
to handle the new search type that processes the composite properties
such as the title property, which is added to the drop-down search type list.

Example 9-47 Defining the controls for the find customer by pet dialog box

<!-- Control and composite definitions for quick page pet of the find customer dialog
-->
<extension point="com.ibm.commerce.telesales.widgets.controls">

<control id="customerFindPetPageComposite" type="composite"
compositeDefinitionId="customerFindPetPageCompositeDefinition"
managerType="find">
<property name="compositeType" value="findCriteriaPage" />
<property name="title" value="CustomerFindPetPage.title" />

</control>
<control id="customerWithStoreFindPetPageComposite"

referenceId="customerFindPetPageComposite"
compositeDefinitionId="customerWithStoreFindPetPageCompositeDefinition" />

<control id="findCustomerPetTypeLabel" type="requiredLabel"
text="CustomerFindPetPage.label.petType"
fieldId="findCustomerPetTypeField" />
 Chapter 9. User interface customization 231

<control textLimit="256" required="true" type="combo"
managerType="find" tooltip="CustomerFindPetPage.tooltip.petType"
id="findCustomerPetTypeField">
<property name="findCriteriaFieldName" value="petType" />
<property name="list">

<value>CustomerFindPetPage.petType1</value>
<value>CustomerFindPetPage.petType2</value>
<value>CustomerFindPetPage.petType3</value>
<value>CustomerFindPetPage.petType4</value>
<value>CustomerFindPetPage.petType5</value>
<value>CustomerFindPetPage.petType6</value>
<value>CustomerFindPetPage.petType7</value>

</property>
</control>

</extension>

b. Adding the extension elements shown in Example 9-48 into the plugin.xml
defines the layout of the new search type form.

Specifying the referenceId of an existing control helps reuse the previous
definition and add the new declaration to what is already defined. The
referenceId="com.ibm.commerce.telesales.ui.impl.findStoreOptionalNam
eRow" declaration in the layout definition adds the Store field defined
out-of-the-box and easily adds it to the extension without redeclaring
everything from the scratch.

Example 9-48 Defining the layout of the find customer by pet composite definition

<extension
point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<gridCompositeDefinition

id="customerFindPetPageCompositeDefinition"
layoutId="com.ibm.commerce.telesales.ui.impl.standardGridLayout">
<row id="findCustomerPetTypeRow">

<control controlId="findCustomerPetTypeLabel"
dataId="com.ibm.commerce.telesales.ui.impl.requiredLabelGridData" />

<control controlId="findCustomerPetTypeField"
dataId="com.ibm.commerce.telesales.ui.impl.findTextFieldGridData" />

</row>
</gridCompositeDefinition>

<gridCompositeDefinition
id="customerWithStoreFindPetPageCompositeDefinition"
referenceId="customerFindPetPageCompositeDefinition">
<row

referenceId="com.ibm.commerce.telesales.ui.impl.findStoreOptionalNameRow" />
232 IBM Sales Center for WebSphere Commerce V6

</gridCompositeDefinition>
</extension>

c. Adding the extension shown in Example 9-49 into the plugin.xml defines
the quick stack definition of the search-type forms. The find customer by
pet dialog box is added as the last item in the search-type list.

Example 9-49 Defining the quick stack composite definition

<!-- Find customer dialog quick stack composite definitions -->
<extension

point="com.ibm.commerce.telesales.widgets.compositeDefinitions">
<!-- B2C Find customer dialog quick stack definition -->
<stackCompositeDefinition

referenceId="com.ibm.commerce.telesales.ui.impl.findCustomerQuickStackDefinition.defa
ult"

id="findCustomerQuickStackDefinition.default"
layoutId="com.ibm.commerce.telesales.ui.impl.standardStackLayout">
<control controlId="customerFindPetPageComposite" />

</stackCompositeDefinition>
<!-- B2B Find customer dialog quick stack definition -->
<stackCompositeDefinition

referenceId="com.ibm.commerce.telesales.ui.impl.findCustomerQuickStackDefinition.B2B"
id="findCustomerQuickStackDefinition.B2B"
layoutId="com.ibm.commerce.telesales.ui.impl.standardStackLayout">
<control controlId="customerFindPetPageComposite" />

</stackCompositeDefinition>

<!-- Find customer with store dialog quick stack definition -->
<stackCompositeDefinition

referenceId="com.ibm.commerce.telesales.ui.impl.findCustomerWithStoreQuickStackDefini
tion"

id="findCustomerWithStoreQuickStackDefinition"
layoutId="com.ibm.commerce.telesales.ui.impl.standardStackLayout">
<control controlId="customerWithStoreFindPetPageComposite" />

</stackCompositeDefinition>
</extension>
 Chapter 9. User interface customization 233

d. Point to the redefinition of the stack definitions by creating the entries
displayed in Example 9-50 in the config.ini file.

Example 9-50 Updating config.ini with the new stack definitions

com.ibm.commerce.telesales.ui.impl.findCustomerQuickStackDefinition.default =
com.ext.commerce.telesales.customer.findCustomerQuickStackDefinition.default

com.ibm.commerce.telesales.ui.impl.findCustomerQuickStackDefinition.B2B =
com.ext.commerce.telesales.customer.findCustomerQuickStackDefinition.B2B

com.ibm.commerce.telesales.ui.impl.findCustomerWithStoreQuickStackDefinition =
com.ext.commerce.telesales.customer.findCustomerWithStoreQuickStackDefinition

9.7.2 Implementing the integration code on the server side

The server receives a request to find customers with a specific type of pet.
Modify the server side to limit the result to only that list of customers to be
returned. Also, the server side must return the customer information, including
additional pet information.

Response builder
Response builders are responsible for creating BOD messages with information
to be sent to the Sales Center client. The response to the GetCustomer BOD
message initiated by the Find Customer action is the ShowCustomer BOD
message generated by the ShowCustomer response builder.

Response Business Object Document message
The Find dialog box does not require the extension of the BOD because no
pet-specific information is displayed in the Find dialog box. For the Find dialog
box, the BOD message stays as the default message.

However, in order to display the customer information in the customer editor,
extend the ShowCustomer BOD message to contain the response BOD tags.
These are identified by the bold text in Example 9-51 that is to be sent to the
Sales Center client. The new tags contain the list of the customer’s pets.

Example 9-51 ShowCustomer BOD message

<?xml version="1.0" encoding="UTF-8"?>
<wc:ShowCustomer ..>

<oa:ApplicationArea>
..

</oa:ApplicationArea>
<wc:DataArea>
234 IBM Sales Center for WebSphere Commerce V6

<wc:Show confirm="Always" numSearchResults="1"
resultSetSize="1" />

<wc:Customer>
<oa:CustomerParty active="false">

..
</oa:CustomerParty>
<wc:CommerceArea>

..
</wc:CommerceArea>
<wc:CustomerDemographics />
<Pets>

<Pet>
<petId>166</petId>
<petName>Max</petName>
<petType>Dog</petType>

</Pet>
<Pet>

<petId>183</petId>
<petName>Ginger</petName>
<petType>Dog</petType>

</Pet>
</Pets>
<wc:UserData />

</wc:Customer>
</wc:DataArea>

</wc:ShowCustomer>

Response builder implementation
Extend the response builder to limit the result in such a way that it contains only
customers with a specific pet type, and to return the additional pet information.

We extended the ShowCustomer response builder to support the find dialog
search by pet type and the customer editor to show the customer’s pets, by
creating the ExtShowCustomer response builder, as defined in Example 9-52:

� Find Dialog search by pet requires limiting the search to customers with a
specific pet type.

The initializeCustomerQuery() method limits the search by defining the where
clause and the join clause on the XPET table to return only those users who
have the requested pet type. The existing methods handle the result.
 Chapter 9. User interface customization 235

� Customer Editor requires showing the pets. Therefore, the ShowCustomer
reply builder must be extended to add the <Pets> tag to the BOD message.

The populateSearchResult() method returns the list of pets found of the
ExtPetAccessBean type.

The buildCustomerElementDetailInfo() method extends the existing method
to add the <Pets> section using the createPetsElement() and the
createPetElement() methods, with data found by the populateSearchResult()
method. This buildCustomerElementDetailInfo() method is called to fetch the
complete customer information to be displayed in the customer editor.

Another method, buildCustomerElementBaseInfo(), is called to fetch the base
customer information to be displayed in the Find Dialog table that lists the
found customers. (Our scenario did not require displaying pet information in
that table.)

Example 9-52 ExtShowCustomer.java: Response builder

package com.ext.commerce.telesales.messaging.bodreply;

/**
 * Extended ShowCustomer reply BOD to add search by Pet Type
 */
public class ExtShowCustomer extends ShowCustomer {

 /**
 * The property storing the current pet result
 */
 public final static String EXT_SEARCH_RESULT_PROPERTY_NAME_PETS =
"EXT.WC.CUSTOMER.PETS";

/*
 * Add the search condition to search by pet type.
 */
 protected WhereClauseCondition initializeCustomerQuery(

SearchCriteria aSearchCriteria) {

 SelectExpression selectExpressionPetType = aSearchCriteria
 .getSelectExpression(ExtBODConstants.BOD_TAG_PET_TYPE);
 // create OTB clause
 WhereClauseCondition whereClause =
super.initializeCustomerQuery(aSearchCriteria);

 // add the pet type to the search criteria
 if (selectExpressionPetType != null) {
 int petTypeCriteriaOpDefault =
236 IBM Sales Center for WebSphere Commerce V6

WhereClauseSearchCondition.SEARCHTYPE_CASESENSITIVE_EXACTMATCH;
 Integer petTypeCriteriaOp =

convertStringToInt(getSearchTypeValue(selectExpressionPetType
 .getSearchType()));
 String petTypeCriteria = selectExpressionPetType.getValue();

 // search the pet table
 WhereClauseSearchCondition petCondition = new WhereClauseSearchCondition(
 new TableField("XPET", "TYPE"),

(petTypeCriteriaOp != null) ? petTypeCriteriaOp.intValue() :
petTypeCriteriaOpDefault, petTypeCriteria);

 whereClause.appendANDCondition(petCondition);

 // join the pet and users table by usersId
 WhereClauseJoinCondition petJoinCondition =

new WhereClauseJoinCondition("USERS.USERS_ID = XPET.USERS_ID");

 whereClause.appendANDCondition(petJoinCondition);
 }
 return whereClause;
 }

 /*
 * Extended to return an arrayList of ExtPetAccessBeans with the found pets when
 * aboolGetDetails=true and is stored in the

* "EXT_SEARCH_RESULT_PROPERTY_NAME_PETS" property
 */
 protected CustomerSearchResultBean populateSearchResult(

String astrUserId, CustomerSearchResultBean abnSearchResult,
boolean aboolGetDetails)

throws ECException {

 CustomerSearchResultBean newAbnSearchResult = null;
 newAbnSearchResult = super.populateSearchResult(astrUserId, abnSearchResult,
 aboolGetDetails);

 if (aboolGetDetails) {
 try {
 Enumeration pets = new ExtPetAccessBean().findByUserId(

new Long(astrUserId));
 ArrayList petArrayList = new ArrayList();
 while (pets.hasMoreElements()) {
 ExtPetAccessBean elem = (ExtPetAccessBean) pets.nextElement();
 petArrayList.add(elem);
 Chapter 9. User interface customization 237

 }
 newAbnSearchResult.setData(

EXT_SEARCH_RESULT_PROPERTY_NAME_PETS, petArrayList);

 } catch (Exception e) {
 // TODO: handle exception
 System.out.println(e);
 }
 }
 return newAbnSearchResult;
 }

 /**
 * Builds the Customer element which cotains the detailed information. This
 * information can be used to display data in an editor. This method extends the

* BOD with additional Pets element by calling the following methods to create
* the child elements:

 *
 * the createPetsElement method to create the Pets element
 *
 *
 * <Customer>
 * <CustomerParty/>
 * <CommerceArea/>
 * <CustomerDemographics/>
 * <AssignedTeam/>
 * <AssignedRepresentative/>
 * <Pets/>
 * </Customer>

*/
 protected Element buildCustomerElementDetailInfo(

CustomerSearchResultBean abnCustomerSearchResult,
Element aParentElement)

throws ECException {

 Element element = super.buildCustomerElementDetailInfo(
abnCustomerSearchResult, aParentElement);

createPetsElement(abnCustomerSearchResult, element);
 return element;
 }

/**
 * Builds the Pets element. This method calls the
 * createPetElement(ExtPetAccessBean, Element) to create the Pet
 * element for each Pet found in the customer's Pet list.
238 IBM Sales Center for WebSphere Commerce V6

*/
 protected Element createPetsElement(

CustomerSearchResultBean abnCustomerSearchResult,
Element aParentElement)

throws ECException {

 // create the tops Pets element
 Element PetsElement = createWCDocumentElement(

aParentElement, ExtBODConstants.BOD_TAG_PETS);
 // When there is no Pets, just return
 if (null ==

abnCustomerSearchResult.getData(EXT_SEARCH_RESULT_PROPERTY_NAME_PETS))
{

 return PetsElement;
 }

 // create pet element details for each pet in list
 Iterator customerPets = ((ArrayList) abnCustomerSearchResult
 .getData(EXT_SEARCH_RESULT_PROPERTY_NAME_PETS)).iterator();

 while (customerPets.hasNext()) {
 ExtPetAccessBean bnCurrentPet = (ExtPetAccessBean) customerPets.next();
 createPetElement(bnCurrentPet, PetsElement);
 }

 return PetsElement;
 }

 /**
 * Builds the Pet element. This method uses the values found in
 * abnPet to create the Pet element. The new element is appended
 * to the specified parent element.
 *
 * <Pet primary="true" type="SB">
 * <PetId/> <!-- abnPet.getPetId() -->
 * <Name/> <!-- abnPet.getName() -->
 * <Type/> <!-- abnPet.getType() -->
 * </Pet>

*/
 public Element createPetElement(ExtPetAccessBean abnPet, Element aParentElement)
 throws ECException {

 Element petElement = null;
 if (abnPet != null) {
 try {
 Chapter 9. User interface customization 239

 Long petId = abnPet.getPetId();
 String petName = abnPet.getName();
 String petType = abnPet.getType();

 petElement = createWCDocumentElement(
aParentElement, ExtBODConstants.BOD_TAG_PET);

 createWCDocumentElement(
petElement, ExtBODConstants.BOD_TAG_PET_ID, petId);

 if (petName != null && petName.length() > 0) {
 createWCDocumentElement(

petElement, ExtBODConstants.BOD_TAG_PET_NAME, petName);
 }

 if (petType != null && petType.length() > 0) {
 createWCDocumentElement(

petElement, ExtBODConstants.BOD_TAG_PET_TYPE, petType);
 }
 } catch (Exception e) {
 // TODO: handle exception
 }
 }
 return petElement;
 }
}

Response builder registration
The response builder must be registered for it to be recognized.

To register the response builder, perform the following tasks:

1. Open the TelesalesRegistry-ext.xml file in the <Toolkit>/xml/messaging
folder, the creation of which is described in “Response builder registration” on
page 219. It was created for the ExtConfirmCustomer response builder.

Note: For instructions about registering new response builders, refer to the
information center topic “Modifying an existing Business Object Document
reply message”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tasks/ttrmodifybodreply.htm
240 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrmodifybodreply.htm

2. Add to it the text shown in Example 9-53 in order to register the new
ExtShowCustomer response builder.

Example 9-53 Registering the new ExtShowCustomer response builder

<WCTBodResponseBuilderRegistry>
<Noun name="Customer">

<Verb name="Get">
<ClassName>

 com.ext.commerce.telesales.messaging.bodreply.ExtShowCustomer
</ClassName>

</Verb>
</Noun>

</WCTBodResponseBuilderRegistry>

9.7.3 Implementing the integration code on the client side

The server response has been sent back to the client in the form of a BOD
message. The client must be modified to react to the response from the server
containing the customer list and the added pet list.

Request handler
Request handlers are responsible for creating BOD messages with the
information to be sent to the WebSphere Commerce server. They also handle
the response BODs that are sent as the response to the request from the server.

Clicking the Find Customer button in the Find dialog box results in a call to the
GetCustomerRequest request handler that generates the request to fetch the
customer information. The returned response is ShowCustomer BOD containing
the found customers. The Find dialog box receives the default BOD,
ShowCustomer, and displays the found customers as a list in the GUI that looks
like a table.

The modified ShowCustomer BOD containing the customer’s pet list, as shown
in Example 9-51 on page 234, is received when the customer editor requests the
detailed customer information.
 Chapter 9. User interface customization 241

Request handler implementation: Unmarshalling the response
Extend GetCustomerRequest to process the received pet list returned in the
ShowCustomer response BOD.

To handle the received pet list, implement the methods in the
ExtSGetCustomerRequest class, as shown in Example 9-54:

� The unmarshallCustomer method is extended to process the response BOD
pet information using the unmarshallCustomerPets method.

� The unmarshallCustomerPets method reads the list of pets, creates the
ExtPetList ModelObjectList, and adds it to the customer Model Object to be
used by the client.

Example 9-54 ExtGetCustomerRequest.java implementation

package com.ext.commerce.telesales.core.impl.request;

/**
 * ExtGetCustomerRequest is the request handler implementation that handles the get
 * customer service request. It is extended to handle unmarshalling retrieved
customer pets.
 */
public class ExtGetCustomerRequest extends GetCustomerRequest {

 /**
* add the following tag to the customer element as the last element

 * <Pets> <!-- unmarshalled by unmarshallCustomerPets() -->
 * .
 * .
 * </Pets>
*/
 protected void unmarshallCustomer(Customer customer, Element customerElement) {

 super.unmarshallCustomer(customer, customerElement);
 unmarshallCustomerPets(customer, getChildElement(customerElement,
 ExtRequestConstants.BOD_TAG_PETS));
 }

 /**
 * Unmarshalls the Pets element. The following sample shows the structure of the
 * Pets element and how it is unmarshalled.
 * <Pets>
 * <Pet>
 * <PetId>21</PetId>
 * <Name>F</Name>
 * <Type>51000</Type>
242 IBM Sales Center for WebSphere Commerce V6

 * </Pet>
 * </Pets>
 *
 * @param customer The customer data bean to populate.
 * @param customerDemographicsElement The element that is unmarshalled.
 */
 protected void unmarshallCustomerPets(Customer customer, Element petsElement) {

 Customer cust = (Customer) customer;
 ExtPetList extPetListModel = new ExtPetList();
 if (petsElement != null) {

 ArrayList extPetArrayList = getChildElements(petsElement,
 ExtRequestConstants.BOD_TAG_PET);

 if (extPetArrayList.size() > 0) {
 for (int i = 0; i < extPetArrayList.size(); i++) {
 Element petElement = (Element) extPetArrayList.get(i);
 if (petElement != null) {
 ExtPet extPet = (ExtPet) TelesalesModelObjectFactory

.createModelObject(ExtCustomerContants.MODEL_OBJECT_PET);
 extPet.setName(getChildElementValue(petElement,
 ExtRequestConstants.BOD_TAG_PET_NAME));
 extPet.setId(getChildElementValue(petElement,
 ExtRequestConstants.BOD_TAG_PET_ID));
 extPet.setType(getChildElementValue(petElement,
 ExtRequestConstants.BOD_TAG_PET_TYPE));
 extPet.setMarking(ExtPet.MARKED_EXISTNG);
 extPetListModel.addPet(extPet);
 }
 }
 }
 customer.setData(

ExtCustomerContants.PROP_CUSTOMER_PETS, extPetListModel);
 }
 }
}

 Chapter 9. User interface customization 243

Redefine the service requests (Example 9-55), specifying which request handler
is to be called to run the service request task. The service request,
com.ibm.commerce.telesales.findCustomer, which is called by the Find
Customer dialog box is processed by the ExtGetCustomerRequest.

Example 9-55 Defining the redefined findCustomer service request

<extension
point="com.ibm.commerce.telesales.core.serviceRequests">
<serviceRequest label="Find Customer"

requestHandlerClass=
"com.ext.commerce.telesales.core.impl.request.ExtGetCustomerRequest"

id="com.ibm.commerce.telesales.findCustomer"
commServiceId="com.ibm.commerce.telesales.services.TsCommunication">

</serviceRequest>

9.8 Loading the customizations into WebSphere
Commerce Developer

All the code that has been provided for this customization is available for
download in CustomerPet_SalesCenterCode.zip, the details about which are
available in Appendix A, “Additional material” on page 375.

This section outlines how to load the sample code into your WebSphere
Commerce Developer (into both the toolkits, the WebSphere Commerce toolkit
and the IBM Sales Center toolkit).

9.8.1 Installing the WebSphere Commerce Developer 6.0.0.1 Fix Pack

The prerequisite to run and test the customized code on your development
environment is to install the WebSphere Commerce Developer 6.0.0.1 Fix Pack.

To install this fix pack, download and follow the instructions provided in the
WebSphere Commerce Developer 6.0.0.1 Update Guide, which can be
accessed from the Technote WebSphere Commerce 6.0.0.1 Fix Pack, which is
available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg24013056

To ensure that the fix pack is installed in your WebSphere Commerce toolkit, run
the following command from a command prompt:

<WCDE_installdir>/bin/versionInfo.bat
244 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?uid=swg24013056

Running this command produces an output that includes the product information.
You must, for example, see the output of the versionInfo command, as shown in
Example 9-56.

Example 9-56 Output of the versionInfo command

Installed Product

Name IBM WebSphere Commerce
Version 6.0.0.1
ID wc.toolkit.be
Build Level xxxxxxxxx
Build Date xx/xx/xx"

9.8.2 Creating the XPET table on the WebSphere Commerce toolkit

This section shows you how to create the XPET table in the IBM Cloudscape™
database used by your WebSphere Commerce toolkit. If your WebSphere
Commerce development environment is set to use DB2 or Oracle®, you can
perform similar steps that are suitable for your database in order to create the
table, the constraints, and the key values, as required. Note that the SQL
statements are also provided within the CustomerPet_SalesCenterCode.zip in
the CustomerPetExtension.sql file (refer to Appendix A, “Additional material” on
page 375).

To create the XPET table on the WebSphere Commerce toolkit, perform the
following tasks:

1. Ensure that the test environment is started.

2. Open a browser and type the following URL:

http://localhost/webapp/wcs/admin/servlet/db.jsp

Note: This command is only available for WebSphere Commerce V6.0 with
Fix Pack 1.

Note: For intsructions, refer to the information center topic “Starting and
stopping WebSphere Commerce Test Server within the WebSphere
Commerce Developer”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.
ibm.commerce.developer.doc/tasks/tsrwcsstudio.htm
 Chapter 9. User interface customization 245

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/tasks/tsrwcsstudio.htm

3. In the input box, enter the SQL statement shown in Example 9-57.

Example 9-57 Entering the SQL statement

CREATE TABLE XPET (PET_ID BIGINT NOT NULL, USERS_ID BIGINT NOT NULL,
NAME VARCHAR(32) NOT NULL, TYPE VARCHAR(32) NOT NULL, OPTCOUNTER
SMALLINT NOT NULL);
ALTER TABLE XPET ADD CONSTRAINT xpet_p1 PRIMARY KEY (PET_ID);
ALTER TABLE XPET ADD CONSTRAINT xpet_f1 FOREIGN KEY (users_id)
REFERENCES users (users_id) ON DELETE CASCADE;
INSERT INTO KEYS (TABLENAME, COLUMNNAME, COUNTER , KEYS_ID) values
('xpet', 'pet_id', 0, 1);

4. Click Submit Query. You must see a message that states that the statement
resulted in 0 updates. For the last SQL statement, you must see a message
that states that the statement resulted in 1 update.

9.8.3 Loading the access control policies

This section shows you how to load the access control policies for your new
resources into your WebSphere Commerce development environment. Load the
ACPs to your WebSphere Commerce development environment database by
performing the following tasks for the Cloudscape database:

1. Extract the XML file ExtPetACPolicy.xml from
CustomerPet_SalesCenterCode.zip to <WCDE_installdir>\xml\policies\xml.

2. Load the access control policies by performing the following tasks:

a. Ensure that the WebSphere Commerce test environment is stopped.

b. At a command prompt, navigate to the directory <WCDE_installdir>\bin.

c. Issue the acpload command, which has the following form for Cloudscape:

acpload inputXMLFile

Here, inputXMLFile is the XML file containing the ACP specification. In this
case, specify ExtPetACPolicy.xml. The following is an example of the
command with variables to load the ACP to Cloudscape:

acpload ExtPetACPolicy.xml

3. Check for errors in the log files. Note that errors might not appear on the
command line.

– Check the acpload.log and messages.txt files in the
<WCDE_installdir>/logs directory

– Any error files generated in the <WCDE_installdir>/xml/policies/xml
directory
246 IBM Sales Center for WebSphere Commerce V6

9.8.4 Mapping a modified Business Object Document message

This section shows you how to include a modified BOD that is passing additional
data between the client and the server into your WebSphere Commerce
development environment.

To include a modified BOD message for the new command in your WebSphere
Commerce development environment, perform the following tasks:

1. Extract the following XML files from CustomerPet_SalesCenterCode.zip to
<WCDE_installdir\>xml\messaging:

– TelesalesRegistry-ext.xml
– webservice_SOABOD_template.extension.xml
– ExtSyncCustomerBODMapping.xml

It is recommended that you refer to the following topics in the information
center:

– “Mapping a new Business Object Document message to a new command”

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.
ibm.commerce.telesales.developer.doc/tasks/ttrmapbod.htm

– “WebSphere Commerce integration”

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.
ibm.commerce.telesales.developer.doc/concepts/ctrcommerceintegrat
ion.htm

– “Register the WebSphere Commerce Server Extension”

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.
ibm.commerce.telesales.developer.doc/tutorial/ttravaildate11.htm

It is possible to edit the TelesalesRegistry.xml file to point to your new
ExtShowCustomer and ExtConfirmCustomer classes. However, it is not
recommended because the TelesalesRegistry.xml file might be altered by a

Note: To run the ACP load on other databases, refer to the information center
topic “acpload utility”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.admin.doc/refs/raxacpload.htm

Note: All the custom response builders for this IBM Redbook are
registered in the TelesalesRegistry-ext.xml file. When installing more than
one customization sample, make sure that you manually merge this file in
order to avoid overwriting the registration data.
 Chapter 9. User interface customization 247

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrmapbod.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrcommerceintegration.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttravaildate11.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.admin.doc/refs/raxacpload.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.admin.doc/refs/raxacpload.htm

fix pack installation or during migration. Instead, in our case, we created a
new custom registry file, TelesalesRegistry-ext.xml, which overrides or
merges with the TelesalesRegistry.xml file. Entries in the custom registry are
combined with the entries in the base registry file. In the event that the same
verb-noun pair is registered in both the registry files, the custom entry is the
one that is used.

WebSphere Commerce uses the !ENTITY declarations to include different
files for each of the document command mappings, and has extended the
message mapper declaration to include a file for extensions called
webservice_SOABOD_template.extension.xml. You can update this file to
include your own extensions and any additional or changed mappings that
you want to define.

2. Navigate to <WCDE_installdir>/xml/config.

3. Open the wc-server.xml file for editing.

4. Locate the text shown in Example 9-58.

Example 9-58 Locating the text

<component
compClassName="com.ibm.commerce.telesales.configuration.TelesalesRegist
ryComponentConfiguration" enable="true" name="Telesales Response
Builder Registry Configuration"> <property
baseRegistryFilePath="messaging" customRegistryFileName=""
customRegistryFilePath="" display="false"
enableBaseRegistryOverride="false"/> </component>

5. Modify the customRegistryFileName, customRegistryFilePath, and
enableBaseRegistryOverride values, as shown in Example 9-59.

Example 9-59 Modifying the customRegistryFileName, customRegistryFilePath, and
enableBaseRegistryOverride values

<component
compClassName="com.ibm.commerce.telesales.configuration.TelesalesRegist
ryComponentConfiguration" enable="true" name="Telesales Response
Builder Registry Configuration"> <property
baseRegistryFileName="TelesalesRegistry.xml"
248 IBM Sales Center for WebSphere Commerce V6

baseRegistryFilePath="messaging"
customRegistryFileName="TelesalesRegistry-ext.xml"
customRegistryFilePath="messaging" display="false"
enableBaseRegistryOverride="true"/> </component>

6. Start, or alternatively, restart the WebSphere Commerce Test server if it is
running. Note that a server restart is required to pick up the changes made to
wc-server.xml.

9.8.5 Importing the EJB JAR file

This section shows you how to import and deploy the new EJB into your
WebSphere Commerce development environment. To import the new ExtPet
EJB into your WebSphere Commerce development workspace and deploy to the
WebSphere Commerce test server, perform the following tasks:

1. In the file system, navigate to CustomerPet_SalesCenterCode.zip and extract
it to a temporary directory.

2. In the J2EE perspective Project Navigator view, navigate to EJB Projects →
WebSphereCommerceServerExtensionsData project.

3. Right-click the Project and select Import → EJB JAR File. Click Next.

4. In the EJB Jar file field, enter or browse to the location of the temporary
directory, WebSphereCommerceServerExtensionsData.jar.

5. Ensure that WebSphereCommerceServerExtensionsData is entered in the
EJB project field. Back up your customizations if you have created them.
Select Overwrite existing resources without warning. Click Finish. If your
Rational Application Developer is set to automatic compilation, wait for the
building workspace to complete. There should be no problems.

6. In the Mapping Editor, open the Map.mapxmi file to verify the XPET table
mapping. To verify that this entity bean uses optimistic locking and has a field
called optCounter of the type short, which has marked the
OptimisticPredicate property as true in the Properties view, select the
optCounter field in the Outline view.

Refer to the information center topic “Creating new entity beans”, which is
available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.doc/tasks/tdecreateentitybean.htm

7. In the J2EE perspective Project Navigator view, navigate to EJB Projects →
WebSphereCommerceServerExtensionsData project.

8. Right-click the SRC directory and select Deploy. Wait for the deployment of
the selected modules to complete.
 Chapter 9. User interface customization 249

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/tasks/tdecreateentitybean.htm

9.8.6 Importing the commands and the new bodreply messages

To import the new commands (ExtPetUpdate, ExtPetDelete) and the new
bodreply messages (ExtConfirmCustomer, ExtShowCustomer) into your
WebSphere Commerce development workspace, perform the following tasks:

1. In the file system, navigate to CustomerPet_SalesCenterCode.zip and extract
it to a temporary directory.

2. In the J2EE perspective Project Navigator view, navigate to Other
Projects → WebSphereCommerceServerExtensionsLogic → src
directory.

3. Right-click src directory and select Import → Zip File. Click Next.

4. In the From zip file field, enter or browse to the location of
WebSphereCommerceServerExtensionsLogic.jar.

5. Back up your customizations if you have created them. Verify the files to be
imported. All the files are selected by default. In the right pane, ensure that
the resources that begin with a period (.) are not selected, for example,
deselect the following files in the right pane to ensure that these are not
imported:

– .classpath
– .classpath.template
– .project
– .serverPreference

Click Finish. If your Rational Application Developer is set to automatic
compilation, wait for the building workspace to complete. There should be no
problems. The resulting project must be similar to that shown in Figure 9-14.

Figure 9-14 Imported new commands and new bodreply messages
250 IBM Sales Center for WebSphere Commerce V6

9.8.7 Loading the client code into the IBM Sales Center toolkit

To load the client code into your IBM Sales Center development environment,
perform the following steps:

1. In the file system, navigate to CustomerPet_SalesCenterCode.zip and extract
it to a temporary directory.

2. In the plug-in development perspective Package Explorer view, right-click the
pop-up menu, and select Import → Existing Project into Workspace. Click
Next.

3. In Project contents field, enter or browse to the location of the plug-in,
com.ext.commerce.telesales.customer directory. The Project name field is
automatically filled in as com.ext.commerce.telesales.customer.

Click Finish. If your Rational Application Developer is set to automatic
compilation, wait for the building workspace to complete. Some error
messages relating to org.eclipse.* plug-ins might appear. However, you can
ignore them.

9.9 Testing the customized code

After importing the customized code into your WebSphere Commerce Developer
(into both the WebSphere Commerce development environment and the IBM
Sales Center development environment), test the customizations.

Notes:

� Our assumptions for testing the customized code are as follows:

– No validation has been implemented in this sample. Assume that valid
data is always provided, and that a unique name will be provided for a
pet.

– The code provided is a sample that might not be fully functional, and is
provided on an “as is” basis for demonstration purposes only.

� When you click Update to send the customer pet information to the server,
if you see the error message “_ERR_MESSAGING_BOD_MESSAGE_MAPPER”,
check whether you have installed the WebSphere Commerce Developer
6.0.0.1 Fix Pack.
 Chapter 9. User interface customization 251

To test the customizations, perform the following tasks:

1. Start the WebSphere Commerce Test Server in your WebSphere Commerce
development environment. At the command prompt, for example, navigate to
<WCDE_installdir>\bin and run the script startwcserver.bat. The server is
started when you see the message “Server server1 open for e-business”.

2. Start the IBM Sales Center development environment by selecting Start →
IBM WebSphere Commerce Developer → IBM Sales Center development
environment.

3. From the Run menu, click Run.

4. In the Configurations list, select Sales Center, and click Run.

5. When the IBM Sales Center opens, click Open in the left pane and select IBM
Sales Center - Order Management to open the Order Management
application main window.

Note: Running the startwcserver.bat script is equivalent to starting the
WebSphere Commerce Test Server using the Rational Application
Developer graphical interface, but without the memory overhead required
by that graphical interface. For now, you do not have to use the graphical
interface for the WebSphere Commerce server side. If you launch the
Rational Application Developer graphical interface, you will see that the
WebSphere Commerce Test Server is already running.

In order to log in from the IBM Sales Center client, which is a part of the
IBM Sales Center development environment, to the server, you must have
the WebSphere Commerce server running. This can either be the
WebSphere Commerce Test Server within the WebSphere Commerce
toolkit running on the same or another system as IBM Sales Center toolkit,
or it can also be a runtime WebSphere Commerce server, running on the
same or another system as WebSphere Commerce Developer.

For the purpose of this book, we have only demonstrated importing the
customized code into the WebSphere Commerce development
environment. To create and deploy the customized code to the runtime
server environment, refer to the information center tutorial titled “Deploying
your customization to the WebSphere Commerce server”, which is
available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.
ibm.commerce.giftcenter.refapp.doc/tutorial/tgcibmgiftcentercusto
mization44.htm
252 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.giftcenter.refapp.doc/tutorial/tgcibmgiftcentercustomization44.htm

6. From the main menu, select File → Logon to display the login panel. Click
the Connectivity button to display the Preferences panel. Under Hypertext
Transport Protocol Secure (HTTPS) settings, for example, for Server, enter
localhost and for Hypertext Transfer Protocol Secure (HTTPS) port enter
443, and click OK.

7. In the login dialog box, enter the user name and the password of a user with
site administrator privileges, for example, wcsadmin. Note that by default, the
password for the user name wcsadmin on WebSphere Commerce toolkit is
wcsadmin. You are required to change it the first time you log in.

8. From the main menu, select Store → Select. Click the Find button to search
for all the stores.

9. From the Search Result list, select a store, for example, ConsumerDirect,
and click OK.

10.Create a customer profile. Click Create to create a customer profile.

For more information, launch the IBM Sales Center Information Center by
selecting Help → Help Contents in the IBM Sales Center client, and search
for the topic “Creating a customer profile”. Alternatively, you can refer to the
online instructions in the topic “Creating a customer profile”, which is available
in the information center at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.tsr.doc/tasks/ttrcreateb2bcust.htm

11.Open the Pets page and click Add.

12.Enter the information pertaining to a pet such as the name of the pet, and
select the pet type from the drop-down menu. Click OK.
 Chapter 9. User interface customization 253

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.tsr.doc/tasks/ttrcreateb2bcust.htm

13.Click Update to send the updates to the server (Figure 9-15).

Figure 9-15 Testing pet customization

14.In the pet page, select the pet to update. In the fields, change the information
pertaining to the pet. Click Update to send the updates to the server and to
observe the change of the local pet list on the client side.

15.In the pet page, select the pet to be removed. Click Remove to observe the
update of the local list on the client side. Click Update to send the updates to
the server, or Close to choose whether you want to save or discard the
changes.

16.Close the customer profile and clear the customer from view.

17.Right-click the store in the Stores view, and select Find → Customer.
254 IBM Sales Center for WebSphere Commerce V6

18.From the Search Type drop-down menu, select Pet Type and select the pet
type you have created for your customer in the previous steps. Click Find to
open the customer profile, if only one customer exists with this type of the pet,
or to get the list of customers with the selected pet type if multiple customers
exist with the same type of the pet (Figure 9-16).

Figure 9-16 Testing Find Customer
 Chapter 9. User interface customization 255

256 IBM Sales Center for WebSphere Commerce V6

Chapter 10. Role-based customizations

In IBM Sales Center, the following user interface (UI) elements can be hidden
and displayed based on a user’s role:

� Views and editors
� Perspectives
� Preference and property pages
� New project wizard
� Menus and toolbars

This chapter demonstrates how to perform the following tasks:

� Create a new role that can access IBM Sales Center
� Display different menu items based on roles

The bulk of what is explained in this chapter takes place within the WebSphere
Commerce and IBM Sales Center development environments. Only section
10.3.5, “Deploying to production for both the server and the client” on page 283
references the production environment.

The prerequisites for this chapter are:

� The WebSphere Commerce server development environment is installed
� The IBM Sales Center development environment is installed
� There is at least one published starter store

10
© Copyright IBM Corp. 2007. All rights reserved. 257

10.1 Duplicating an existing role

This section describes how to create a new customer service representative
(CSR) role called NewCSR. Users assigned to this role initially have access to
the same activities as users with the CSR role. However, the latter part of this
chapter shows you how to modify the user authority.

10.1.1 Creating a new role and a user in the Organization
Administration console

Perform the tasks described in this section in the WebSphere Commerce
development environment.

To create a new role, perform the following tasks:

1. Open WebSphere Commerce Developer and start the WebSphere
Commerce Test Server.

2. Open the WebSphere Commerce Organization Administration console in an
Internet Explorer browser. By default, the URL for this tool is
https://yourHostname:8004/orgadminconsole.

3. Log in as a user with site administrator authority.

4. Select Access Management → Roles.

5. Click New.

6. In the Name field, enter NewCSR, and click OK.

To create a new user under this role, perform the following tasks:

1. Select Access Management → Create user.

2. Provide the necessary details in the required fields, ensuring that the account
policy is Administrators.

3. Click OK.

4. Select your new user and click Roles.

5. Select the appropriate organization, which will most likely be Root
Organization.

6. From the Role list, select NewCSR.

7. Click Add.

8. Click OK.
258 IBM Sales Center for WebSphere Commerce V6

9. If you do not already have a user with a CSR role, create one now by
performing steps 1 - 7. You require this user later in this chapter to compare
the menu items that are displayed for the CSR role and the NewCSR role.

Determine the role_id value of your new role by performing the following tasks:

1. On the machine that runs the WebSphere Commerce development
environment, open the following URL:

http://localhost/webapp/wcs/admin/servlet/db.jsp

2. Enter the following SQL statement and click Submit Query:

select * from role where name=’NewCSR’;

3. Record the value in the role_id column for use later in this chapter.

10.1.2 Revising and loading the access control policies

By default, the new role is not associated with any access control policies. In this
example, you duplicate the same access control policies as a CSR, modify two
access control policy files, and add the new role whenever the CSR role is
mentioned.

defaultAccessControlPolicies
Modify defaultAccessControlPolicies.xml by performing the following tasks:

1. Navigate to the WCDE_installdir\xml\policies\xml directory.

2. Make a copy of the defaultAccessControlPolicies.xml file called
defaultAccessControlPolicies_NewCSR.xml.

3. Edit the defaultAccessControlPolicies_NewCSR.xml file so that any stanza
that contains CSR is followed by the same stanza, but for the role NewCSR.
Example 10-1 shows the added stanza in bold type.

Example 10-1 Adding a stanza for NewCSR for every CSR stanza

[...]
<RelationGroup
Name="CustomerOrderManagers->RegisteredOrganizationalEntity"
OwnerID="RootOrganization">

<RelationCondition><![CDATA[
<profile>

<orListCondition>
<openCondition name="RELATIONSHIP_CHAIN">

<parameter name="ROLE" value="customer service
representative"/>
 Chapter 10. Role-based customizations 259

<parameter name="RELATIONSHIP"
value="RegisteredOrganizationalEntity"/>

</openCondition>
<openCondition name="RELATIONSHIP_CHAIN">

<parameter name="ROLE" value="NewCSR"/>
<parameter name="RELATIONSHIP"

value="RegisteredOrganizationalEntity"/>
</openCondition>
<openCondition name="RELATIONSHIP_CHAIN">

[...]

4. Save the changes.

ACUserGroups_en_US.xml
Modify ACUserGroups_en_US.xml by performing the following tasks:

1. Navigate to theWCDE_installdir\xml\policies\xml directory.

2. Make a copy of the ACUserGroups_en_US.xml file called
ACUserGroups_NewCSR_en_US.xml.

3. Edit the ACUserGroups_NewCSR_en_US.xml file so that any stanza that
contains CSR is followed by the same stanza for NewCSR. (Multiple
<simpleCondition> tags must be surrounded by <orListCondition> tags. If, by
default, there exists only one <simpleCondition> tag, add a <orListCondition>
tag around the <simpleCondition> tags). Example 10-2 shows the added
stanza in bold type.

Example 10-2 Adding a stanza for NewCSR: Adding <orListCondition> tags when necessary

[...]
<UserGroup Name="CustomerServiceRepresentatives"

OwnerID="RootOrganization" Description="Users with role of customer
service representative" MemberGroupID="-3">
<UserCondition><![CDATA[

<profile>
<orListCondition>

<simpleCondition>
<variable name="role"/>
<operator name="="/>
<value data="customer service representative"/>

</simpleCondition>
<simpleCondition>

<variable name="role"/>
<operator name="="/>
<value data="NewCSR"/>

</simpleCondition>
260 IBM Sales Center for WebSphere Commerce V6

</orListCondition>
</profile>

]]></UserCondition>
</UserGroup>
[...]

4. Save your changes.

Loading the policies
Load the revised access control policies. The commands that are run in the
following tasks assume that you are using a Cloudscape database. If you are
using DB2, Oracle, or IBM i5/OS®, you may require more parameters.

Load the access control policies by performing the following tasks:

1. Stop the WebSphere Commerce Test Server. Because there can be only one
connection to the Cloudscape database, the following scripts cannot access
the database if the WebSphere Commerce Test Server is running.

2. From the command prompt, navigate to the WCDE_installdir\bin directory.

3. Run the following command:

acpload defaultAccessControlPolicies_NewCSR.xml

4. Navigate to the WCDE_installdir\logs directory. Inspect the acpload.log and
the messages.txt files in order to ensure that the access control policy has
loaded successfully. (The messages.txt file may not exist if the load has
completed successfully.) Also check if the policy files,
defaultAccessControlPolicies_NewCSR_idres.xml and
defaultAccessControlPolicies_NewCSR_xmltrans.xml, are created
successfully in the WCDE_installdir\xml\policies\xml directory. These two files
are created as part of a successful idresgen utility process. If any other error
files are generated in this directory, this indicates that there is a problem. If
there is a problem, fix the problem, and rerun the command specified in the
previous step.

5. In the WCDE_installdir\bin directory, run the following command:

acugload ACUserGroups_NewCSR_en_US.xml

6. Navigate to the WCDE_installdir\logs directory and check the acpload.log and
the messages.txt files to ensure that the access control policy loaded
successfully. (The messages.txt file may not exist if the load completed
successfully.) Also check if the policy files
ACUserGroups_NewCSR_idres.xml and
ACUserGroups_NsewCSR_xmltrans.xml are created successfully in the
WCDE_installdir\xml\policies\xml directory. These two files are created as
 Chapter 10. Role-based customizations 261

part of a successful idresgen utility process. If any other error files are
generated in this directory, this indicates that there is a problem. If there is a
problem, fix the problem and rerun the command specified in the previous
step.

10.1.3 Extending the server code for ShowStore

This section describes how to extend the code on the WebSphere Commerce
server side in order to allow the NewCSR role to have access to the ShowStore
class. Without access to this class, users with the NewCSR role will not be able
to see any stores from IBM Sales Center.

Installing APAR IY88078
APAR IY88078 allows you to add the new role, NewCSR, to the list of roles that
can see stores from IBM Sales Center. Without this APAR, users with the role
NewCSR will not be able to see the stores in IBM Sales Center, and will not be
able to perform any functions other than the login function.

When you install this APAR over WebSphere Commerce Developer, specify
WCDE_installdir when asked for the installation location of the product you want
to update. Also ensure that the Rational Application Developer and the
WebSphere Commerce Test Server are stopped before installation of any
APARs. Contact WebSphere Commerce support to obtain this APAR.

Extending ShowStore
Write code to add the new role to the list of roles that can see the stores, by
performing the following tasks:

1. In the WebSphere Commerce development environment, in the Project
Explorer view, expand Other Projects →
WebSphereCommerceServerExtensionsLogic.

2. Right-click the src directory and select New → Package.

3. In the Name field, enter com.ext.commerce.telesales.messaging.bodreply
and click Finish.

4. Right-click com.ext.commerce.telesales.messaging.bodreply package
and select New → Class.

– In the Name field, enter ExtendedShowStore.

– In the Superclass field, enter or browse to
com.ibm.commerce.telesales.messaging.bodreply.ShowStore.

5. Click Finish.
262 IBM Sales Center for WebSphere Commerce V6

Figure 10-1 shows the New Java Class window with the name and the
superclass specified.

Figure 10-1 The New Java Class window

6. The ExtendedShowStore class opens for editing. Enter the code shown in
Example 10-3 into the class, substituting the role_id you found in “Creating a
new role and a user in the Organization Administration console” for
yourRoleId.

Example 10-3 ExtendedShowStore class opens for editing

/**
* Override the createStoreLanguageBean()method of the ShowStore
* class to create the instance and add the supported roles before
* returning the instance to the base class.
* This method creates an instance of the StoreLanguageBean to do the
 Chapter 10. Role-based customizations 263

* store search.
*
* @return the <code>StoreLanguageBean</code> created.
*/
protected StoreLanguageBean createStoreLanguageBean() {
StoreLanguageBean slb = new StoreLanguageBean();
slb=super.createStoreLanguageBean();
slb.addSupportedRoleId("yourRoleId");
return slb;
}

7. Right-click anywhere in the class and select Source → Organize Imports to
automatically add any required import statements.

8. Save your changes.

Updating the IBM Sales Center registry
The IBM Sales Center registry file called TelesalesRegistry.xml contains a
mapping between the commands that must run based on different noun-verb
combinations. Example 10-4 shows the mapping between the
ElectronicCatalog-Get noun-verb pair and the
com.ibm.commerce.telesales.messaging.bodreply.ShowElectronicCatalog
class. Whenever the IBM Sales Center client tries to get an ElectronicCatalog
object, the class
com.ibm.commerce.telesales.messaging.bodreply.ShowElectronicCatalog will
run.

Example 10-4 Noun-verb to Java class mapping in the IBM Sales Center registry

<Noun name="ElectronicCatalog">
<Verb name="Get">

<ClassName>
com.ibm.commerce.telesales.messaging.bodreply.ShowElectronicCatal
og</ClassName>

</Verb>
</Noun>

In this example, to make the new
com.ext.commerce.telesales.messaging.bodreply.ExtendedShowStore class to
run instead of the com.ibm.commerce.telesales.messaging.bodreply.ShowStore
class, create your own custom registry file and add a reference to the new file in
the wc-server.xml file. You must not make changes directly to the
TelesalesRegistry.xml file because the changes may be overwritten in a fix pack
or migration.
264 IBM Sales Center for WebSphere Commerce V6

To create a new custom registry file, perform the following tasks:

1. Navigate to the WCDE_installdir\xml\messaging folder.

2. Make a copy of the TelesalesRegistry.xml file called
TelesalesRegistry-ext.xml. Edit the TelesalesRegistry-ext.xml file so that only
the lines shown in Example 10-5 remain.

Example 10-5 Editing the TelesalesRegistry-ext.xml file

<WCTBodResponseBuilderRegistry>
<Noun name="Store">

<Verb name="Get">
<ClassName>

com.ibm.commerce.telesales.messaging.bodreply.ShowStore
</ClassName>

</Verb>
</Noun>

</WCTBodResponseBuilderRegistry>

3. Change the following:

<ClassName>com.ibm.commerce.telesales.messaging.bodreply.ShowStore
</ClassName>

to

<ClassName>com.ext.telesales.messaging.bodreply.ExtendedShowStore
</ClassName>

4. Save your changes.

5. Update the wc-server.xml file with a reference to your new registry file by
performing the following tasks:

a. Navigate to the WCDE_installdir\xml\config folder.

b. Open the wc-server.xml file for editing.

c. Find the text shown in Example 10-6.

Example 10-6 Finding text

<component
compClassName="com.ibm.commerce.telesales.configuration.TelesalesRegist
ryComponentConfiguration"

enable="true" name="Telesales Response Builder Registry
Configuration">
<property

baseRegistryFileName="TelesalesRegistry.xml"
 Chapter 10. Role-based customizations 265

baseRegistryFilePath="messaging"
customRegistryFileName=""
customRegistryFilePath="" display="false"
enableBaseRegistryOverride="false"/>

</component>

d. Modify the text by adding the text in bold as shown in Example 10-7.

Example 10-7 Modifying text

<component
compClassName="com.ibm.commerce.telesales.configuration.TelesalesRegist
ryComponentConfiguration"

enable="true" name="Telesales Response Builder Registry
Configuration">
<property

baseRegistryFileName="TelesalesRegistry.xml"
baseRegistryFilePath="messaging"
customRegistryFileName="TelesalesRegistry-ext.xml"
customRegistryFilePath="messaging" display="false"
enableBaseRegistryOverride="true"/>

</component>

e. Restart the WebSphere Commerce Test Server to pick up the change to
wc-server.xml.

10.1.4 Extending the client side for the new role

Add code in the IBM Sales Center client side to recognize the new role and
ensure that the role is provided with access to the proper activities.

Creating a new plug-in
When customizing IBM Sales Center, place all the extensions in one or more
plug-ins that you have created specifically for your customizations. To create a
new plug-in for the IBM Sales Center workspace, perform the following tasks:

1. Ensure that the IBM Sales Center development environment is open.

2. Ensure that the current perspective is the Plug-in Development perspective. If
it is not, select it from the menu Window → Open Perspective.

3. Create a new plug-in project by clicking the New button in the toolbar and
selecting Plug-in Development → Plug-in Project. This launches the
Plug-in Project wizard.

Alternately, from the Eclipse File menu, launch the Plug-in Project wizard in
the Eclipse environment.
266 IBM Sales Center for WebSphere Commerce V6

4. Enter the required information. The Project name for your plug-in must follow
Java package conventions, for example:

com.ext.commerce.telesales.sample.extensions

5. Ensure that you select the check box against Create an OSGi bundle
manifest for the plug-in.

6. Click Next.

7. After validating the information, click Finish.

The plugin.xml file opens for editing.

Adding code to the new plug-in
This section provides information about how to add code to the new plug-in so
that it defines what the NewCSR role can see and perform in IBM Sales Center.

To add code to the new plug-in, perform the following tasks:

1. The com.ibm.commerce.telesales.roles extention point defines which
activitySets a user can access. You can see the CSR code in the
com.ibm.commerce.telesales.ui.impl.roles plug-in, in the fragment.xml file.

This step provides the NewCSR role with access to the same group of
activitySets as the CSR role. (The latter part of this chapter describes how to
change this definition to show the role-based context menu.)

In the com.ext.commerce.telesales.sample.extensions plug-in’s plugin.xml
file, enter the code shown in Example 10-8 within the <plugin> tag.

Example 10-8 Entering code in the com.ext.commerce.telesales.sample.extensions
plug-in’s plugin.xml file

<!-- NewCSR-->
<extension point="com.ibm.commerce.telesales.roles">

<role id="newCSR" roleId="NewCSR" label="NewCSRLabel">
<activitySet
id="com.ibm.commerce.telesales.activitySet.applications">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseStoreActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseCustomerActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseCommentsActions">
</activitySet>
 Chapter 10. Role-based customizations 267

<activitySet
id="com.ibm.commerce.telesales.activitySet.baseOrderActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseQuoteActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseReturnActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseProductActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseTicklerActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.basePreferencePages">
</activitySet>

</role>
</extension>

10.1.5 Testing the new role

To ensure that the new role is working well, open IBM Sales Center and select a
store:

1. In the IBM Sales Center development environment, select Run → Sales
Center.

2. When the IBM Sales Center client opens, log in using the user you created in
10.1.1, “Creating a new role and a user in the Organization Administration
console” on page 258.

3. Select Store → Select.

4. In the Find Store window, leave an asterisk in the Store name field and click
OK.

The stores that are returned must be the same list of stores that a CSR can
see.
268 IBM Sales Center for WebSphere Commerce V6

10.2 Chapter checkpoint

At this point in the chapter, a new user is assigned to a new role called NewCSR.
This user has the same user authority as a CSR. This was accomplished by
completing the following tasks:

� On the WebSphere Commerce server side, you performed the following
tasks:

a. Created a new role called NewCSR and assigned a user to this role on the
WebSphere Commerce server side.

b. Loaded access control policies to provide the NewCSR role with access to
the same functions as the CSR role.

c. Extended the ShowStore class to provide the NewCSR role with access to
see the stores through IBM Sales Center.

� On the IBM Sales Center client side, you assigned activitySets to the
NewCSR role. At this point, these activitySets are the same as the CSR.
(However, this changes subsequently, and this process is described later in
this chapter.)

10.3 Displaying the menu items based on the roles

The following sections describe the process involved in completing the
customization by writing code to display different menu items depending on the
user’s role.

This section describes the process involved in using the samples provided with
IBM Sales Center. The IBM Sales Center samples are used here only to
demonstrate the role-based functions. The samples use the Eclipse extensions,
but the customizations explained in this chapter use the IBM Sales Center
framework.

10.3.1 Installing the samples

To import the samples into your workspace, perform the following tasks:

1. Open the IBM Sales Center development environment.

2. Select File → Import.

3. In the Select an Import Source box, click Existing Project into Workspace.

4. Click Next.

5. Click Browse.
 Chapter 10. Role-based customizations 269

6. Navigate to the
WCDE_installdir\samples\SalesCenter\com.ibm.commerce.telesales.sample
s directory and click OK.

7. Click Finish.

In order to test whether the samples are imported properly, perform the following
tasks:

1. Open the IBM Sales Center client within the development environment.

2. Log in to IBM Sales Center with a site administrator user name and
password. The default user name and password is wcsadmin.

3. Select the Customer menu (Figure 10-2). If you see the following items in the
Customer menu, it means that the samples are imported properly:

– Sample Create Customer Dialog
– Sample Edit Customer
– Sample Create Customer

Figure 10-2 Samples are installed successfully

10.3.2 Extending the samples to display the context menu

The default samples installation creates the menu items under the Customer
menu, but does not create the context menu that appears when you right-click
the store in the Stores view. You must now extend the samples to display the
context menu.
270 IBM Sales Center for WebSphere Commerce V6

Examining the default context menu
To take a look at the default context menu before changing it, perform the
following tasks:

1. Select Store → Select.

2. In the Find Store window, click Find.

3. A list of stores is displayed. Select the ConsumerDirect store and click OK.
(If you have published just one store, the store is selected automatically when
you click Find.)

4. Right-click ConsumerDirect store in the Stores view (Figure 10-3). The
Sample Create Customer window does not appear in the context menu.

Figure 10-3 Sample plug-in does not create the context menu

Exporting the code from the sample plug-in
By default, the com.ibm.commerce.telesales.samples plug-in does not export its
libraries for use by other plug-ins. To continue with this customization, export the
libraries so that you can access them from your own custom plug-in. To export
the libraries, perform the following tasks:

1. Open the com.ibm.commerce.telesales.samples plug-in for editing.
2. In the Runtime tab, in the Library exporting section, click Add.
3. Select all the libraries from the list and click OK.
4. Save your changes.
 Chapter 10. Role-based customizations 271

Figure 10-4 shows the result of adding all the libraries.

Figure 10-4 The Library exporting section of the Runtime tab

Modifying the context menu for the Sample Create Customer
To extend the samples in order to show the context menu for the Sample Create
Customer, perform the following tasks:

1. Open the plug-in manifest file (plugin.xml) for the custom plug-in you created
earlier, com.ext.commerce.telesales.sample.extension.

2. Add a dependency in the com.ibm.commerce.telesales.samples plug-in so
that you can access its code, which is similar to an import statement in a Java
class, by performing the following tasks:

a. In the Dependency tab, click Add.

b. Select com.ibm.commerce.telesales.samples and click OK.

3. Create an extension to org.eclipse.ui.popupMenus by adding the code in
Example 10-9 to the plugin.xml file.

Example 10-9 Code for plugin.xml file

<extension point="org.eclipse.ui.popupMenus">
<objectContribution
objectClass="com.ibm.commerce.telesales.model.Store"
adaptable="true">

<action
label="%CreateCustomerDialogWorkbenchActionDelegate.WorkbenchActi
onDelegate.SampleCreateDialogCustomer"

class="com.ibm.commerce.telesales.samples.actions.CreateCustom
erWorkbenchActionDelegate"
menubarPath="store.ext"
272 IBM Sales Center for WebSphere Commerce V6

id="com.ibm.commerce.telesales.samples.actions.CreateCustomerA
ction">

</action>
</objectContribution>

</extension>

4. The label value
%CreateCustomerDialogWorkbenchActionDelegate.WorkbenchActionDeleg
ate.SampleCreateDialogCustomer is found in the resources.properties file of
the com.ibm.commerce.telesales.samples plug-in. Add the code shown in
Example 10-10 into your plugin.xml file so that it can find the properties file.

Example 10-10 Adding code into the plugin.xml file for it to find the properties file

<extension point="com.ibm.commerce.telesales.resources.resources">
<resourceBundle
baseName="com.ibm.commerce.telesales.samples.resources"/>

</extension>

5. Close and open the IBM Sales Center client and open the store after logging
in.

6. Right-click ConsumerDirect store to see a new menu item for Sample
Create Customer (Figure 10-5).

Figure 10-5 Context menu is created for the Sample Create Customer
 Chapter 10. Role-based customizations 273

10.3.3 Creating the activities and activity sets and mapping
them to roles

Menus and Editors can be hidden from all the users or only from users with
specified roles. This is accomplished with Eclipse activities, which are groupings
of Eclipse plug-in contributions that can be enabled or disabled in plug-in
manifests or by programming.

Plug-ins define activities by extending the org.eclipse.ui.activities extension
point. The activity is given a name and a description, and is bound to plug-in
contributions by a regular expression pattern.

If the activity is disabled, any extensions whose ID matches the pattern will be
suppressed.

IBM Sales Center defines an activity to individually match each menu item the
IBM Sales Center provides. These activity definitions can be found in the
fragment.xml manifest of the com.ibm.commerce.telesales.ui.impl.activities
plug-in fragment.

Although it is possible to work directly with Eclipse activities, IBM Sales Center
extends the activities mechanism with two additional extension points,
com.ibm.commerce.telesales.activitySet, which defines groups (possibly
overlapping) of activities, and com.ibm.commerce.telesales.roles, which defines
the activitySets to be enabled for each of the user roles defined by the
WebSphere Commerce server. WebSphere Commerce defines three roles,
CustomerServiceRepresentatives, CustomerServiceSupervisors, and Site
Administrator. For each of these roles, IBM Sales Center specifies a collection of
predefined activitySets that are enabled.

Hiding the Create Customer menu item
This section shows you how to hide the Create Customer menu item from the
Customer menu for all the roles, by creating new definitions for the base
customer actions activity set.

The default definition of the base customer actions activity set includes all the
actions that can be performed on the customers by all the roles. This activity set
is enabled for all the roles.

To prevent a Create Customer activity from being enabled, remove the activity
from all the activity sets that include it, for example, to remove the create
customer activity com.ibm.commerce.telesales.createCustomerActivity, extend
the com.ibm.commerce.telesales.activitySet.baseCustomerActions activity set.
274 IBM Sales Center for WebSphere Commerce V6

Add the extension definitions shown in Example 10-11 to your plug-in's
plugin.xml file. Note that the
com.ibm.commerce.telesales.createCustomerActivity has been commented out
of the activitySet.

Example 10-11 Adding extension definitions to plug-in's plugin.xml file

<extension point="com.ibm.commerce.telesales.activitySets">
<!-- Base Customer Actions Activity Set -->

<activitySet
id="com.ext.commerce.telesales.sample.extensions.activitySet.baseCus
tomerActions" label="%baseCustomerActionsActivitySetName">

<!-- <activity
activityId="com.ibm.commerce.telesales.createCustomerActivity">
</activity>
-->
<activity
activityId="com.ibm.commerce.telesales.findCustomerActivity">
</activity>
<activity
activityId="com.ibm.commerce.telesales.editCustomerActivity">
</activity>
<activity
activityId="com.ibm.commerce.telesales.clearCustomerActivity">
</activity>
<activity
activityId="com.ibm.commerce.telesales.enableCustomerActivity">
</activity>
<activity
activityId="com.ibm.commerce.telesales.findOrganizationActivity">
</activity>
<activity
activityId="com.ibm.commerce.telesales.showContactHistoryActivity
">
</activity>
<activity
activityId="com.ibm.commerce.telesales.resetPasswordActivity">
</activity>

</activitySet>
</extension>
 Chapter 10. Role-based customizations 275

Using the system configurator
Use the system configurator to indicate that your new activity set definition must
be used in place of the default. To use the system configurator, perform the
following steps:

1. In the Package Explorer, navigate to the
com.ext.commerce.telesales.sample.extensions plug-in.

2. Right-click the plug-in folder and select New → Folder.

3. In the Folder Name field, enter config and click Finish.

4. Right-click the config folder and select New → File.

5. In the File name field, enter config.ini and click Finish.

6. Open the config.ini file for editing, and insert the following text:

com.ibm.commerce.telesales.activitySet.baseCustomerActions=com.ext.c
ommerce.telesales.sample.extensions.activitySet.baseCustomerActions

7. Save your changes.

8. In the com.ext.commerce.telesales.sample.extensions plugin.xml file, add the
following text to indicate the location of your config.ini file:

<extension point="com.ibm.commerce.telesales.configurator">
<configurator path="config"/>

</extension>

9. Save your changes.

10.Rerun the IBM Sales Center client and open the store after login. Select the
Customer menu (Figure 10-6). The Create Customer link does not display.

Figure 10-6 Create Customer menu item is disabled for all the users
276 IBM Sales Center for WebSphere Commerce V6

Creating the activity and the activity sets
This section describes the processes involved in creating an activity and
activitySets that will later be assigned to the CSR role and the NewCSR role. To
create the activity and the activity sets, perform the following tasks:

1. Open the plug-in manifest file (plugin.xml) for the
com.ext.commerce.telesales.sample.extensions plug-in.

2. Add the extension definitions shown in Example 10-12 to your plugin.xml file.
These definitions create the activity that will map to the Sample Create
Customer action.

Example 10-12 Adding extension definitions to create the activity to map to Sample
Create Customer action

<extension point="org.eclipse.ui.activities">
<!-- Sample Create Customer activity -->
<activity name="%sampleCreateCustomerActivityName"

id="com.ibm.commerce.telesales.samples.actions.CreateCustomerActi
vity">

</activity>
<activityPatternBinding

activityId="com.ibm.commerce.telesales.samples.actions.CreateCust
omerActivity"
pattern="com\.ibm\.commerce\.telesales\.samples/com\.ibm\.commerc
e\.telesales\.samples\.actions\.CreateCustomerAction">

</activityPatternBinding>
</extension>

3. Add the extension definitions shown in Example 10-13 to your plugin.xml file.
These extension definitions create the activity sets for the sample create
customer and create customer dialogs.

Example 10-13 Adding extensions to create activity sets for Sample Create Customer
and Create Customer dialogs

<extension point="com.ibm.commerce.telesales.activitySets">
<activitySet
id="com.ext.commerce.telesales.sample.extensions.activitySet.sampleC
reateCustomerActivitySet"
label="%sampleCreateCustomerActivitySetName">

<activity
activityId="com.ibm.commerce.telesales.samples.actions.CreateCust
omerActivity">
</activity>

</activitySet>
 Chapter 10. Role-based customizations 277

<activitySet
id="com.ext.commerce.telesales.sample.extensions.activitySet.createC
ustomerActivitySet" label="%createCustomerActionsActivitySetName">

<activity
activityId="com.ibm.commerce.telesales.createCustomerActivity">
</activity>

</activitySet>
</extension>

At this point, the activity sets can be assigned to different roles.

Assigning activity sets to roles
This section describes the process involved in creating the extensions for the
roles to enable the Create Customer and Sample Create Customer for different
roles.

Provide Sample Create Customer and Create Customer access to the CSR, but
restrict the NewCSR to view only the Sample Create Customer. To achieve that,
create another extension in the plugin.xml file by using the code provided in
Example 10-14.

Example 10-14 Providing Sample Create Customer and Create Customer access to CSR

<extension id="com.ibm.commerce.telesales.roles" name="%rolesName"
point="com.ibm.commerce.telesales.roles">

<!-- customer service representative -->
<role id="com.ext.commerce.telesales.sample.extensions.csrRole"
roleId="customer service representative" label="%CSRRoleName">

<activitySet
id="com.ext.commerce.telesales.sample.extensions.activitySet.samp
leCreateCustomerActivitySet">
</activitySet>
<activitySet
id="com.ext.commerce.telesales.sample.extensions.activitySet.crea
teCustomerActivitySet">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.applications">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseStoreActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseCustomerActions">
278 IBM Sales Center for WebSphere Commerce V6

</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseCommentsActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseOrderActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseQuoteActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseReturnActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseProductActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseTicklerActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.basePreferencePages">
</activitySet>

</role>
<!--NewCSR -->
<role id="com.ext.commerce.telesales.sample.extensions.NewCSRRole"
roleId="NewCSR" label="%CSRRoleName">

<activitySet
id="com.ext.commerce.telesales.sample.extensions.activitySet.samp
leCreateCustomerActivitySet">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.applications">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseStoreActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseCustomerActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseCommentsActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseOrderActions">
</activitySet>
 Chapter 10. Role-based customizations 279

<activitySet
id="com.ibm.commerce.telesales.activitySet.baseQuoteActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseReturnActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseProductActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.baseTicklerActions">
</activitySet>
<activitySet
id="com.ibm.commerce.telesales.activitySet.basePreferencePages">
</activitySet>

</role>

10.3.4 Testing your changes

To test your changes, log in using two different users with two different roles. If
customization is successful, the user with the CSR role must see both the
Sample Create Customer and the Create Customer menu items, and the
NewCSR role must see only the Sample Create Customer menu item.

Figure 10-7 and Figure 10-8 show what a user will see when the user belongs to
the CSR role. This user sees both the Sample Create Customer and the Create
Customer menu items.

Figure 10-7 The customer menu for a user with the CSR role
280 IBM Sales Center for WebSphere Commerce V6

Figure 10-8 The stores context menu for a user with the CSR role

Figure 10-9 and Figure 10-10 show what a user will see when the user belongs
to the NewCSR role. This user sees only the Sample Create Customer menu
item and not the Create Customer menu item.

Figure 10-9 The customer menu for a user with the NewCSR role
 Chapter 10. Role-based customizations 281

Figure 10-10 The stores context menu for a user with the NewCSR role

Figure 10-11 and Figure 10-12 show what a user will see when the user has
neither the CSR role nor the NewCSR role.

Figure 10-11 Customer menu when user has neither a CSR role nor a NewCSR role

Figure 10-12 Stores context menu when user has neither a CSR role nor a NewCSR role
282 IBM Sales Center for WebSphere Commerce V6

10.3.5 Deploying to production for both the server and the client

You can deploy the customizations in this chapter from your development
environment to a production environment in the same way as any other
customization. For more details, refer to 8.2, “Deploying the customizations” on
page 163. Following are some hints and tips pertaining to this partciular
customization:

� Deploy changes to both the WebSphere Commerce server side and the IBM
Sales Center side.

– On the WebSphere Commerce server side, deploy the following files:

• WebSphereCommerceServerExtensionsLogic.jar, which contains the
ExtendedShowStore class. Use the WebSphere Application Server
administration console to deploy this file. You can combine this file with
TelesalesRegistry-ext.xml as a partial application update if desired.

• TelesalesRegistry-ext.xml, which contains the modified IBM Sales
Center registry that points to the new ExtendedShowStore class. Use
the IBM WebSphere Application Server administration console to
deploy this file. You can combine this file with
WebSphereCommerceServerExtensionsLogic.jar as a partial
application update if desired.

• WC_installdir\instances\instance_name\xml\instance_name.xml, which
is the production equivalent of wc-server.xml in the development
environment. Redo any changes made to wc-server.xml to the
appropriate instance_name.xml, and then run the following ANT task
with the target UpdateEAR to propagate changes to WebSphere
Application Server:

WC_installdir\bin\config_ant.bat -DinstanceName=instance_name
UpdateEAR

On non-Windows platforms, the file is called config_ant.sh.

– On the IBM Sales Center side, package and deploy the
com.ext.commerce.telesales.sample.extensions plug-in.

� APAR IY88078 must be installed on your WebSphere Commerce server
machine. When running outside the development environment, APAR
IY88078 requires the 6000 enterprise archive-enablement (EAR-enablement)
APAR as a prerequisite. Install the 6000 enterprise archive-enablement
(EAR-enablement) APAR on the product, but not the instance.
 Chapter 10. Role-based customizations 283

284 IBM Sales Center for WebSphere Commerce V6

Part 5 Integration
customization
scenario
examples

This part describes scenarios based on our work with Customer Care integration.

Part 5
© Copyright IBM Corp. 2007. All rights reserved. 285

286 IBM Sales Center for WebSphere Commerce V6

Chapter 11. Customer Care integration
with Lotus Sametime

e-business collaboration involves the interaction between people and information
to support critical business functions. e-business collaboration capabilities add
value to e-commerce by strengthening the entire value chain.

WebSphere Commerce provides a powerful solution to sell products and
services through the Web. Supporting thousands of users, WebSphere
Commerce enables organizations to optimize marketing, business relationships,
and channel management to maximize e-commerce revenue. WebSphere
Commerce is currently capable of providing real-time, online customer service
and technical support. In addition, we have created a sample IBM Sales Center
customization has been created to demonstrate the IBM Sales Center integration
with Lotus Sametime.

Business-building benefits such as Web-based team-building among colleagues,
customers, suppliers, and partners are possible through two efficient online
solutions:

� Customer Care (available for WebSphere Commerce 6.0 Professional or
Enterprise)

� Collaborative Workspace (available for WebSphere Commerce 6.0
Enterprise)

11
© Copyright IBM Corp. 2007. All rights reserved. 287

11.1 Introduction to Customer Care

WebSphere Commerce provides real-time customer care support through
synchronous text interface (instant messaging) using Lotus Sametime server.

A customer can enter the site and click Live Chat with Customer
Representative on the Store page to connect to a customer service
representative (CSR) so that the two parties can communicate or chat over the
Internet. A CSR accesses the Customer Care interface through the WebSphere
Commerce Accelerator and through the IBM Sales Center client. A CSR can also
view the Store page where the customer requires assistance, and retrieve the
shopping cart and the profile information.

To facilitate a more efficient communication with customers, Customer Care
supports the use of predefined lists of Uniform Resource Locator (URLs) and
topics. After these lists are created, they are available during conversations so
that CSRs have accessible lists of the most commonly referenced store pages
and answers to the most commonly asked questions.

Customer Care also supports multiple queues so that customers looking for help
can be routed to the most appropriate queue, monitored by CSRs who are
qualified to answer their questions. Custom messages for the waiting customers
can also be configured. This interface also allows a CSR to chat with other
CSRs.

11.2 Installation and configuration

This section describes how to install and enable the Customer Care component
in WebSphere Commerce V6.0.

11.2.1 Software prerequisites

Following are the software prerequisites:

� WebSphere Commerce 6.0, Professional or Enterprise

� IBM Lotus® Domino® 7.0.2

� IBM Lotus Notes®, IBM Lotus Domino Designer®, and the IBM Lotus Domino
Administrator Client

� IBM Lotus Sametime 7.5

� Customer Care component
288 IBM Sales Center for WebSphere Commerce V6

Refer to Integration Guide for WebSphere Commerce with Sametime and
Quickplace, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg24012535

11.2.2 Installing IBM Lotus Sametime

Install IBM Lotus Sametime 7.5 according to the instructions provided in the
Lotus Developer Domain Documentation library, which is available on the Web
at:

http://www-1.lotus.com/ldd/doc

11.2.3 Changing the default Hypertext Transfer Protocol port for the
Sametime server

This is required if you have installed the Web server, which is used for
WebSphere Commerce, and the Lotus Sametime server, on the same machine.
If you are installing them on separate machines, skip this task.

To change the default Hypertext Transfer Protocol (HTTP) port for the
Sametime® server, perform the following tasks:

1. Start the Domino server.

2. Launch the Lotus Administration client.

3. Log in using the server administrator user ID and password.

4. Select File → Open Server. Select the Domino server where Lotus
Sametime is present.

5. Click the Configuration tab.

6. Edit the server document for the Domino server where Lotus Sametime is
present.

7. Click the Ports tab.

8. Click the Internet Ports tab.
 Chapter 11. Customer Care integration with Lotus Sametime 289

http://www-1.ibm.com/support/docview.wss?uid=swg24012535
http://www-1.lotus.com/ldd/doc

9. Click the Web tab and change the TCP/IP port number from 80 to 88 (or to
any value which is not used) (Figure 11-1).

10.Click Save and close the server document.

Figure 11-1 Changing the default HTTP port

11.2.4 Installing the Customer Care component

Install the Customer Care component on the Lotus Sametime server. Download
the collaborations reference application CustomerCare.zip and install it
manually.

For details, refer to Integration Guide for WebSphere Commerce with Sametime
and Quickplace, which is available on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg24012535
290 IBM Sales Center for WebSphere Commerce V6

http://www-1.ibm.com/support/docview.wss?uid=swg24012535

To install the Customer Care component, perform the following tasks:

1. Extract the WC60CollaborationRefApp.zip file that you have downloaded.

2. Extract the CustomerCare.zip from the WC60CollaborationRefApp.zip that
you extracted in the previous step.

3. Copy the contents of the Customer Care folder from the CustomerCare.zip file
to the <Domino_installdir>\data\Domino\html\wc folder.

11.2.5 Enabling Customer Care in WebSphere Commerce

This section discusses how to enable Customer Care in WebSphere Commerce.

Manual configuration
To enable Customer Care manually in WebSphere Commerce, complete the
following tasks in your WebSphere Commerce machine:

1. Open the file
<WC_installdir>/instances/<instance_name>/xml/<instance_name>.xml.
Change the display flag from false to true in the sections collaboration and
Sametime, for example, the <instance_name>.xml must be similar to the
following:

<Collaboration display="true">
<Sametime...display="true" ... />

2. Open the file wc-server.xml located at
<WAS_installdir>/profiles/<instance_name>/installedApps/<WC_instance_na
me_cell>/<WC_instance_name>.ear/xml/config. Change the display flag from
false to true in the collaboration and Sametime nodes as follows:

<Collaboration display="true">
<Sametime...display="true" ... />

3. Open the file wc-server.xml and search for the ToolsGeneralConfig node, and
search for the following under the ToolsGeneralConfig node:

<component enabled="false" name="Sametime"/>

Change the enabled flag to true:

<component enabled="true" name="Sametime" />

Note: If you plan to configure Lotus Sametime to use the same Lightweight
Directory Access Protocol (LDAP), ensure that you configure WebSphere
Commerce to use the same LDAP server as Lotus Sametime.
 Chapter 11. Customer Care integration with Lotus Sametime 291

4. The wc-server.xml is located at
<WAS_installdir>/profiles/<instance_name>/installedApps/<WC_instance_na
me_cell>/<WC_instance_name>.ear/xml/config. Open the
<instance_name>.xml and search for the ToolsGeneralConfig node, and
search for the following under the ToolsGeneralConfig node:

<component enabled="false" name="Sametime"/>

Change the enabled flag to true:

<component enabled="true" name="Sametime"/>

Configuration using the Configuration Manager
To enable Customer Care in WebSphere Commerce using the Configuration
Manager, perform the following tasks on your WebSphere Commerce machine:

1. Stop the WebSphere Commerce server instance.

2. Launch the WebSphere Commerce Configuration Manager.

3. Type your Configuration Manager user ID and password.
292 IBM Sales Center for WebSphere Commerce V6

4. Select <host_name> → Commerce → Instance List →
<instance_name> → Instance Properties → Collaboration → Sametime
(Figure 11-2).

Figure 11-2 Configuring the WebSphere Commerce server for Sametime

5. In the Sametime - demo panel (Figure 11-2), complete the following tasks:

– Select the Enable check box.

– Type the Host Name. This is the fully qualified host name of your Lotus
Sametime server.

– Type the Registration URL. This is the host name of your Lotus Sametime
server.

Note: You must only change the <host_name> of the Web address, for
example, http://<host_name>/wc. If you have changed the default port
of the Lotus Sametime server, mention it here, for example,
http://<host_name>:88/wc.
 Chapter 11. Customer Care integration with Lotus Sametime 293

– Type the Applet CodeBase URL. This is the location of the applet code
created by the WebSphere Commerce Customer Care installation
program. Ensure that the applet code is installed on the Lotus Sametime
server machine.

– Change the Monitor Type, Initiation Type, and the Number of Session
Limit to suit your testing or production environment.

– If Customer Care uses WebSphere Commerce as the LDAP server, select
Use WC Member subsystem’s LDAP server.

– Click Apply.

– A message indicating that Lotus Sametime is configured successfully for
WebSphere Commerce appears. Click OK to continue.

6. Close the WebSphere Commerce Configuration Manager.

7. Start the WebSphere Commerce server instance.

11.2.6 Configuring the Lotus Sametime self-registration feature

If you configure Lotus Sametime to not use an LDAP server, configure the Lotus
Sametime self-registration feature by performing the following tasks:

1. Set STCENTER.NSF as your default home page by performing the following
tasks:

a. Start the Domino server.

b. Launch the Lotus Administration client.

c. Log in using the server administrator user ID and password.

d. Select File → Open Server.

e. Select the Domino server where Lotus Sametime is present.

f. Click the Configuration tab.

g. Edit the server document for the Domino server where Lotus Sametime is
present.

h. Click the Internet Protocols tab.

Note: You must only change the <host_name> of the Web address, for
example, http://<host_name>/streg.nsf/
557a6148a8f846d3852563e10000ca95?CreateDocument. If you have
changed the default port of the Sametime server, mention it here, for
example, http://<host_name>:88/streg.nsf/
557a6148a8f846d3852563e10000ca95?CreateDocument.
294 IBM Sales Center for WebSphere Commerce V6

i. Click the HTTP tab.

j. In the mapping section, type STCENTER.NSF as the Home URL.

k. Save and close the server document.

2. Set user access rights for the Domino directory as follows:

a. Start the Domino server.

b. Launch the Lotus Administration client.

c. Log in using the server administrator user ID and password.

d. Select File → Open Server.

e. Select the Domino server where Lotus Sametime is present.

f. Click the Files tab.

g. In the Show Me field, select Database Only.

h. Select the directory document for the Domino server where Lotus
Sametime is present, for example, names.nsf.

i. Right-click the directory document and select Access Control → Manage
to launch Access Control List.

j. Select Sametime Development/Lotus Notes Companion Products
user ID from the People, Server, and Group lists. If this ID does not exist,
click Add to add the corresponding ID.

k. Select Editor from the Access field.

l. Click OK.

m. Save and close the server document.

3. Enable the self-registration feature as follows:

a. Launch the Lotus Administration client.

b. Log in using the server administrator user ID and password.

c. Select File → Open Server. Select the Domino server where Lotus
Sametime is present.

d. Click the Files tab.

e. In the Show Me field, select Database Only.

f. Select and double-click the stconfig.nsf document from the Domino server
where Lotus Sametime is present.

g. Click By Form in the open document.

h. Select the AnonymousAccess form and double-click it to edit it.

i. Change the Anonymous Users can register themselves setting to true.
 Chapter 11. Customer Care integration with Lotus Sametime 295

j. Select File → Save.

k. Restart your Domino server.

4. Test the self-registration feature as follows.

a. Type the URL http://Lotus Sametime_server/stcenter.nsf into a Web
browser.

b. Click Register.

c. Select Register to use Lotus Sametime.

d. Type your user information in the Register to use Lotus Sametime page
and click Submit Request. A confirmation page must display a message
confirming the user registration.

11.2.7 Enabling the flex flow for the Customer Care feature

To enable the Customer Care feature in WebSphere Commerce Accelerator,
perform the following steps:

1. Open WebSphere Commerce Accelerator using an appropriate user ID and
password.

2. Select AdvancedB2B store.

3. Select Stores → Change flow.

4. Select Customer Care in the left navigation pane.

5. Select Enable the Customer Care.

6. Click Apply.

7. After the changes take effect, launch the Web site of the seller organization
and ensure that the Live chat with customer assistance link is displayed on
the sidebar.

Note: If Customer Care flex flow is not available for your store, refer to the
information center topic “Adding the option to enable or disable the feature to
the Change Flow notebook”, which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.tutorial.doc/tutorial/ttdsfcflow2.htm
296 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.tutorial.doc/tutorial/ttdsfcflow2.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.tutorial.doc/tutorial/ttdsfcflow2.htm

11.3 Adding Customer Care to your store

To add Customer Care to a store where it does not exist, perform the following
tasks:

1. Copy the Customer Care integration files from the starter store, which is
already Customer Care-enabled, for example, Advanced
business-to-business starter store, to your store or another starter store,
which is not Customer Care-enabled. To do this, perform the following tasks:

a. Locate the store archive file for the Advanced business-to-business starter
store. The store archive files are located in the
<WC_installdir>/starterstores directory.

b. Open the ConsumerDirect folder, and select ConsumerDirect.sar. For
our example, we added Customer Care to the Consumer Direct starter
store. To add Customer Care to other stores, for example, the
Business-to-business Direct starter store or your own store, select
B2Bdirect.sar in the B2BDirect folder or your own sar file.

c. Open the Advanced business-to-business store archive file using WinZip
or a similar tool.

d. Extract the files from the Advanced business-to-business store archive to
a temporary directory or to the directory that contains the Web assets for
your store.

e. To maintain the same directory structure as the samples stores, create
subdirectories for the following files:

• ../CustomerServiceArea/CollaborationSection

• CustomerCareAppletReadySetup.jsp
• CustomerCareBlankSetup.jsp
• CustomerCareBlankSetup.jsp
• CustomerCareFrameSetup.jsp
• CustomerCareInformationSetup.jsp
• CustomerCareMonitorList.jsp
• CustomerCareStoreQuestionList.jsp
• CustomerCareStoreURLList.jsp
• CustomerCareChatSetup.jsp

Note: You can add the Customer Care-enabled JavaServer Page
(JSP) files to your store sar file and republish the store archive, or copy
these JSPs to the already published starter store, for example,
<WAS_HOME>\profiles\<instance>\installedApps\WC_<instance>_cell
\WC_<instance>.ear\Stores.war\ConsumerDirect directory.
 Chapter 11. Customer Care integration with Lotus Sametime 297

• /include

• CustomerCareHeaderSetup.jsp
• EnvironmentSetup.jsp

• ../

• index.jsp
• Sametime.js
• StoreFramesetPage.jsp

2. Add code to the JSPs to determine which page the customer is browsing, as
follows:

a. Include the CustomerCareHeaderSetup.jsp file to the store's header file,
for example, <%@ includes file="include\CustomerCareHeaderSetup.jsp"
%>.

b. Add the following code to any page that must be marked personal, and is
therefore not available for access by the CSR. Ensure that the code
shown in Example 11-1 is added before you include the
CustomerCareHeaderSetup.jsp file.

Example 11-1 Adding code to a page that must be marked personal

<flow:ifEnabled feature="customerCare">
<%
request.setAttribute("liveHelpPageType", "personal");
%>
</flow:ifEnabled>

3. Add a link to allow customers to access Customer Care from your store by
performing the following tasks:

a. Determine where you want to place the link to Customer Care. You may,
for example, want to place the link in a navigation bar so that it is always
available to customers, or in certain pages in the store.

Note: For more details, refer to the information center topic
“Determining which page the customer is browsing”, which is available
on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/co
m.ibm.commerce.customercare.doc/refs/rlhwhichpage.htm
298 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.customercare.doc/refs/rlhwhichpage.htm

b. Copy the code shown in Example 11-2 into the pages that contain the link.

Example 11-2 Copying code into pages that contain the link

<a href="javascript:if((parent.sametime != null))
top.interact();"><fmt:message key="LiveHelp" bundle="${storeText}"
/>

4. Create an entry page or modify your index.jsp, which will redirect to the
Customer Care frameset page. Because the frameset is required for most
Customer Care features to function properly, the customer must call the
StoreFramesetView command to activate the frameset. For an example, see
index.jsp of the Advanced business-to-business starter store, which can be
accessed in the <WC_installdir>/starterstores directory.

11.4 Integrating Customer Care with IBM Sales Center

This section discusses how to integrate Customer Care with IBM Sales Center to
leverage some of the functionalities provided by Customer Care within the
WebSphere Commerce server. The scenario presented in this section
demonstrates the capability of IBM Sales Center to extend itself to support a
full-scale integration.

Note: For details, refer to the information center topic “Using the frameset”,
which is available on the Web at:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.
ibm.commerce.customercare.doc/tasks/tlhframeset.htm
 Chapter 11. Customer Care integration with Lotus Sametime 299

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.customercare.doc/tasks/tlhframeset.htm

Figure 11-3 illustrates a simple scenario where the store is handled by a single
CSR who can interact with several customers visiting the store. Queue support
has not been implemented. Therefore, the CSR is allowed to view all the users
logged into the site.

Figure 11-3 Sametime environment

11.4.1 Use case example

A simple use case example for the implementation of our sample integration
application is described here:

1. A customer visiting the storefront initiates a chat from the storefront.

2. A chat window opens at the storefront and waits for acceptance by a CSR.

3. The CSR who is logged in to the store is able to view the customer as a guest
user who is logged in. The CSR can accept the user to initiate a chat.

Note: To demonstrate the integration and use of Lotus Sametime in IBM
Sales Center, we created a sample integration application. This sample
integration application does not follow any standard coding practice. However,
the sample integration application can be used as a reference to achieve
results that are similar to those documented in this chapter.

Commerce Server – Sametime Environment

CSR

Customer 1

Customer 2

Customer 3

Meeting Place

Store
300 IBM Sales Center for WebSphere Commerce V6

4. If a CSR is logged in, the customer chat window shows the appropriate
information.

5. After the CSR accepts the conversation, a new window appears in the IBM
Sales Center. This enables the CSR to communicate with the customer.

6. If the customer goes offline, the entry is automatically removed from the view.

11.4.2 Prerequisites

This section lists the prerequisites for Sametime to run within IBM Sales Center:

� The Lotus Sametime server must be set up and configured with the
WebSphere Commerce server.

� A user name must exist in the Sametime server for the CSRs.

� The sample integration application plug-in for Sametime integration must be
downloaded and deployed in the IBM Sales Center client environment.

� For further development, you must have the Sametime libraries in the
CLASSPATH of the development environment you are using. In our example,
we used Lotus Sametime 7.5 Java SDK, libraries, and samples that are
downloadable from the IBM developerWorks Web site:

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html

11.4.3 Sample integration application implementation

The sample integration application plug-in can be deployed in the IBM Sales
Center client environment like any other Eclipse plug-ins. Based on the simple
scenario shown in Figure 11-3, complete the following steps to integrate the
sample integration application:

1. Start the IBM Sales Center client.

2. Download and deploy the downloaded plug-in to the existing installation by
using any of the Eclipse update mechanisms. The plug-in file can be retrieved
from the com.ibm.commerce.telesales.sametime.zip file. For details about
this, refer to Appendix A, “Additional material” on page 375.
 Chapter 11. Customer Care integration with Lotus Sametime 301

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html

3. A new preference page is available to set the Sametime server location, user
name, and password of the CSR account. To perform this task, select File →
Preferences. The information shown in Figure 11-4 is used by the CSR to log
in to the Sametime environment. Enter the necessary information in the fields
and click Apply to update this information.

Figure 11-4 Setting Sametime preference

A new preference window is added into IBM Sales Center by extending the
org.eclipse.ui.preferencePages extension point, as shown in Example 11-3.

Example 11-3 Extending the org.eclipse.ui.preferencePages extension point

<extension point="org.eclipse.ui.preferencePages">
<page
name="Lotus Sametime"
category="com.ibm.commerce.telesales.preferences.TelesalesPreferencePag
e"

Attention: Refer to 7.3, “Steps to develop customizations” on page 126 for
details about creating a new customized plug-in.
302 IBM Sales Center for WebSphere Commerce V6

class="com.ibm.commerce.telesales.sametime.preference.SametimePreferenc
ePage"
id="com.ibm.commerce.telesales.preferences.SametimePreferencePage">
</page>
</extension>

The SametimePreferencePage class shown in Example 11-4 defines the
layout of the preference page being displayed.

Example 11-4 SametimePreferencePage class

public class SametimePreferencePage extends FieldEditorPreferencePage
implements IWorkbenchPreferencePage {
/*
Implementation here
*/
}

4. Open the IBM Sales Center application, and then the Sametime View, and
select View → Show View → Lotus Sametime. Double-click Lotus
Sametime (Figure 11-5).

Figure 11-5 Selecting the Sametime view
 Chapter 11. Customer Care integration with Lotus Sametime 303

A new view is added to the plugin.xml for this support. The code additions in
the XML fragment will look as shown in Example 11-5.

Example 11-5 Code additions in the XML fragment

<extension
point="org.eclipse.ui.views">
<category
name="Lotus Sametime"
id="com.ibm.commerce.telesales.sametime">
</category>
<view
name="Lotus Sametime"
icon="icons/sample.gif"
category="com.ibm.commerce.telesales.sametime"
class="com.ibm.commerce.telesales.sametime.views.SametimeView"
id="com.ibm.commerce.telesales.sametime.views.SametimeView">
</view>
</extension>

Also, a fragment part is added in the plugin.xml file to include this newly
created view as a part of the IBM Sales Center default perspective
(Example 11-6).

Example 11-6 Adding a fragment part in the plugin.xml file

<extension point="org.eclipse.ui.perspectiveExtensions">
<perspectiveExtension
targetID="com.ibm.commerce.telesales.ordersPerspective">
<view id="com.ibm.commerce.telesales.sametime.views.SametimeView"
relative="com.ibm.commerce.telesales.sametime.views.SametimeView"
relationship="bottom"
ratio="0.8"/>
</perspectiveExtension>
</extension>
304 IBM Sales Center for WebSphere Commerce V6

5. After the Sametime view is selected, a new view appears next to the Ticklers
view (Figure 11-6).

Figure 11-6 Sametime view
 Chapter 11. Customer Care integration with Lotus Sametime 305

6. Log in to WebSphere Commerce server. Open the store that you wish to
assist the customers to enter. In our example, the store is
AdvancedB2BDirect. Right-click the store and select Customer care as
shown in Figure 11-7.

Figure 11-7 Selecting the Customer Care menu

This action internally initiates a connection to the Sametime server by
creating an STSession (for more information about this, refer to the Sametime
software development kit (SDK) documentation downloaded with the toolkit)
and perform user authentication. The code is as shown in Example 11-7.

Example 11-7 Performing user authentication

try
{
m_session = new STSession("Login " + storeId);
m_session.loadAllComponents();
_comm = (CommunityService) m_session
.getCompApi(CommunityService.COMP_NAME);
m_comm.addLoginListener(this);
306 IBM Sales Center for WebSphere Commerce V6

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html

m_comm.loginByPassword(serverName, username, password);
m_session.start();
}
catch (DuplicateObjectException doe)
{
doe.printStackTrace();
}

The LoginListener listens to the login event (Example 11-8).

Example 11-8 LoginListener listening to the login event

public void loggedIn(LoginEvent arg0)
{
String placeName = placeStr;
String placeDisplayName = placeStr;
placesService = (PlacesService) m_session
.getCompApi(PlacesService.COMP_NAME);
place =
placesService.createPlace(placeName,placeDisplayName,EncLevel.ENC_LEVEL
_DONT_CARE, 0);
place.enter();
place.addPlaceListener(this);
}

After successful authentication, a place name is created in a standard format
with the store ID, Commerce Server instance name, and server name as a
part of it, for example, for a store with store ID 15001, the place name will be
10051_store@demo@redbook1.torolab.ibm.com, where demo is the
instance name at redbook1.torolab.ibm.com.

A Place Listener is attached to the newly created place. It fires an event when
a new section is added to it. In the Sametime Place model, a virtual place
comprises sections. This makes the Place similar to a real place with different
rooms inside it. Every user who enters a place enters a specific section in that
place in the same way it occurs in an actual place.

Note: The Sametime Place is a place for people to meet no matter where
they are located physically. You can use the place to see who else is there,
exchange text and data messages, and initiate one-on-one sessions with
other place members, or simply monitor them.
 Chapter 11. Customer Care integration with Lotus Sametime 307

Add a new SectionListener to each Place to listen to the customers coming in
and going out of the section, as shown in Example 11-9.

Example 11-9 Adding a new SectionListener to each Place

public void sectionAdded(PlaceEvent event)
{
event.getSection().addSectionListener(this);
}

SectionListener has implementation for the following methods
(Example 11-10).

Example 11-10 Methods for which SectionListener has implementation

public void usersEntered(SectionEvent event)
{
System.out.println("Agent users Entered");
UserInPlace[] users = event.getUsers();
for (int i = 0; i < users.length; i++)
{
String dispName = users[i].getDisplayName().trim();
// Checking whether user is a CSR.
int idx = dispName.indexOf("/");
if(idx!=-1)
dispName = dispName.substring(0,idx).trim();
if (!dispName.equalsIgnoreCase(csrUser))
{
custList.put(users[i].getDisplayName(), users[i]);
//update customer in the view
updateCustomer(scRoot, users[i].getDisplayName());
}
}
public void userLeft(SectionEvent event)
{

System.out.println("Agent users left "+
event.getUser().getDisplayName());
UserInPlace user = event.getUser();
//remove customer in the view
removeCustomer(scRoot, user.getDisplayName());
}

308 IBM Sales Center for WebSphere Commerce V6

7. The CSR logs in to the Sametime server and starts waiting to receive a chat
ticket from the customers who are requesting for sales support.

Let us now see what happens when a customer requests help using the
Customer Care window from the storefront.

8. A customer opens a browser and accesses the storefront in which the CSR is
waiting for chat tickets.

9. After logging in successfully, the customer sees an HTTP link from the store,
and is ready to connect with the CSR. The customer sees a window similar to
that shown in Figure 11-8 if connected successfully.

Figure 11-8 Chat initialization window

10.The customer action in the storefront adds a new customer in the view
(Figure 11-9). Now it is up to the CSR to decide whether to accept or reject
the chat. In our example, only the functionality to accept is implemented. After
the customer chat window is opened, the CSR can view the specific user
available for the CSR in the IBM Sales Center. To establish a chat session,
 Chapter 11. Customer Care integration with Lotus Sametime 309

the CSR right-clicks the user and selects Accept. In this example, the
customer object information is not fetched for each of the users listed in
WebSphere Commerce. However, this can be achieved by performing
additional coding.

Figure 11-9 Customer list
310 IBM Sales Center for WebSphere Commerce V6

11.After being accepted, a new chat window (Figure 11-10) appears in the IBM
Sales Center client to communicate with the customer.

Figure 11-10 Chat window

The chat window on the customer side is similar to that shown in
Figure 11-11.

Figure 11-11 Customer chat window

After the customer quits the chat window, the user disappears from the
customer list.
 Chapter 11. Customer Care integration with Lotus Sametime 311

11.4.4 Scope for further expansion

A full-scale integration of Customer Care functionalities into the IBM Sales
Center client adds a lot of value to the product, and is what most customers
seek. With the support of integrated audio and video in the latest release of
Sametime 7.5, you can integrate data, voice, and video into a single
environment.

The sample implementation demonstrated in 11.4.3, “Sample integration
application implementation” on page 301 displayed only online customers as
guest users. None of the WebSphere Commerce attributes of these users are
available for the CSR to view. In a full-scale implementation, customer
information can be viewed and the customers who are coming online and offline
can be identified. This can be implemented by adding more listeners in the client
side.

When customer information is available in the IBM Sales Center for any user, the
Find Customer action can be invoked internally with the customer number and
name, and a host of related actions can be performed.
312 IBM Sales Center for WebSphere Commerce V6

Part 6 Reports

This part discusses the implementation of the WebSphere Commerce Analyzer
and provides details about how to generate customized reports.

Part 6
© Copyright IBM Corp. 2007. All rights reserved. 313

314 IBM Sales Center for WebSphere Commerce V6

Chapter 12. Installing, configuring, and
running the WebSphere
Commerce Analyzer

This chapter provides details about how to prepare the WebSphere Commerce
Analyzer (WCA) and integrate it with WebSphere Commerce in order to view
analytical data for customer service reports. This chapter also describes the
installation, configuration, and running of the WCA.

12
© Copyright IBM Corp. 2007. All rights reserved. 315

12.1 Introduction to WebSphere Commerce Analyzer

WebSphere Commerce is shipped with the WCA, which is a powerful tool that
you can use to perform business intelligence and analytics.

WebSphere Commerce analytics refers to the consolidation and analysis of data
collected in the day-to-day operations of a business, which is then used as a
basis for taking better business decisions and for competitive advantage. You
can, for example, use business intelligence and analytics to analyze customer
information and order information to determine the relationship between the
customers and the average order value. If you determine that the returning
customers have higher order values, you can implement a marketing campaign
to target these customers.

There are two major reasons why you must generate and analyze customer
service reports using WCA:

� WCA involves looking at historical performance. It stores large amounts of
historical data that IBM WebSphere Commerce does not. The WebSphere
Commerce server overwrites data in its database, where WCA retains it.

� Running complex Structured Query Language (SQL) queries against
WebSphere Commerce database can cause performance issues on the
Commerce server. Running the report SQL scripts against the WCA data
mart database offloads the Commerce server.

Three types of users use the WCA:

� System administrators

The system administrator installs, configures, and maintains the WCA.

� Business analysts

The business analyst has data analysis expertise. For WCA, the business
analyst works with the system administrator to define how the business
reports are customized.

� Business managers

The business manager is concerned with the store’s business operations.
Using the results of the WCA reports, the business manager develops the
marketing strategy, determines the types of customers the store’s marketing
activities target, and plans promotional events and their associated
advertising.

The WCA is an optional application included with WebSphere Commerce. When
installed, the WCA provides a robust business intelligence solution designed to
analyze and report your customers’ activities.
316 IBM Sales Center for WebSphere Commerce V6

12.2 Installing the WebSphere Commerce Analyzer

This section discusses the hardware and software requirements, and a
step-by-step installation of the WCA.

12.2.1 WebSphere Commerce databases supported by WebSphere
Commerce Analyzer

The WCA data mart can only exist on the DB2 Universal Database V8.2.3, but
the WCA can connect to any of the following WebSphere Commerce database
servers:

� IBM DB2 Universal Database, Enterprise Edition V8.2.3
� IBM DB2 Universal Database, Express Edition V8.2.3
� Oracle 10g Release 1, Enterprise Edition
� Oracle 10g Release 1, Standard Edition
� Oracle 9i Release 2, Enterprise Edition with Fix Pack 1
� Oracle 9i Release 2, Standard Edition with Fix Pack 1

12.2.2 Hardware and software prerequisites

Ensure that your system meets the following minimum hardware and software
requirements before installing the WCA.

A Pentium 4 (3 GHz or higher) IBM-compatible personal computer. The
computer must have the following:

� A minimum of 2 GB random access memory (RAM)

� A CD-ROM drive

� A graphics-capable monitor with a color depth of at least 256 colors and
screen resolution of at least 1024 x 768 pixels

� A minimum triple disk space of WebSphere Commerce database size. A 100
GB free disk space is recommended for WCA operations

� A local area network (LAN) adapter that is supported by the TCP/IP

� Microsoft Windows Server® 2003, Enterprise Edition or Windows 2000
Professional Service Pack 4 or later, or Windows 2000 Server with Service
Pack 4 or later

Important: For performance reasons, ensure that the WCA and WebSphere
Commerce are installed on two different machines.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 317

Ensure that the Windows locale is set to one of the following languages:

� de_DE - German
� en_US - English (United States)
� es_ES - Spanish
� fr_FR - French
� it_IT - Italian
� ja_JP - Japanese
� ko_KR - Korean
� pt_BR - Brazilian Portuguese
� zh_CN - Simplified Chinese
� zh_TW - Traditional Chinese

12.2.3 The WebSphere Commerce Analyzer installation program

The WCA installation program installs WCA and the DB2 Universal Database,
Enterprise Server Edition V8.2.3, unless DB2 is already installed.

Perform the following tasks to install the WCA:

1. Close all the programs that are running.

2. Ensure that you are logged in as a Windows administrator.

3. Insert the WCA CD into the CD-ROM drive and double-click setup.exe.

4. Click Next in the Welcome window.

5. Review and accept the licence agreement and click Next.
318 IBM Sales Center for WebSphere Commerce V6

6. If DB2 is not installed, DB2 install summary is displayed (Figure 12-1). Click
Next.

.

Figure 12-1 Prerequisite Products Install Summary
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 319

7. Select the location for the DB2 Universal Database CD (Figure 12-2). Click
Next.

.

Figure 12-2 Entering the location for the DB2 Universal Database installation setup.exe
320 IBM Sales Center for WebSphere Commerce V6

8. Select the directory (Figure 12-3) in which to install the DB2 Universal
Database, or accept the default. Click Next.

.

Figure 12-3 Specifying the install directory for the DB2 Universal Database
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 321

9. Enter the DB2 instance owner user ID and password (Figure 12-4) and click
Next.

.

Figure 12-4 Specifying the DB2 instance owner

10.After the DB2 installation is complete, click OK. Click Next to continue.

11.A message indicating “If necessary, insert WCA install CD” is displayed.
Insert the WCA install CD if it is not already inserted into the CD-ROM drive.
Click OK.
322 IBM Sales Center for WebSphere Commerce V6

12.Enter a directory name (Figure 12-5) in which to install the WCA. Specify a
fully qualified host name and a port number (the default port is 8001) of the
WebSphere Commerce machine that has the Information Center installed.
Click Next.

Figure 12-5 Entering the WCA install directory
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 323

13.In the review summary panel (Figure 12-6), click Next to start installing the
WCA.

Figure 12-6 Reviewing the WCA installation summary panel

14.After the WCA installation is complete, click Finish to exit the wizard.

12.3 Preparing WebSphere Commerce for analytics

Prepare and integrate the WebSphere Commerce server to record the data for
analytics before starting the WCA configuration. You must also collect
information such as the database name, the fully qualified host name, the
database user ID, the password, and so on from the WebSphere Commerce
server because they are required during WCA configuration.

12.3.1 Configuring WebSphere Commerce to record analytics data

To configure the WebSphere Commerce system for analytics data, specific
component listeners and events must be enabled using WebSphere Commerce
Configuration Manager. If these components are not enabled, customer service
reports will not contain any data.
324 IBM Sales Center for WebSphere Commerce V6

Perform the following tasks to integrate the WebSphere Commerce system for
analytics:

1. Launch the WebSphere Commerce Configuration Manager.

2. Enter the Configuration Manager user ID (default user is configadmin) and
password.

3. Expand Host name → Commerce → Instance List → Instance_name →
Components.

4. Enable and start the listeners by performing the following tasks:

a. Navigate to the OrderSubmit Event Listener, select Enable Component
under the General tab and select Start under the Advanced tab. Click
Apply.

Note: Before launching the WebSphere Commerce Configuration
Manager, ensure that the WebSphere Commerce Configuration Manager
service is started in Windows services.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 325

b. Navigate to the Order Cost Calculation Event Listener (Figure 12-7),
select Enable Component under the General tab and select Start under
the Advanced tab. Click Apply.

Figure 12-7 Enabling Order Cost Calculation Event Listener and other listeners for the Demo instance

Note: Changes in the instance configuration settings are published to the
WebSphere Commerce application on exiting from the Configuration
Manager.
326 IBM Sales Center for WebSphere Commerce V6

5. Enable the following events:

a. Navigate to the Order Submission Event and select Enable Component
under the General tab. Click Apply.

b. Navigate to the Order Creation Event (Figure 12-8) and select Enable
Component under the General tab. Click Apply.

c. Navigate to the Order Item Creation Event and select Enable Component
under the General tab. Click Apply.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 327

d. Navigate to the Order Item Update Event and select Enable Component
under the General tab. Click Apply.

Figure 12-8 Enabling the Order Creation Event and other events for the Demo instance

Note: These component listeners and events are enabled to capture data
relating to IBM Sales Center. Each action taken by IBM Sales Center is
notified by these enabled component listeners and events. Ensure that
these listeners and events are enabled.
328 IBM Sales Center for WebSphere Commerce V6

6. Collapse Components.

7. Exit the WCA.

8. Click OK to publish the changes to the WebSphere Commerce application.
This may take a couple of minutes.

9. For security reasons, the Configuration Manager Server is stopped. Click OK.

10.Restart the WebSphere Commerce application from the WebSphere
Application Server Admin console.

12.3.2 Verifying the currency conversions setup in
WebSphere Commerce

The WCA uses currency conversions to compare the sales value of orders within
and between the stores. The CURCONVERT table in the WebSphere
Commerce database contains information that the WCA uses to perform
currency conversions.

Verify that the WebSphere Commerce CURCONVERT table is populated with
the correct currency conversion before you configure the WCA. In the DB2
Universal Database that is used, this verification can be carried out by running
the following SQL query with the currency conversion shown in Figure 12-9.

select storeent_id, fromcurr, tocurr from curconvert where storeent_id
= published_store_id

Figure 12-9 Default populated currency conversion in WebSphere Commerce database

12.3.3 Collecting the information required for WebSphere Commerce
Analyzer configuration

In order to configure the WCA, the following information is required from the
WebSphere Commerce server machine:

� The fully qualified host name of the machine where WebSphere Commerce is
installed

� The database name of the WebSphere Commerce server database
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 329

� The currency that will be used for reports (ensure that proper currency
conversions exist)

� The user ID and the password used to access the WebSphere Commerce
server database

12.4 WebSphere Commerce Analyzer configuration

The configuration of the WCA is, in fact, the configuration of the WebSphere
Commerce database with the WCA database on the basis of specific business
logic. Basically, this configuration includes the following tasks:

1. Creating a data source connection to the WebSphere Commerce database

2. Creating a WCA database (data mart)

3. Setting up a replication

4. Selecting a store, report language, and currency

5. Selecting the store catalogs

6. Loading the language and financial periods

To start the WCA configuration, perform the following tasks:

1. Gather information from the WebSphere Commerce machine (refer to 12.3.3,
“Collecting the information required for WebSphere Commerce Analyzer
configuration” on page 329).

2. Ensure that the WebSphere Commerce database server is started.

3. Create a Windows administrator user on the WCA machine in order to own
the data mart. Ensure that this user is a member of the Administrators group.

4. Log in to the WCA machine as a Windows administrator.

5. Ensure that all the automatic DB2 services on the WCA machine are started.

6. To start the WCA configuration, select Start → Programs → IBM WCA →
Configuration Manager. The IBM WCA Configuration Manager opens.

Note: You can log in as any Windows administrator to run the
configuration. You do not have to log in as the owner of the data mart.
330 IBM Sales Center for WebSphere Commerce V6

7. In the IBM WebSphere Commerce Database Access panel, input the
following required fields (our example is shown in Figure 12-10):

– Select WebSphere Commerce database type. For our example, we
selected DB2.

– In the Database Name field, type the WebSphere Commerce database
name.

– In the User Name field, type the user ID of the WebSphere Commerce
database administrator.

– In the Password field, type the password of the WebSphere Commerce
database administrator.

– From the Platform list, select the platform on which the WebSphere
Commerce database resides.

– In the Encryption key field, type a 16-digit hexadecimal number that will be
used to encrypt the passwords for the WebSphere Commerce database
and the WebSphere Commerce Analyzer data mart.

– In the Key file full name field, type the name and the location of the file on
your local system where the encryption key will be stored. This key file is
required to run the WCA.

– In the Host name field, type the fully qualified host name of the machine
where the WebSphere Commerce database resides.

– In the Port number field, type the port number for the WebSphere
Commerce database. By default, this is 50000.

8. Click Connect.

9. Verify whether your connection to the WebSphere Commerce database is
successfully created. Click OK.

10.If your connection is not successful, click View Log to view the problem. Fix
the problem before continuing with the configuration.

Note: If you encounter the error “Can’t find bundle for base name
nls.stepmgr, locale en_CA()” when starting the WCA configuration
manager, change the language of the machine to one of the
WCA-supported locales listed in 12.2.2, “Hardware and software
prerequisites” on page 317, using the Regional Option and the Language
Option in the Control Panel.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 331

11.After you are connected successfully, from the Schema list, select the correct
WebSphere Commerce database schema if it has not been selected already.

12.Click Next.

Figure 12-10 Configuring the WebSphere Commerce database access

13.In the Create WCA data mart panel, input the following required fields (our
example is shown in Figure 12-11):

– In the Data mart name field, type the name of the data mart (wcamart).
This name must be eight characters or less and must contain only
characters in the DB2 character set.

– In the Data mart user field, type the name of the existing Windows
administrator who will be the data mart user.
332 IBM Sales Center for WebSphere Commerce V6

– In the Data mart password field, type the corresponding password for the
user.

– From the Data mart location list, select the drive on which the data mart
will reside.

– From the Table Space list, select the type of data storage for DB2 to use
when it creates table spaces. You have two options:

• Database-managed Storage
• System-managed storage, which is the recommended and the default

option
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 333

14.Click Configure.

15.Verify that the data mart is created successfully, and click OK.

16.If the data mart creation is not successful, click View Log to view the
problem. Fix the problem before continuing with the configuration.

17.Click Next.

Figure 12-11 Creating the WCA data mart database
334 IBM Sales Center for WebSphere Commerce V6

18.In the Setup Replication for Source Databases panel (Figure 12-12), click
Apply.

19.Verify that the replication setup is successful, and click OK.

20.If the replication setup is not successful, click View Log to view the problem.
Fix the problem before continuing with the configuration, and click Next.

Figure 12-12 Setup replication for the source databases

Note: This step may take a couple of minutes to be completed.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 335

21.In the Select Stores, Report Language, and Currency panel (see
Figure 12-13), input the following required fields:

– Select the store or stores for which you want to generate the reports by
selecting the check box that corresponds to the store listed in the Store
Name column.

– In the Report Language field, the language of the locale is displayed. This
is the language in which the reports will be generated.

– From the Report currency list, select the currency in which the reports will
be generated.

22.Click Apply.

23.Verify that the WCA store parameters have been successfully updated, and
click OK.
336 IBM Sales Center for WebSphere Commerce V6

24.If the update is not successful, click View Log to view the problem. Fix the
problem before continuing with the configuration.

25.Click Next.

Figure 12-13 Selecting the stores and the report currency

26.In the Select Catalog panel (Figure 12-14), select the catalog or catalogs for
which you want to capture the data for reporting.

27.Click Apply.

28.Verify that the selected catalog is saved successfully, and click OK.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 337

29.If the catalog selection is not successful, click View Log to view the problem.
Fix the problem before continuing with the configuration.

30.Click Next.

Figure 12-14 Selecting the catalog for which the report data will be captured

31.In the Load Language and Financial Periods panel (Figure 12-15), input the
following required fields:

– From the list, select the language in which you will be loading the
reference texts relating to the financial periods. If you want to select
multiple languages, complete all the fields, and click Load. Repeat for
each language.

– Select Reference texts to load the language reference texts. Ensure that
the Reference text check box is selected.
338 IBM Sales Center for WebSphere Commerce V6

– Select the day of the month on which the fiscal year starts.

– Select the month in which the fiscal year starts.

– If your fiscal year started in the previous year, select the Fiscal year
backshift check box if it is not disabled.

– From the available list, select a year from which to start loading the
financial periods.

– From the available list, select the number of years to load. The maximum
number of years to load is nine.

Note: You cannot change the day and the month on which the fiscal
year starts after you have selected them.

Note: You cannot change the year from which you are loading after you
have selected it.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 339

32.Click Load to load the financial periods and texts that you have selected.

33.Verify that the periods and texts have been successfully updated, and click
OK.

34.If the load is not successful, click View Log to view the problem. Fix the
problem before continuing with the configuration.

35.Click Finish.

Figure 12-15 Loading the language and the financial periods

The WCA Configuration Manager Window closes.

Note: If you want to change the start of the financial period after loading,
change it in the Parameter Manager by selecting Start → Programs →
IBM WCA → Parameter Manager.
340 IBM Sales Center for WebSphere Commerce V6

12.5 Integrating the WebSphere Commerce Analyzer
with WebSphere Commerce

To integrate the WCA with WebSphere Commerce, use the WebSphere
Commerce Configuration Manager. Perform the following tasks:

1. Copy the following files from the /DB2_installdir/SQLLIB/java in the WCA
machine to the /WC_installdir/instances/instance_name/lib folder in the
WebSphere Commerce machine:

– db2jcc.jar
– db2jcc_license_cisuz.jar
– db2jcc_license_cu.jar

If the lib folder does not exist, create it.

2. Ensure that the lib folder and its contents have the same access settings as
other folders in the WebSphere Commerce instance that are accessible by
the WebSphere Application Server user group.

3. Launch the WebSphere Commerce Configuration Manager.

4. In the WebSphere Commerce Configuration Manager, select the WebSphere
Commerce instance_name, and then the WCA.

5. At this point, perform the following tasks (our example is shown in
Figure 12-16):

– Select Yes against the Is WebSphere Commerce Analyzer installed field.

– In the Data mart name field, type the name of the WCA data mart
database name.

– In the Data mart user field, type the name of the Windows administrator
who is the data mart user.

– In the Data mart user password field, type the corresponding password for
the user.

– In the Confirm data mart user password field, type the corresponding
password for the user again.

Note: The WCA runs with the DB2 Universal Database (DB2 UDB). Even if
your WebSphere Commerce database is Oracle and not DB2, you must
copy the DB2 Java Database Connectivity (JDBC™) drivers to the
WebSphere Commerce machine to configure the WebSphere Commerce
data source for the WCA data mart database access. This data source is
used by the WCA to retrieve data and view business intelligence reports.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 341

– In the JDBC Driver Location field, enter the path of the folder containing
the JDBC driver for the WebSphere Commerce server database, for
example, the same one specified in step 1, which is
/WC_installdir/instances/instance_name/lib.

– In the Data mart host name field, type the fully qualified host name of the
machine where the WCA data mart resides.

– In the Data mart port field, enter the port number on which the WCA is
listening. For DB2, the default port number is 50000.

Ensure that the WebSphere Application Server is running on the WebSphere
Commerce server, and click Apply.

.

Figure 12-16 Information to create WCA DataSource using the Configuration Manager
342 IBM Sales Center for WebSphere Commerce V6

– A window similar to that shown in Figure 12-17 is displayed. Click OK. A
data source is created in WebSphere Application Server for the data mart.

.

Figure 12-17 Successful integration of the WCA with WebSphere Commerce

6. Exit the WebSphere Commerce Configuration Manager. Click OK to publish
the changes to the WebSphere Commerce application. This may take a
couple of minutes.

7. For security reasons, the Configuration Manager Server is stopped. Click OK.

8. Restart the WebSphere Commerce server.

9. (Optional task) Using the IBM WebSphere Application Server Admin console,
verify whether the WCA data source is connecting successfully to the WCA
data mart. If the connection is not successful, view the Java virtual machine
(JVM™) logs for troubleshooting to resolve the problem. Otherwise, the WCA
will not be able to retrieve the data from the data mart to view the reports.

12.6 Running the WebSphere Commerce Analyzer

To run the WCA, it is important to ensure that the capture program (ASNCAP) is
running successfully on the WebSphere Commerce machine and that the DB2
database service is running on the Windows services of the WebSphere
Commerce machine and on the WCA machine.

12.6.1 Running the capture program on the WebSphere
Commerce database

To run the capture program on the WebSphere Commerce database, perform
the following tasks:

1. Before starting the capture program, update the configuration in the
WebSphere Commerce database by performing the following tasks:

a. Stop the WebSphere Commerce application from the WebSphere
Application Server Admin console.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 343

b. Run the DB2 command-line processor.

c. Run the following command to see the configuration of the WebSphere
Commerce database:

get db config for wc_database_name

d. Verify the LOGRETAIN setting:

Log retain for recovery enabled (LOGRETAIN) = OFF

e. If it is not set to RECOVERY, modify the configuration by running the
following commands:

connect to wc_database_name
update db config using LOGRETAIN RECOVERY

f. Take a backup of the WebSphere Commerce database at this point:

backup db wc_database_name

g. Verify whether you are able to connect to the WebSphere Commerce
database.

2. Open the Windows command prompt and start the capture program:

asncap wc_database_name startmode=cold

3. Start the WebSphere Commerce application from the WebSphere Application
Server Admin console.
344 IBM Sales Center for WebSphere Commerce V6

12.6.2 Running the replication and the extract, transform,
and load processes

To start the WCA for the replication and the extract, transform, and load (ETL)
processes in the WCA machine, select Start → Programs → IBM WCA → Run
WebSphere Commerce Analyzer → Start WCA. Leave the window open. You
can view the progress of the tasks (Figure 12-18).

Figure 12-18 WCA run completed

Note: The WCA must run successfully at least twice for it to see any data in
the customer service reports.
 Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer 345

346 IBM Sales Center for WebSphere Commerce V6

Chapter 13. Developing and customizing
customer service reports

This chapter explains in detail about how to develop and customize customer
service reports that are displayed in the WebSphere Commerce Accelerator
(WCA). This chapter also provides an overview of all the customer service
reports that are available out-of-the-box in WebSphere Commerce.

13
© Copyright IBM Corp. 2007. All rights reserved. 347

13.1 WebSphere Commerce customer service reports

The WCA provides default reports on customer service representatives’ (CSRs)
performance and activities, revenue, sales, orders, price overrides, profit,
quotes, and so on. These reports display information that is either based on an
individual CSR or on an entire CSR team, and can be viewed using the WCA
either under Operations (business-to-consumer) → Customer Service Reports or
under Sales (business-to-business) → Customer Service Reports menu item.

By default, these reports can be accessed by the following WebSphere
Commerce user roles:

� Site Administrator (siteAdmin role)
� customer service representative (CSR) (cusRep role)
� Seller (seller role)
� Sales Manager (salesMgr role)
� Customer Service Supervisor (cusSup role)

Two types of reports are available in the WCA, one that reads data from the
WCA data mart database and is therefore called a business intelligence report,
and another that retrieves and displays data from the WebSphere Commerce
operational (production) database and is therefore called the operational report.

The following individual and team business intelligence customer service reports
are available in WCA:

� Personal Revenue, Profit, and Ranking (individual CSR report)

This report allows CSRs to view the revenue and profit they have generated.

� Revenue, Profit, and Ranking (individual CSR or CSR team report)

This report allows CSR supervisors to view the revenue and profit generated
by a CSR or by a CSR team.

� Revenue, Profit, and Ranking (CSR team report)

This report provides data about the revenue and the profit generated by a
CSR team.

Note: The CSR role will only have access to the Personal Revenue, Profit,
and Ranking report that displays the revenue and profit generated by the
CSR.

Note: By default, only users with Site Administrator, Seller, or CSR role
can access this report.
348 IBM Sales Center for WebSphere Commerce V6

� Price Quotes (individual CSR report)

This report lists the prices a CSR has quoted to customers.

� Quotes to Order Conversion Rate (individual CSR or CSR team report)

This report lists the number of price quotes generated by an individual CSR or
by a CSR team. These are converted to orders and the corresponding
conversion rate.

� Price Override (individual CSR report)

This report details the price override made to items by a particular CSR.

� Price Override (CSR team report)

This report lists the total amount of price override made by a particular CSR
team.

� Price Override Summary (individual CSR or CSR team report)

This report lists the total amount of price override made by a particular CSR
or by a CSR team.

� Revenue by Product Category (individual CSR or CSR team report)

This report details the sales revenue by product category by a particular CSR
or by a CSR team.

� Shipped Orders (individual CSR report)

This report details the total shipped orders sold by a particular CSR.

� Orders Pending Fulfillment (individual CSR report)

This report details the pending orders sold by a particular CSR.

The following operational customer service reports are available in WCA:

� (Business-to-business only) Organization Contact (individual CSR report)

This report lists the organization contacts assigned to a particular CSR.

� Customer Territories (individual CSR report)

This report lists the customer territories assigned to a particular CSR.

� Customer Territories (CSR team report)

This report lists the customer territories assigned to a particular CSR team.

� Daily Sales (CSR team report)

This report details the daily sales generated by a particular CSR team.

Note: Pending orders are orders that have not been shipped yet.
 Chapter 13. Developing and customizing customer service reports 349

13.2 Developing customer service reports

This chapter describes the step-by-step development of one of the default
business intelligence customer service reports, the Personal Revenue, Profit,
and Ranking report.

Following are the tasks that must be performed to develop a new customer
service report:

� Write two new JavaServer Page (JSP) files (report Input jsp and report Output
jsp)

� Write three new Extensible Markup Language (XML) files (InputDialog xml,
OutputDialog xml, and Report xml)

� Update the WCA common files

� Write and load the access control for the new report views

13.2.1 Writing the JavaServer Page files

You must have two JSP files for each report. These files must be located in the
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/CommerceAcce
lerator.war/tools/bi directory. This directory already contains report JSP files for
the rest of the WebSphere Commerce default reports. The existing JSP files can
be used as examples for developing new reports.

Perform the following tasks:

1. Create the JSP file from which the report is requested (input jsp file). This JSP
file collects the input data from the customer. The report is then generated
based on this input data. The file name for this input JSP file must follow the
naming convention, reportNameReportInputView.jsp.

Example 13-1 shows the sample code explaining how to create this JSP file,
which, in our case was biCSRIndividualRevenueReportInputView.jsp.

Example 13-1 Writing the new report input view JSP file

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

//Importing the required packages
<%@page import="java.util.*" %>
<%@page import="com.ibm.commerce.tools.util.*" %>
<%@page import="com.ibm.commerce.tools.xml.*" %>
<%@include file="/tools/reporting/common.jsp" %>
<%@include file="/tools/reporting/ReportStartDateEndDateHelper.jspf" %>
<%@include file="/tools/reporting/ReportFrameworkHelper.jsp" %>
350 IBM Sales Center for WebSphere Commerce V6

<%
//Instance of Command Context which provides the user ID of the viewing
//user and locale where this report is executed.

CommandContext biCommandContext = (CommandContext)
request.getAttribute(ECConstants.EC_COMMANDCONTEXT);

 Locale biLocale = biCommandContext.getLocale();
 Long userId = biCommandContext.getUserId();

//biNLS is the locale specific hashtable which is supposed to have all
//locale specific text display informations.

Hashtable biNLS =
(Hashtable)com.ibm.commerce.tools.util.ResourceDirectory.lookup("bi.
biNLS", biLocale);

%>

//Body of the input page starts here
<HTML>
<HEAD>

//Using the defined style sheet in WebSphere Commerce
<link rel=stylesheet href="<%= UIUtil.getCSSFile(biLocale) %>"
type="text/css">
<%=fHeader%>
<TITLE><%=biNLS.get("CSRIndividualRevenueReportWindowTitle")%></TITL
E>

//CSRIndividualRevenueReportWindowTitle is the text key which should be
//defined in the BINLS locale specific properties file. Same for the
//other text keys also.

//Importing the java scripts defined for reporting.
<SCRIPT SRC="/wcs/javascript/tools/common/Util.js"></SCRIPT>

 <SCRIPT SRC="/wcs/javascript/tools/common/DateUtil.js"></SCRIPT>
 <SCRIPT SRC="/wcs/javascript/tools/common/SwapList.js"></SCRIPT>
 <SCRIPT
SRC="/wcs/javascript/tools/reporting/ReportHelpers.js"></SCRIPT>

 <SCRIPT>

//Intializing local variables. Called every time the page is loaded.
function initializeValues() {
onLoadStartDateEndDate("enquiryPeriod");

//Loads the start date and end date time period for user on input page.
ResetValues();
 Chapter 13. Developing and customizing customer service reports 351

onLoadOrderByOption("myHelperIndividualCSRRevenue");

//Generating order by option on the input page.
if (parent.setContentFrameLoaded)

parent.setContentFrameLoaded(true);
 }

//Called every time a user exits from this page.
function savePanelData() {

var selectedSort = 'CSRNAME';

///
// Specify the report framework particulars
///

setReportFrameworkOutputView("DialogView");
//Specifying the report output dialog xml which is supposed to call
//output jsp to load the report data.
setReportFrameworkParameter("XMLFile","bi.biCSRIndividualRevenueReportO
utputDialog");

//Saving the report XML name which is executed once the input page gets
//data.
setReportFrameworkReportXML("bi.biCSRIndividualRevenueReport");

//Storing the selected input data in time period
saveStartDateEndDate("enquiryPeriod");

///
// Specify the report framework particulars
///

if(returnOrderByDesc("myHelperIndividualCSRRevenue"))
selectedOrder = 'DESC';

//Setting the report sql lid name which will be executed in report xml.
setReportFrameworkReportName("biCSRIndividualRevenueReport");

//
// Specify the report specific parameters and save
//

setEndDate();
setReportFrameworkParameter("StartDate",
returnStartDateAsTimestamp("enquiryPeriod"));
352 IBM Sales Center for WebSphere Commerce V6

setReportFrameworkParameter("EndDate",
returnEndDateAsTimestamp("enquiryPeriod"));

//Assigning the values to variables which are being used in report xml.
setReportFrameworkParameter("Order", selectedOrder);
setReportFrameworkParameter("user_id", <%=userId%>);
saveReportFramework();
top.saveModel(parent.model);
return true;
}

//Validating input data before going to the next page.
function validatePanelData(){

if (validateStartDateEndDate("enquiryPeriod") == false)
return false;

return true;
}

//Resetting the variables of time period.
function ResetValues(){

document.enquiryPeriod.StartDateEndDateHelperYearSD.value = "";
document.enquiryPeriod.StartDateEndDateHelperMonthSD.value = "";
document.enquiryPeriod.StartDateEndDateHelperDaySD.value = "";
document.enquiryPeriod.StartDateEndDateHelperYearED.value = "";
document.enquiryPeriod.StartDateEndDateHelperMonthED.value = "";
document.enquiryPeriod.StartDateEndDateHelperDayED.value = "";

}

function setEndDate(){
 if((document.enquiryPeriod.StartDateEndDateHelperYearSD.value !=
"" &&
document.enquiryPeriod.StartDateEndDateHelperMonthSD.value != "" &&
document.enquiryPeriod.StartDateEndDateHelperDaySD.value != "") &&

 (document.enquiryPeriod.StartDateEndDateHelperYearED.value
== "" &&

document.enquiryPeriod.StartDateEndDateHelperMonthED.value ==
"" && document.enquiryPeriod.StartDateEndDateHelperDayED.value == ""))

{

parent.alertDialog("<%=UIUtil.toJavaScript(biNLS.get("EndDateIsCurrentD
ate"))%>");

document.enquiryPeriod.StartDateEndDateHelperYearED.value =
getCurrentYear();

document.enquiryPeriod.StartDateEndDateHelperMonthED.value =
getCurrentMonth();
 Chapter 13. Developing and customizing customer service reports 353

document.enquiryPeriod.StartDateEndDateHelperDayED.value =
getCurrentDay();
}

}

//
// Validate is done by the HTML radio button
//

function validateOrderByOption(container)
 {
 return true;
 }

///
// initialize function for the status dates
///

function onLoadOrderByOption(container)
 {

 var myContainer = parent.get(container, null);

// If this is the first time set it to the default.
 myContainer = new Object();

 myContainer.StatusChosen = 1;

 with (document.forms[container]) {
orderBy[0].checked = true;

 }
 parent.put(container, myContainer);
 return;

 }
//
// Return the Orderby Status Chosen
//

function returnOrderByDesc(container) {
 return document.forms[container].orderBy[0].checked;
 }
</SCRIPT>
</HEAD>
<BODY ONLOAD="initializeValues()" CLASS=content>
354 IBM Sales Center for WebSphere Commerce V6

//Displaying the report window title by reading hashtable. These text
//keys must be defined in locale specific properties file.
 <H1><%=biNLS.get("CSRIndividualRevenueReportWindowTitle") %></H1>
 <%=biNLS.get("CSRIndividualRevenueReportInputDescription")%>

 <%=biNLS.get("timePeriod")%>
 <p></p>
 </DIV>

<table border="0" bordercolor="black" CELLPADDING="0"
CELLSPACING="0" width="470">

<tr>
<td>

 <DIV ID=pageBody STYLE="display: block; margin-left: 0">
 <%=generateStartDateEndDate("enquiryPeriod", biNLS,
null)%>
 </DIV>

</td>
</tr>

</table>

<table border="0" bordercolor="black" CELLPADDING="0"

CELLSPACING="0" width="210">
<tr height=25>

<td align="left">

//Some common text keys are already defined in properties file like
//orderby, descend, ascend etc. Verify them before writing in
//properties file.

<%=biNLS.get("orderby")%>
</td>

</tr>
</table>

<DIV ID=pageBody STYLE="display: block; margin-left:0">

<FORM NAME=myHelperIndividualCSRRevenue>
<TABLE border=0 bordercolor=black CELLPADDING=0 CELLSPACING=0

width=200>
<TR HEIGHT=5>

<TD ALIGN=left VALIGN=TOP>
<INPUT TYPE=RADIO NAME=orderBy VALUE=All id=ord1>
<label for= ord1>
<%=biNLS.get("descend")%> </label>
 </INPUT>
 Chapter 13. Developing and customizing customer service reports 355

<INPUT TYPE=RADIO NAME=orderBy VALUE=PayA id=ord2>
<label for= ord2>
<%=biNLS.get("ascend")%></label>
</INPUT>

 </TD>
</TR>

</TABLE>
</FORM>

 </DIV>
</BODY>
</HTML>

2. Create the JSP file to display the report (output jsp file). This JSP file is used
to visualize the report to the customer. The file name of this output JSP file
must follow the naming convention reportNameOutputView.jsp.

This output JSP file can import the helper JSP files. You can customize the
helper files as necessary. Example 13-2 shows the sample code that explains
how to create this JSP file, which, in our case was
biCSRIndividualRevenueReportOutputView.jsp.

Example 13-2 Writing the new report output view JSP file

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<%@page import="java.util.*" %>

//Importing required files.
<%@include file="/tools/common/common.jsp" %>
//Here we are importing the Helper JSP which helps to display the
//report on output page.
<%@include file="/tools/reporting/ReportHeaderSummaryHelper.jsp" %>
<%!
 private String generateSpecificOutputInputCriteria2(String
reportPrefix, Hashtable reportsRB, Locale locale)
 {
 StringBuffer buff = new StringBuffer("");
 Hashtable aReportDataBeanEnv = aReportDataBean.getEnv();
//An instance of data bean helps to collect the input data from input
//page.
 String StartDate = (String)
aReportDataBeanEnv.get("StartDate");
 String EndDate = (String)
aReportDataBeanEnv.get("EndDate");
356 IBM Sales Center for WebSphere Commerce V6

 Timestamp currentTime = TimestampHelper.getCurrentTime();

 buff.append(" <DIV ID=pageBody STYLE=\"display: block;
margin-left: 0\">");
 buff.append("" +
reportsRB.get("ReportOutputViewReturnSelectedDateRange") + " ");
 buff.append(getFormattedDate(StartDate,locale) + " ");
 buff.append("" +
reportsRB.get("ReportOutputViewReturnSelectedDateRangeTo") + " ");
//These are the text keys above which are common for each report.

 buff.append(getFormattedDate(EndDate,locale) + "
");
 buff.append(" </DIV>");
 buff.append(" <DIV ID=pageBody STYLE=\"display: block;
margin-left: 0\">");

//Here we generate text keys like reportPrefix +
//ReportOutputViewRunDateTitle into properties file. report prefix
//is a common key which is supposed to be prefixed before each text
//keys in report output jsp.
 buff.append("" + reportsRB.get(reportPrefix +
"ReportOutputViewRunDateTitle") + " ");
 buff.append((String)
TimestampHelper.getDateFromTimestamp(currentTime, locale) + " ");
 buff.append((String)
TimestampHelper.getTimeFromTimestamp(currentTime) + "
");
 buff.append(" </DIV>

");

 return buff.toString();
 }
%>
<%

//Generating a report prefix which is used to find out the text
//displays in hashtable according to report.
String reportPrefix = "CSRIndividualRevenue";
 CommandContext biCommandContext = (CommandContext)
request.getAttribute(ECConstants.EC_COMMANDCONTEXT);
 Locale biLocale = biCommandContext.getLocale();
 Hashtable biNLS =
(Hashtable)com.ibm.commerce.tools.util.ResourceDirectory.lookup("bi.biN
LS", biLocale);
%>

<HTML>
 Chapter 13. Developing and customizing customer service reports 357

 <HEAD>
<link rel=stylesheet href="<%= UIUtil.getCSSFile(biLocale) %>"

type="text/css">

//Generating report header informations here to display in header.
<%=generateHeaderInformation(reportPrefix, biNLS, request)%>

 </HEAD>

 <body class="content"
onload="javascript:parent.setContentFrameLoaded(true)">

<%=generateOutputHeading(reportPrefix, biNLS)%>
<%=generateSpecificOutputInputCriteria2(reportPrefix, biNLS,

biCommandContext.getLocale())%>

//Generating the data table which is displayed on output page.
<%=generateOutputTable(reportPrefix, biNLS,

biCommandContext.getLocale())%>
</BODY>
</HTML>

13.2.2 Writing the Extensible Markup Language files

You must have three XML files for each report. These files must be located in the
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/xml/tools/bi
directory. This directory already contains report XML files for the rest of the
WebSphere Commerce default reports. The existing XML files can be used as
examples for developing new reports.

Perform the following tasks to write the XML files:

1. Create the XML file to display the text for the input JSP file. Example 13-3
shows the sample code that explains how to create this XML file, which, in our
case was biCSRIndividualRevenueReportInputDialog.xml.

Example 13-3 XML file to display text for the input JSP file

//Defining the hashtable instance.
<dialog resourceBundle="bi.biNLS"
 windowTitle="CSRRevenue"
 finishURL="GenericReportController" >
 <panel name="report"
//The url which is supposed to be called to load the input page.
 url="biCSRIndividualRevenueReportInputView"
//Here report framework is getting data whether to load buttons
 hasFinish="NO"
358 IBM Sales Center for WebSphere Commerce V6

 hasCancel="YES"
//Defining the help URL for the input page.
 helpKey="MC.bi.IndividualRevenueInput.Help" />
 <button name="viewReport" action="finish();"/>
</dialog>

2. Create the XML file to display text for the output JSP file. Example 13-4 shows
the sample code that explains how to create this XML file, which, in our case
was biCSRIndividualRevenueReportOutputDialog.xml.

Example 13-4 XML file to display text for the output JSP file

<dialog resourceBundle="bi.biNLS"
 windowTitle="CSRRevenue"
 finishURL="" >
 <panel name="report"
//The url is passed to load the report output page to show data.
url="biCSRIndividualRevenueReportOutputView"
 passAllParameters="true"
//Parameters which decide to show buttons on output page.
hasFinish="NO"
hasCancel="NO"
//Help file for output page.
helpKey="MC.bi.IndividualRevenueOutput.Help" />
 <button name="ReportOutputViewPrintTitle"
 action="CONTENTS.printButton()" />
 <button name="ReportOutputViewOkTitle"
 action="CONTENTS.okButton()" />
</dialog>

3. Create the XML file for the SQL used to retrieve the report data. Ensure that
the SQL statement runs successfully before writing it into the report XML file.
Example 13-5 shows the sample code that explains how to create this XML
file, which, in our case was biCSRIndividualRevenueReport.xml.

Example 13-5 XML file for the SQL used to retrieve the report data

<Reporting>
 <Report reportName="biCSRIndividualRevenueReport" online="true"
dataSourceName="WCA DataSource">
 <comment></comment>
 <SQLvalue>

//In between these tags, we place the report SQL which is used
//to retrieve report data from database.
 Chapter 13. Developing and customizing customer service reports 359

</SQLvalue>

//Here we define the customized display as per need.
<display>

<standardInfo>

//Defining the hashtable instance which is used for text display.
<resourceBundle>bi.biNLS</resourceBundle>

//Title of report display which should be defined in properties file.
<title>biCSRRevenueReport</title>
<message>biCSRRevenueReport</message>

</standardInfo>

//In the below tag, we can define the style of report layout with
//options of choosing different colors, text formats etc.

<userDefinedParameters>
<THStyle>TH { font-family: Arial, Helvetica, Sans-serif;

font-size: 9pt; line-height: 9pt; color : white; background-color :
darkblue; font-weight : bold; }</THStyle>

<TDStyle>TD { font-family : Arial, Helvetica, Sans-serif;
font-size : 9pt; line-height: 9pt; color : Black; }</TDStyle>

<spaceBetweenColumns>25</spaceBetweenColumns>
<columnDefaultAttributes>

<displayInReport>true</displayInReport>
<columnWidth>0</columnWidth>
<maxEntryLength>999</maxEntryLength>
<columnType>string</columnType>
<columnOptions>ALIGN=LEFT HEIGHT=20 NOWRAP</columnOptions>
<displayInHeader>False</displayInHeader>

</columnDefaultAttributes>

//Here we can define the report column names with their types and
//alignment. We Can have as many number of columns defined here as
//report SQL query is returning. All these column name keys should
//be defined into properties file.

<columns>
<columnKey>C0</columnKey>
<columnName>CSRIndividualRevenueReportCSRID</columnName>
<columnOptions>ALIGN=LEFT HEIGHT=20 NOWRAP</columnOptions>
<columnType>string</columnType>

</columns>
<columns>

<columnKey>C1</columnKey>
<columnName>CSRIndividualRevenueReportCSRName</columnName>
360 IBM Sales Center for WebSphere Commerce V6

<columnOptions>ALIGN=LEFT HEIGHT=20 NOWRAP</columnOptions>
<columnType>string</columnType>

</columns>
</userDefinedParameters>

</display>
 </Report>
</Reporting>

13.2.3 Updating the common files to reflect the new report

There are a few common files that are used by all the reports. Update these
common files with the new report to reflect it in the Accelerator:

� Update the resources.xml file with the new report XML file. This is the XML
file that contains information about all the report XML files.

Update the resources.xml file located in the
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/xml/tools/bi
directory with the three XML files, the creation of which is described in
Chapter 12, “Installing, configuring, and running the WebSphere Commerce
Analyzer” on page 315.

Ensure that the added lines are similar to that shown in Example 13-6.

Example 13-6 Updating the resources.xml file

<resourceConfig>
<resource>
...
...

<resourceXML name=”biCSRIndividualRevenueReport”
file=”bi/biCSRIndividualRevenueReport.xml” />
<resourceXML name=”biCSRIndividualRevenueReportInputDialog”
file=”bi/biCSRIndividualRevenueReportInputDialog.xml” />
<resourceXML name=”biCSRIndividualRevenueReportOutputDialog”
file=”bi/biCSRIndividualRevenueReportOutputDialog.xml” />

...

...
</resource>
</resourceConfig>

� Update the BINLS.properties and BINLS_<locale>.properties files with
locale-specific text display information. These are the properties files that are
used to define all the locale-specific text display information used by the new
report.
 Chapter 13. Developing and customizing customer service reports 361

Update the BINLS.properties and BINLS_<locale>.properties file located in
the
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/properties/c
om/ibm/commerce/tools/bi/properties directory with any new report text keys.

Example 13-7 shows the updating of properties files with the keys, as
required.

Example 13-7 Updating the BINLS.properties and BINLS_<locale>.properties files

CSRIndividualRevenue=Individual: Personal Revenue, Profit, and Ranking
CSRIndividualRevenueReportWindowTitle=Individual: Personal Revenue,
Profit, and Ranking
CSRIndividualRevenueReportInputDescription=To view a report on the
revenue and profit you have generated, complete the following fields
and click View Report.
CSRIndividualRevenueReportDescription=This report provides data about
the revenue and profit generated by a specific customer service
representative (CSR).
CSRIndividualRevenueReportOutputViewTitle=Individual: Personal Revenue,
Profit, and Ranking
CSRIndividualRevenueReportOutputViewRunDateTitle=Report generated:
CSRIndividualRevenueReportCSRID=CSR logon ID
CSRIndividualRevenueReportCSRName=CSR Name
CSRIndividualRevenueReportCSRname=CSR name
CSRIndividualRevenueReportRankBy=Ranking Criteria
CSRIndividualRevenueReportRevenue=Revenue
CSRIndividualRevenueReportProfit=Profit
CSRIndividualRevenueReportRanking=Ranking

� Update csrReportsContextB2C.xml and csrReportsContextB2B.xml to add a
new report to the customer service reports list.

To add this new report to the Customer Service Reports list, edit
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/xml/tools/rep
orting/csrReportsContextB2C.xml for business-to-business store and
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/xml/tools/rep
orting/csrReportsContextB2B.xml for a business-to-business store.

This XML file contains the <context> and <entry> tags. The <context> XML
tags define a group of reports that are displayed on one page in the WCA.
The <entry> XML tags exist between the <context> and the </context> tags,
and represent each report that is displayed on the customer service reports
page.
362 IBM Sales Center for WebSphere Commerce V6

Example 13-8 shows the XML file updated with the <context> and <entry>
tags, as required.

Example 13-8 Updating the csrReportsContextB2C.xml and csrReportsContextB2B.xml files

<context name = "csrReportsContextB2C" displayKey = "csrReportContext"
autoLaunch="true">
//In this context tag, a group of reports can be defined.

<!-- ====== INDIVIDUAL CSR REPORTS====== -->

//Here entry tag is having one CSR report defined. All the text keys
//should be defined in properties file.
<entry nameKey="csrPersonalRevenue"
descriptionKey="csrPersonalRevenueDescription"
breadCrumbTrailTextKey="csrPersonalRevenue"
toolsComponent="CommerceAnalyzer">
//If the Commerce Analyzer is not enabled, then Accelerator would not
//be able to showing this report.

//Here we are defining the access roles who can view this report.
<roles>

<role>siteAdmin</role>
<role>cusRep</role>
<role>seller</role>

</roles>
<command name = "DialogView"> <parameter name="XMLFile"
value="bi.biCSRIndividualRevenueReportInputDialog" />
//The report input dialog xml file is being called which is calling
//the input jsp to load the input page.
</command>
</entry>
.....................................
.....................................
//Other CSR reports can be defined here
......................................
......................................
</context>

� Update the OperationalReportsNLS.properties and
OperationalReportsNLS_<locale>.properties files with locale-specific text
display information.

When updating the csrReportsContextB2C.xml file, all the text key
information must be defined in the locale-specific
OperationalReportsNLS.properties file under the
 Chapter 13. Developing and customizing customer service reports 363

WC_profiledir/installedApps/cell_name/WC_instance_name.ear/properties/c
om/ibm/commerce/tools/reporting/properties/ directory.

Example 13-9 shows updating of the OperationalReportsNLS.properties file
and the OperationalReportsNLS_en_US.properties file.

Example 13-9 Updating the files

csrPersonalRevenueDescription=Individual:This report allows a customer
service representative to view the revenue and profit that they have
generated. A CSR can only view their own information using this report.
csrRevenueProfitDescription=Individual: This report allows you to view
the revenue and profit generated by a customer service representative.
csrPriceQuotesDescription=Individual: This report lists the prices a
customer service representative has quoted to customers.
csrQuotesConversionDescription=Individual: This report lists the number
of price quotes per customer service representative that are converted
to orders, and the corresponding conversion rate.
csrPriceOverridesDescription=Individual: This report details price
override made to items by a particular customer service representative.
csrPriceOverridesSummaryDescription=Individual: This report lists the
total amount of price override made by a particular customer service
representative.
csrRevenueCategoryDescription=Individual: This report details the sales
revenue by product category by a particular customer service
representative.
csrShippedOrdersDescription=Individual: This report details the total
shipped orders sold by a particular customer service representative.
csrOpenOrdersDescription=Individual: This report details the pending
orders sold by a particular customer service representative. Pending
orders are orders that have not been shipped yet.
csrActiveAccountsB2BDescription=Individual: This report lists the
customer organizations assigned to a particular customer service
representative.
csrActiveAccountsB2CDescription=Individual: This report lists the
customer territories assigned to a particular customer service
representative.
csrTeamRevenueProfitDescription=Team: This report provides data about
the revenue and profit generated by a team of customer service
representatives.
csrTeamPriceOverridesDescription=Team: This report lists the total
amount of price override made by a particular team of customer service
representatives.
csrTeamActiveAccountsB2BDescription=Team: This report lists the
customer organizations assigned to a particular team of customer
service representatives.
364 IBM Sales Center for WebSphere Commerce V6

csrTeamActiveAccountsB2CDescription=Team: This report lists the
customer territories assigned to a particular team of customer service
representatives.
csrDailyRevenueDescription=This report details the daily sales
generated by customer service representatives in a given team.

� Update the struts-config.xml file with the newly created views. Register the
newly created views in the Struts Configuration file, struts-config.xml.

The new views using reportNameIReportInputView.jsp and the
reportNameReportOutputView.jsp must be added to the configuration file.

To register the new views, add the entries into the struts-config.xml file under
the
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/CommerceA
ccelerator.war/WEB-INF directory.

Example 13-10 shows the struts-config.xml file being updated with the new
views, biCSRIndividualRevenueReportInputView.jsp and
biCSRIndividualRevenueReportOutputView.jsp, as required.

Example 13-10 Updating the struts-config.xml file

<global-forwards>
...
...
...
.....................
//Adding our report views inside the <global-forwards> tag
<forward className="com.ibm.commerce.struts.ECActionForward"
 name="biCSRIndividualRevenueReportInputView"
path="/tools/bi/biCSRIndividualRevenueReportInputView.jsp">
 <set-property property="resourceClassName"
value="com.ibm.commerce.tools.command.ToolsForwardViewCommandImpl"/>
</forward>
<forward className="com.ibm.commerce.struts.ECActionForward"
 name="biCSRIndividualRevenueReportOutputView"
path="/tools/bi/biCSRIndividualRevenueReportOutputView.jsp">
 <set-property property="resourceClassName"
value="com.ibm.commerce.tools.command.ToolsForwardViewCommandImpl"/>
</forward>
...
...
...
.....................
<!-- Action Mappings -->
<action-mappings type=”com.ibm.commerce.struts.ECActionMapping”>
 Chapter 13. Developing and customizing customer service reports 365

...

...

...

.....................
//Adding action mappings for our report views

<action path="/biCSRIndividualRevenueReportInputView"
type="com.ibm.commerce.struts.BaseAction">
<set-property property="https" value="0:1"/>
</action>
<action path="/biCSRIndividualRevenueReportOutputView"
type="com.ibm.commerce.struts.BaseAction">
<set-property property="https" value="0:1"/>
</action>
...
...
...
.....................
</action-mappings>

13.2.4 Loading the access control policies for new reports

The default access control policies are already available in the WebSphere
Commerce database as loaded from defaultAccessControlPolicies.xml. Create
new access control policy entries for the report views under the default entries,
which can access the CSR report views, and load them into the WebSphere
Commerce database.

To create and load the new access control policy entries for the reports, perform
the following tasks:

1. Navigate to the
WC_profiledir/installedApps/cell_name/WC_instance_name.ear/xml/policies/
xml folder.

2. Create a new xml file, defaultAccessControlPolicies_delta.xml.

3. Define the action names for a new report in the newly created XML file. The
file content is similar to that shown in Example 13-11.

Example 13-11 Access control policy entries in defaultAccessControlPolicies_delta.xml

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?>
<!DOCTYPE Policies SYSTEM "../dtd/accesscontrolpolicies.dtd">
<Policies>
366 IBM Sales Center for WebSphere Commerce V6

<Action Name="reportNameReportInputView"
CommandName="reportNameReportInputView">
</Action>

<Action Name="reportNameReportOutputView"
CommandName="reportNameReportOutputView">
</Action>

//Define the new reports access control entries under pre-defined
//action control entry ActionGroup of the CSR reports views.

<ActionGroup Name="CustomerServiceRepresentativeViews"
OwnerID="RootOrganization">

<ActionGroupAction Name="reportNameReportInputView"/>
<ActionGroupAction Name="reportNameReportOutputView"/>

</ActionGroup>
</Policies>

4. Close the file.

5. Stop the WebSphere Commerce server if it is running.

6. Open a Windows command prompt.

7. Navigate to the WC_installdir/bin directory using the Windows command
prompt.

8. Run the following command to load the access control policy into the
WebSphere Commerce database:

acpload wc_database_name wc_database_user user_password
xml_file_name wc_database_schema

In our example, we executed the following command:

acpload mall wcsadmin <password>
defaultAccessControlPolicies_delta.xml wcsadmin

9. Verify that no *.error.xml is generated in the WC_installdir/xml/policies/xml
directory to ensure that the access control policies file is loaded without any
errors into the WebSphere Commerce database.

10.Start the WebSphere Commerce server.
 Chapter 13. Developing and customizing customer service reports 367

13.3 Displaying the customer service reports in the
WebSphere Commerce Accelerator

Before the customer service reports display in the WCA, the business
intelligence component must be enabled as described in Chapter 12, “Installing,
configuring, and running the WebSphere Commerce Analyzer” on page 315, and
the replication and ETL processes must be run on the database at least twice.
Otherwise, there is no data for the reports to display.

To view the CSRs, perform the following tasks:

1. Access the following URL in your browser:

https://<host_name>:8000/accelerator

In this URL, <host_name> is the fully-qualified WebSphere Commerce Web
host name.

2. You will see a window similar to that shown in Figure 13-1. Click Yes.

Figure 13-1 Security alert for Secure Sockets Layer certificate

Important: Customer service reports only display data for the CSRs working
with IBM Sales Center.
368 IBM Sales Center for WebSphere Commerce V6

3. From the WebSphere Commerce Logon page (Figure 13-2), enter the CSR
login ID and password. Click Log On.

Figure 13-2 WCA logon page
 Chapter 13. Developing and customizing customer service reports 369

4. Specify the name of the store for which you want to display customer service
reports, as shown in Figure 13-3.

Under Fulfillment centers, select a center from the list, if available, and under
the Language to work in, select a language. (In our example, we selected
United States English.)

Click OK.

Figure 13-3 Selecting a store, fulfillment, and language for which a report is to be displayed
370 IBM Sales Center for WebSphere Commerce V6

5. The WCA page (Figure 13-4) is launched. From the Operations menu, select
Customer Service Reports.

Figure 13-4 The customer service reports menu option in the WCA

Note: If you do not see this menu, it means that your login ID does not
have the appropriate authority to perform this task.
 Chapter 13. Developing and customizing customer service reports 371

6. A list of available customer service reports is displayed (Figure 13-5). Select
the report that you want to view, for example, the Personal Revenue, Profit,
and Ranking report.

Figure 13-5 List of customer service reports
372 IBM Sales Center for WebSphere Commerce V6

7. In the report input page, select the start date and the end date under the Time
Period field, and the sorting option under the Order field (Figure 13-6). Click
View Report.

Figure 13-6 Input page to enter inputs for generating report data display
 Chapter 13. Developing and customizing customer service reports 373

8. The report output page is displayed (Figure 13-7) with the report data. Click
OK to return to the input page if required. To print the report data, click Print.

Figure 13-7 The report output page displaying the report data
374 IBM Sales Center for WebSphere Commerce V6

Appendix A. Additional material

This IBM Redbook makes references to additional material that can be
downloaded from the Internet, as described here.

Locating the Web material
The Web material associated with this IBM Redbook is available in softcopy on
the Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247249

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds to the IBM
Redbook form number SG24-7249-00.

A

© Copyright IBM Corp. 2007. All rights reserved. 375

ftp://www.redbooks.ibm.com/redbooks/SG247249
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this IBM Redbook includes the
following files:

File name Description
CustomerPet_SalesCenterCode.zip Chapter 9, “User interface customization”

on page 171
RoleBaseCustomization.zip Chapter 10, “Role-based customizations” on

page 257
com.ibm.commerce.telesales.sametime.zip Chapter 11, “Customer Care

integration with Lotus Sametime” on page 287

How to use the Web material
Create a subdirectory (folder) on your workstation, and extract the contents of
the Web material compressed file into this folder.
376 IBM Sales Center for WebSphere Commerce V6

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 382. Note that some of the documents referenced here may
be available in softcopy only.

� Best Practices and Tools for Creating WebSphere Commerce Sites,
SG24-6699

� e-Commerce Hosting Solutions Guide, Using WebSphere Commerce V5.5
Business Edition, SG24-7018

� Extended Sites in WebSphere Commerce Business Edition V5.6.1,
SG24-6683

� Keeping Commerce Applications Updated: WebSphere Commerce 5.1 to 5.6
Migration Guide, SG24-6320

� Accounts and Contracts in WebSphere Commerce V5.6.1, REDP-4077-00

� Remodeling a Standard Store into the Extended Sites Model With
WebSphere Commerce Business Edition V5.6.1, REDP-4091-00

� Shipping Simplified: Integrating WebSphere Commerce with Third-party
Shipping Providers, REDP-3910-00

� IBM WebSphere Commerce V6.0 Enterprise and Professional Installation
Guide for Windows (GC10-4261-01)

� WebSphere Commerce Developer Enterprise and Professional Version 6.0
Installation Guide (GC10-4255-03)

Online resources
These Web sites are also relevant as further information sources:

� acpload utility

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.admin.doc/refs/raxacpload.htm
© Copyright IBM Corp. 2007. All rights reserved. 377

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.admin.doc/refs/raxacpload.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.admin.doc/refs/raxacpload.htm

� Change Flow notebook instructions

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.tutorial.doc/tutorial/ttdsfcflow2.htm

� Creating a customer profile

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.tsr.doc/tasks/ttrcreateb2bcust.htm

� Creating new entity beans

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.doc/tasks/tdecreateentitybean.htm

� Customized code deployment

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.doc/concepts/cdedeploycustomcode.htm

� Deploying your customization to the WebSphere Commerce server

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.giftcenter.refapp.doc/tutorial/tgcibmgiftcentercustomizati
on44.htm

� Determining which page the customer is browsing

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.customercare.doc/refs/rlhwhichpage.htm

� Eclipse

http://www.eclipse.org

� Fix Pack 1 for WebSphere Everyplace Deployment for Windows and Linux
6.0

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D
400&q1=wedfpintfx&uid=swg24012062&loc=en_US&cs=utf-8&lang=en

� Globalization in the IBM Sales Center

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/concepts/ctrglobalization.htm

� IBM developerWorks Web site:

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html

� IBM Sales Center - Adding a column to the order items table

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tutorial/ttravaildate.htm
378 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.tutorial.doc/tutorial/ttdsfcflow2.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrglobalization.htm
http://www.eclipse.org
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24012062&loc=en_US&cs=utf-8&lang=en
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttravaildate.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttravaildate.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/tasks/tdecreateentitybean.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/concepts/cdedeploycustomcode.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.tsr.doc/tasks/ttrcreateb2bcust.htm
http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.giftcenter.refapp.doc/tutorial/tgcibmgiftcentercustomization44.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.customercare.doc/refs/rlhwhichpage.htm

� IBM Sales Center: Shortcut keys

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.tsr.doc/concepts/ctrhotkeys.htm

� IBM WebSphere Commerce Developer V6.0, hardware prerequisites

http://www-1.ibm.com/support/docview.wss?uid=swg27007490

� IBM WebSphere Commerce Developer Version 6.0 operating system
prerequisites

http://www-1.ibm.com/support/docview.wss?uid=swg27007488

� IBM WebSphere Everyplace Deployment V6.0 Interim Fix 2

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D
400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en

� Installing IBM Sales Center for WebSphere Commerce silently from a CD

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.admin.doc/tasks/ttrin_silent.htm

� Integrating with back-end systems and external applications

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.integration.doc/concepts/ccvcapabilities.htm

� Integration Guide for WebSphere Commerce with Sametime and Quickplace

http://www-1.ibm.com/support/docview.wss?uid=swg24012535

� Launching the IBM Sales Center development environment

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tasks/ttrdevlaunch.htm

� Lotus Documentation

http://www-1.lotus.com/ldd/doc

� Mapping a new Business Object Document message to a new command

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tasks/ttrmapbod.htm

� Microsoft Windows Update Web site:

http://windowsupdate.microsoft.com

� Modifying an existing Business Object Document reply message

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tasks/ttrmodifybodreply.htm

� Open Application Group

http://www.oagi.org/
 Related publications 379

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.integration.doc/concepts/ccvcapabilities.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.tsr.doc/concepts/ctrhotkeys.htm
http://www-1.ibm.com/support/docview.wss?uid=swg27007488
http://windowsupdate.microsoft.com
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrdevlaunch.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.admin.doc/tasks/ttrin_silent.htm
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013683&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?uid=swg24012535
http://www.oagi.org/
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrmodifybodreply.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tasks/ttrmapbod.htm
http://www-1.ibm.com/support/docview.wss?uid=swg27007490
http://www-1.lotus.com/ldd/doc

� Process: Sales Center

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.business_process.doc/concepts/processSales_Center.htm

� Register the WebSphere Commerce Server Extension

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tutorial/ttravaildate11.htm

� Resources in the IBM Sales Center

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/concepts/ctrresources.htm

� Starting and stopping the WebSphere Commerce Test Server via command
line

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.doc/tasks/tsrwcdevnogui.htm

� Starting and stopping WebSphere Commerce Test Server within the
WebSphere Commerce Developer

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.doc/tasks/tsrwcsstudio.htm

� Technote: IBM Rational Application Developer Fix Pack 6.0.1.1

http://www-1.ibm.com/support/docview.wss?uid=swg24010926

� Technote: IBM WebSphere Commerce V6.0 hardware prerequisites

http://www-1.ibm.com/support/docview.wss?uid=swg27007428

� Technote: IBM WebSphere Commerce V6.0 operating system prerequisites

http://www-1.ibm.com/support/docview.wss?uid=swg27007429

� Technote: Recommended fixes for WebSphere Application Server

http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60

� Technote: Required Maintenance Scenario: WebSphere Application Server
was manually installed at the V6.0.2.5 level

http://www-1.ibm.com/support/docview.wss?uid=swg21237197

� Technote: Install of Rational Application Developer 6.x WebSphere Test
Environment 6.0 server failed on Windows Operating System

http://www-1.ibm.com/support/docview.wss?uid=swg21209120

� Technote: Installation of WebSphere Commerce Developer with WebSphere
Application Server Fix Pack 6.0.2.11 fails

http://www-1.ibm.com/support/docview.wss?uid=swg21243206
380 IBM Sales Center for WebSphere Commerce V6

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.business_process.doc/concepts/processSales_Center.htm
http://www-1.ibm.com/support/docview.wss?uid=swg24010926
http://www-1.ibm.com/support/docview.wss?uid=swg21237197
http://www-1.ibm.com/support/docview.wss?uid=swg21243206
http://www-1.ibm.com/support/docview.wss?uid=swg21209120
http://www-1.ibm.com/support/docview.wss?uid=swg27007429
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/tasks/tsrwcdevnogui.htm
http://www-1.ibm.com/support/docview.wss?uid=swg27007428
http://www-1.ibm.com/support/docview.wss?uid=swg27004980#ver60
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrresources.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.doc/tasks/tsrwcsstudio.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttravaildate11.htm

� Technote: WebSphere Commerce Developer, V6.0 required maintenance

http://www-1.ibm.com/support/docview.wss?uid=swg21236356

� Technote: WebSphere Commerce 6.0.0.1 Fix Pack

http://www-1.ibm.com/support/docview.wss?uid=swg24013056

� Technote: WebSphere Commerce required maintenance

http://www-1.ibm.com/support/docview.wss?uid=swg21232042

� Tivoli Enterprise Installation Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm
.tivoli.frmwrk.doc/instguid.htm

� Tutorial: Adding a new search option in the IBM Sales Center

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tutorial/ttrfinddialog.htm

� Tutorial: Conducting an e-mail campaign

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.samples.doc/tutorial/tcpemail1.htm

� Tutorial: Creating a multicultural store

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.samples.doc/tutorial/tgbglobilization1.htm

� Tutorial: Creating new business logic

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.developer.tutorial.doc/tutorial/ttd09.htm

� Tutorial: Customizing the appearance of the IBM Sales Center

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tutorial/ttrsalescentercustomizati
on_1.htm

� Tutorial: Importing and exporting contracts

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.samples.doc/tutorial/tctcontractimportexport_1.htm

� Tutorial: Modifying a page in an editor

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/tutorial/ttradvanced_1.htm

� Tutorials: WebSphere Commerce

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.base.doc/concepts/ctdtutorials.htm
 Related publications 381

http://www-1.ibm.com/support/docview.wss?uid=swg21236356
http://www-1.ibm.com/support/docview.wss?uid=swg21232042
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.tivoli.frmwrk.doc/instguid.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttrsalescentercustomization_1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tcpemail1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tctcontractimportexport_1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttrfinddialog.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/tutorial/ttradvanced_1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.developer.tutorial.doc/tutorial/ttd09.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.samples.doc/tutorial/tgbglobilization1.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.base.doc/concepts/ctdtutorials.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.base.doc/concepts/ctdtutorials.htm
http://www-1.ibm.com/support/docview.wss?uid=swg24013056

� WebSphere Commerce Developer Editions

http://www-306.ibm.com/software/genservers/commerce/commercestudio/l
it-tech-general-be-en.html#v60

� WebSphere Commerce Developer Version 6.0 Networking Prerequisites

http://www-1.ibm.com/support/docview.wss?uid=swg27007489

� WebSphere Commerce Version 6 Information Center

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

� WebSphere Commerce integration

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.telesales.developer.doc/concepts/ctrcommerceintegration.ht
m

� WebSphere Everyplace Deployment for Windows and Linux 6.0 Interim Fix 3

http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D
400&q1=wedfpintfx&uid=swg24013807&loc=en_US&cs=utf-8&lang=en

� WebSphere Everyplace Deployment System Administrator's Guide

http://www-1.ibm.com/support/docview.wss?uid=swg27006861

� Using the frameset

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.customercare.doc/tasks/tlhframeset.htm

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, IBM Redpapers, Hints
and Tips, draft publications, and Additional materials, and order hardcopy IBM
Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
382 IBM Sales Center for WebSphere Commerce V6

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.telesales.developer.doc/concepts/ctrcommerceintegration.htm
http://www-306.ibm.com/software/genservers/commerce/commercestudio/lit-tech-general-be-en.html#v60
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.customercare.doc/tasks/tlhframeset.htm
http://www-1.ibm.com/support/docview.wss?uid=swg27006861
http://www-1.ibm.com/support/docview.wss?rs=2314&context=SSNLT6&dc=D400&q1=wedfpintfx&uid=swg24013807&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?uid=swg27007489

Index

A
absolute file system path 81
accelerator 49
access bean 116, 174
acpload.log 261
activity planner 64
ACUserGroups_NewCSR_en_US.xml 260
ACUserGroups_NewCSR_idres.xml 261
ACUserGroups_NsewCSR_xmltrans.xml 261
admin console 49
analytics 316

data 324
APAR IY88078 262
approach 101
ATP 48
available-to-promise, See ATP

B
back-ordered product 113
BaseOMA DM device 77
BINLS_locale.properties 361
blocks 13
BOD 98, 116, 123, 247

architecture 122
message 214

bodreply message 250
Bundle Control Job 79
business

analyst 316
intelligence 316
logic 113, 120
manager 316
requirements 97

Business Object Document, See BOD
business-to-business

direct store 11
advanced 48

store 12

C
call center

representative 4
© Copyright IBM Corp. 2007. All rights reserved.
capture program (ASNCAP) 343
catalog 4
change manager 64
Cloudscape database 261
collaborative workspace 287
com.ibm.commerce.telesales.core.impl plug-in
manifest file 142
com.ibm.commerce.telesales.editorPages exten-
sion point 130
com.ibm.commerce.telesales.messaging.bo-
dreply.ShowElectronicCatalog class 264
com.ibm.commerce.telesales.ui.dialogs.DialogFac-
tory class 133
com.ibm.commerce.telesales.ui.editors package
130
com.ibm.commerce.telesales.ui.impl.roles plug-in
267
CommandProperty object 148
commerce instance configuration file 154
common coding task 125
common customization scenario 147
composite

control 139
definition 146

configured control 139
consumer direct

business-to-business store 48
customer 12
store 12

contract pricing 6
controller 124

command 148
create WebSphere Commerce Analyzer data mart
panel 332
credit

amount 15
method 15

CRM 97
cross-channel 4

customer 7
cross-sell 4
CURCONVERT table 329
customer

care 116, 287
 383

editor 12, 130
shopping cart 6

customer relationship management, See CRM
customer service report 116
customer service representative 10, 288

role 259
customization 116

D
data

bean 116
model 143

implementation 143
data mart 317
database

tables 108
Database Managed Storage, See DMS
DB2 100

Universal Database V8.2.3 48
defaultAccessControlPolicies.xml 259, 366
defaultAccessControlPolicies_NewCSR.xml 259
demographic information 111
deployment plan 105
design phase 96
developerWorks 16
Device Management Server V1.8 77
Device Manager 82
dialogs 132
DMS 333
Domino Server 6.5.4 288
dynamic extension ID resolver 145

E
ebXML 122
Eclipse 39, 77, 274

extension
framework 81
point 130

framework 125
NativeAppBundle 79
platform 125
plug-in

runtime registry 125
update manager 78
update site 51

eclipse.org 61
editor 15, 130, 257
EditorPage 131

EJB 174
ElectronicCatalog object 264
electronics catalog 48
endpoint 63

agent 64
machine 64

Enterprise Management Agent 79
entity bean 108, 116
event listener 125
ExtendedShowStore class 263
extension point 120
extract, transform, and load processes 345

F
fit-gap analysis 97
flex flow 296
fragment 148

G
gateway 63
getData methods 142
getDialog 133
gift wrap

offer 115
order 114

guest orders 12

H
houseware catalog 48
HTTP 122

I
IBM Gift Center 178
IBM HTTP Server Version 6.0 48
IBM Lotus Sametime 289
IBM Lotus Sametime 6.5.1 288
IBM Sales Center 9, 100

development environment 25, 120, 257
extension ID 126
production environment 45
Quick Install 51
UI framework 120
UI widgets 155

IBM Support Assistant 16
IBM Tivoli Configuration Manager xi, 62, 392

Software Package Editor 64
identify customer workflow 18
384 IBM Sales Center for WebSphere Commerce V6

idresgen utility 262
instant messaging 288
integration code 205
Interactive Voice Response, See IVR
inventory 64

level 114
table 114

ITelesalesRequestHandler 142
IVR 96

J
Java

coding 125
programming 120
system properties 81

Javadoc 99
JDBC driver 342
Job Scheduler 124
JSP

files 350
pages 108, 114

K
key binding 120
key features 6
keyboard navigation 16

L
LAN 317
list pricing 6
live help 97
local area network, See LAN
Lotus Notes 288
Lotus Sametime 288
loyalty points 102, 114

program 100

M
macro and micro design 106
managed node 63
managedComposite 157
manifest file 81
marketing promotions 12, 112
menus 257
merchandising 4

associations 12
message mapper 123, 154

Microsoft Windows 2000, Advanced Server Edition
27
Microsoft Windows 2000, Professional Edition 27
Microsoft Windows 2000, Server Edition 27
Microsoft Windows XP 46
Microsoft Windows XP Professional 27
mock-ups 107
ModelObject class 142
ModelObjectList 142
ModelRoot 142

object 143

N
name-value pairs 125
NativeAppBundle tool 78
new customer 12
NewCSR role 262
news groups 16

O
Open Application Group 121
OperationalReportsNLS_en_US.properties 364
order 6, 12

capture application 56
editor 14, 130
management 4

org.eclipse.jface.dialogs.Dialog 132
org.eclipse.ui.editors extension point 130
org.eclipse.ui.startup extension point 143
organization adminconsole 49
OSGi 77
outbound messaging system 114

P
performance and scalability test 104
perspectives 15, 257
place listener 307
planning phases 96
plug-in 125
plug-in development environment 39
plug-in development perspective 127
plug-in manifest file 136
plug-in project wizard 127
polling window 79
preference pages 136, 257
price override limit 14
products 13
 Index 385

project
explorer 262
wizard 257

promotion 6
property

file 111
page 257

Q
quote 13

editor 130
lifecycle 13

R
Rational Application Developer 27, 164
Rational Application Developer V6.0 30
Rational Application Developer V6.0.1.1 34
Rational Product Updater 34
Redbooks Web site 382

Contact us xv
repeater 63
reply builder 124
reportNameOutputView.jsp 356
reportNameReportInputView.jsp 350
request handler 124

class 142
requirement gathering 100
resources.xml 361
response

BOD message 216
builder 124, 216, 219

registry 154
return merchandise authorization 15
ReturnCriteria element 144
root organization 258
runtime workbench configuration 39

S
Sametime 116
Sametime 7.5 xi, 392
scheduled job 114
scope 103
SectionListener 308
seller organization 48
sending e-mail notification 114
server response 220
service request 123

handlers 142
setData methods 142
Setup Replication for Source Databases panel 335
shortcut keys 16
ShowElectronicCatalog 160
ShowStore class 262
side-by-side product comparisons 13
Software Package Bundle 72
solution design 96
starter store 257
store summary editor 130
storefront 107, 114
struts configuration 365
synchronous text interface 288
system administrator 316
system configurator file 126
system managed storage 333

T
target client 64
TCM software distribution 64
TelesalesConfigurableEditorPage 131
TelesalesConfigurableEditorPart 131
TelesalesEditorPage 131
TelesalesEditorPart 131
TelesalesModelManager 143
TelesalesMultiPageEditor 130
TelesalesProperties 144
TelesalesRegistry.xml 264–265
TelesalesRequest 142
TelesalesResources file 148
ticklers 6, 14
Tivoli

desktop 77
management framework 63
management region 63
server 63

Tivoli Device Management Server 77
toolbars 257
ToolsGeneralConfig node 292
Transmission Control Protocol 317
TypedProperty 149

U
up-sell 6
usability test 103
user

acceptance test 103
386 IBM Sales Center for WebSphere Commerce V6

interface 122
registry 79
role 114

UserData 144
property 144

V
variable name 81
views 133, 257
views and perspectives 15

W
wc-server.xml 266
WebSphere Application Server Network Deploy-
ment 48
WebSphere Application Server Test Environment
39
WebSphere Commerce 324

BOD command 123
message mapper 148
organization administration console 258
programming model 120
server development environment 257

WebSphere Commerce 6.0 288
Enterprise 48, 287
Professional 287

WebSphere Commerce Accelerator 9, 12, 347, 368
WebSphere Commerce Analyzer xi, 315
WebSphere Commerce Configuration Manager
292, 341
WebSphere Commerce Controller

command 123
Websphere Commerce Controller

command 148
WebSphere Commerce Database Access panel
331
WebSphere Commerce Developer Enterprise 6.0
29
WebSphere Commerce Developer V6.0 29
WebSphere Commerce development environment
120, 154
WebSphere Commerce Test Server 261
WebSphere Everyplace Deployment xi, 392
WebSphere Everyplace Deployment for Windows
and Linux 45
WebSphere Everyplace Device Manager V6.0 77
WED4WL International Components for Unicode for
Java 51

widget 111
hover logging 155
managers 140

work with return workflow 19
workflow 17
Workplace Managed Client 77

X
XML 125

files 120
 Index 387

388 IBM Sales Center for WebSphere Commerce V6

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

IBM
 Sales Center for W

ebSphere Com
m

erce V6

®

SG24-7249-00 ISBN 0738489778

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Deploying and Customizing
IBM Sales Center for
WebSphere Commerce V6

Automated
deployment with IBM
Tivoli Configuration
Manager and IBM
WebSphere
Everyplace
Deployment

User interface and
role-based
customization

Customer Care
integration with
Sametime

The IBM Sales Center for WebSphere Commerce V6 is an application
for customer service representatives to capture and manage
customer orders. This IBM® Redbook helps you understand IBM
Sales Center for WebSphere Commerce and provides you with
how-to instructions to deploy the business solution, customize it, and
integrate the Sales Center with other applications.

This IBM Redbook helps you install, tailor, and configure the Sales
Center development environment and production environment for
creating and deploying the Sales Center customizations. In addition,
this book discusses the use of IBM Tivoli Configuration Manager and
IBM WebSphere Everyplace Deployment, to perform automated
deployment.

This book discusses how to plan and design Sales Center
customizations. Examples are provided to help you through this
process. The customization scenarios that include the integration of
additional IBM software and original equipment manufacturer (OEM)
software are described.

This book provides user interface and role-based customization
examples to demonstrate customization within the user interface
framework and the role-based tools. This book also provides code
sample that you can use to integrate IBM Lotus Sametime V7.5 into
Sales Center, where live help and customer care functionality are
achieved.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. IBM Sales Center for WebSphere Commerce V6.0
	1.1 Introduction
	1.2 IBM Sales Center features
	1.3 IBM Sales Center benefits

	Chapter 2. Overview of the IBM Sales Center environment
	2.1 IBM Sales Center’s high-level architecture
	2.2 IBM Sales Center’s functionality
	2.2.1 Working with stores
	2.2.2 Creating new customers and working with existing customers
	2.2.3 Performing order-related actions
	2.2.4 Performing quote-related activities
	2.2.5 Performing product-related activities
	2.2.6 Understanding ticklers
	2.2.7 Understanding returns
	2.2.8 User experience features
	2.2.9 IBM Support Assistant

	2.3 IBM Sales Center default workflows
	2.4 Comparing IBM Sales Center with WebSphere Commerce Accelerator

	Part 2 Installation
	Chapter 3. IBM Sales Center development environment installation
	3.1 WebSphere Commerce Developer requirements
	3.1.1 Hardware requirements
	3.1.2 Operating system requirements
	3.1.3 Networking requirements

	3.2 Prerequisites for WebSphere Commerce Developer installation
	3.2.1 IBM Rational Application Developer V6.0 installation
	3.2.2 Applying the IBM Rational Application Developer fixes
	3.2.3 Applying the WebSphere Application Server Test Environment fixes
	3.2.4 IBM Sales Center for WebSphere Commerce installation

	3.3 WebSphere Commerce Developer install
	3.3.1 Installing both the toolkits on the same machine
	3.3.2 Installing the IBM Sales Center toolkit in the WebSphere Commerce development environment
	3.3.3 Installing only the IBM Sales Center toolkit

	Chapter 4. IBM Sales Center production environment installation
	4.1 IBM Sales Center client requirements
	4.1.1 Hardware requirements
	4.1.2 Operating system requirements
	4.1.3 Networking requirements

	4.2 Prerequisites to use the IBM Sales Center client
	4.2.1 WebSphere Commerce server
	4.2.2 IBM Sales Center client security considerations
	4.2.3 IBM Sales Center distribution mechanisms

	4.3 IBM Sales Center Quick Install
	4.3.1 IBM Sales Center for WebSphere Commerce interactive install
	4.3.2 Manual installation of the IBM Sales Center updates using the Eclipse Update Manager

	4.4 Manual installation of customizations using the Eclipse Update Manager
	4.5 Automatic installation of customizations and updates
	4.5.1 The production installation of IBM Sales Center
	4.5.2 Automatically deploying customizations using IBM Tivoli Configuration Manager
	4.5.3 Automatically deploying customizations using WebSphere Everyplace Deployment

	Part 3 IBM Sales Center customizations
	Chapter 5. Requirements and design
	5.1 Planning and designing IBM Sales Center customizations
	5.1.1 Phase 1: Requirements gathering
	5.1.2 Phase 2: Fit-gap analysis
	5.1.3 Phase 3: Solution design
	5.1.4 Phase 4: Macro design and micro design
	5.1.5 Phase 5: Post-design activities

	5.2 An example using IBM Sales Center
	5.2.1 Requirements gathering
	5.2.2 Fit-gap analysis
	5.2.3 Solution design
	5.2.4 Macro design and micro design

	Chapter 6. Customization scenarios
	6.1 IBM Sales Center client changes
	6.2 WebSphere Commerce server changes
	6.3 IBM Sales Center and WebSphere Commerce changes
	6.4 Integration customization scenarios

	Chapter 7. Developing customizations for IBM Sales Center
	7.1 Skill prerequisites
	7.2 IBM Sales Center architecture
	7.2.1 The Eclipse framework
	7.2.2 The IBM Sales Center user interface framework

	7.3 Steps to develop customizations
	7.4 Developing the IBM Sales Center client components
	7.4.1 User interface organization
	7.4.2 User interface elements
	7.4.3 IBM Sales Center framework user interface elements
	7.4.4 Service requests and Service request handlers
	7.4.5 Model object
	7.4.6 UserData property
	7.4.7 UserData support for the command extension
	7.4.8 Dynamic extension ID resolvers
	7.4.9 System configurators
	7.4.10 Resources

	7.5 Developing IBM Sales Center server components
	7.5.1 Message mappers
	7.5.2 Response builders
	7.5.3 WebSphere Commerce server customizations

	Chapter 8. Development tools and customization deployment
	8.1 Development tools
	8.1.1 Deciding on the development environment to use
	8.1.2 Widget hover logging
	8.1.3 Enabling the task of showing the contents
	8.1.4 Debugging in the IBM Sales Center development environment
	8.1.5 Tracing in the IBM Sales Center development environment
	8.1.6 Enabling tracing and debugging in the IBM Sales Center client

	8.2 Deploying the customizations
	8.2.1 Exporting the client code from the development environment
	8.2.2 Exporting the server code from the development environment
	8.2.3 Deploying the customizations

	Part 4 Customization scenario examples
	Chapter 9. User interface customization
	9.1 Introduction
	9.2 Implementing the customization
	9.3 Developing the WebSphere Commerce server backend
	9.3.1 Defining the new table
	9.3.2 Implementing the new ExtPet EJB and ExtPetAccessBean
	9.3.3 Implementing the new commands

	9.4 Developing the Sales Center client customization base
	9.4.1 Defining the configurator and the properties
	9.4.2 Defining the new model objects

	9.5 Developing the new customer pet editor page
	9.5.1 Implementing the user interface components
	9.5.2 Implementing the integration code on the client side (part 1)
	9.5.3 Implementing the integration code on the server side
	9.5.4 Implementing the integration code on the client side (part 2)

	9.6 Developing the new add pet dialog box
	9.6.1 Implementing the user interface components

	9.7 Developing the find customer by pet dialog box
	9.7.1 Implementing the user interface components
	9.7.2 Implementing the integration code on the server side
	9.7.3 Implementing the integration code on the client side

	9.8 Loading the customizations into WebSphere Commerce Developer
	9.8.1 Installing the WebSphere Commerce Developer 6.0.0.1 Fix Pack
	9.8.2 Creating the XPET table on the WebSphere Commerce toolkit
	9.8.3 Loading the access control policies
	9.8.4 Mapping a modified Business Object Document message
	9.8.5 Importing the EJB JAR file
	9.8.6 Importing the commands and the new bodreply messages
	9.8.7 Loading the client code into the IBM Sales Center toolkit

	9.9 Testing the customized code

	Chapter 10. Role-based customizations
	10.1 Duplicating an existing role
	10.1.1 Creating a new role and a user in the Organization Administration console
	10.1.2 Revising and loading the access control policies
	10.1.3 Extending the server code for ShowStore
	10.1.4 Extending the client side for the new role
	10.1.5 Testing the new role

	10.2 Chapter checkpoint
	10.3 Displaying the menu items based on the roles
	10.3.1 Installing the samples
	10.3.2 Extending the samples to display the context menu
	10.3.3 Creating the activities and activity sets and mapping them to roles
	10.3.4 Testing your changes
	10.3.5 Deploying to production for both the server and the client

	Part 5 Integration customization scenario examples
	Chapter 11. Customer Care integration with Lotus Sametime
	11.1 Introduction to Customer Care
	11.2 Installation and configuration
	11.2.1 Software prerequisites
	11.2.2 Installing IBM Lotus Sametime
	11.2.3 Changing the default Hypertext Transfer Protocol port for the Sametime server
	11.2.4 Installing the Customer Care component
	11.2.5 Enabling Customer Care in WebSphere Commerce
	11.2.6 Configuring the Lotus Sametime self-registration feature
	11.2.7 Enabling the flex flow for the Customer Care feature

	11.3 Adding Customer Care to your store
	11.4 Integrating Customer Care with IBM Sales Center
	11.4.1 Use case example
	11.4.2 Prerequisites
	11.4.3 Sample integration application implementation
	11.4.4 Scope for further expansion

	Part 6 Reports
	Chapter 12. Installing, configuring, and running the WebSphere Commerce Analyzer
	12.1 Introduction to WebSphere Commerce Analyzer
	12.2 Installing the WebSphere Commerce Analyzer
	12.2.1 WebSphere Commerce databases supported by WebSphere Commerce Analyzer
	12.2.2 Hardware and software prerequisites
	12.2.3 The WebSphere Commerce Analyzer installation program

	12.3 Preparing WebSphere Commerce for analytics
	12.3.1 Configuring WebSphere Commerce to record analytics data
	12.3.2 Verifying the currency conversions setup in WebSphere Commerce
	12.3.3 Collecting the information required for WebSphere Commerce Analyzer configuration

	12.4 WebSphere Commerce Analyzer configuration
	12.5 Integrating the WebSphere Commerce Analyzer with WebSphere Commerce
	12.6 Running the WebSphere Commerce Analyzer
	12.6.1 Running the capture program on the WebSphere Commerce database
	12.6.2 Running the replication and the extract, transform, and load processes

	Chapter 13. Developing and customizing customer service reports
	13.1 WebSphere Commerce customer service reports
	13.2 Developing customer service reports
	13.2.1 Writing the JavaServer Page files
	13.2.2 Writing the Extensible Markup Language files
	13.2.3 Updating the common files to reflect the new report
	13.2.4 Loading the access control policies for new reports

	13.3 Displaying the customer service reports in the WebSphere Commerce Accelerator

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

