85072A 操作使用手册

目录

首次使用准备工作2
安装夹具2
网络仪连接3
软件安装3
分裂圆柱体谐振腔各个部分介绍4
测量部分5
测量前空腔检查5
测量过程8
技术说明11

首次使用准备工作

安装夹具

1. 逆时针方向拧松紧固螺丝

将图示的螺丝逆时针方向拧松 此螺丝是用来运输保护整个谐振腔。

取下样品
 逆时针旋转千分尺 然后将样品取下

网络仪连接

软件安装

使用光盘安装 85071E 软件 安装在 PNA 系列网络分析仪中。 安装过程中需要首先选择 Option 300 Resonant Cavity 然后点击 Install 85071E, with Options

加密狗的 License 申请 请安装随光盘附带的安装说明进行。

分裂圆柱体谐振腔各个部分介绍

谐振腔背面视图

谐振腔正面面视图

测量前空腔检查

- 确认运输螺丝已经拧松 1.
- 2. 顺时针调整千分尺的小表盘 直到谐振腔两端紧密贴在一起。当听到咔嗒的声音后代表已经贴紧
- 3. 按下千分尺的中间按钮 让千分尺归零
- 调整前部耦合旋钮 使下图所示的螺丝边缘处于刻度的中间 即最长的那个刻度 4.

Non-threaded edge of the keyed cable adjustment screw

- 5. 按照同样的方法调整反向耦合
- 6. 在网络仪上设置如下的测量条件 测量参数: S21 频率范围: 10GHz - 10.06GHz 垂直刻度:自动

在网络仪界面上 按 Preset 恢复默认测量 点击 Meas 选择 S21 点击 Freq 在 Start 中输入 10 GHz 点击 Freq 在 Stop 中输入 10.06GHz 点击 Scale 选择 Auto Scale

观测网络仪 应该显示如下测量结果
 同时调整前向耦合以及反向耦合 使峰值 Marker1 的值显示在-55dB 到-65dB 之间

- 任何时候同时调整前向耦合和反向耦合 必须慢慢地同步旋转旋钮 并且方向一致。如果都是顺时针旋转那耦合 增强,逆时针旋转耦合降低.
- 8. 在 PNA 网络仪界面中 点击 File Minimize Application 即最小化窗口
- 9. 启动 85071E 材料测试软件 Measurement Method: Split Cylinder Measurement Instrument: PNA Series Instrument Interface: DCOM

Measurement Method	Measurement	
Measurement Instrument	Cavity Fs = 10.0312899 GHz Cavity Q = 22782.9	Measure
Instrument Interface	Sample thickness 3.203 mm	Set Range
GPIB Address	Sample Fs = 9.19926994 GHz Sample Q = 8696.11	Measure
Save Setup Recall Setup	Calculated er' = 2.05462 +/- 0.00812	Becalculate
Save Data Copy Data	Calculated er" = 0.00047 +/- 0.00009 Loss tangent = 0.00023 +/- 0.00002	
About Exit	Measurement Wizard	

10. 检查空腔的品质因素和谐振频率 点击软件右上角的 Measure

Coupling		\mathbf{X}
	Ajust the coupling to center the bar below.	
	(<u> </u>	

弹出窗口后 根据箭头所指的方向 同时调整前向耦合以及反向耦合 直到箭头消失 测量结果如下图所示

Cavity Fs 必须在 10GHz - 10.06GHz 之间 Cavity Q 必须 >= 20000

Measurement									
111	casarement								
	Cavity Fs Cavity Q	= 10.0312899 GHz = 22782.9	Measure						

注意: 该操作检查每天都需要做一次; 当温度发生很大的变化或者夹具运输后 需要重新做

测量过程

1. 清洁样品表面

注意: 样品必须保持清洁 这样才不会损坏分裂圆柱体谐振腔

- 2. 将样品放入分裂圆柱体谐振腔中
- 3. 使用千分尺测量样品厚度 并输入到 Sample Thickness 中

Sample thickness	3.203 mm	> .
	~	Set Range

4. 测量过程

a. Set Range

点击 Set Range 出现如下界面

Split Cylinder Setup								
Estimated er	1.00	Find Estimate						
Measurement Frequency	10.0360003 💌] GHz						
Search Span	100	MHz dBm						
Power	100	Hz						
Num Pts	201	View Analyzer						
Ca	incel	ОК						

输入大致的 Er 值 (也可以不输入) 点击 Find Estimate 根据提示进行预测量

完成后可以在 Measurement Frequency 中选择不同的测量频率

通常选择 Measurement Frequency 中的最低频率 并且可以通过 View Analyzer 来观察 一般在网络仪屏幕中只有 一个峰并且有良好的对称性,如果不是请选择其他频率测量。

b. Measure

点击软件中的 Measure 根据提示完成测量.

c. 判断测量结果

测量结束后直接观察网络分析仪界面,良好的测量结果显示的谐振曲线应该是对称的,如下图所示。

<u>F</u> ile	⊻iew	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>T</u> race	<u>S</u> cale	M <u>a</u> rker	System	i <u>W</u> indo	w <u>H</u> elp			
Stim	nulus			Stop 9.	9495123	342 GHz	: 🗄	Start		Stop	Cen	ter	Span
<mark>821</mark> 2.00	Log Ma IOdB/ IOOdB	ag 46.0	00 dB-S2	21				4		> 1:	9.9338	79 GHz BW: (47.72 dB 3.124 MHz
		-48.0										Q: Loss:	1622 -47.72 dB
		-50.0							\rightarrow				
		-52.0	0				$\sqrt{2}$		3				
		-54.0				+	, 						<u> </u>
		-56.0			+-/	4							
		-58.0		+-/	\leftarrow	_							
		-60.0		$\left \right $									
		-62.0	0										
		-64.0											
		-66.0 Cł	00	9.91825 GHz								Stop 9.9	4951 GHz
Sta	atus C	H 1: S21		No Cor									LCL

随夹具附带的 PTFE 的材料测量结果应该在如下范围 Er'≈ 2.05 Er''≈ 0.0004 Loss Tangent≈ 0.0002

技术说明

特性

- ・测量薄膜、裸基底和低耗损薄膜的复杂介电常数和损耗正切值
 ・符合 IPC TM-650 2.5.5.13 测试方法标准
 ・与安捷伦谐振腔体软件连用
- •创新设计稳定易用

电气特性

- •密封空圆柱体的 TEO11 谐振模式:频率 = 10.03 ± 0.03 GHz
- •密封空圆柱体的 TEO11 谐振模式: Q 因数 = ≥ 20,000 (在 -50dB 时输入耦合)

典型不确定性

- •TE011 模式:介电常数的真实部分: ±1%
- •TE011 模式: 损耗正切值: ±0.0001
- •可用的高阶 TEOnp 模式:介电常数的实部: ±1-2%
- •可用的高阶 TEOnp 模式:损耗正切值: ±0.0005

样品要求

- •非磁性(µr*=1-j0)、均质和非各向异性,具有均匀厚度和平坦平行边
- •厚度 0.1mm 至 5mm, 典型值 1mm
- •最小长度或直径为 56 mm, 典型值 >60 mm
- •1mm 厚度采样的建议值为:介电常数的实部 <100,损耗正切值 <0.01