
PT 系列智能调节模块

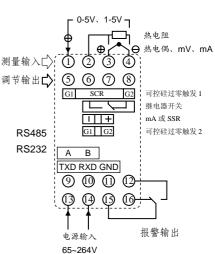
PT 系列智能调节模块采用单片微处理器设计,导轨式安装,内置二十多种线性、非线性输入规格,配合触摸屏 PC、 PLC、或工控机使用,可组成各类单机台温度、湿度、压力、液位、流量等控制系统。

一、主要技术指标

● 电源电压: PT 型采用 65~264V 交、直流; PT1 型采用 24V 交、直流

◎ 测量精度: 非线性输入 0.2%, 线性输入 0.1%)

● 输入规格: (表中标注 "*" 号的为非标输入,需要在定货时声明。其它输入规格均可通过上位机或外接编程器在线选择)


热电偶	K	S	В	Е	Т	J	Ν	WRe325
热电阻	Pt100	Cu50						
线性电压	0~20mV	0~50mV	0~100mV	0~1V	0.2~1V	0~5V	1~5V	0~10V*
线性电流	0~10mA	4~20mA						
线性电阻	0~400Ω	0~1K*	0~10K*					

● 输出规格: mA 线性电流、固态继电器触发 (SSR)、可控硅触发、开关量

二、外形尺寸规格及端子定义

三、型号说明

5: 单路可控硅过零触发; 6: 两路可控硅过零触发; 7: 三路可控硅过零触发

四、设定地址、波特率

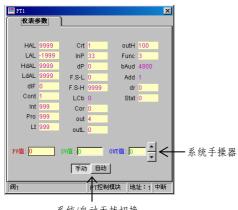
在产品出厂时,如果是单台定货,通信地址为 1,波特率为 9600; 多台 (n) 定货时,地址依次为 1~n,波特率为 9600,并在外壳上加以标识。用户也可以通过一个另外购买的编程器另行设定。

特别提示: PT 模块的本机地址和波特率只能通过编程器设定! 非专业用户不建议配用编程器

操作步骤:

- 1. 将编程器插头如左图所示,按正确的方向插入模块串口;
- 2. 接通模块电源,按 "SET"键 3 秒钟进入设定状态;
- 3. 参数含义:

bAud:波特率。有效数值范围:300、600、1200、4800、9000(即9600);


Add: 本机地址。有效数值范围: 0~63

PLoc: 修改权限参数。

0: 允许编程器修改参数; 1: 禁止编程器修改参数;

五、参数设定

运行 BTDCS3000 版软件,在组态环境下 "现场设备"中定义 PT 控制模块,在"项目数据"中定义了变量后,进入运行环境,双击点名称,弹出模块内部参数列表(图 1):

点击弹出软键盘。取代外接键 盘、鼠标

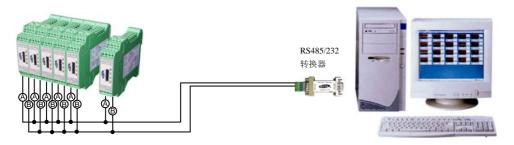
注:如果是 WIN98SE 操作系统, 仅可輸入数值及大、小写字母。 WIN2000 以上操作系统,可完全 取代外接键盘功能(软件自动识 别)

系统/自动无扰切换

<u>₹</u> 1

图 2

点击标题栏上的"登入"按钮,输入正确的代码和□令后,即可获得修改权限,用鼠标双击需要修改的参数,进入修改画面;(图2)


六、参数说明

수> ¾F	⇔ \\/	**/±±=	טם אי
参数	定义	数值范围	说 明
Set	设定值		受控变量的目标值
HAL	上限报警值	-1999~9999	用于设定上限报警点。 例如:需要模块在测量值达到 1000 输出一个报警开关量,则可设定 HAL=1000。 没有用到上限报警时,请设为极限值 9999
LAL	下限报警值	-1999~9999	用于设定下限报警点。 例如:需要模块在测量值低于 300 时输出一个报警开关量,则可设定 LAL=300。 没有用到下限报警时,请设为极限值1999
HdAL	正偏差报警值	0~9999	用于设定正偏差报警量或提前报警量。例1:需要比给定值高10℃时报警,则可设定HdAL=10,假如给定值为500,那么,在测量值>510℃时报警动作。例2:需要提前给定值5℃时报警,则可设定HdAL=-5,假如给定值为500,那么,在测量值>495℃时报警动作。 设有用到正偏差或提前报警时,请设为极限值9999
LdAL	负偏差报警值	0~9999	用于设定负偏差报警点。例如:需要比给定值低 10℃时报警,则可设定 LdAL=10 即可。假如给定值为 500,那么,在<490℃时报警动作。 没有用到负偏差报警时,请设为极限值 9999
dIF	回差	0~2000	设定报警点不灵敏区,避免当测量值在临界点波动时继电器频繁动作例:上限报警值为1000,dIF=5,那么,当测量值>1005时报警动作,当测量值<995时报警解除。注意: 1.该参数在位式调节时对主输出起作用; 2.该参数在人工智能调节时对自整定过程起作用;自整定后仅对报警有效。自整定前适当设定该参数值,可以避免测量值可能出现的小波动影响导致自整定失败,但dIF值太大可能降低自整定精度.出厂时为0.3
Cont	调节方式选择	0~3	0: 位式调节; 1: 人工智能调节; 2: 进入自整定状态; 3: 已整定。
Int	系统积分时间	0~9999	积分作用强度。

			Int 参数与系统的保持特性有关,以温度控制为例,系统保温性能越好,则该参数取值越大。
			Int 值的调节作用相当于积分作用,该值小,积分作用强(积分时间短),消除静差时间短,但过强的积分作用可能会导至系统较大幅度振荡;该值大,积分作用弱(积分时间长)。Int=0时取消积分作用。建议在自整定的基础上调整;
Pro	系统比例强度	0~9999	Pro 该参数对调节中的比例和微分均有作用。Pro 值越大,比例带越小,调节作用越强(相当于加大放大系数),同时微分作用也相应增强,对温度变化反应敏感;Pro 值减小,则比例带加大,调节作用减弱(相当于减小放大系数),同时微分作用也相应减弱,对温度变化反应慢。
Lt	系统滞后时间	0~9999	滞后时间因数 Lt 参数在调节中用于分配比例作用和微分作用的大小,Lt 值小,比例作用强(比例带小),微分作用弱;Lt 值大,比例作用弱(比例带大),微分作用增强。对热容量较小,温度变化较快的控制系统,应充分考虑微分作用的影响。对热容量较大,温度变化慢的控制系统,一般微分作用影响不大。建议在自整定的基础上调整;
Crt	调节周期	0~100	控制周期兼自整定判定参数 Crt 参数为模块的调节运算周期,单位为秒;该参数对调节品质影响较大,合适的数值能完善 地解决超调及振荡现象,同时获得最好的响应速度。该参数不能由自整定确定,但对自整定效果有 影响,可根据系统情况在启动自整定前设定。一般在时间比例调节,主回路采用固态继电器或可控 硅为执行单元时,推荐值 1~8;而在主回路使用交流接触器时,为了兼顾接触器的寿命,该参数应 取大一些(>10),避免接触器动作过于频繁。在可控硅移相触发输出时,为了使控制连续平稳, 也要适当加大该参数值(>6)。如果模块主输出采用位式调节(Cont=0),请将此参数值设置为 0。 该参数兼有自整定结果判定功能:如果自整定结束后该参数被自动修改,表明自整定失败,需 要查明原因。也可以修改 Crt 参数或给定值后再重新启动自整定。
InP	输入选择	0~34	0: K型热电偶; 1: S型热电偶; 2: Wre325型热电偶; 3: T型热电偶; 4: E型热电偶; 5: J型热电偶; 6: B型热电偶; 7: N型热电偶; 20: Cu50 热电阻; 21: Pt100 热电阻; 28: 0~20mV; 29: 0~100mV; 30: 0~60mV; 31: 0~1V; 32: 0.2~1V; 33: 1~5V; 34: 0~5V
dP	小数点位置	0~3	0:显示格式××××,分辩率为 1; 1:显示格式××××,分辩率为 0.1; 2:显示格式××××,分辩率为 0.01; 3:显示格式×.××,分辩率为 0.001 热电偶、热电阻输入时分辨率固定为 0.1℃
FS-L	量程下限	-1999~9999	在线性输入时,用于标定量程下限。外部给定允许时,用于标定给定下限值
FS-H	量程上限	-1999~9999	在线性输入时,用于标定量程上限。外部给定允许时,用于标定给定上限值
LCb	冷端补偿系数	-200~1000	该参数值是模块测量到的接线端子处的温度值,热电偶的冷端应采用补偿导线延伸至此处。LCb值在模块出厂前已校准,随环境温度自动变化。在热电偶输入时,模块根据该参数值自动进行冷端补偿运算。热电阻或线性输入时该参数不起作用。
Cor	迁移量	-1999~2000	显示值=测量值+Cor 值。例如: 如果 Cor=0 时,测量值=1000,那么,当 Cor=10 时,显示 1010。 Cor 参数一般用于线性输入或热电阻输入时校正零点。出厂时 Cor=0,由于产品本身具有优异的稳定性,正常情况下一般不要随意设定该参数,以避免可能引入的人为的误差
out	调节输出选择	1, 2, 4	1: 0~10mA; 2、固态继电器、开关量、可控硅过零触发; 4: 4~20mA。
outL	调节输出下限	0~220	调节输出下限值
outH	调节输出上限	0~220	调节输出上限值
Func	正反作用选择	0~1	0: 反作用调节(模块的测量输入和调节输出趋势相反,如加热系统等); 1: 模块主输出为正作用调节(模块的测量输入和调节输出趋势相同,如制冷系统等); 8: 允许外部 1-5V (4-20mA) 模拟量给定,反作用调节; 9: 允许外部 1-5V (4-20mA) 模拟量给定,正作用调节;
bAud	波特率	禁止修改	仅通过编程器修改
Add	地址号	禁止修改	仅通过编程器修改
dr	数字滤波	0~15	dr 参数对测量值起平滑滤波作用.该参数值越大,模块示值越稳定,但响应速度越慢,在一些要求响应快的场合(如压力控制),取值不宜过大. 参数值为0时取消数字滤波
StAt	系统/自动选择	0~1	0:模块调节输出由系统控制;系统不发送信号,保持当前值 1:模块自动调节输出;
PLoc	操作权限	0~9999	0: 允许通过编程器修改 Add 和 bAud 值; 2: 禁止通过参数修改 Add 和 bAud 值;

七、接线说明

7.1 配 RS485 连接方式:

八、通信协议

8.1 数据格式

通讯传输数据格式: 1个起始位, 8位数据, 无校验位, 2个停止位;

通讯传输波特率: 1200-9600 bit/S。

8.2 地址编码

为了在一个通讯线路上连接个模块,需要给每个模块分配一个互不相同的地址编码。模块有效的地址数值范围:0-63。即一条通讯线路上最多可连接64台PT模块。模块地址由参数Add设定。地址编码为两个字节,其数值范围(16进制数)是80H-BFH,两个字节必需相同,数值为(80H+模块地址)。例如,模块参数Add=1(Hex=01H,80H+01H=81H),则该台模块的地址编码为:81H81H

8.3 模块内部参数读写编号

参数	读写编号 (Hex)	含义	备 注
SEt	00	给定值	祥见参数说明
HAL	01	上限报警	祥见参数说明
LAL	02	下限报警	祥见参数说明
HdAL	03	正偏差报警	祥见参数说明
LdAL	04	负偏差报警	祥见参数说明
dIF	05	回差 (不灵敏区)	祥见参数说明
Cont	06	控制方式	祥见参数说明
Int	07	积分参数	祥见参数说明
Pro	08	比例参数	祥见参数说明
Lt	09	滞后时间	祥见参数说明
Crt	0A	调节周期	祥见参数说明
InP	0B	输入规格	祥见参数说明
dP	0C	小数点位置	样见参数说明
F.S-L	0D	量程下限	祥见参数说明
F.S-H	0E	量程上限	祥见参数说明
LCb	0F	冷端补偿	样见参数说明
Cor	10	迁移量	祥见参数说明
out	11	主輸出类型	样见参数说明
outL	12	主輸出下限	祥见参数说明
outH	13	主輸出上限	祥见参数说明
Func	14	功能选择	祥见参数说明
bAud	15	波特率	祥见参数说明
Add	16	模块地址	祥见参数说明
dr	17	数字滤波	祥见参数说明
Stat	18	手动/自动选择	祥见参数说明
PLoc	19	操作权限密码	祥见参数说明

8.4. 读参数指令

读指令格式: 地址编码+52H+参数编号(注意: 地址编码为两个字节,详见前页"地址编码"说明。例如,读地址为 1 的模块的给定值,读指令为: 81H 81H 52H 00H)

返回串格式:按顺序依次为测量值、给定值、输出值+报警状态、所读参数值。

测量值、给定值和参数值为 2 个字节的 16 位整型数,低位字节在前,高位字节在后。输出值和报警状态各占 **1** 个字节,报警状态字节定义如下:

- 位 0 为 0 则无上限报警 (HAL), 为 1 则存在上限报警。
- 位1为0则无下限报警(LAL),为1则存在下限报警。
- 位 2 为 0 则无偏差报警 (HdAL), 为 1 则存在正偏差报警。
- 位 3 为 0 则无负偏差报警 (LdAL), 为 1 则存在负偏差报警。
- 位 4 为 0 则无超量程报警 (Err), 为 1 存在输入超量程报警。

模块内部数值采用补码表示。非线性热电偶或热电阻输入时(0≤模块 Inp 参数≤26),其分辨率固定为 0.1℃。由于数据类型为整型,上位机显示数据应÷10;线性信号输入时(27≤模块 Inp 参数≤36),分辨率由模块参数 dp 确定,用户在编写上位机软件时,通过读一次模块参数 dP (0CH)值来确定小数点位置。dp=1,上位机显示数据应÷10;dp=2,上位机显示数据应÷100;dp=3,上位机显示数据应÷100;

上位机每向模块发出一条指令,模块回送一次数据。时间间隔在 0—200ms 之间,上位机必须等模块返回数据后,才能发新的指令,否则将引起错误。

8.5. 写参数指令

指令格式: 地址编码+43H+参数编号+写入值的低位字节+写入值的高位字节

例如, 将地址为 1 的模块的给定值修改为 1000, 写指令为: 81H 81H 43H 00H E8H 03H

模块返回:测量值、给定值、输出值+报警状态、写入后的参数值

九. 注意事项

- 9.1. 采用 RS485 通讯接□时,需使用一个 RS485/RS232 转换器;如果是无源转换器,在串行□初始化时必须置 RTS 为高电平,DTR 为低电平 为其提供电源;
- 9.2. 通信采用半双工制。通信双方必须采用相同的波特率,地址——对应。