RICOH #### R1205x SERIES #### STEP-UP DC/DC CONVERTER NO.EA-272-120508 #### **OUTLINE** The R1205x Series are CMOS-based PWM control type step-up DC/DC converter ICs with low supply current. Each of these ICs consists of an NMOS FET, a diode, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over-voltage protection circuit (OVP), a soft-start circuit, a Maxduty limit circuit, and a thermal shutdown protection circuit. This step-up DC/DC converter can be easily built with a few external components such as a coil, a resistor, and a capacitor. As the protection functions, the R1205x Series have a Lx peak current limit function, an over voltage protection (OVP) function, an under voltage lock out (UVLO) function and a thermal shutdown function. The R1205x Series present the R1205x8xxA version that is optimized for the constant voltage power source, and the R1205x8xxB version that is optimized for driving the white LED with the constant current. The R1205x8xxB is an adjustable version that can change the LED brightness dynamically by using a 200Hz to 300kHz PWM signal toward the CE pin. The R1205x Series are available in DFN1616-6B and TSOT-23-6 packages. #### **FEATURES** | Input Voltage Range | 2.3V to 5.5V (R1205x8xxA) | |--|--| | | 1.8V to 5.5V (R1205x8xxB) | | Supply Current | Τyp. 800μA | | Standby Current | Max. 5μA | | Feedback Voltage | 1.0V±1.5% (R1205x8xxA) | | | 0.2V±10mV (R1205x8xxB) | | Oscillator Frequency | Typ. 1.2MHz | | Maximum Duty Cycle | Typ. 91% | | UVLO Function | ···· Typ.2.0V (Hys.Typ.0.2V) (R1205x8xxA) | | | Typ.1.6V (Hys.Typ.0.1V) (R1205x8xxB) | | Lx Current Limit Function | Select from 350mA, 700mA | | Over Voltage Protection | Typ. 25V | | LED dimming control (R1205x8xxB) | by external PWM signal (Frequency 200Hz to 300kHz) | | Thermal Protection Function | Typ.150°C(Hys.Typ.50°C) | | Switch ON Resistance | Τyp. 1.35Ω | | Packages | DFN1616-6B, TSOT-23-6 | | Ceramic capacitors are recommended | | #### APPLICATION - Constant Voltage Power Source for portable equipment - OLED power supply for portable equipment - White LED Backlight for portable equipment #### **BLOCK DIAGRAMS** #### 20011 BIAGNAMO #### **SELECTION GUIDE** The OVP threshold voltage, current limit, package and VFB/Auto discharge are user-selectable options. | Product Name | Package | Quantity per Reel | Pb Free | Halogen Free | |------------------|------------|-------------------|---------|--------------| | R1205L8x1*-TR | DFN1616-6B | 5,000 pcs | Yes | Yes | | R1205N8x3*-TR-FE | TSOT-23-6 | 3,000 pcs | Yes | Yes | - x : Designation of current limit. - (1) 350mA - (2) 700mA - * : Designation of VFB. - (A) 1.0V - (B) 0.2V #### **PIN CONFIGURATIONS** #### • DFN1616-6B Top View #### • TSOT-23-6 #### **PIN DESCRIPTIONS** #### • DFN1616-6B | Pin No | Symbol | Pin Description | |--------|-----------------|-----------------------------------| | 1 | CE | Chip Enable Pin ("H" Active) | | 2 | V _{FB} | Feedback Pin | | 3 | Lx | Switching Pin (Open Drain Output) | | 4 | GND | Ground Pin | | 5 | Vin | Input Pin | | 6 | Vouт | Output Pin | ^{*)} The tab is substrate level (GND). The tab is better to be connected to the GND, but leaving it open is also acceptable. #### • TSOT-23-6 | Pin No | Symbol | Pin Description | |--------|-----------------|-----------------------------------| | 1 | CE | Chip Enable Pin ("H" Active) | | 2 | Vоит | Output Pin | | 3 | Vin | Input Pin | | 4 | Lx | Switching Pin (Open Drain Output) | | 5 | GND | Ground Pin | | 6 | V _{FB} | Feedback Pin | #### ABSOLUTE MAXIMUM RATINGS GND=0V | Symbol | Item | Rating | Unit | |-----------------|---------------------------------|-------------|------| | Vin | V _{IN} Pin Voltage | -0.3 to 6.5 | V | | Vce | CE Pin Voltage | -0.3 to 6.5 | V | | V _{FB} | V _{FB} Pin Voltage | -0.3 to 6.5 | V | | Vout | Vουτ Pin Voltage | -0.3 to 28 | V | | V_{LX} | Lx Pin Voltage | -0.3 to 28 | V | | ILX | Lx Pin Current | 1000 | mA | | Po | Power Dissipation (DFN1616-6B)* | -6B)* 640 | | | Γυ | Power Dissipation (TSOT-23-6)* | 460 | — mW | | Та | Operating Temperature Range | -40 to 85 | °C | | Tstg | Storage Temperature Range | -55 to 125 | °C | ^{*)} For details regarding Power Dissipation and Standard Test Land Pattern, please refer to PACKAGE INFORMATION. #### **ABSOLUTE MAXIMUM RATINGS** Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. #### RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS) All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. #### **ELECTRICAL CHARACTERISTICS** • R1205x (Ta=25°C) | Symbol | Item | Conditions | | Min. | Тур. | Max. | Unit | |---------------------------|--|--|-----------------|-------|------------------------|-------|------------| | Vin | Operating Input Voltage | | R1205x8xxA | 2.3 | | 5.5 | V | | VIIN | Operating input voltage | | R1205x8xxB | 1.8 | | 5.5 | V | | loo | Supply Current | V_{IN} =5.5 V , V_{FB} =0 V , | , Lx at no load | | 0.8 | 1.2 | mA | | İstandby | Standby Current | V _{IN} =5.5V, V _{CE} =0V | | | 1.0 | 5.0 | μА | | Vuvlo1 | UVLO Detector Threshold | V _{IN} falling | R1205x8xxA | 1.9 | 2.0 | 2.1 | V | | V 0 V L 0 1 | OVEO BOLOGICI TITOCHOLO | Viit lailing | R1205x8xxB | 1.5 | 1.6 | 1.7 | • | | V _{UVLO2} | UVLO Released Voltage | V _{IN} rising | R1205x8xxA | | Vuvlo1
+0.2 | 2.3 | V | | VOVLOZ | OVEO Neleased Voltage | V IN TISHING | R1205x8xxB | | Vuvlo1
+0.1 | 1.8 | V | | VCEH | CE Input Voltage "H" | V _{IN} =5.5V | | 1.5 | | | \ | | Vcel | CE Input Voltage "L" | V _{IN} =1.8V | | | | 0.5 | V | | Rce | CE Pull Down Resistance | | | | 1200 | | kΩ | | V _{FB} | V _{FB} Voltage Accuracy | V _{IN} =3.6V | R1205x8xxA | 0.985 | 1.000 | 1.015 | V | | V FB | VFB VOILage Accuracy | R1205x8xxB | | 0.19 | 0.2 | 0.21 | V | | ΔV _{FB} /
ΔTa | V _{FB} Voltage Temperature
Coefficient | V _{IN} =3.6V, −40°C ≤ Ta ≤ 85°C | | | ±150 | | ppm
/°C | | lfв | V _{FB} Input Current | V _{IN} =5.5V, V _{FB} =0V or 5.5V | | -0.1 | | 0.1 | μΑ | | tstart | Soft-start Time | R1205x8xxB | | | 2.0 | 3.0 | ms | | Ron | FET ON Resistance | I _L x=100mA | | | 1.35 | | Ω | | loff | FET Leakage Current | V _L x=24V | | | | 3.0 | μΑ | | l | FET Current Limit | R1205x81xx | | 250 | 350 | 450 | mΛ | | I LIM | PET Guitent Liniit | | R1205x82xx | 500 | 700 | 900 | mA | | VF | Diode Forward Voltage | Isw=100mA | | | 0.8 | | V | | IDIODEleak | Diode Leakage Current | V _{OUT} =24V, V _{LX} =0V | | | | 10 | μΑ | | fosc | Oscillator Frequency | V _{IN} =3.6V, V _{FB} =0V | | 1000 | 1200 | 1400 | kHz | | Maxduty | Maximum Duty Cycle | V _{IN} =3.6V, V _{FB} =0V | | 86 | 91 | | % | | V _{OVP1} | OVP Detect Voltage | VIN=3.6V, VOUT rising | | 24.2 | 25 | 25.8 | V | | V _{OVP2} | OVP Release Voltage | V _{IN} =3.6V, V _{OUT} falling | | | V _{OVP1} -1.8 | | V | | T _{TSD} | Thermal Shutdown
Detect Temperature | V _{IN} =3.6V | | | 150 | | °C | | Trsr | Thermal Shutdown
Release Temperature | V _{IN} =3.6V | | | 100 | | °C | #### **TYPICAL APPLICATIONS** #### ●R1205x8xxA #### ●R1205x8xxB #### **Recommended external Inductor** | L1 (µH) | Parts No | Rated
Current(mA) | Size(mm) | |---------|---------------|----------------------|--------------| | 10 | LQH32CN100K53 | 450 | 3.2×2.5×1.55 | | 10 | LQH2MC100K02 | 225 | 2.0×1.6×0.9 | | 10 | VLF3010A-100 | 490 | 2.8×2.6×0.9 | | 22 | LQH32CN220K53 | 250 | 3.2×2.5×1.55 | | 22 | LQH2MC220K02 | 185 | 2.0×1.6×0.9 | | 22 | VLF3010A-220 | 330 | 2.8×2.6×0.9 | #### R1205x8xxA Recommended external components | Triangle and trian | | | |--|------------------|------------------| | | Rated voltage(V) | Part No. | | C1 | 6.3 | CM105B105K06 | | C2 | 25 | GRM21BR11E105K | | C3 | 25 | 220pF | | R1 | | For Vo∪⊤ Setting | | R2 | | For Vo∪⊤ Setting | | R3 | | 2kΩ | #### R1205x8xxB Recommended external components | | Rated voltage(V) | Part No. | |----|------------------|---------------| | C1 | 6.3 | CM105B105K06 | | C2 | 25 | GRM21BR11E224 | #### ■ The Method of Output Voltage Setting (R1205x8xxA) The output voltage (V_{OUT}) can be calculated with divider resistors (R1 and R2) values as the following formula: Output Voltage (V_{OUT})= $V_{FB} \times (R1 + R2) / R1$ The total value of R1 and R2 should be equal or less than $300k\Omega$. Make the V_{IN} and GND line sufficient. The large current flows through the V_{IN} and GND line due to the switching. If this impedance (V_{IN} and GND line) is high, the internal voltage of the IC may shift by the switching current, and the operating may become unstable. Moreover, when the built-in Lx switch is turn OFF, the spike noise caused by the inductor may be generated. As a result of this, recommendation voltage rating of capacitor (C2) value is equal 1.5 times larger or more than the setting output voltage. #### LED Current setting (R1205x8xxB) When CE pin input is "H" (Duty=100%), LED current can be set with feedback resistor (R1) $I_{LED} = V_{FB} / R1$ #### LED Dimming Control (R1205x8xxB) The LED brightness can be controlled by inputting the PWM signal to the CE pin. If the CE pin input is "L" in the fixed time (Typ.0.5ms), the IC becomes the standby mode and turns OFF LEDs. The current of LEDs can be controlled by Duty of the PWM signal of the input CE pin. The current of LEDs when High-Duty of the CE input is "Hduty" reaches the value as calculatable following formula. $$I_{LED} = Hduty \times V_{FB} / R1$$ The frequency of the PWM signal is using the range between 200Hz to 300kHz. When controlling the LED brightness by the PWM signal of 5kHz or less, R1202xxxxD/E are recomended to avoide discharge function during dimming control. When controlling the LED brightness by the PWM signal of 20kHz or less, the increasing or decreasing of the inductor current might be make a sounds in the hearable sound wave area. In that case, please use the PWM signal in the high frequency area. **Dimming Control by CE Pin Input** #### Soft-Start (R1205x8xxB) The output and referrence of the error amplifier start from 0V and the referrence gradually rises up to 1.0V. After the softstart time (Tss), output voltage rise up to the setting voltage. The output of the error amplifier starts from 0V and the inrush current is suppressed when starting by the CE pin "H" input. Moreover, the inrush current can be suppressed by gradually enlarging Duty of the PWM signal to the CE pin. #### Current Limit Function Current limit function monitors the over current and if it reaches the peak current, it will turn off the driver. When the over current decreases, it will restart oscillation and will restart the monitoring. #### Inductor Selection The peak current of the inductor under the stationary operation can be calculated by the following formula. $$ILmax = 1.25 \times I_{LED} \times V_{OUT} / V_{IN} + 0.5 \times V_{IN} \times (V_{OUT} - V_{IN}) / (L \times V_{OUT} \times fosc)$$ In the case of adjusting the brightness at the start-up or by the CE pin, the peak current can be transiently more than the above. Select the inductor that can limit the peak current within the current limit of the ICs. Also, select the inductor of which peak current will not exceed the rated inductor value. The recommended inductance value is between $10\mu H$ to $22\mu H$. #### Capacitor Selection The recommended capacitor value for C1 is in the range from $1.0\mu F$ to $4.7\mu F$. Connect C1 between V_{IN} and GND pin as close as possible to the pins. Connect a output capacitor in the range from $1.0\mu F$ to $4.7\mu F$ between V_{OUT} and GND pins. (R1205x8xxA) Connect a output capacitor in the range from $0.22\mu F$ to $1.0\mu F$ between V_{OUT} and GND pins. (R1205x8xxB) #### External Components Setting If the V_{OUT} spike noise is high, it may influence on the V_{FB} pin to cause the operation of R1205x8xxA unstable. To reduce the noise coming into V_{FB} pin, please place a $1k\Omega$ to $5k\Omega$ resistor in R3 in Fig 1. #### Application of Using 5.5V or more Power Supply Other than the IC power supply, if there is a power supply greater than 5.5V, the high power output can be achieved by using the power supply as an inductor power supply. In this case, please place a capacitor between an inductor power supply and GND (shown in Fig 2.) aside from a bypass capacitor between the V_{IN} pin and GND of the IC. Fig 1. R1205x8xxA Fig 2. R1205x8xxB #### OPERATION OF STEP-UP DC/DC CONVERTER AND OUTPUT CURRENT # VIN Diode Vout L Diode Vout Value of the state s <Current through L> #### Discontinuous mode # ILmax ILmin topen ton T=1/fosc #### Continuous mode There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor. When the transistor turns ON, the voltage of inductor L becomes equal to V_{IN} voltage. The increase value of inductor current (i1) will be $$\Delta i1 = V_{IN} \times ton / L$$ Formula 1 As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be $$\Delta i2 = (V_{OUT} - V_{IN}) \times t_{OPEN} / L$$ Formula 2 At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode. In the continuous mode, the variation of current of i1 and i2 is same at regular condition. $$V_{IN} \times ton / L = (V_{OUT} - V_{IN}) \times toff / L$$ Formula 3 The duty at continuous mode will be The average of inductor current at tf = toff will be $$IL(Ave.) = V_{IN} \times ton / (2 \times L)$$Formula 5 If the input voltage = output voltage, the lout will be $$I_{OUT} = V_{IN}^2 \times ton / (2 \times L \times V_{OUT})$$ Formula 6 If the lout value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current (ILmax) of inductor will be $$IL_{max} = I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times ton / (2 \times L).$$ $$IL_{max} = I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times T \times (V_{OUT} - V_{IN}) / (2 \times L \times V_{OUT}).$$ Formula 8 The peak current value is larger than the lout value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and the external components are not included. The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or V_{IN} is low, the loss of V_{IN} is generated with on resistance of the switch. Moreover, it is necessary to consider Vf of the diode (approximately 0.8V) about V_{OUT} . #### TYIPICAL CHARACTERISTICS #### 1) Efficiency vs. Output Current Characteristics (R1205N823A) #### ■Typical Applications with Using 5.5V or Greater #### Vouτ=20V, L=10μH (LQH32CN100K53) #### 2) Efficiency vs. Output Current Characteristics (R1205N823B) 4LED, L=10μH (LQH32CN100K53) #### 4LED, L=22μH (LQH32CN220K53) #### R1205x #### ■Typical Applications with Using 5.5V or Greater #### 3) Output Voltage vs. Output Current (R1205N823A) ## Vουτ=10V, L=22μH (LQH32CN220K53) Vouτ=15V, L=10μH (LQH32CN100K53) Vouτ=15V, L=22μH (LQH32CN220K53) #### R1205x #### Vouτ=20V, L=10μH (LQH32CN100K53) #### Vouτ=20V, L=22μH (LQH32CN220K53) Vout=20V, Vin=3.6V #### ■Typical Applications with Using 5.5V or Greater Vouτ=15V, L=10μH (LQH32CN100K53) #### V_{OUT}=20V, L=10μH (LQH32CN100K53) #### 4) Maxduty vs. ILED #### R1205N823A #### 25 20 QHZ 15 10 5 0 200Hz -10kHz -300kHz 0 0 20 40 60 80 100 Duty (%) # 5) OVP Output Waveform R1205N823B #### 6) Waveform (6LED) #### R1205N823B(CE Freq=200Hz) #### R1205N823B(CE Freq=10KHz) #### R1205N823B(CE Freq=300KHz) #### R1205x #### 7) Diode Forward Voltage vs. Temperature #### 8) Supply Current vs. Temperature ### 9) UVLO Output Voltage vs. Temperature R1205x8xxA R1205x8xxB #### 10) VFB Voltage vs. Temperature #### R1205x8xxB #### 11) Switch ON Resistance RON vs. Temperature #### 12) OVP Voltage vs. Temperature 13) Lx Current Limit vs. Temperature R1205x82xx #### 14) Oscillator Frequency vs. Temperature #### 15) Maxduty vs. Temperature #### 15) Thermal Shutdown Detect / Release Temperature vs. Input Voltage - 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. - 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. - 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. - 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. - 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. - 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. - 7. Anti-radiation design is not implemented in the products described in this document. - 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. #### RICOH COMPANY, LTD. Electronic Devices Company ■Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society. ■Ricoh awarded ISO 14001 certification. The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices. #### http://www.ricoh.com/LSI/ RICOH COMPANY, LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502 RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791 RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705 RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 RICOH COMPANY, LTD. Electronic Devices Company Taipei office Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.