EC20-4DA 模拟量输出模块用户手册

感谢您购买艾默生网络能源有限公司开发生产的可编程控制器(PLC),在使用我公司 EC20 系列 PLC 产品前,敬请您仔细阅读本手册,以便更清楚地掌握 产品的特性,正确地进行安装使用。更安全地应用,充分利用本产品丰富的功能。

注意:

在开始使用之前,请仔细阅读操作指示、注意事项,以减少意外的发生。负责 产品安装、操作的人员必须经严格培训,遵守相关行业的安全规范,严格遵守 本手册提供的相关设备注意事项和特殊安全指示,按正确的操作方法进行设备 的各项操作。

1 接口描述

1.1 接口说明

EC20-4DA 的扩展电缆接口和用户端子均有盖板,外观如图 1-1 所示。打开各 盖板后,便可露出扩展电缆接口和用户端子,如图 1-2 所示。

图 1-2 模块接口端子图

EC20-4DA 通过扩展电缆接入系统,扩展电缆接口用于系统其他扩展模块的连接,具体方法参见 1.2 接入系统。EC20-4DA 用户端子的定义见表 1-1。

表 1-1 EC20-4DA 用户端子定义表

端子 序号	端子 标注	说明	端子 序号	端子 标注	说明
1	24V+	模拟电源 24V 正极	11	I2+	第2通道电流信号输出端
2	24V-	模拟电源 24V 负极	12	VI2-	第2通道公共地端
3	•	空脚	13	V3+	第3通道电压信号输出端
4	PG	接地端	14	•	空脚
5	V1+	第1通道电压信号输出 端	15	I3+	第3通道电流信号输出端
6	•	空脚	16	VI3-	第3通道公共地端
7	I1+	第1通道电流信号输出 端	17	V4+	第4通道电压信号输出端
8	VI1-	第1通道公共地端	18	•	空脚
9	V2+	第2通道电压信号输出 端	19	I4+	第4通道电流信号输出端
10	•	空脚	20	VI4-	第4通道公共地端

1.2 接入系统

EC20-4DA 应用于 EC20 系列可编程控制器系统,通过扩展电缆可将其接入系统,接入方法见图 1-3,将其扩展电缆插入主模块或系统中任意扩展模块的扩展电缆接口中,即可将 EC20-4DA 接入系统。

EC20-4DA 接入系统后,其扩展电缆接口也可用于连接 EC20 系列的其他扩展 模块,如 IO 扩展模块、EC20-4AD、EC20-4TC 等,当然也可以连接 EC20-4DA。 EC20 系列可编程控制器主模块,可以扩展多个 IO 扩展模块及特殊功能模块, 连接扩展模块的数量,取决于模块能提供电源的功率大小,具体内容请参见 《EC20 系列可编程控制器用户手册》中 4.7 *电源规格*。

扩展电缆插口小盖,连接电缆前卸下~~

图 1-3 EC20-4DA 模拟量输出模块与主模块的连接示意图

1.3 布线说明

用户端子布线要求,请参见图 1-4。布线时,请您注意以下 7 方面:

1. 模拟输出建议使用双绞屏蔽电缆,电缆应远离电源线或其他可能产生电气干扰的电线。

2. 在输出电缆的负载端使用单点接地。

3. 如果输出存在电气噪声或电压波动,可以接一个平滑电容器 $(0.1\,\mu\,F{\sim}0.47$ $\mu\,F/25V)$ 。

- 4. 若将电压输出短路或将电流负载连接到电压输出端,可能会损坏 EC20-4DA。
- 5. 将模块的接地端 PG 良好接地。

6. 模拟供电电源可以使用主模块的辅助输出 24Vdc 电源,也可以使用其它满 足要求的电源。

7. 不要使用用户端子上的空脚。

图 1-4 EC20-4DA 用户端子布线示意图

2 使用说明

2.1 电源指标

	表 2-1 电源指标
项目	说明
模拟电路	24Vdc(-15%~20%),最大允许纹波电压 5%,120mA(来自 主模块或外接电源)
数字电路	5Vdc 50mA(来自主模块)

2.2 性能指标

表 2-2 性能指标

	项目	指标				
占用 I/O 点数		无				
转换速度		每通道 2.1ms(改变所用的通道数不会改变转换速度)				
模拟	电压输出	-10~10Vdc(外部负载阻抗不小于 2k Ω)				
输出	电流输出	0~20mA(外部负载阻抗为 500 Ω 或更小)				
数字输入		默认设置: -2000~2000, 允许范围: -10000~10000				
分辨 电压输出 率 电流输出		5mV (10V/2000)				
		10 µ A (20mA/2000)				
总体精度		±1% (对于 10V 的全量程)				
		±1%(对于 20mA 的全量程)				
原南		模拟电路和数字电路之间用光电耦合器进行隔离。模拟电路				
PTD (24)		电源和外部电源用 DC/DC 进行隔离。模拟通道之间不隔离				

2.3 缓冲区(BFM)

EC20-4DA 与主模块通过缓冲区(BFM)交换信息,主模块通过 TO 命令将信息写入 EC20-4DA 的 BFM,对 EC20-4DA 进行设置,DA 转换输入数据也由 TO 命令写入。主模块通过 FROM 命令读取 EC20-4DA 的 BFM 内容。EC20-4DA 的缓冲区(BFM)具体内容见表 2-3。

	表 2-3	EC20-4DA	的缓冲区	(BFM)	内容
--	-------	----------	------	-------	----

BFM	内容	缺省值
*#0	输出模式选择	H0000
*#1	通道1输出数据	0
*#2	通道2输出数据	0
*#3	通道3输出数据	0
*#4	通道4输出数据	0
*#5	通道复位命令字	H0000
*#6	通道特性设置确认命令字	H0000
*#7	CH1-X0	0 (输出模式 0)
*#8	CH1-Y0	0(输出模式0)

BFM	内容	缺省值
*#9	CH1X1	2000 (输出模式 0)
*#10	CH1-Y1	10000 (输出模式 0)
*#11	CH2——X0	0 (输出模式 0)
*#12	СН2—Ү0	0 (输出模式 0)
*#13	CH2——X1	2000 (输出模式 0)
*#14	CH2—Y1	10000 (输出模式 0)
*#15	СН3——Х0	0 (输出模式 0)
*#16	СН3——Ү0	0 (输出模式 0)
*#17	CH3—X1	2000 (输出模式 0)
*#18	СН3—У1	10000(输出模式0)
*#19	CH4——X0	0 (输出模式 0)
*#20	СН4——Ү0	0 (输出模式 0)
*#21	CH4——X1	2000 (输出模式 0)
*#22	СН4——Ү1	10000(输出模式0)
#23	保留	
#24	保留	
#25	保留	
#26	保留	
#27	保留	
#28	保留	
#29	保留	
#30	保留	
#31	保留	
#32	保留	
#33	保留	
#34	错误状态	
*#35	初始化	0
*#36	更改设置允许	1(允许更改),如果设为0,则不允 许更改
#4094	模块软件版本信息	H1000
#4095	模块识别码	H2402

说明:

1. 只有带*号的缓存器可以使用 TO 指令从主模块写入 BFM,使用 FROM 命令可读取 BFM 区任意单元内容,若读取保留单元,将会获得 0 值。

2. BFM#0 为输出模式选择缓存器,采用 4 位十六进制数 H×4×3×2×1表示。
×1是通道 1 的命令,×2是通道 2 的命令,依此类推。当×=0 时,表示-10V~
10V 的电压输出模式;当×=1 时,表示 0~20mA 的电流输出模式;当×=2 时,表示 4~20mA 的电流输出模式,当×=3 时,为厂家保留功能。

请注意: 当某通道模式设置为 2 时,该通道相应的通道输出特性设置数据 X0 将会自动更改,X0 参数的意义请参见第 5 条说明。此后,再将此通道设置为其他模式,X0 将会保持不变,因此需要根据需要更改,具体方法请参见第 4 条和 5 条说明,特性更改参见 3 特性设置。

3. BFM#5 为通道复位命令,当可编程序控制器处于停止(STOP)模式,运行 (RUN)模式下的最后输出值将被保持。要复位这些值以使其成为偏移值,可 将十六进制值 H×4×3×2×1 写入 BFM#5 中,其中×1是通道1的命令,×2是 通道2的命令,依此类推。当×=0时,表示保持输出;当×=1时,表示复位 到偏移值。

4. BFM#6 为通道特性设置确认命令,当通道特性数据(即 BFM#7 到 BFM#22 中的通道特性数据)设置后,在相应的十六进制数据位中写入 1,当前通道特性设置值才会有效,相应通道的输出特性即可改变,该命令正确执行后,会自动清除。BFM#6 的格式为 $H \times_4 \times_3 \times_2 \times_1$,其中×1是通道 1 的命令,×2 是通道 2 的命令,依此类推。

5. BFM#7 到 BFM#22 为通道输出特性设置数据缓存器,使用两点法设置通道 特性,X0、X1 表示通道输入数字量,Y0、Y1 表示通道实际输出,Y0、Y1 数 据的单位是 mV 或µA,每通道占用 4 字。考虑到方便用户的设置,同时并不 影响功能的实现,将 Y0、Y1 的值固定为模拟量的 0 值和最大值,对通道模式 字 (BFM 的#0)进行更改时,Y0、Y1 会根据模式自动更改,用户对此两项设 置的更改无效。

X0、YO、X1、Y1 的更改对通道特性的改变,参见3 特性设置。

6. BFM#34 为错误状态缓存器,当出现所示的错误时,可以用 FROM 指令读出错误的详细信息,如表 2-4 所示。

BFM#34 的位设备	开 (ON)	关(OFF)
b0: 错误	b1、b2 中任何一个为 ON	无错误
b1: 通道特性设置数	EEPROM 中的通道特性数据不	通道特州粉据工资
据错误	正常或者发生设置错误	地地们比数加止市
b2: 电源故障	24Vdc 电源故障	电源正常
b3: 硬件故障	DA 转换器或其它硬件故障	硬件正常
b10: 范围错误	数字输入值超出指定范围	输入值在规定范围内

表 2-4 BFM#34 的状态信息

7. 当通过将 BFM#35 设为1 而将其激活后,模块的所有设置将复位成缺省值。

8. BFM#36 为禁止调整 I/O 特性。当设置 BFM#36 为 0,将会禁止用户对 I/O 特性的疏忽性调整。一旦设置了禁止调整功能,该功能将一直有效,直到设置 了允许命令(BFM#36=1)。所设定的值为停电保持状态。

9. BFM#4094 为模块软件版本信息,可以使用 FROM 指令读出模块软件版本 信息。

10. BFM#4095 为模块识别码。EC20-4DA 的识别码是 H2402。可编程序控制器中的用户程序可以在程序中使用这个号码,以在传输/接收数据之前确认此特殊模块。

3 特性设置

EC20-4DA 的输出通道特性为通道模拟输出量 Y 与通道输入数字量 X 之间的线 性关系,可由用户设置,每个通道可以理解为图 3-1 中所示的模型,由于其为 线性特性,因此只要确定两点 P0 (Y0, X0)、P1 (Y1,X1),即可确定通道的 特性,其中,X0 表示模拟量输出为 Y0 时通道输入数字量,X1 表示模拟量输 出为 Y1 时通道输入数字量。

图 3-1 EC20-4DA 的通道特性示意图

考虑到用户使用的简便性,且不影响功能的实现,将 Y0、Y1 的值固定为当前 模式下,模拟量的 0 值和最大值,也就是说图 3-1 中 Y0 为 0,Y1 为当前模式 下的模拟输出的最大值,对通道模式字(BFM 的#0)进行更改时,Y0、Y1 会 根据模式自动更改,用户对此两项设置的写入无效。

若不更改各通道的 X0、X1 值,仅设置通道的模式(BFM#0),那么,每种模式对应的特性如图 3-2 所示。其中,图 3-2 中的 A 为出厂设定。

图 3-2 不更改各通道的 X0、X1 值, 各种模式对应通道特性

若更改通道的 X0、X1 数值,即可更改通道特性,X0、X1 可在-10000~10000 之间任意设定,若设定值超出此范围,EC20-4DA 不会接收,并保持原有有效 设置,图 3-3 为特性更改举例,请参考。

4 应用示例

4.1 基本应用

例: EC20-4DA 模块地址为1(特殊功能模块的编址方法,请参见《EC20系列 可编程控制器用户手册》),设置第1、2通道为模式0(-10V~10V),第3 通道为模式1(0~20mA),第4通道为模式2(4~20mA)。

使用其第 1 通道输出-10V~10V 的锯齿波信号,第 2 通道输出 5V 电压信号, 第 3 通道输出 5mA 电流信号,第 4 通道输出 7.2mA 电流信号。

(*上电后读取第1块特殊模块标识字到D0,并判断是否是DA模块,若是则置M0有效*/

	T	FROM	1	4095	DO	1	J
	Ļ		DO	16#2402	H SET	MO	1
/*设置模式	; ii	道4模式	2、通道3	模式1、通道2	模式0、通道	1模式0; (推荐只设置一次)*/
	-(TO	1	0	16#2100	1	J
/*输出数据	变量	: D1为·	一个锯齿油	皮变量,D2、D2	3为常数*/		
SM1	-(MOV	-2000	D1	3		
SM0	-(ADD	D1	10	D1	J	
>	D1		2000	H MOV	-2000	D1	J
³⁰⁰	-(MOV	1000	D2	J		
	-(MOV	500	D3	J		
/*发送数排	到轴	俞出通道	〕,既可じ	J.使用D元件数	据,也可以	使用立即	数数据*/
MO	٦٢	TO	1	1	D1	1	J
	£	TO	1	2	D2	1]
	Æ	TO	1	3	D3	1	1
	ļ	TO	1	4	400	1	1
/*读取设留	· ~	b: 读栲	(式到D4,	结果将是844	8(即设置的	16#2100);	- */
SM0	-(FROM	1	0	D4	1]

4.2 特性更改

例: EC20-4DA 模块地址为3(特殊功能模块的编址方法,请参见《EC20系列 可编程控制器用户手册》),第1、2、3通道特性设置分别按图3-3所示A、B、 C特性更改,下面示例程序实现如下功能:

- 1. 通道 1 (模式 0) 输出一个-2V~+2V 的锯齿波,时间步长为系统的扫描时间;
- 2. 通道2(模式1)输出15mA电流;
- 3. 通道3(模式2)输出4.8mA电流;
- 4. 通道4(模式0)输出2.0V电压。

/*上电后读取第3块特殊模块标识字到D0,并判断是否是DA模块,若是则输出M0*/

设置模式	; 通	道4模式	(0、通道3桥	ē式2、通道	道2模式1、通道1	模式0; ()	1.设置一次
- ^{M0}		TO	3	0	16#0210	1	3
通道特性	设置	开始,	当X10输入者	了效一次后	启动*/		
	-6	SET	MI	1			
设置通道	1, 2	、3的过	f道特性:;;	通道1特性	A、通道2特性B、	通道3特性	±C*/
- ^{MI}	T	TO	3	7	0	1]
	£	TO	3	9	10000	1	J
	£	TO	3	11	-2000	1	1
	£	TO	3	13	2000	L.	נ
	£	TO	3	15	-2500	1	1
	ե	TO	3	17	10000	1	1
通道特性	上确り	.*/					
		TO	3	6	16#1111	1	1
输出数据	日夜 [₹: D13	与一个锯齿	波变量,	D2、D3为常数*	/	
SM1		MOV	-2000	D1	1		
SM0	-(ADD	D1	10	D1	1	
>	D1		2000	н	MOV -2000	D1	1
		MOV	1000	D2	J		
		MOV	500	D3	3		
发送数排	子到轴	自出通道	1,既可以(史用D元件	数据,也可以付	用立即数	数据*/
	[то	3	1	D1	1	3
SA 38	£	ТО	3	2	D2	1	1
	1	100	5740		2020	G11	-
	Æ	TO	3	3	D3	1]

/*最终:通道1(模式0)输出一个-2V~+2V的锯齿波,时间步长为系统的扫描时间*/

/*最终: 通道2(模式1)输出15mA电流*/

/*最终: 通道3(模式2)输出4.8mA电流*/

/*最终;通道4(模式0)输出2.0V电压*/

5 运行检查

5.1 例行检查

1. 检查模拟输出布线是否满足要求,参考1.3 布线说明。

2. 检查 EC20-4DA 扩展电缆是否可靠插入扩展电缆接口。

3. 检查 5V 及 24V 电源是否过载。注意: EC20-4DA 数字部分的电源由自主模 块通过扩展电缆供应。

4. 检查应用程序,确保应用中选择的是正确的操作方法及参数范围。

5. 置 EC20 主模块为 RUN 状态。

5.2 故障检查

如果 EC20-4DA 运行不正常,请检查下列项目。 ●检查 "POWER"指示灯状态

点亮:扩展电缆连接正确;

熄灭:检查扩展电缆连接情况及主模块情况。

- ●检查模拟布线。
- ●检查"24V"指示灯状态
- 点亮: 24Vdc 电源正常;

熄灭: 24Vdc 电源可能有故障, 若 24Vdc 电源正常, 则是 EC20-4DA 故障。 ●检查 "RUN"指示灯状态 高速闪烁: EC20-4DA 运行正常; 慢速闪烁或熄灭: 检查 BFM#34 中的信息。

用户须知

1. 保修范围指可编程控制器本体。

2. <u>保修期为十八个月</u>,保修期内正常使用情况下,产品发生故障或损坏,我 公司免费维修。

3. <u>保修期起始时间为产品制造出厂日期</u>,机器编码是判断保修期的唯一依据, 无机器编码的设备按过保处理。

4. 即使在保修期内,如发生以下情况,将收取一定的维修费用:

- 不按用户手册操作导致的机器故障;
- 由于火灾、水灾、电压异常等造成的机器损坏;
- 将可编程控制器用于非正常功能时造成的损坏。

5. 服务费按实际费用计算,如另有合同,以合同优先的原则处理。

- 6. 请您务必保留此卡,并在保修时出示给维修单位。
- 7. 如您有问题可与代理商联系,也可直接与我公司联系。

艾默生网络能源有限公司 中国区客户服务中心 地址:深圳市南山区科技工业园科发路一号 邮编:518057 公司网址:www.emersonnetworkpower.com.cn 客户服务热线:800-820-6510 手机及未开通 800 地区请拨打:021-26037141 客户服务投诉热线:0755-86010800 E-mail: info@emersonnetwork.com.cn

资料版本 V1.2归档时间 2007-03-15BOM 编号 31011116

版权所有,保留一切权利。内容如有改动,恕不另行通知。