RICOH

Microprocessor Supervisory Circuit with 2 clock input pin

NO.EA-172-111103

OUTLINE

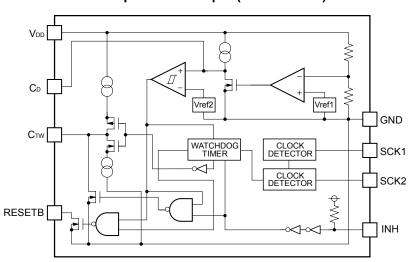
The R5109G Series are CMOS-based microprocessor supervisory circuit, or high accuracy and ultra low supply current voltage detector with built-in delay circuit and watchdog timer. When the supply voltage is down across the threshold, or the watchdog timer does not detect the system clock from the microprocessor, the reset output is generated.

The voltage detector circuit is used for the system reset, etc. The detector threshold is fixed internally, and the accuracy is $\pm 1.0\%$. The released delay time (Power-on Reset Delay) circuit is built-in, and output delay time is adjustable with an external capacitor, and the accuracy is $\pm 16\%^*$. When the supply voltage becomes the released voltage, the reset state will be maintained during the delay time. The output type of the reset is selectable, Nch open-drain, or CMOS.

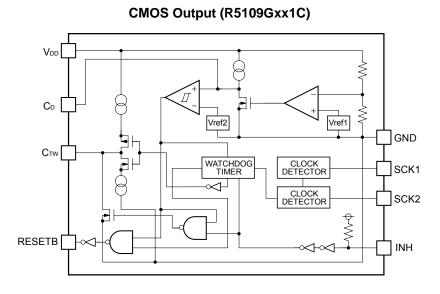
The time out period of the watchdog timer can be also set with an external capacitor, and the accuracy is $\pm 33\%^*$.

The function to stop supervising clock by the watchdog timer (INH function) and the function to supervise two different clocks are built in this IC.

There are another 4 products by the difference of packages and the function of voltage detector and watchdog timer. The package of R5109G is SSOP-8G.


FEATURES

Supply Current	Тур. 11.5μА
Operating Voltage Range	0.9V to 6.0V
< Voltage Detector Part >	
Detector Threshold Range	1.5V to 5.5V (0.1V steps)
Detector Threshold Accuracy	
Power-on Reset Delay Time accuracy	$\pm 16\%^*$ (-40°C \leq Topt ≤ 105 °C)
Power-on reset delay time of the voltage detector	
< Watchdog Timer Part > Built-in a watchdog timer's time out period accuracy 	$+33\%^{*}$ (-40°C < Topt < 105°C)
Timeout period for watchdog timer	
Reset timer for watchdog timer	
With Inhibit pin (INH)	Able to stop watchdog timer
Dual clock input	Able to supervise two microprocessors
Package	SSOP-8G
	*) Accuracy to center value of (Min.+Max.)/2

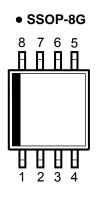

APPLICATIONS

• Supervisory circuit for equipment with using microprocessors.

BLOCK DIAGRAMS

Nch Open Drain Output (R5109Gxx1A)

SELECTION GUIDE


The detector threshold, the output type and the taping type for the ICs can be selected at the users' request. The selection can be made with designating the part number as shown below;

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5109Gxx1*-TR-FE	SSOP-8G	3,000 pcs	Yes	Yes
 xx: The detector thresho * : Designation of Outpo (A) Nch Open Drain (C) CMOS 	ut Type	in the range from 1.5V(15) to 5.5V(55) in 0.	1V steps.

SERIES SELECTION

	R5105N	R5106N	R5107G	R5108G	R5109G
Package	SO	SOT-23-6 SSOI			
With INH pin (Inhibit)	No Yes				
2 clock input		Ν	lo		Yes
With MR pin (Manual Reset)		No		No	
With SENSE pin		No		Yes	No
Remarks		C _D pin and C _{TW} pin are combined uses.		Operating Voltage Range 1.5V to 6.0V	Supply Current 11.5µA

PIN CONFIGURATION

PIN DESCRIPTIONS

Pin No.	Symbol	Description
1	RESETB	Output Pin for Reset signal of Watchdog timer and Voltage Detector. (Output "L" at detecting Detector Threshold and Watchdog Timer Reset.)
2	INH	Inhibit Pin ("L": Inhibit the watchdog timer)
3	CD	External Capacitor Pin for Setting Delay Time of Voltage Detector
4	GND	Ground Pin
5	SCK1	Clock Input Pin 1 from Microprocessor
6	SCK2	Clock Input Pin 2 from Microprocessor
7	Стw	External Capacitor Pin for Setting Reset and Watchdog Timeout Periods
8	Vdd	Power supply Pin

ABSOLUTE MAXIMUM RATINGS

Symbol		Item	Rating	Unit
Vdd	Supply Voltage		–0.3 to 7.0	V
Vcd		Voltage of C _D Pin	-0.3 to V _{DD} + 0.3	V
Vстw	Output Voltage	Voltage of CTW Pin	-0.3 to V _{DD} + 0.3	V
VRESETB		Voltage of RESETB Pin	-0.3 to 7.0	V
Vscк	Input Voltage	Voltage of SCK1, SCK2 Pin	–0.3 to 7.0	V
VINH	input voltage	Voltage of INH Pin	–0.3 to 7.0	V
RESETB	Output Current	Current of RESETB Pin	20	mA
PD	Power Dissipation	Power Dissipation (SSOP-8G)*		mW
Topt	Operating Temper	Operating Temperature Range		°C
Tstg	Storage Temperature Range		–55 to 125	°C

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

6

R5109G

ELECTRICAL CHARACTERISTICS

VDD=6.0V, CTW=0.1µF, CD=0.1µF, In case of Nch Open Drain Output type, the output pin is pulled up with a resistance of $100k\Omega$ (R5109Gxx1A), unless otherwise noted.

The specification in _____ is checked and guaranteed by design engineering at $-40^{\circ}C \le T_{opt} \le 105^{\circ}C$.

• R5109Gxx1A/C

• R510	9Gxx1A/C				Тс	pt=25°C
Symbol	ltem	Conditions	Min.	Тур.	Max.	Unit
Vdd	Operating Voltage		0.9		6.0	V
lss	Supply Current	V _{DD} = -V _{DET} +0.5V, Clock pulse input		11.5	15.5	μA

• VD Part

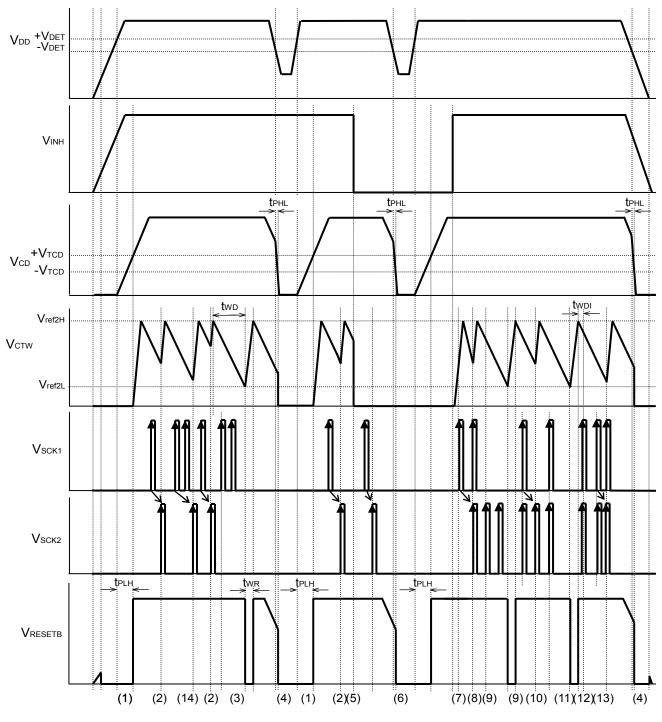
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
-Vdet	Detector Threshold	Topt=25°C		×0.990		×1.010	V
-V DET		$-40^{\circ}C \le Top$	ot ≤ 105°C	×0.972		×1.015	V
Vhys	Detector Threshold Hysteresis			-Vdet ×0.03	-V _{DET} ×0.05	-Vdet ×0.07	V
Δ -V _{DET} / Δ Topt	Detector Threshold Temperature Coefficient	$-40^{\circ}C \le T_{opt} \le 105^{\circ}C$			±100		ppm/°C
t PLH	Output Delay Time	CD=0.1µF *1		340	370	467	ms
IRESETB	Output Current	Nch	V _{DD} =1.2V V _{DS} =0.1V	0.38	0.8		mA
IRESETB	(RESETB Output pin)	Pch *2	V _{DD} =6.0V V _{DS} =0.5V	0.65	0.9		mA

WDT Part

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
two	Watchdog Timeout period	C _{Tw} =0.1µF ^{*1}	230	310	450	ms
twr	Reset Hold Time of WDT	CTw=0.1µF *1	29	34	48	ms
Vscкн	SCK Input "H"	SCK1, SCK2	V _{DD} ×0.8		6.0	V
VSCKL	SCK Input "L"	SCK1, SCK2	0		VDD×0.2	V
VINHH	INH Input "H"		1.0		6.0	V
VINHL	INH Input "L"		0		0.35	V
RINH	INH pull-up Resistance		60	110	164	kΩ
tscкw	SCK Input Pulse Width	Vsckl=Vdd×0.2 Vsckh=Vdd×0.8	500			ns

All of unit are tested and specified under load conditions such that Topt=25°C except for Detector Threshold Temperature Coefficient.

*1) The specification does not contain the temperature characteristics of the external capacitor.


*2) In case of CMOS type (R5109Gxx1C)

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge.

And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

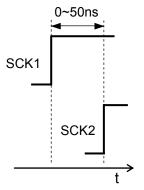
TIMING CHART

*) V_{TCD} : Threshold voltage of C_D pin when a power-on reset pulse inverting. *) V_{ref2H} : C_{TW} pin voltage at the end of WDT timeout period.

*) Vref2L : CTW pin voltage at the begin of WDT timeout period.

OPERATION

- (1) When the power supply, V_{DD} pin voltage becomes more than the released voltage (+V_{DET}), after the released delay time (or the power on reset time t_{PLH}), the output of RESETB becomes "H" level.
- (2) After the SCK1 pulse is input, when the SCK2 pulse is input, the watchdog timer is cleared, and C_{TW} pin mode changes from the discharge mode to the charge mode. When the C_{TW} pin voltage becomes higher than V_{ref2H}, the mode will change into the discharge mode, and next watchdog time count starts.
- (3) After the SCK1 pulse is input, unless the SCK2 pulse is input, WDT will not be cleared, and during the charging period of C_{TW} pin, RESETB="L".
- (4) When the V_{DD} pin becomes lower than the detector threshold voltage (-V_{DET}), RESETB outputs "L" after the t_{PHL}.
- (5) If "L" signal is input to the INH pin, the RESETB outputs "H", regardless the SCK clock state.
- (6) During the "L" period of INH pin, the voltage detector monitors the supply voltage.
- (7) When the signal to the INH pin is set from "L" to "H", the watchdog starts supervising the system clock, or charge cycle to the C_{TW} pin starts, the capacitor connected to the C_{TW} pin is charged with the current of setting Reset time of WDT.
- (8) After the SCK1 pulse is input, when the SCK2 is input, the WDT will be cleared.
- (9) Without the input of SCK1 pulse input, even if the SCK2 pulse is input, the WDT will not be cleared.
- (10) After the SCK1 pulse is input, when the SCK2 is input, the WDT will be cleared.
- (11) If SCK1 pulse and SCK2 pulse are input at the same time, the WDT will not be cleared.
- (12) After from the discharge of the external capacitor even if the clock pulse is input during the time period "two", the clock pulse is ignored.
- (13) After the SCK1 pulse is input, when the SCK2 is input, the WDT will be cleared.
- (14) The WDT supervises SCK1 pulse and SCK2 pulse by turns, therefore, for example, if only SCK1 pulse is input twice or more without SCK2 pulse, the second or later consecutive SCK1 pulse will be ignored. After the SCK1 pulse is input, and when the SCK2 pulse is input, the WDT will be cleared. In the same way, if only SCK2 pulse is input twice or more without SCK1 pulse, the second or later consecutive SCK2 pulse will be ignored.


Too close timing of SCK1 pulse input and SCK2 pulse input means the rising edge interval time range from 0ns to 50ns. (Guaranteed by design, not mass production tested.)

Even if the SCK1 and SCK2 are input at almost the same time as above, the WDT will still try to supervise these two clock by turns.

Therefore, after the SCK1 pulse is input, if SCK1 pulse and SCK2 pulse are input at almost the same time, the WDT will be cleared. (as the status (8))

Likewise, after the SCK1 pulse and SCK2 pulse are input at almost the same time, when the SCK2 pulse is input, the WDT will be cleared. (as the status (10))

If the almost same timing input of SCK1 and SCK2 continues twice, the WDT will be cleared. (as the status (13))

Example timing of too close input pulses

(This pattern will be recognized the clock timing is same by the WDT)

Watchdog Timeout period/Reset hold time

The watchdog timeout period and reset hold time can be set with an external capacitor to CTW pin.

The next equations describe the relation between the watchdog timeout period and the external capacitor value, or the reset hold time and the external capacitor value.

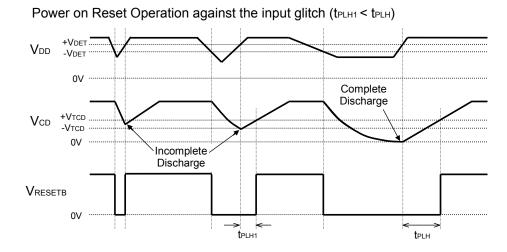
 $t_{WD}(s) = 3.1 \times 10^6 \times C (F)$

 $t_{WR}(s) = t_{WD}/9$

The watchdog time (WDT) timeout period is determined with the discharge time of the external capacitor. During the watchdog timeout period, if the clock pulse from the system is detected, WDT is cleared and the capacitor is charged. When the charge of the capacitor completes, another watchdog timeout period starts again. During the watchdog timeout period, if the clock pulse from the system is not detected, during the next reset hold time RESETB pin outputs "L".

During the reset time, (while charging the external capacitor) and after starting the watchdog timeout period, (just after from the discharge of the external capacitor) even if the clock pulse is input during the time period "two,", the clock pulse is ignored.

twoi (s) = two/10


Released Delay Time (Power-on Reset delay time)

The released delay time can be set with an external capacitor connected to the C_D pin. The next equation describes the relation between the capacitance value and the released delay time (t_{PLH}).

 $t_{PLH}(s) = 3.7 \times 10^{6} \times C (F)$

The capacitor connected to CD pin determines twD, twR, and tPLH.

When the V_{DD} voltage becomes equal or less than (- V_{DET}), discharge of the capacitor connected to the C_D pin starts. Therefore, if the discharge is not enough and V_{DD} voltage returns to (+ V_{DET}) or more, thereafter the delay time will be shorter than t_{PLH} which is expected.

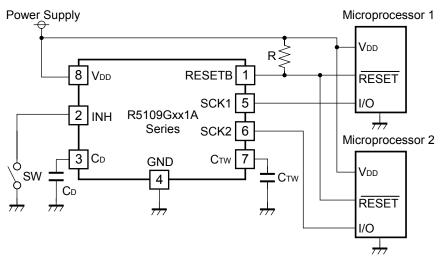
• Minimum Operating Voltage

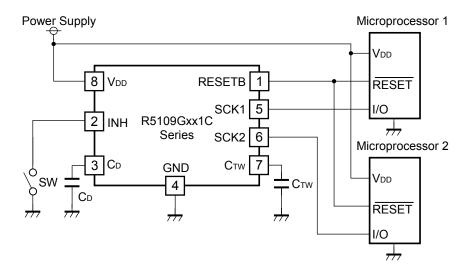
We specified the minimum operating voltage as the minimum input voltage in which the condition of RESETB pin being 0.1V or lower than 0.1V. (Herein, pull-up resistance is set as $100k\Omega$ in the case of the Nch open-drain output type.)

• Inhibit (INH) Function

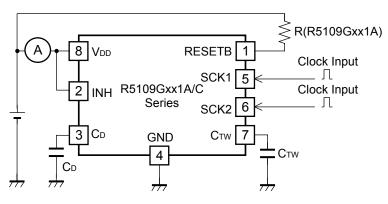
If INH pin is set at "L", the watchdog timer stops monitoring the clock, and the RESETB output will be dominant by the voltage detector's operation. Therefore, if the supply voltage is set at more than the detector threshold level, RESETB outputs "H" regardless the clock pulse. INH pin is pulled up with a resistor (Typ.110k Ω) internally.

• **RESETB** Output


RESETB pin's output type is selectable either the Nch open-drain output or CMOS output. If the Nch open-drain type output is selected, the RESETB pin is pulled up with an external resistor to an appropriate voltage source.

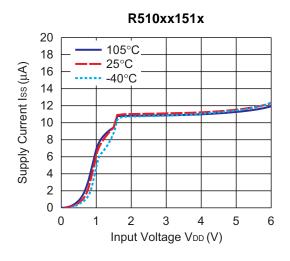

Clock Pulse Input

Built-in watchdog timer is cleared with the SCK clock pulse within the watchdog timeout period.

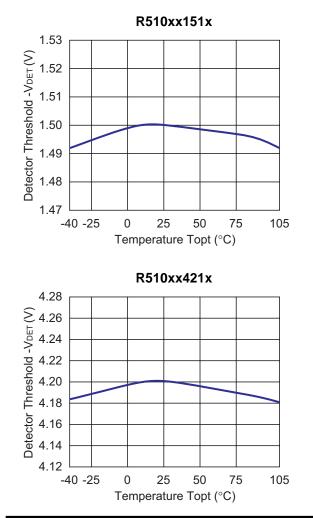

After the SCK1 clock pulse is input, when the SCK2 pulse is input, the watchdog timer will be cleared. If the system requires only one clock supervise, SCK1 pin and SCK2 pin must connect each other. In this case, the watchdog timer is cleared with every other clock pulse. Depending on the timing of these two clock pulses, SCK1 pulse and SCK2 pulse are recognized at almost the same time by the watchdog timer, during the watchdog timeout period, after the SCK1 clock pulse, two or more SCK2 clock pulses are desirable to put into.

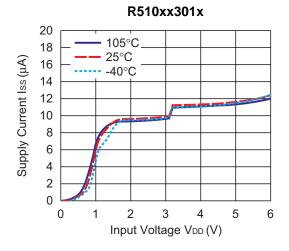
TYPICAL APPLICATIONS

TEST CIRCUIT

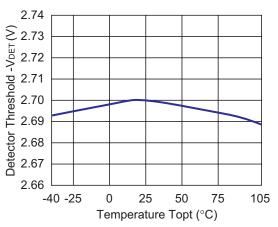


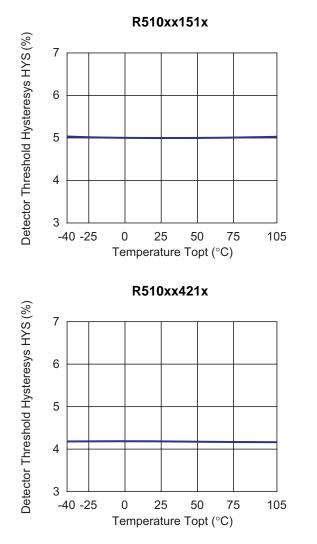
Supply Current Test Circuit

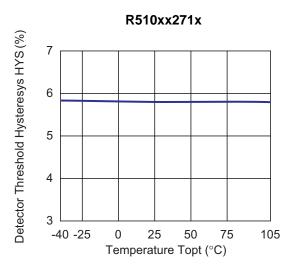

RICOH


TYPICAL CHARACTERISTICS

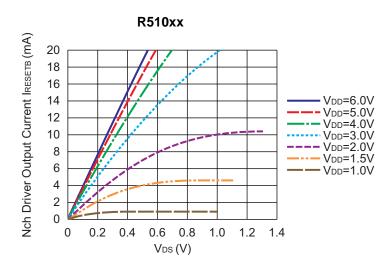
1) Supply Current vs. Input Voltage

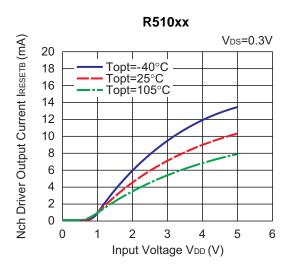


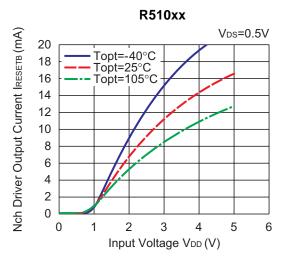

2) Detector Threshold vs. Temperature



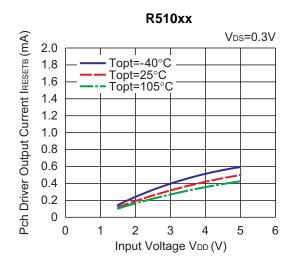
R510xx271x

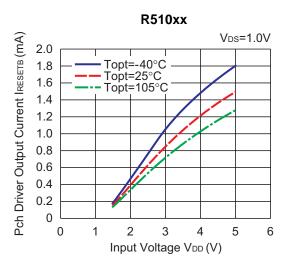


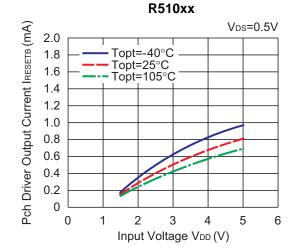

3) Detector Threshold Hysteresis vs. Temperature

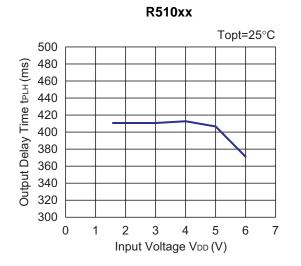


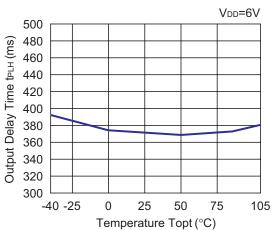
4) Nch Driver Output Current vs. VDs



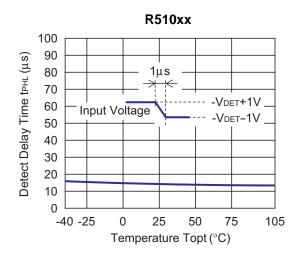

5) Nch Driver Output Current vs. Input Voltage



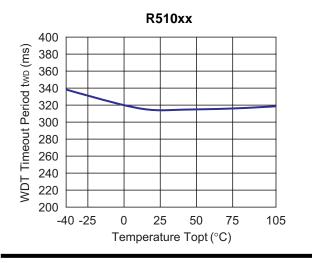

6) Pch Driver Output Current vs. Input Voltage

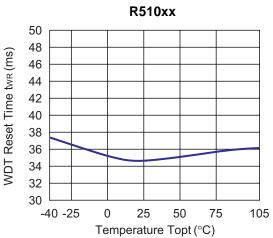


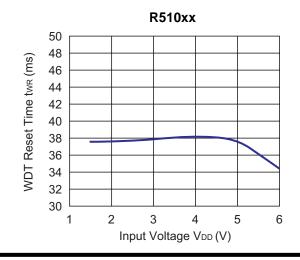
7) Released Delay Time vs. Input Voltage

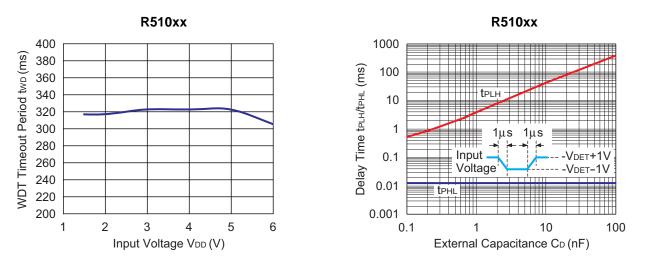


8) Released Delay Time vs. Temperature


R510xx


9) Detector Output Delay Time vs. Temperature 10) WDT Reset Timer vs. Temperature

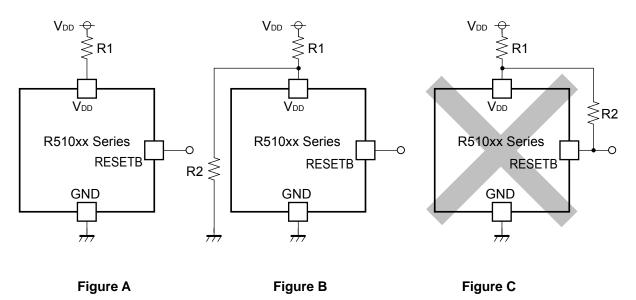




12) WDT Reset Timer vs. Input Voltage

RICOH

13) WDT Timeout Period vs. Input Voltage


14) Output Delay Time vs. External Capacitance

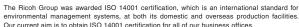
TECHNICAL NOTES

When R510xxx1A (Nch Open Drain Output Type) is used in Figure A or Figure B, if impedance of Voltage Supply pin, V_{DD} and V_{DD} of this IC is large, detector threshold level would shift by voltage dropdown caused by the consumption current of the IC itself. Released voltage may also shift and delay time for start-up might be generated by this usage.

When R510xxxx1C (CMOS Output Type) is used in Figure A or Figure B, Output level could be unstable by cross conduction current which is generated at detector threshold level or at released voltage level, therefore, do not use this IC with the connection in Figure A or Figure B.

The connection in Figure C may cause the oscillation in both R510xxxx1A (Nch Open Drain Output) and R510xxxx1C (CMOS Output), therefore do not use R510xx Series with the connection in Figure C.

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before
exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and
example application circuits for the products. The release of such information is not to be
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic
components in standard applications (office equipment, telecommunication equipment,
measuring instruments, consumer electronic products, amusement equipment etc.). Those
customers intending to use a product in an application requiring extreme quality and reliability,
for example, in a highly specific application where the failure or misoperation of the product
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,
traffic control system, automotive and transportation equipment, combustion equipment, safety
devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but
semiconductor products are likely to fail with certain probability. In order to prevent any injury to
persons or damages to property resulting from such failure, customers should be careful enough
to incorporate safety measures in their design, such as redundancy feature, firecontainment


- feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

Ricoh awarded ISO 14001 certification.

Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.

Electronic Devices Company • Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
 P.O.Box 114, 1180 AC Amstelveen
 Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 6904Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company Taipei office Bompiog ICE, No 51 Hangung Rd. Taipei Off

• Taipei office Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623