GDS-820/840 数字存储示波器 使用手册

1.安全术语与符号

以下各种安全符号可能会出现在这本操作手册或本产品上:

Ħ	录	贝致
1	. 安全术语和符号	2
2	. 产品介绍	3
3	. 首次操作	5
4	. 面板介绍	8
5	. 操作说明	14
6	方框图	49
7	.RS-232 配置	50
8	. 产品规格	53
9	. 使用标准	60

警告 结果

警告:表示产品在某一确认情况下或是在实际应用上之 结果可能会对人体产生伤害甚至于造成生命之损失。

以下各种安全符号可能会出现在这本操作手册或本产品上:

<u>A</u>	\bigwedge		\rightarrow	
危险 高电压	注意 内容参考本 手册	保护性导电 端子	接地端	接地端

2.产品介绍

GDS-820/840 是一种好用的,双通道数字存储示波器,特征如下:

- 频宽 150MHz(GDS-840 系列为 250MHz),每一通道取样率 100Msa/s (每通道 25GSa/s E.T 取样率)。
- 可侦测到 10ns 的短时脉冲。
- 5.7"单色或彩色 LCD 显示(GDS-820,GDS-820S 和 GDS-840S 为 单色显示,GDS-820C 和 GDS-840C 为彩色显示)。
- 两个输入通道,每一通道的记录长度为125k点和8个字节的垂 直分辨率,每个通道可同时采集波形。
- 时基:1ns/div~10s/div。
- 6 位触发计频器。
- 自动快速调整和手动操作。
- 四种采集模式:取样,峰值侦测,平均,累加。
- 游标和 15 种连续可调,自动量测:
 Vhi,Vio,Vmax,Vmin,Vpp,Vaverage,Vrms,Vamp,上升时间,下降时间,工作周期,频率,周期。
- 15 组储存器用于前面板设置存取。
- 2组存储器可用于波形轨迹记录。
- FFT 频谱分析。
- 具有"program mode"和"Go-No Go"功能。
- 视频和脉冲宽度触发。
- 8×12格波形显示 (关闭菜单)。
- 具有打印机接口, RS-232 和 USB 输出接口, GPIB 界面模块(所 有的界面模块只有 GDS-820S, GDS-820C, GDS-840S, GDS-840C 可用)。

先进的由 32 位微处理器控制的 GDS-820/840 数字存储示波器满足大 多数工业应用要求。易于操作的 "Autoset"功能可自动调整测量参 数。屏幕读出和电压,频率的游标测量功能使操作变得很方便。可存储 15 组不同用户在仪器上的设置并可不受约束的调出使用。利用内置的 RS-232 系列接口可以用 PC 远程控制操作。6 位计频器提供用户较精确的频率值。标准 USB 接口可用特殊软件将示波器 LCD 的屏幕转移至计算机。" program "模式可帮助用户记录所有必要的测量指令和重放所有指令。" Go-No Go "功能对于需要区分细节情况的通过或失败非常有用。

本示波器提供的多种功能和特性在实验室和维修上也有着广泛的应 用。

3. 首次操作

以下操作的前提是"安全术语与符号"这一章节被仔细阅读和充分理 解。

在每次操作仪器前必须检查保护性接地是否接好。示波器电源线要插入电源插座,测试导线必须和示波器输入端连接。检查待测物是否关闭电源,然后连接测试探棒至测试点。然后再开启示波器和待测物电源。

按下示波器电源按钮 " ON/STBY ", 经过几秒钟系统启动后, 仪器将恢 复到上次使用的操作模式。

示波器放置:放置于桌上使用,如图所示:

图 3-1 示波器放置

GDS-820/840 数字存储示波器 使用手册

探棒校准

如要在示波器上显示一个没有失真的波形,探棒必须符合每一个垂直 放大器的输入阻抗。为了以上原因,一个内建的校正产生器提供一个 1kHz 频率,具有很快上升时间和很小过激的方波信号于 LCD 下方的 输出端给探棒补偿用。因为方波的信号是给探棒补偿用,所以频率的 精确度和脉冲的作用周期因子不是很重要。

输出端提供 2Vpp ± 3%的方波给 10:1 的探棒。当 Y 偏向系数设为 50mV/div 时,校正电压会对应到四格垂直方格(10:1 探棒)。

用户可依照图 3-2 来检查探棒是否正确校准,如果波形显示过补偿或 欠补偿,可使用调整工具来调整补偿。

图 3-2 探棒补偿

AUTOSET

Autoset 功能提供任何一个输入信号稳定的触发显示。使用者可以连接一个信号至通道1或2的输入端,并按Autoset 钮。

表 3-1 Autoset 功能之默认值

控制功能	Autoset 功能之默认值
采集模式	取样
采集停止后	只按 RUN/STOP 钮
显示模式	向量
显示格式	ΥT
水平位置	在屏幕网格线之中间
水平刻度	取决于信号频率之高低
触发耦合	DC
触发准位	数据中心点为触发源
触发位置	中间
触发斜率	正缘
触发源	若 CH1 与 CH2 都有输入则采用较高通道
触发种类	边缘触发
垂直频宽	Full
垂直耦合	DC 或 AC(取决于信号)
垂直位移	ov
垂直刻度	取决于信号位准大小

GDS-820/840 数字存储示波器 使用手册

4. 面板介绍

- (1) 波形记录指示条
- (2) 触发位置(T)指示
- (3) 显示波形的记录片段
- (4) Run/Stop 指示
- (5) 触发状态
- (6) 触发准位指示
- (7) 通道位置指示
- (8) 延迟触发指示
- (9) CHI1 和 CH2 的状态显示
- (10) 取样速率读出
- (11) 水平状态读出
- (12) 触发源和状态读出
- (13) 触发类型和模式读出
- (14) 采集状态
- (15) 界面类型指示
- (16) 触发计频器

GDS-820/840 数字存储示波器 使用手册

(1) CH1, CH2 的 POSITION 旋钮,调节波形的垂直位置
(2) CH1, CH2 的菜单按钮。显示垂直波形功能和波形显示开关
(3) MATH 功能按钮,选择不同的数学处理功能
(4) VOLTS/DIV 旋钮,调节波形的垂直刻度

水平控制

- (1) HORI MENU 选择水平功能的菜单
- (2) 水平的 POSITION 旋钮,调整波形的水平位置
- (3) TIME/DIV 旋钮,调整波形的水平刻度

触发控制

- (1) 电源开关
- (2) 选择触发类型,触发源和触发模式
- (3) 调节触发位准

其它控制

- (1) 选择采集模式
- (2) 控制显示模式
- (3) 选择使用功能
- (4) 设置为编程模式
- (5) 设置游标类型
- (6) VARIABLE 旋钮,多功能控制旋钮
- (7) 15 种自动测量通路
- (8) AUTOSET 按钮,自动调节信号轨迹的设定值

- (9) 打印输出 LCD 显示的硬拷贝
- (10) 开始和停止波形的采集
- (11) 存储或取出波形设置
- (12) 清除设定键,可清除波形
- (13) 在 LCD 显示屏上显示内置帮助文件
- (14) 编程模式下停止重放

- (1) CH1 和 CH2 接受信号的 BNC 接头
- (2) 接地

BNC 输入

(3) 外部触发 BNC 接头

- (1) 主电源开关
- (2) AC 电源插座
- (3) GPIB 接口
- (4) 保险丝座
- (5) 自我校正输出端
- (6) "GO/NO GO"输出端
- (7) USB 连接器
- (8) 打印机接口
- (9) RS-232 接口

5.操作说明

垂直控制

所有的垂直控制将影响所选的波形.按CH1,CH2或MATH键选择和调整 波形。

图 5-1 垂直控制面板

VOLTS/DIV:调节所选波形的垂直刻度(以 1-2-5 序列变换档位)。 POSITION:调整 CH1, CH2 波形的垂直位置。当旋转此旋钮时,通道指 示1▶或 2▶(LCD 的左面)将同时改变位置。此外,当调节旋钮,1▶或 2▶到达格线边缘时,指示形状会变成全, 会"or "→, ~。在 LCD 会显示垂直刻度值。

图 5-2 Position 旋钮的操作 (1) 如果通道1或2的位置改变,垂直位置的读数将在此处显示。

CH1, CH2: CH1 或 CH2 被选择时, 垂直菜单包括以下项目。这两个 按钮也是通道1或通道2波形显示的开关。如果通道1或2被关闭, LED 指示灯会熄灭。

- coupling ~ ----- / :按 F1 选 AC(~),DC (------)耦合,或接地(/)。
- Invert On/Off:按 F2 选择波形是否反向显示, On 时,反向显示, Off时,正向显示。
- Bw Limit On/Off:F3 频宽限制设定键,On 时,设定频宽为 20MHz, Off 时设定频宽为全频宽。
- Probe 1/10/100:按F4选择探棒衰减×1,×10,×100。

● Impedance 1M :输入阻抗显示(GDS-820 系列只有 1M 可选, GDS-840 可选 50 或 1M)。

MATH:数学处理设定键,MATH功能被选择时,可用 F1 选择 CH1+CH2, CH1-CH2 或 FFT(快速傅立叶转换)。用 FFT 功能可以将一个时域信 号转换成频率构成。

CH1+CH2:通道1和通道2的波形相加

- CH1-CH2:通道1和通道2的波形相减。
 数学处理CH1+CH2/CH1-CH2的波形的位准可以用VARIABLE旋钮
 来调整。数学处理位置指示I™→(LCD 左面)同时改变位置。
- FFT:FFT 详细操作如下

FFT

操作:按 MATH 按钮,选择 FFT 功能。选择源通道和窗口运算法则。 再按一下 MATH 解除 FFT 频谱显示。

- Source CH1/CH2:选择频谱分析的通道。
- Window Rectangular/Blankman/Hanning/Flattop: Window Rectangular:转换到 Rectangular 窗口模式 Window Blankman :转换到 Blankman 窗口模式 Window Hanning:转换到 Hanning 窗口模式 Window Flattop:转换到 Flattop 窗口模式
- Position:旋转 VARIABLE 旋钮改变显示屏上 FFT 位置值。LCD 左面的时→数学处理位置指示总是指向约 0dB,这里 0dB 定义为 1Vrms。
- Unit/div 20/10/5/2/1 dB:按F5 键来选择频谱的垂直衰减。有 20dB/div, 10dB/div, 5dB/div, 2dB/div, 1dB/div。

FFT 频谱游标测量:FFT 频谱的衰减量(dB)和频率(Hz)可以用游标量测。按下 CURSOR 按钮,用 F1 选择 Source MATH。

- Source MATH:选择 FFT 频谱游标测量功能。
- - f1: 第一次游标的频率指示

水平控制

选择水平控制菜单。

图 5-5 水平控制面板

TIME/DIV:TIME/DIV 旋钮调节所选波形的水平刻度。 POSITION:水平移动定位钮,调整 CH1,CH2 波形的水平位置。当旋 转此旋钮时,触发位置指示""(LCD 的右面)将同时改变位置。 此外,当调节旋钮,到达格线边缘时,指示形状会变成"◀"或 "▶"。

MENU:控制所选波形的时基,水平位置,和水平值。

- Main:显示主时基
- Window:选择正常显示和缩放

按 F2 键显示窗口缩放的时基,这时,除放大区域外波形显示区域 将变成暗灰色(见图 6-6)。用 TIME/DIV 旋钮改变区域内时基的 长度(窗口框线时基范围:从 2ns 到当时设定时基快一档以上速 率。例如,所选时基 1ms,最大窗口框线时基为 500 μ s),用 POSITION 旋钮改变位置。 Window Zoom:按F3 来显示缩放波形。

- ROLL:按 F4 选取滚动方式显示波形。这时,系统将从采集模式
 中选择滚动模式,自动将时基设定为 200ms/div。
- XY:如果想在水平方向显示 CH1,垂直方向显示 CH2,可选 X-Y 模式。

CH1 的 VOLTS/DIV 旋钮和垂直 POSITION 旋钮用来控制水平刻 度和位置

○ CH2 的 VOLTS/DIV 旋钮和垂直 POSITION 旋钮用来控制水平刻 度和位置

图 5-7 XY 显示功能操作

触发控制

当仪器开始取得并显示一个波形时,触发可以从不稳定的杂乱或空白的屏幕产生有意义的波形。按触发 MENU 键,触发菜单提供 Type, Source, Mode或 Slope/Coupling 选择控制功能。

Type(Edge/Video/Pulse/Delay):按F1选择不同的触发类型:边缘 触发,视频触发,脉冲触发,和延迟触发。

Type Edge: 在输入信号的边缘处触发

Source:选择触发源

- CH1:选CH1 为触发源
- CH2:选 CH2 为触发源
- External:选择"EXT TRIG"输入端信号作为触发源。注意,本 仪器可以触发外部信号,但不能显示它们。
- Line:选AC线电压作为触发源。
 MODE:选择触发模式
- Auto Level: F3 自动准位触发选取键,系统内部会自动设定触 发点于准位调整界限数值的中央,以确保触发稳定。
- Auto:在此模式下,如果没有触发事件的情况下,示波器会产生

内部触发。当你需要一个没有触发,时基设定在 500ms/div 或更 慢一点的波形时,可选择自动触发模式,在实际时间降低到 5s/div 时继续观察低速现象。

- Normal:常态触发选择键,选择此模式时,只可在仪器被触发 时取得一个波形。如没有触发,将不会有波形。
- Single:单击(Single Shot)触发选取键,当按F3选此模式时, 内部系统会依据使用者的操作程序,当第一次触发脉冲发生时, 随即执行一次取样处理,并显示本次所取得波形信息,内部系统 即停滞一切处理动作。若需另一次触发,只需按RUN/STOP钮即 可。在设定触发、水平、垂直控制以取得一个单击触发事件前, 用户必须知道波形信号的大小、长短和DC偏移量。

SLOPE/COUPLING:按F5键改变触发斜面和触发耦合。

- Slope _____:按 F1 键选择触发斜面,示波器将改变触发 斜面的上升缘或下降缘。
- Coupling DC/AC:按F2 键选择 DC 耦合(------)或 AC 耦合
 (~~)。
- Rejection LF/HF/Off:按F3键选择频率拆拒模式。
- LF:按F3键选择LF可激活低频拆拒模式,消除触发信号中之低频部分,只允许高频通过触发系统并开始采集之后的波形。低频拆拒衰减信号低于50kHz。
- HF:高频拆拒模式作用和低频拆拒模式作用相反,高频拆拒衰减 信号高于 50kHz。

- Of f : :关闭频率拆拒模式
- Noise Rej On/Off:按 F4 键激活噪声拆拒模式,噪声拆拒模式 提供较低的 DC 灵敏度。附加讯号振幅可稳定触发事件并降低噪 声引发的假触发事件。
- Previous Menu:回到上一级菜单。

视频触发

按 F1 键选择视频触发

- Type Video:视频触发给用户提供了多元化的触发选择,如NTSC, PAL或SECAM视频信号;polarity;line,Field1,Field2。
- SOURCE:选择 CH1 或 CH2 作为触发源。
- Standard NSTC/PAL/SECAM:按F3来选择NSTC, PAL或SECAM。
 NSTC 的一个电视画面有 525 条扫描线和一个 60Hz 的视频图场。
 PAL 和 SECAM 的电视画面有 625 条扫描线和一个 50Hz 图场。
- Polarity
 Image: With the second second
- Field1/Field2/line

Field1:选取视频图场1作为触发事件,旋转 VARIABLE 旋钮显 示特定扫描线。(NSTC 可调范围为:1~263; PAL/SECAM 为:1~ 313)

Field2:选取视频图场2作为触发事件,旋转 VARIABLE 旋钮显

GDS-820/840 数字存储示波器 使用手册

示特定扫描线。(NSTC 可调范围为:1~262; PAL/SECAM 为:1~312)

Line:按F5键触发视频信号的所有扫描线。

图 5-9 视频触发模式-奇数图场扫描

脉冲宽度触发

 Type Pulse:脉冲宽度触发可以在一个范围内触发特定宽度的正 或负的脉冲。脉冲宽度的范围可从 20ns 调至 10s。脉冲宽度, 每格刻度和宽度计算关系见表 5-1:

脉冲宽度	每格刻度	宽度计算
20ns ~ 980ns	20ns	1 ~ 49
1.00us~9.98us	20ns	50 ~ 499
10us ~ 99.9us	20ns	500 ~ 4995
100us ~ 999us	200ns	500 ~ 4995
1.00ms~9.99ms	200ns	5000 ~ 49950
10.0ms~99.9ms	2000ns	5000 ~ 49950
100ms ~ 999ms	20000ns	5000 ~ 49950
1.00s~10.0s	200000ns	5000 ~ 50000

表 5-1

- SOURCE:选择触发源的通道
- Mode:选择不同的触发类型
- When<>= :按 F4 键选择不同的时间比较因子。

When<:当选择小于"<"时,用 VARIABLE 旋钮设置范围值,脉 冲宽度小于此值时触发。

When>:当选择大于 " > " 时,用 VARIABLE 旋钮设置范围值,脉 冲宽度大于此值时触发。

When=:用 VARIABLE 旋钮设置范围值,脉冲宽度等于此值时触发。

When : 用 VAR I ABLE 旋钮设置范围值,脉冲宽度不等于此值时 触发。

- (1) 选择正向触发时,如比较条件符合,触发发生在脉冲 由高变低的范围内。见图 5-10
- (2) 选择负向触发时,如比较条件符合,触发发生在脉冲 由低变高的范围内。见图 5-11

GDS-820/840 数字存储示波器 使用手册

图 5-11 负向脉冲触发

- Coupling DC/AC:按F2选择AC或DC耦合。
- Rejection LF/HF/Off:按F3选择频率拆拒。
- Previous Menu:回上一级菜单。

近阶触发

Type Delay:近阶触发系统包括一个起始触发信号和第二触发源 (主触发)。起始触发信号由外部触发产生。使用近阶触发系统 时,可延迟波形的采集时间到用户设定时间或用户设定的在起始 触发信号后触发的次数。按键可选三种近阶触发:By Time,By Event 和 TTL/ECL/User。

 By Time:在用户定义的延迟时间过后,系统会等待下一个延迟 触发事件再采集波形。旋转 VARIABLE 旋钮改变选择延迟时间。 (调节范围 100ns~1.3ms)

提供外部触发后,在设定时间过后,主触发源使用 CH1 或 CH2 信号。这个功能可用来检查使用微处理器的控制系统中,在控制 信号给出后一定时间后发生的首次现象。

图 5-12:在间隔时间内起始触发信号被忽略;起始触发信号使得 在设定时间间隔后的触发点为第一个触发点。

如果起始信号被选,可用 VARIABLE 旋钮设定延迟时间。 如果主触发被选,可按 F4 选择起始触发信号的位准。

TTL:TTL信号量测模式,起始触发信号设定在+1.4V。
ECL:ECL信号量测模式,起始触发信号设定在-1.3V。
USER:选择 USER 模式,旋转 VARIABLE 旋钮来设定特定起始触发 信号的准位,范围 ± 12V。

GDS-820/840 数字存储示波器 使用手册

 By Event:等用户设定的延迟触发事件后开始采集波形。旋转 VARIABLE 旋钮选择指定延迟事件。(触发事件次数 2~65000)

图 5-13 事件延迟触发。设置事件次数:3 如果触发信号已选,可用 VARIABLE 键设置触发事件次数。如果 主触发被选择,可按 F4 键选择以下三种起始触发信号准位。 TTL:TTL 信号量测模式,起始触发信号设定在+1.4V。 ECL:ECL 信号量测模式,起始触发信号设定在-1.3V。 USER:选择 USER 模式,旋转 VARIABLE 旋钮来设定特定起始触发 信号的准位,范围±12V

其余控制功能

按下图的功能键选择指定功能

图 5-14 混合功能键

ACQUIRE:按此键选择不同的波形采集模式:Sample,Peak-Peak 和 Average。波形采集是对输入信号进行取样分析和转换成数字信号的过程,最后记录。

- Sample:按F1键选择Sample模式,在此模式下仪器每隔一段时间记录一个点并存储。
- Peak-Peak:在"Peak-detect"模式下存储波形的最大值与最小值。
- Average:选择波形采集次数,用平值来显示波形。范围从 2 成 平方增大至 256。

注意:选择的平均次数只对 500 的记录长度有效。

平均模式可有效减小信号的干扰。当平均次数从 2 增至 256 的过程中,输入信号的改变对显示的波形的作用越小。提高平均次数可降低显示信号的干扰,提高精确度。

在任何一个记录长度时(500 除外)选择平均次数(在此情况下 选择无效),仪器会使用分辨率改进技术,对输入波形自动选用 不同的波形采集方式,再平均。因此,用户可在更好的分辨率下 得到高取样速率的平均值。 注意:如果记录长度为 500,取样将单独触发,其余记录长度时, 只触发一次。

Men Leng:组成波形记录的点的个数。本示波器提供的记录长度 有:500,1250,2500,5000,12500,25000,50000和125000。 记录长度,时基和取样速率的关系参考表5-2。为了确保低时基 范围内可全屏幕显示500点,当时基减小时取样率也减小。

记录 长度	500	1250	2500	5000	12500	25000	50000	125000
时基								
1ns/div	ET25Gsa/s	NA	NA	NA	NA	NA	NA	NA
2.5ns/div	ET10Gsa/s	NA	NA	NA	NA	NA	NA	NA
5ns/div	ET5Gsa/s	NA	NA	NA	NA	NA	NA	NA
10ns/div	ET2.5Gsa/s	NA	NA	NA	NA	NA	NA	NA
25ns/div	ET1Gsa/s	NA	NA	NA	NA	NA	NA	NA
50ns/div	ET500Msa/s	NA	NA	NA	NA	NA	NA	NA
100ns/div	ET250Msa/s	NA	NA	NA	NA	NA	NA	NA
250ns/div	100MSa/s	NA	NA	NA	NA	NA	NA	NA
500ns/div	50MSa/s	100MSa/s	NA	NA	NA	NA	NA	NA

表 5-2 不同时基和记录长度时的取样速率

1µs/div	25MSa/s	50MSa/s	100MSa/s	NA	NA	NA	NA	NA
2.5µs/div	10MSa/s	25MSa/s	50MSa/s	100MSa/s	NA	NA	NA	NA
5µs/div	5MSa/s	10MSa/s	25MSa/s	50MSa/s	100MSa/s	NA	NA	NA
10µs/div	2.5MSa/s	5MSa/s	10MSa/s	25MSa/s	50MSa/s	100MSa/s	NA	NA
25µs/div	1MSa/s	2.5MSa/s	5MSa/s	10MSa/s	25MSa/s	50MSa/s	100MSa/s	NA
50µs/div	500kSa/s	1MSa/s	2.5MSa/s	5MSa/s	10MSa/s	25MSa/s	50MSa/s	100MSa/s
100µs/div	250kSa/s	500kSa/s	1MSa/s	2.5MSa/s	5MSa/s	10MSa/s	25MSa/s	50MSa/s
250 µ s/div	100kSa/s	250kSa/s	500kSa/s	1MSa/s	2.5MSa/s	5MSa/s	10MSa/s	25MSa/s
500µs/div	50kSa/s	100kSa/s	250kSa/s	500kSa/s	1MSa/s	2.5MSa/s	5MSa/s	10MSa/s
1ms/div	25kSa/s	50kSa/s	100kSa/s	250kSa/s	500kSa/s	1MSa/s	2.5MSa/s	5MSa/s
2.5ms/div	10kSa/s	25kSa/s	50kSa/s	100kSa/s	250kSa/s	500kSa/s	1MSa/s	2.5MSa/s
5ms/div	5kSa/s	10kSa/s	25kSa/s	50kSa/s	100kSa/s	250kSa/s	500kSa/s	1MSa/s
10ms/div	2.5kSa/s	5kSa/s	10kSa/s	25kSa/s	50kSa/s	100kSa/s	250kSa/s	500kSa/s
25ms/div	1kSa/s	2.5kSa/s	5kSa/s	10kSa/s	25kSa/s	50kSa/s	100kSa/s	250kSa/s
50ms/div	500\$a/s	1kSa/s	2.5kSa/s	5kSa/s	10kSa/s	25kSa/s	50kSa/s	100kSa/s
100ms/div	250\$a/s	500Sa/s	1kSa/s	2.5kSa/s	5kSa/s	10kSa/s	25kSa/s	50kSa/s
250ms/div	100\$a/s	250Sa/s	500Sa/s	1kSa/s	2.5kSa/s	5kSa/s	10kSa/s	25kSa/s
500ms/div	50Sa/s	100Sa/s	250Sa/s	500Sa/s	1kSa/s	2.5kSa/s	5kSa/s	10kSa/s
1s/div	25\$a/s	50Sa/s	100Sa/s	250Sa/s	500Sa/s	1kSa/s	2.5kSa/s	5kSa/s
2.5s/div	10Sa/s	25\$a/s	50Sa/s	100Sa/s	250Sa/s	500Sa/s	1kSa/s	2.5kSa/s
5s/div	5Sa/s	10Sa/s	25\$a/s	50Sa/s	100Sa/s	250Sa/s	500Sa/s	1kSa/s
10s/div	2.5Sa/s	5Sa/s	10Sa/s	25Sa/s	50Sa/s	100Sa/s	250Sa/s	500Sa/s

DISPLAY:改变显示外貌和选择当前波形。 注意:每次采集波形时通常以 250 点划分屏幕。 Type Vector/Dot

- Type Vector:按F1选择矢量显示模式。仪器在每两个点之间画 出矢量。
- Type Dot:只显示取样点。
- Accumulate (On/Off):累积模式可获得并显示波形记录的总变化。
- Refresh :按F3键更新波形。
- Contrast(0~100%):用 VARIABLE 旋钮改变 LCD 屏幕的对比度。

UTILITY:包括如下菜单

 Printer Menu: 连接打印机, GDS-820/840 系列可打印 LCD 显示的画面。按 F1 选择打印机。示波器支持如下型号打印机: HP LaserJet:支持 Hewlett-Packard LaserJet 激光打印机 HP DeskJet:支持 Hewlett-Packard DeskJet 喷墨打印机 Epson Inkjet:支持 Epson 喷墨打印机 注意:只支持 ESP/P-based 打印机(包括 ESC/P, ESC/P2)。 Epson DotMatrix:支持 Epson 点阵打印机 注意:只支持 24-Pin 点阵打印机

打印机连接好后,按 HARDCOPY 开始打印 注意:GDS-820/840 不支持 GDI 打印机。

注意:示波器的 USB 只是一个"装置",不支持任何 USB 打印机。

注意:只有 GDS-820S, GDS-820C, GDS-840S 和 GDS-840C 有打 印机菜单。

 Interface Menu:可以在示波器和其他设备间通过 RS-232, USB (GDS-820 无)或 GPIB(选配)传递数据。按临近键选择 GPIB 位置。

注意:只有 GDS-820S,GDS-820C,GDS-840S 和 GDS-840C 有接 口菜单。

RS232 设置

Type RS232:选择 RS232 通讯口。 **Baud rate:**每秒传输率,有 2400, 4800, 9600, 19200 和 38400 GDS-820/840 数字存储示波器 使用手册

波特可选。 停止位:选择"1"或"2"位。 奇偶:选择"0dd","Even"或"None"。 Previous Menu:回上一级菜单。 注意:数据位一般为8位。

USB 设置

 Type USB:选择 USB 接口。

 注意:为了在示波器和计算机之间通讯,请到我公司网站下载

 USB 驱动程序。

 Previous Menu:回上一级菜单。

GPIB 设置

Type GPIB:选择 GPIB 接口。 Addr 0~30:选择适当的 GPIB 地址。 Previous Menu:回上一级菜单。

▶ ________:选择蜂鸣器音调。

_______ **Off ___**_:关闭蜂鸣器。

- Language Menu:语言菜单,可选:英文,繁体中文,简体中文
- More:F5选择更多utilities菜单
- Self Cal Menu:示波器自我校准可以按指令步骤自动进行,先进的数字设计使校准程序变得简单。

环境:

校准必须在室温 26 ± 5 ,湿度低于 80%下进行。 校准前至少要有 30 分钟暖机时间。

校准设备:

- (1) 精确同轴探棒,长度 32 inch
- (2) 50 阻抗
- (3) BNC 连接器

校准步骤

- (1) 按UTILITY 按钮
- (2) 按 F5 软键
- (3) 按F1进入Self Cal Menu
- (4) 连接后面板 CAL 端至 CH1 输入端
- (5) 按 F1 开始垂直档位校准
- (6) 按 LCD 底部显示的指示校准
- (7) 当 CH1 校准完成后 LCD 显示"set signal to chan 2, then press F5 soft key".

GDS-820/840 数字存储示波器 使用手册

- (8) 将探棒从 CH1 输入端取下, 插入 CH2 输入端
- (9) CH2 校准完成后, LCD 显示按 F5 的信息
- (10) 按 F5 键,示波器退出校准状态
- ▶ Sytem Inform:在LCD上显示公司名称,仪器型号,固件版本。
- Go-No Go Menu: Go-No Go 功能可用来判断采集波形是否与先前存储波形一致。输入波形和先前波形对比,被测波形被自动赋值 决定执行动作。以下基于所赋值的动作可选:
 - 1. 内置蜂鸣器
 - 2. 后面板上的 "Go-No Go " BNC 型端口
 - "Go-No Go" BNC 型端口输出波形的准位由以下决定:
 - 如果结果为"GOOD"输出位准为低电位。
 - 如果结果为 "NO GOOD" 输出位准为高电位。

注意:"Go-No Go" BNC 型端口开路

Tempalte Edit:编辑适当的模块上下限,按一次F1键,进入以下菜单。

最大和最小限

Tempalte Max/Min:选择"Save/Recall"功能的参考 A 或 B, 详细操作见 46 页。

Template Max:最大限通常选择 "Save/Recall" 功能的参考 A。

Template Min:最小限通常选择 "Save/Recall" 功能的参考 B。

Source RefA/RefB:指示最大或最小信号源。

Position %:调节最大或最小限的垂直位置。

Save:按F4存储设定,这时,原先存储的设定改为当前设定。

Previous Menu:回上一级菜单。

自动模块

Template Auto:从主信号选择两个 "Go-No Go" 模块。

Source CH1/CH2:选择通道1或通道2信号作为"Go-No Go"模块。

Tolerance %:选择主信号垂直和水平刻度的百分比公差,调节 范围为 1%~50%。

Save & Create:按F4键存储设定,同时,原先存储的Refance A或B将改为当前设置。

Previous Menu:回上一级菜单。

Source:选择 CH1 或 CH2 作为主信号输入。

Violating Stop/ Stop+ ① / Continue/ Cont.+ ① : 当主信号不符 合比较信号时选择以下处理方式: GDS-820/840 数字存储示波器 使用手册

Violating Stop:如果主信号被判断为"NO GOOD", "Go-No Go" 功能停止,越界值将被记录。

Violating ^{Stop+}①:如果主信号被判断为"NO GOOD", "Go-No

Go"功能停止,示波器鸣叫,越界值将被记录。

Violating Continue: 如果主信号被判断为"NO GOOD", "Go-No Go"功能继续执行,越界值将被记录。

Violating Cont.+ 吧: 如果主信号被判断为" NO GOOD ", " Go-No

Go"功能记录执行,示波器鸣叫,越界值将被记录。

Go-No Go On/Off:开启 Go-No Go 功能。

Ratio:显示 Go-No Go测试和失败值。

按任意键退出 Go-No Go 功能

No Go When ______/ ____:选择越界的判断条件

No Go When ______:当主信号没有越过模块时,系统将判断这 种情况为 "No Go "。

No Go When _______: 当主信号越过模块时,系统将判断这种 情况为 "No Go"。

Previous Menu:回上一级菜单。

GDS-820/840 数字存储示波器 使用手册

PROGRAM:"Program mode"功能可以使示波器记住一些步骤并重放和存储。

步骤编辑

- Edit:开始编辑步骤,再按F1重放。
- Step 1-15:设置范围从 1 至 15。
- Item Memory/Menu/Time:选择每一个步骤的状况。

Item Memory:从 15 个记忆组中选择一个先前存储的波形。旋转 VARIABLE 旋钮选择适当记忆设置。

Item Menu:选择运行时 LCD 上的显示菜单,可选择测量和游标 两个菜单。旋转 VARIABLE 选择显示菜单。

Item Time:选择停止时间。范围1~99秒,或等用户按Run/Stop 按钮停止重放。

Save:按F5保存当前步骤。

步骤重放

- Play:开始重放所有存储步骤。
- Cycle 1~99:步骤可重复 99 次。
- From/To:选择步骤开始和结束。
- Start:按F5开始重放程序模式。

按 Auto test/Stop 按钮退出程序模式。

CURSOR:选择不同的游标测量。垂直游标测量时间,水平游标测量电压。T1和T2是相关于LCD网线中心的两条纵向平行游标线,V1和V2 是两条水平方向的平行游标线。△符号表示游标间的距离。

Source 1/2:按F1键选择被测波形的通道。

Horizontal / / / / / / :按F2键

选择两种游标模式:独立和联动。调节 VARIABLE 旋钮改变游标 位置。在联动模式时,两个游标间保持固定距离。T1 显示实线, T2 显示虚线。

Horizontal I:只有 T1 游标可变。

Horizontal I:只有 T2 游标可变。

Horizontal II:T1 和 T1 处于联动模式。

Horizontal:水平轴的游标无效。

参考值显示于 LCD 上: T1:第一个游标时间指示 T2:第二个游标时间指示 △:T1减T2的值 f:T1至T2间的频率变化

Vertical : 只有 V1 游标可变

Vertical ______ : 只有 V2 游标可变

Vertical _____: V1 和 V2 游标处于联动模式,都可变。

Vertical ------- : 垂直游标无效

在独立模式时,用户可以旋转 VARIABLE 旋钮只移动一个游标。 V1 游标是实线,V2 是虚线。

- 在联动模式时,调节 VARIABLE 旋钮改变游标位置。两个游标间 保持固定距离。
- LCD 上显示参考值
- V1:第一个游标处的电压值
- V2:第二个游标处的电压值
- △: T1 减 T2 的值

MEASURE

测量。可测量完整的波形或游标指定区域。 按 F1 至 F5 可选择不同的测量项目。最多可同时显示十种测量项目 (CH1 和 CH2 都开启)。每一个按钮可选择 15 种不同的测量项目。每 个菜单可显示相同的测量项目。

- Vpp:Vmax-Vmin(整个波形)
- Vamp: Vhi-VIo(整个波形)
- Vavg:第一个周期内的平均电压
- Vrms:整个或指定区域波形的电压有效值
- Vhi:波形顶端电压值
- VIo:波形底端电压值
- Vmax:最大振幅电压值,完整波形的正峰值
- Vmin:最小振幅电压值,完整波形的负峰值
- Freq:波形第一个周期或指定区域内的频率测量。频率是周期的 倒数,单位 Hz。
- Period:第一个完整波形或指定区域的时间,周期是频率的倒数, 单位:秒。
- 上升时间:波形脉冲从峰值的 10%上升至 90%的时间。
- 下降时间:波形脉冲从峰值的 90%下降至 10%的时间。
- 正脉宽:测量波形的第一个正脉冲或指定区域宽度,为 50%振幅

两点间的时间。

- 负脉宽:测量波形的第一个负脉冲或指定区域宽度,为 50%振幅 两点间的时间。
- 占空比:脉冲宽度所占周期的时间百分比。占空比=(脉冲宽度/ 周期)×100%

SAVE/RECALL

用户可以在示波器的存储器中存储任意 1 至 2 个波形,即使关机,这 些波形也会被保存。存储的波形可以用于"Go-No Go"功能。示波器 的面板上的设置也可以保存到存储器中。15 种存储的设置在同样的 状况下可以随时调出来进行测量。设置的数据也可以用于"Program Mode"的记忆项目。按 F1 选择"Setup"存储/取出或"waveform"存 储/取出。

Setup:保存面板上的设置(共15种)

- Default Setup:取出出厂的默认设置。
- M01~M15 :按 F3 键选择存储器位置来保存当前设置。再按一次 来改变存储器位置。
- Save:保存当前设置至指定存储器内。
- Recall:按F5 取出指定存储器内的的设置。

Waveform:最多可存储两个波形,使用 VARIABLE 旋钮调节存储波形的垂直位置。

- Source CH1/CH2/MATH:按F2 键选择 CHI1, CH2 或数学处理后的 波形来保存。
- Trace RefA/RefB:选择存储器 1 或存储器 2 来保存波形作为参考 A 或参考 B。
- Save:选择 Trace RefA/RefB 后,按 F4 键保存当前波形。每个 波形的位置和刻度因子都会被保存。

Trace On/Off: 可使LCD 上不显示被保存的参考1或参考2波形。

AUTO TEST/STOP:退出程序模式的播放。

HARDCOPY:打印 LCD 上的显示画面。

HELP:在波形显示区域显示在线帮助文件。

AUTOSET:按此键可快速分析未知信号,仪器自动调节垂直,水平和 触发至最佳状态来显示波形。具体情况参考第 11 页。

● Undo Autoset:按F5键恢复到Autoset之前的状态。

RUN/STOP:按此按钮开始或停止采集波形数据。屏幕的状态区域将显

GDS-820/840 数字存储示波器 使用手册

示 RUN 或 STOP。如果停止,将在下一个触发事件开始采集数据。

ERASE:按此按钮从格线区域内清除所有波形数据。如果示波器停止,显示将保持虚波形直到示波器被触发,显示新的数据和测量结果。

MENU ON/OFF: 是否关闭菜单显示,关闭后屏幕横向显示区域由 10 格 变成 12 格。

7.RS-232 配置

示波器包含有一个用于和计算机或终端通讯的 DB 9-Pin 的 RS-232 连接器。RS-232 的接口由一个 RS-232 "数据终端设备"构成,数据从 Pin3 端送出,在 Pin2 端接收。RS-232 接口可以和计算机或终端相连,用于远程控制。

注意:RS-232 接口只有 GDS-820S,GDS-820C,GDS-840S 和 GDS-840C 有。

Pin 端功能

GDS-820/840 系列 RS-232 接口的功能如下:

1. 空脚 2. 数据接收(R×D) (input) 3. 数据传输(T×D) (output) 4. 空脚 5. 信号接地 (GND) 6. 空脚 7. 空脚 8. 空脚 9. 空脚

图 7-1 GDS-820 的 RS232 连接器各 Pin 端功能

DB9 至 DB9 的配线

示波器和计算机之间的数据线架构:

图 7-2 DB9 至 DB9 配线

当示波器使用 RS232 接口时,请检查以下要点:

- 1. 不要将数据终端设备的输出线连接到其他输出线上。
- 2. 许多装置需要在输入端输入固定的高频信号。
- 3. 确认仪器信号接地端和外部设备的信号接地端相连。
- 4. 确认仪器和外部设备的外壳都接地。
- 5. 不要使用超过 15m 的连接线连接仪器和 PC。
- 6. 确认仪器的接口结构和 PC 接口结构一样。
- 7.确认连接线两端接口和设备接口匹配。

计算机连接

具有 COM 接口的个人电脑通过 RS232 接口可以容易的操作数字示波器。

示波器和计算机连接如下:

- 1. 将 RS232 连接线的一端连到计算机上。
- 2. 另一端接至示波器 RS232 接口。
- 3. 打开示波器。
- 4. 打开计算机。

GDS-820/840 数字存储示波器 使用手册

RS232 连接测试

如果想测试 RS232 连接是否在工作,可以从计算机发一个指令。例如,送一个询问指令

*idn?

将按如下格式返回厂商,型号,序列号和固件版本:

GW, GDS-820, series number, V.1.0

如不能从示波器接收正确的响应,请检查电源是否打开,RS232 结构 是否两端都一样,连接线是否是好的。

51

8.产品规格

下表中所保证的电气规格的条件:在+20 至+30 的温度环境下调整,至少 30 分钟暖机时间。本示波器只可在周围温度 0 至+50 之间操作。

垂直系统:

通道1(CH1)和通道2(CH2)	2mV/div~ 5V/div		
精度	±(3%× 读数 +0.05 div ×	触发系统:	
	Volts/div)	触发源	CH1 , CH2 , LINE , EXT
频宽	GDS-820 系列:DC~150MHz (-3dB)	触发模式	Auto-Level AUTQ NORMAL SINGLE
	GDS-840 系列:DC~250MHz (-3dB)		TV、Time-delay、Event-delay、
	AC 耦合		Edge、Pulse Width
	GDS-820 系列:10Hz~150MHz(-3dB)	时间延迟范围	100ns~1.3MS
	GDS-840 系列:10Hz~250MHz(-3dB)	事件延迟范围	2 ~ 65000
		起始触发电位(USER 模式) ± 12V 可调
上升时间	GDS-820 系列:<2.3ns	耦合	AC,DC,Lfrej,Hfrej,Noise rej
	GDS-840 系列:<1.4ns	灵敏度:DC ~25MHz	约0.35div或3.5mV
输入耦合	AC , DC&Ground	25MHz ~ 150MHz	GDS-820 系列约 1.5div 或 15mV
输入阻抗	1M ± 2%, ~22pF	25MHz ~ 250MHz	GDS-840 系列约 1.5div 或 15mV
极性	正常和反相	TV	TV 触发灵敏度:同步信号 0.5div
最大输入电压	300V(DC+AC 峰值),CATII		

GDS-820/840 数字存储示波器 使用手册

偏置范围:2mV/div~50mV/div ±0.5V

1V/div~5V/div

 $100 \text{mV/div} \sim 500 \text{mV/div} \pm 5 \text{V}$

CH1-CH2, CH1+CH2, FFT

± 50V

20MHz (-3dB)

波形处理

频宽限制

GDS-820/840 数字存储示波器 使用手册

外部触发:		信号采集系统:	
范围	DC : $\pm 15V$, AC : $\pm 2V$	实时取样率	每通道最大 150Msa/s
灵敏度:DC ~30MHz	~ 50mV	等价取样率	每通道最大 25GSa/s E.T
30MHz ~ 150MHz	~ 100mV	垂直分辨率	8 位
150MHz ~ 250MHz	~150mV (只有 GDS-840 系列)	记忆长度/通道	125k 点
输入阻抗	1M ± 2%, ~ 22pF	单击取样记忆长度	125k 点
最大输入	300V(DC+AC 峰值), CATII	单击取样频宽	10MHz
		取样模式	Sample, Peak Detect, Average,
水平系统:			Accumulate
范围	1ns/div~10s/div (1-2-5 序列)	峰值检测	10ns (500ns/div~10s/div)
模式	Main, Window, Window Zoom, Roll,	取样平均化	2、4、8、16、、256
	X-Y		
精度	0.01%	游标和量测:	
延迟范围:预先触发延迟	最大 20div	自动电压测量	Vpp,Vamp,Vrms,Vhi,VIo,Vmax,Vmin
触发后延迟	1000d i v	自动时间测量	频率,周期,上升时间,下降时间,
			正负脉冲宽度,占空比
X-Y 模式:		游标测量	游标间的电压差 V
X 轴输入	CH1		游标间的时间差 T
Y轴输入	CH2		游标间的频率差 1/ T
相位移	±3°100kHz 时		

GDS-820/840 数字存储示波器 使用手册

计频器:		电源:	
分辨率	6 位	电源电压	100V~240V AC,自动电压选择
精度	± 2%	电源频率	48Hz ~ 63Hz
信号源	除视频信号外所有可用的触发源	功耗	45₩,65VA 最大,风扇散热
		保险丝	2A,250V 慢熔断
控制面板功能:			
Autoset	自动调节垂直 VOLT/DIV,水平	接口:	
	SEC/DIV,和触发电位	打印机插座	25Pin IBM PC型,并行打印机接口
Save/Racall	可存取 15 组面板功能设置	适用之打印机:	
Waveform Trace Save/Recall	可存取两组波形轨迹	HP PCL5 激光打印机	黑白®150 × 150dp i
		HP 台式打印机	黑白®150 × 150dp i
显示系统:		Epson ESC/P2 喷墨打印机	黑白®180×180dp i
屏幕	GDS-820, GDS-820S, GDS-840S :5.7	Epson 点阵打印机	黑白®180×180dp i
	inch 单色 LCD (320*240)	USB 接口	USB 1.1&USB 2.0 全速兼容
	GDS-820C, GDS-840C : 5.7 Inch 彩	RS-232 接口	9Pin DTE RS-232 接口
	≅ LCD (320 ⁻² 240) for	GPIB 接口	选配
波形显示格线	8 × 10 格		符合 IEEE488.2,可编程
	8 ×12 格(菜甲关闭)		
显示对比度	可调		

GDS-820/840 数字存储示波器 使用手册

EC Declaration of Conformity

其他:		EC Declaration of Conformity		
探棒校准输出	2Vpp ± 3%	We GOOD WILzL INSTRUMENT CO., L	TD.	
探棒 2 杀		No. 95-11, Pao-Chung Rd., Hsin-Tien City, Taipei Hsien, Taiwan		
外观尺寸	310(宽)×142(高)×254(长)	No.69 Lushan Road, Suzhou New District Jiangsu, China.		
重量	~ 4.1 kg	declares that the below mentioned product GDS-820, GDS-820S, GDS-820C, GDS-840S, GDS840C		
		are herewith confirmed to comply wi	th the requirements set out in the	
工作环境:		to Electromagnetic Compatibility (89 Low Voltage Equipment Directive (73	/336/EEC, 92/31/EEC, 93/68/EEC) and 3/23/EEC).	
周围温度:操作温度	0 ~ 50			
友 故 涅 度	- 20 ~ 70	For the evaluation regarding the Ele	ctromagnetic Compatibility and Low	
臣派渔及	20 10		iowing standards were applied.	
相对湿度:操作湿度	80 % R.H @ 35	EMC		
存放湿度	80 % R.H. @ 70	EN 61326-1: Electrical equipment f laboratory use — EMC requirement	for measurement, control and ents (1997+A1: 1998+A2: 2001)	
		Conducted and Radiated Emission EN 55011: 1998 class A	Electrostatic Discharge EN 61000-4-2: 1995+A1: 1998	
		Current Harmonic	Radiated Immunity	
		EN 61000-3-2: 2000	EN 61000-4-3: 1996+A1: 1998	
		Voltage Fluctuation	Electrical Fast Transients	
			Surge Immunity EN 61000-4-5: 1995	
			Conducted Susceptibility EN 61000-4-6: 1996	
			Voltage Dips/ Interrupts EN 61000-4-11: 1994	
		Safety		
		Low Voltage Equipment Directive 73	/23/EEC & amended by 93/68/EEC	

IEC/EN 61010-1: 2001