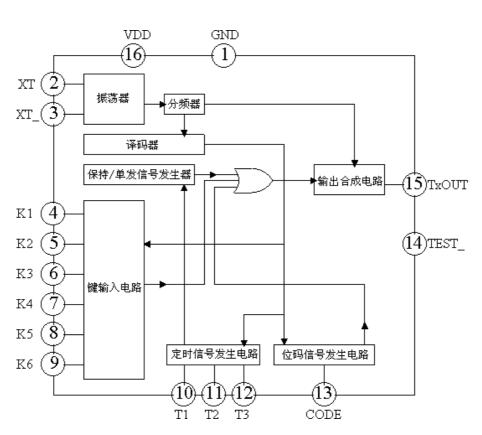
HS9148 说明书

概述

HS9148 是一款红外发码专用集成电路,采用 CMOS 工艺制造。该芯片拥有 18 个功能,一共能发射 75 条码,其中 63 条码通过组合按键为连续发码,12 条码是单发码(按一次键只发两帧码,若还想发码必须松开按键再按一次)。

主要特点


- 1. 工作电压范围宽(Vcc=2.0~5.0V)
- 2. 功耗非常低(静态电流小于 0.6uA)
- 3. 允许多重按键
- 4. 外围元件少
- 5. 通过调整用户码,可以用于不同的机型

产品规格分类

HS9148B	DIP-16 封装
HS9148S	SOP-16 封装

(16) VDD GND (15) TXOUT ΧT (14) TEST \overline{XT} (13) code Κ1 HS9148 (12) T3 Κ2 (**11**) T2 К3 (10)Κ4 T1 K5 Κ6 管脚图

内部框图

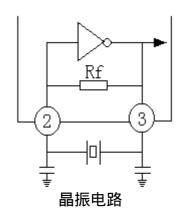
第1页共8页

极限参数

参数	符号	参数范围	单位	
工作电压	Vdd	6.0	V	
输入/输出电压	Vin,Vout	Vss-0.3~Vdd+0.3	V	
动态功耗	Pd	200	mW	
工作温度	Tamb	-20~+75	$^{\circ}$	
储存温度	Tstg	-55~+125	$^{\circ}$	

电气参数(除非特殊说明,Tamb=25℃, Vdd=3V)

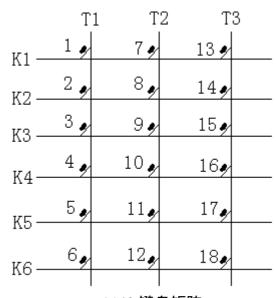
	参数			符号	测试条件	最小	典型	最大	单位
工作电压			Vdd	所有功能正常	2.0		5.0	V	
	工作电	流		Idd	键按下,无负载			1.0	mA
	静态电	流		Ids	所有键放开,振荡器停振			0.6	μА
	K1~K6	输入	高电平	Vih		2.0		3.0	V
输	CODE	电压	低电平	Vil		0		0.5	V
入	K1~K6	输入	高电平	Iih	Iih Vih=3.0v			40	μА
端		电流	低电平	Iil	Vil=0v	-1.0		1.0	μА
子	CODE	输入	高电平	Iih	Vih=3.0v	-1.0		1.0	μА
	TEST	电流	低电平	Iil	Vil=0v	40			μА
输	T1~T3	输出	高电平	Ioh	Voh=2.0v	3			μА
出		电流	低电平	Iol	Vol=3.0v	0			μА
端	Tx	输出	高电平	Ioh	Voh=2.0v	3			mA
子		电流	低电平	Iol	Vol=3.0v	5			mA
	振荡器反馈电阻			Rf			1000		$k\Omega$
	振荡频	率	·	Fosc		400	455	600	KHz


管脚说明

管脚序号	符号	端子功能	说明
1, 16	GND, VDD		电源,地
2, 3	XT, Non-XT	振荡端子	用来接 455k 的陶瓷振荡器
			(内置一反馈电阻)
4-9	K1-K6	键输入端	键盘距阵输入端,18 个键可以连接到 K1-K6 和
			T1-T3 构成的距阵上。(内置下拉电阻)
10-12	T1-T3	定时信号输入	键盘距阵的定时输出端
		端	
13	CODE	用户码输入	发射和接收的用户码匹配
14	Non-TEST	测试端子	使用时悬空
15	TxOut	发射输出端	38KHz 载波调制后的码信号输出

功能描述

1. 振荡电路


如图所示,由于芯片内部有一个由 CMOS 反向器构成的自偏压型放大器,当外接 LC 组件或陶瓷谐振器时,可以方便的构成一个振荡器。他的振荡频率为 455kHz,载波为 38kHz,为降低功耗,振荡器一直停振,直到有键操作。

2. 键盘输入

键盘如右图所示,通过 6 个键盘输入端 K1-K6 和 3 个定时驱动端 T1-T3 构成的 6*3 键盘距阵,一共可放置 18 个按键,与 T1 相 连的六个键可实现多重按键,各种不同的键 组合均有不同的输出(共有 63 种组合),(此时为连续码脉冲输出)。

在 3 个定时驱动端,有这样的优先级: T1>T2>T3。但在 T2 和 T3 定时线上,有两 个以上的按键按下时,还遵循 K1>k2>...K6 的优先顺序的原则。另外,连接在 T2 和 T3 线上的键每按一次只能发送一次码,要想发 第二次,必须松开按键再按一次。

9148 键盘矩阵

键盘矩阵

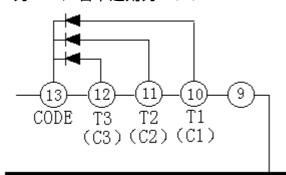
键 1~6: 当持续按下时,码连续发送,它为多重组合按键。键 7~18: 为单发指令按键,即每次按键,只能发一次码(两帧)。

3. 传送码的格式

传送的码为一个 12 位的字,C1-C3 为用户编码,以适应不同的机型,H,S1,S2 分别指示连续码和单发码,他们分别对应键盘距阵的 T1, T2, T3; D1~D6 为六位的键输入码,D1~D6 分别对应键盘距阵的 K1~K6。

帧结构

C1	C2	C3	Н	S1	S2	D1	D2	D3	D4	D5	D6


4. 数据码

键号	数据							输出		
惟与	Н	S1	S2	D1	D2	D3	D4	D5	D6	形式
1	1	0	0	1	0	0	0	0	0	连续
2	1	0	0	0	1	0	0	0	0	连续
3	1	0	0	0	0	1	0	0	0	连续
4	1	0	0	0	0	0	1	0	0	连续
5	1	0	0	0	0	0	0	1	0	连续
6	1	0	0	0	0	0	0	0	1	连续
7	0	1	0	1	0	0	0	0	0	单发
8	0	1	0	0	1	0	0	0	0	单发
9	0	1	0	0	0	1	0	0	0	单发
10	0	1	0	0	0	0	1	0	0	单发
11	0	1	0	0	0	0	0	1	0	单发
12	0	1	0	0	0	0	0	0	1	单发
13	0	0	1	1	0	0	0	0	0	单发
14	0	0	1	0	1	0	0	0	0	单发
15	0	0	1	0	0	1	0	0	0	单发
16	0	0	1	0	0	0	1	0	0	单发
17	0	0	1	0	0	0	0	1	0	单发
18	0	0	1	0	0	0	0	0	1	单发

由于可实现多重按键,通过 D1~D6 的各种组合,1~6 键可以发送 63 种码,7~18 键可实现 12 种单发码输出,因此,通过多重按键和单发键,一共可实现 75 种连续码和单发码。

5. 用户编码(C1, C2, C3)

用二极管将定时驱动端 $T1\sim T3$ 连接到 CODE 端,可以分别将用户码 C1,C2,C3 置为 "1",若不连则为 "0"。

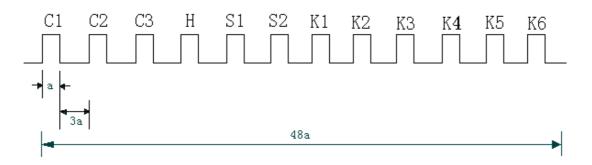
用,	 一码	
C2	C3	用户码 "0", "0"
0	1	不能使用
1	0	
1	1	

用户码接法

在该图中 C1, C2, C3 的码分别为"1","1","1"。

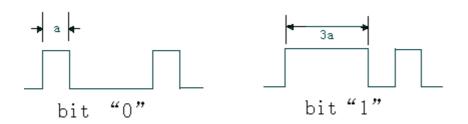
HS9148B 有 3 个用户码,因 DIP-16 封装的 HS9149AL 仅对 C2 和 C3 两位进行编码,所以,二极管必须正确地连接以使 HS9148B 与相应的接收电路匹配。

注:由于在 HS9149AL 中,用户码 C1 不用,信号传送时,必须送"1"。因此,相应端子上的二极管必须连接。

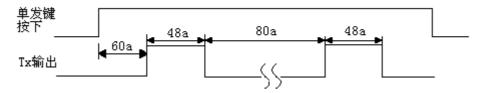

6. 传送的波形:

6.1 传送的基本波形 (Fosc=455KHz)

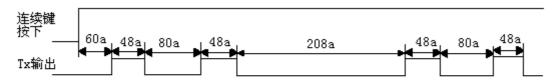
C1~C3: 用户码标识


H, S1, S2: 连续/单发码标识

K1~K6: 键输入标识

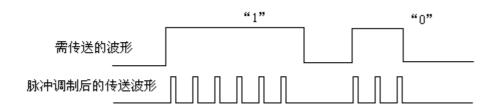

传送的基本波形如上图所示 12 位的串行码,"a"值由振荡频率依据下式确定:a=(1/fosc)*192(sec),为 16 个 38K 的载波周期。

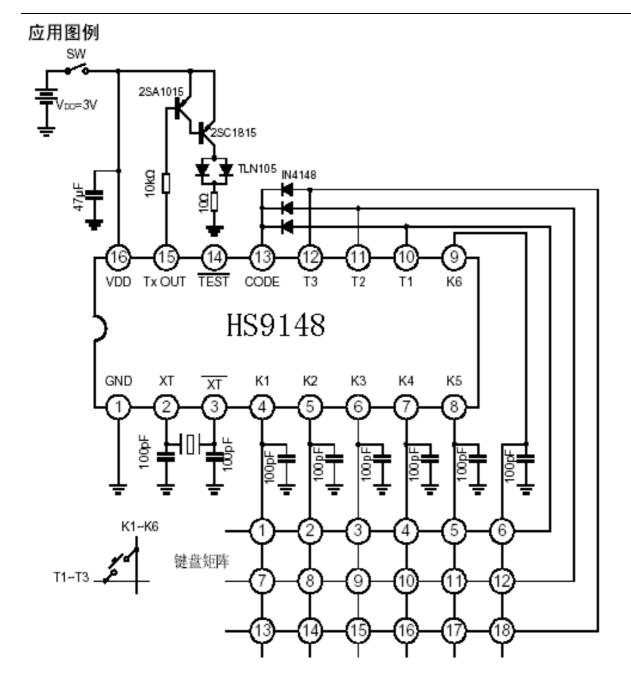
6.2 "0"和"1"的区别



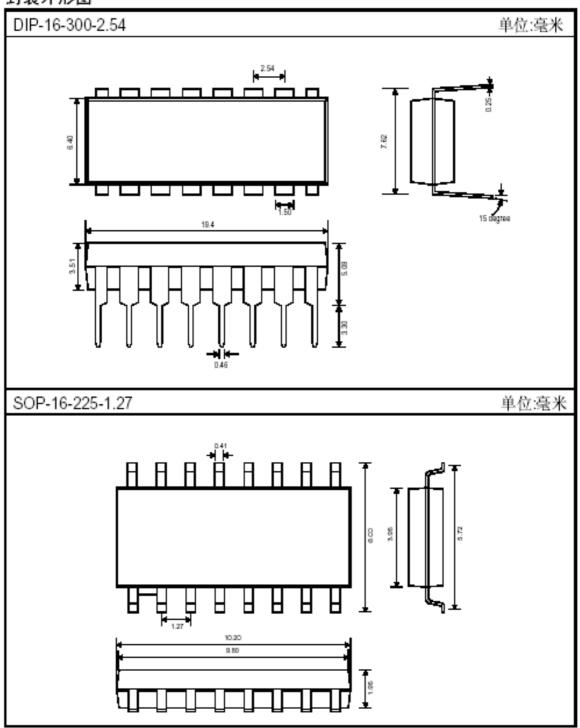
6.3 单发码波形

当单发键按下时,如上图所示的单发码送两遍,然后发送结束,要 再发码,需松开按键,重新按下。


6.4 连续码波形



当任何一个连续键按下时,码被连续传两次,间隔208a之后, 再传两遍,依次重复。


6.5 载波

为了增加红外信号的发送,接收距离,一般需要 50~100mA 的电流通过红外发射二极管,所以,从减少电池消耗考虑,需尽可能的减少红外发光管的导通时间。在此 IC 中,无论是单发码还是连续码的传送,均用一个占空比为 1:3 的载波调制,载波频率为 38KHz。

封装外形图

