Matrix FL-JOE-TMR-CXR

原英文技术手册号码: TBD015

Promega Precision Design... for Life www.promega.com

本说明书用于产品 DG2860 所有的技术文献均可从公司网站<u>www.promega.com</u>得到 请访问公司网站以证实您所使用的技术手册为最新版本

I.	介绍	1
II.	产品组分	2
III.	用 ABI PRISM [®] 310 遗传分析仪测定扩增片段	2
	A. 仪器准备	3
	B. 样品准备	3
	C. 毛细管电泳及检测	3
	D. Matrix 生成	3
N7	田 ARI RRIGM [®] 277 RNA 测定公测合护操止的	
IV.	用 ADI PRISM 3// UNA 侧广仪侧足顶 增斤权····································	4
	A. 采內柿飢放痰放前番 P. 位器准复	5
	B. 仅奋作奋 C. 游院茫古诗	0
	C. <i>Q</i> 版 拟电冰····································	6
	D. 样品准备及上样······	7
	E. 凝胶电泳及检测·····	7
	F. Matrix 生成	7
	G. 玻璃板的重复使用 ······	8
v	Matrix 的优化	Q
••	Δ 设计新的 Project······	9
	A. 设计新用于Hojeet	9
	D. Iviauitx 仅正	å
M	し、座市 Maux 12日 気みをす	J 40
VI.	彩准件合	10
VII.	缓冲液和溶液的组成	12

I. 介绍

用 ABI PRISM[®] 310 遗传分析仪和 ABI PRISM[®] 377 DNA 测序仪评估多色 系统时,正确生成 matrix 文件非常关键。为了制备 matrix,使用与样品及等位点 梯度相同的毛细管电泳(CE)或胶的条件运行 4 个标准样品。Matrix FL-JOE-TMR-CXR 含有用 4 种荧光素标记的 DNA 片段: 1 个管中的 DNA 片段 用荧光素 (Fluorescein)标记,1 个管中的 DNA 片段用羧基-4 甲基罗丹明(TMR) 标记,1 个管中的 DNA 片段用 6-羧基-4',5'-二氯-2',7'-二甲氧基荧光素(JEO)标 记,1 个管中的 DNA 片段用羧基-X-罗丹明 (CXR)标记。

Fluorescein Matrix, JOE Matrix, TMR Matrix, CXR Matrix 分别用作蓝色、 绿色、黄色、和红色标准。每台仪器需要独立生成一个 Matrix。 Matrix FL-JOE-TMR-CXR 设计用于 PowerPlex[®]16 系统, PowerPlex[®]1.2 系统(荧光 素和 TMR 标记),或任一个 Promega 荧光 STR 系统(荧光素-标记)。

荧光检测仪器的操作流程可从仪器制造商处获取。

获取 Promega 公司其他荧光 STR 系统的资料,参照 GenePrint[®]荧光 STR 系统 技术手册 TMD006, PowerPlex[®] 1.1 系统技术手册 TMD008, PowerPlex[®] 1.2 系 统技术手册 TMD009, PowerPlex[®] 2.1 系统技术手册 TMD011 及 PowerPlex[®] 16 系统技术手册 TMD012。这些技术手册和更多的产品信息获取请登陆网站: www.promega.com,或与 Promega 公司联系。

Ⅱ. 产品组分

产品	目录号
Matrix FL-JOE-TMR-CXR	DG2860

包括:

- 20 µ I Flurescein Matrix
- 20 µ I JOE Matrix
- 20 µ I TMR Matrix
- 20 µ | CXR Matrix
- 1ml Blue Dextran Loading Solution
- 1 Protocol

保存条件: 所有组分保存在-20℃, Matrices 中的片段是光敏感的,必须保存在黑暗中。建议这些试剂和扩增后试剂保存在一起(远离扩增前试剂)并使用不同的加样头、试管架等。

若需要获取进一步的产品资料,附加组分及相关产品的定货信息,可登陆网站: <u>www.promega.com</u>,或与 Promega 公司联系。

III、用 ABI PRISM® 310 遗传分析仪检测扩增片段

用户提供的材料:

- 加热块、水浴箱或热循环仪
- ●冰
- 310 毛细管,47cm×50µm
- Performance Optimized
 Polymer 4 (POP-4)
- 玻璃针筒(1 ml)

- 样品管和隔片
- 防污染加样头
- 10×遗传分析仪缓冲液
- 电导率<100 µ S/ cm 的去离子甲酰胺 (Amresco 超纯级,目录号 0606)

注意:甲酰胺的质量非常重要,用去离子的电导率<100 µ S/ cm 的甲酰胺。可以 将甲酰胺分装并-20℃冻存。多次冻融或在 4℃长期保存会使甲酰胺降解。电导率 >100 µ S/ cm 的甲酰胺含有离子,在进样时和 DNA 竞争。这会导致低的峰值, 降低灵敏度。延长进样时间不会增加信号强度。

警告:甲酰胺是

一种有刺激性的

A. 仪器准备

- 1. 参照 ABI PRISM[®] 310 遗传分析仪用户手册指南,进行泵的清洗,安装毛细管, 校准自动进样器及向注射器中添加 Polymer (POP-4)。
- 2. 打开 ABI PRISM[®] 310 收集软件。
- 3. 按照 ABI PRISM[®] 310 遗传分析仪用户手册指南,准备 GeneScan[®] 样品页。在 "Sample info" 栏输入适当的样品信息。建立新的 GeneScan[®] 进样单,从下拉 菜单选择合适的样品页。
- 4. 用下拉菜单选择 "GS STR POP4 (1ml) A" 模式。将电泳时间改为 30 分钟, 按下面所示保留其余参数设置:

Inj. Secs:	5
lnj. kV:	15.0
Run kV:	15.0
Run ℃	60
Run time (minutes)	30

5. 对 Matrix 文件选"none"。

B. 样品准备

- 1. 对每一个 matrix 样品,将 2 µ l matrix 样品和 25 µ l 去离子甲酰胺或水混合。
- 2. 95℃变性3分钟, 立即放在冰上冷却3分钟。
- 3. 将管子放在合适的样品架中(48管或96管)。
- 4. 将样品架放入仪器,关闭仪器门。

C. 毛细管电泳和检测

- 1. 放好样品架,关闭仪器门,点击"Run"键开始毛细管电泳系统。
- 2. 通过观察 "raw data" 和"status windows" 窗口来监测电泳状况。
- 3. 对每一个样品,运行注射器泵、样品进样及样品电泳共需要大约40分钟。

D. Matrix 生成

- 1. 打开 GeneScan[®] Project。
- 观察每一个 matrix 样品中的"raw data"。标出样品文件名,然后在"sample" 菜单中选择"raw data"。将光标移至引物峰内侧,使光标十字位于基线的平滑 部分。记录在视窗底部显示的X值数字。选择一个至少包含5个各种色谱峰的区 域;产生 matrix 需要至少5个峰。见第八页图1。
- 3. 在 File 菜单中选择 "New", 然后点击 Matrix 图标。"points "扫描域的默认值 为 100,000。点击每个 matrix 的色谱颜色以表明对应于该色谱的样品文件。在 "start at" 域输入步骤 2 所记录的 X 值。

步骤 4,

对不同的仪器进 样时间可能需要 优化

注意:本中文操作手册仅供实验参考,在实际使用中请详细对照原英文技术手册 TBD015。如遇到问题请与 Promega 公司北 京办事处联系, TEL: 010-68498287; E-mail: <u>techserv@promega.com.cn</u> 技术手册号码: CTBD015

色谱颜色	对应的 Matrix	Part#
蓝色	Fluorescein Matrix	DG288A
绿色	JOE Matrix	DG284A
黄色	TMR Matrix	DG289A
红色	CXR Matrix	DG290A

- **4**. 选择 "OK",则 matrix 文件生成。
- 5. 将 Matrix 文件保存于 GeneScan[®] 文件夹中的 Matrix Standard 文件夹内, 此 matrix 文件的拷贝应保存于系统文件夹中的 ABI 文件夹内。
- 6. 通过标出 GeneScan[®] Project 中的样品,新生成的 matrix 可用于已走胶的 样品。在"sample"菜单下,选择"install new matrix",标出新的 matrix 并点击"open",则新的 matrix 可以用于样品文件,样品可以用新的 matrix 进行分析。
- 7. Matrix 的质量可以确认。将新生成的 matrix 文件应用于生成 matrix 的样品,用所有 4 种色谱颜色来分析 matrix 样品。对于在步骤 3 所列出的色谱颜色,matrix 样品的峰值应该在 400-3,000rfu 之间。其余 3 种色谱颜色的基线应相对平滑。在 CXR(红色)孔道可能会观察到少量 TMR(黄色)拉升现象。

注意:用 PowerPlex TM16 系统扩增的样品,一种色谱颜色的等位基因峰在 另一种色谱颜色的测定值应低于 10%。但下面的情况除外:

- 除性别基因外,在所有位点都可能观察到多至 15%的从 TMR 到 CXR 的 拉升现象。
- 在性别基因位点(大约 104 和 110 个碱基),可以观察到高于 15%的从 TMR 到 CXR 的拉升现象。

IV. 用 ABI PRISM[®] 377 DNA 测序仪来检测扩增片段

用户提供的材料

(溶液组分在第 VII 章节列出)

- 加热块、水浴箱、热循环仪
- 冰
- Long Ranger[®] 凝胶液(BMA 目 录号#50611)或 Long Ranger SingelTM pack for ABI sequencers 377-36cm (BMA 目 录号#50691)
- 10%过硫酸铵(目录号#V3131)
- TEMED(目录号#V3136)
- 尿素(目录号#V3171)

- TBE 10×buffer
- ●Nalgene[®] tissue culture filter (0.2 微米)
- ●防污染加样头
- ●凝胶上样头
- ●36 cm 前后玻璃板
- ●36 cm 凝胶垫片(0.2mm 厚)
- ●36-孔鲨鱼齿梳或 34-孔方齿梳 (0.2mm厚)
- ●夹子(大的办公室夹子)
- ●Liqui-Nox[®] 或其它去污剂

A. 制备聚丙烯酰胺凝胶

制备 ABI PRISM[®] 377 DNA 测序仪的凝胶时,需要使用有毒试剂。这些试剂和 它们的毒性列在表 1。

表1. 有毒试剂

用于 ABI PRISM [®] 377 DNA 测序仪的试剂	毒性
丙烯酰胺(Long Range [®] 凝胶溶液)	致癌剂、有毒
过硫酸铵	氧化剂、腐蚀剂
甲酰胺(包含在 Blue Dextran Loading Solutyion 中)	刺激性、致畸
TEMED	腐蚀剂、挥发
尿素	刺激性

丙烯酰胺(Long Range[®]凝胶溶液)是一种神经毒,并怀疑是致癌剂,避免吸入和与皮肤接触。在操作这一物质时要阅读警示标记并做好必要的防护。当用丙烯酰 胺溶液时,通常带上双层手套和防护眼镜。

用下面操作步骤制备 ABI PRISM[®] 377 DNA 测序仪上的 36cm 变性聚丙烯酰胺 凝胶。建议使用低荧光玻璃板,可向仪器制造商购买。

- 1. 用热水和 1% Liqui-Nox[®] 溶液,或其它稀释的实验室去污剂彻底清洗玻璃板。然 后用去离子水彻底清洗,让玻璃板在无尘埃环境中空气干燥。
- 2. 将 0.2mm 厚的凝胶垫片放在前后玻璃板中间。用夹子(每边 4 个)将前后玻璃 板固定在一起。将安装好的玻璃板平放在托架或相似的支撑物上。
- 3. 将表 2 所列的组分混合(总共 50ml),制备 5% Long Ranger[®] 丙烯酰胺凝胶。不断搅动溶液直到尿素完全溶解。

表 2。制备 5% Long Ranger[®] 聚丙烯酰胺凝胶

加 八	■0/)好 际	<i>你</i> 半 庄
组分	3%疾死以	<u> </u>
尿素	18g	6M
去离子水	26ml	-
10×TBE	5ml	$1 \times$
50% Long Ranger [®] 凝胶溶液	5ml	5%
总体积	50ml	

注意: 可使用 Long Ranger Singel[™] Packs

- **4.** 将丙烯酰胺溶液用 0.2μm 滤膜(如 Nalgene[®] tissue culture filter)过滤,并去 气泡 5 分钟。
- 5. 向 50 ml 丙烯酰胺溶液中加入 35 μ l TEMED 和 250 μ l 新配制的 10%过硫酸铵, 温和混匀。
- 6. 用一次性 30cc 针筒,从玻璃板的梳孔端开始,小心地将丙烯酰胺溶液注入两块 平放的玻璃板间。让溶液灌满玻璃板的上端,保持稳定的流速,轻敲玻璃板使溶 液流到玻璃板的底端。
- 7. 在玻璃板间插入 36-孔鲨鱼齿梳或 34-孔方齿梳。也可使用 64 孔或 96 孔的鲨鱼齿梳。

8. 用3个均匀分布的夹子固定梳子。

9. 剩余的丙烯酰胺溶液作为聚合反应的对照物。

10. 使聚合反应延续 2 小时以上,检查聚合反应对照物以确保聚合反应完全。

B. 准备仪器

- 1. 打开 ABI PRISM[®] 377 收集软件
- 2. 按照 GeneScan[®] 分析软件用户手册,准备样品页。在"sample info"栏输入 适当的样品信息。
- 3.使用以下的设置建立新的 GeneScan[®]运行:
 Plate Check Module(平板检测模式)
 Plate Check A
 Prerun Module(预运行模式)
 Run Module:(运行模式)
 Collect Time:(收集时间)
 Well-to-Read Distance(孔读数距离)
 Plate Check A
 PR GS 36A-2400
 GS 3600-2400
 3 小时
- 4. 用 pull-down 菜单选择合适的样品页和梳子。
- 5. 对于凝胶 matrix 文件选择"none"

C. 凝胶预电泳

- 1. 从聚合的丙烯酰胺凝胶上取下夹子。如果需要,用沾有去离子水的纸巾擦净玻板 上溢出的丙烯酰胺。
- 除去梳子上多余的聚丙烯酰胺并移去梳子。若用鲨鱼齿梳,小心地将梳齿插入胶 中约 1-2 毫米。
- 3. 将胶/玻板装入 377 卡槽并固定。
- 4. 依据 ABI PRISM[®] 377 DNA 测序仪用户手册推荐的方法保护仪器的卡槽并检查 玻板,如果水平线图标不平滑,须将玻板从卡槽中取出并重新擦试玻板表面,重 新检查玻板。
- 5. 将 TBE 1×缓冲液加入到仪器的上下缓冲液槽中。
- 6. 用充满缓冲液的 **30cc** 注射器吹去梳齿内的气泡及未凝固的丙烯酰胺,盖好上缓 冲液槽的盖子,用弯头注射器移去胶底部的气泡。
- 7. 装上加热板,接好水管,连接所有电极,关上仪器门,点击 "PreRun"键开始预 电泳 15-20 分钟或预电泳至胶的温度达到 40℃。
- 8. 预电泳期间准备 matrix 样品。

D. 样品准备及上样

- 1. 将 1.5 µ I 每一 matrix 样品和 1.5 µ I Blue Dextran 载样液混合。
- 2. 将每一样品 95℃变性 2 分钟, 立即放在冰上冷却 3 分钟。

注意:由于仪器的检测底限不同, matrix 样品和 Blue Dextran 载样溶液的量可 增加或减少。

- 3. 预电泳 15-20 分钟,点击 "Pause" 键暂停仪器运行,这时继续水循环保持上 样期间胶的温度。
- 4. 用充满缓冲液的注射器吹去加样孔内的尿素。
- 5. 将 1.5 µ I 变性样品加入到各加样孔中。
- 6. 盖好上缓冲液槽的盖子并关上仪器门。

E. 凝胶电泳和检测

- 1. 上样结束后,点击"Cancel"取消预电泳。确定电泳时间设置为3小时,然后 点击"Run"开始电泳。
- 2. 通过观察胶图及状态窗监测电泳状况。
- 3. 电泳 3 小时后,最大的片段通过激光扫描窗。
- 4. 追踪、提取胶道。

F. Matrix 的生成

- 1. 打开 GeneScan[®] Project
- 观察每一个 matrix 样品中的 "raw data"。标出样品文件名,然后在 "sample" 菜单中选择 "raw data"。将光标移到引物峰右侧,使十字位于基线的平滑部 分。记录在视窗底部显示的 X 值数字。选择一个至少包含 5 个各种色谱峰的区 域,产生 matrix 需要至少 5 个峰值,见第八页图 1。
- 3. 在 "File" 菜单中选择 "New", 然后点击 Matrix 图标。"points "扫描域的默 认值为 100,000。点击每个 matrix 的色谱颜色以表明对应于该色谱的样品文 件。在 "start at" 域输入步骤 2 所记录的 X 值。

色谱颜色	对应的 Matrix	Part#
蓝色	Fluorescein Matrix	DG288A
绿色	JOE Matrix	DG284A
黄色	TMR Matrix	DG289A
红色	CXR Matrix	DG290A

4. 选择 "OK", 生成 matrix 文件。

- 5. 将 Matrix 文件保存于 GeneScan[®]文件夹中的 Matrix Standard 文件夹内,此 matrix 文件的拷贝应保存于系统文件夹中的 ABI 文件夹内。
- 通过标出 GeneScan[®] Project 中的样品,新的 matrix 可用于已走胶的样品。
 在 "sample" 菜单中,选择 "install new matrix",标出新的 matrix 并点击
 "open",则新的 matrix 可以用于样品文件,样品可以用此新的 matrix 来分析。
- 7. Matrix 的质量可以确认。 将新生成的 matrix 文件应用于产生 matrix 的样品, 用所有 4 种色谱颜色来分析 matrix 样品。 对于在步骤 3 所列出的色谱颜色, matrix 样品的峰值应该在 400-3,000rfu 之间。 评估每一个样品时,其余 3 种 色谱颜色的基线应相对平滑。

图 1. TMR Matrix 原始数据 TMR Matrix 样品在 ABI PRISM 310 遗传分析仪 上运行。用 GeneScan[®]分析软件来阅览 "raw data"(在 "Sample"下打开)。 将光标放在基线上, "Start at" 值 3529 是视窗左下角读出栏中测出的值。

G. 玻璃板重新使用

分开玻璃板,去除胶。用热水和类似 1%Liguid-Nax 的去污剂清洗玻璃板,用去离子水彻底冲洗干净,空气中干燥玻璃板。在清洗过程中,不要用磨蚀材料刮玻璃板。

由于残留物的堆积,可能发生凝胶挤出。如发生这种情况,在 2N HCI 中浸泡 玻板 15 分钟,然后彻底清洗。

V. Matrix 优化

有些实验室已经注意到 Promega 的 Powerplex[®]16 系统中蓝色和绿色孔道的 背景升高。标准 matrix 产生过程中可能会产生来自于相邻孔道的消减信号(图 2)。可以通过对 matrix 覆盖值进行手工优化来解决这个问题,用这种方法可降 低或消除蓝色和绿色孔道中噪音的常见起因。

图 2. 具有倒置峰的升高的基线. 举例说明从蓝色孔道中过份消减绿色信号,产生的倒置峰和升高的基线,出现倒置峰表明从另一个孔道中消减了太多的信号。

注意: 在使用本节 所述的步骤进行 matrix 优化前, 需 确定样品的峰高已 调节到杂合峰大约 1000rfu (参见 VI 节和 PowerPlex[®] 16 系统技术手册 #TMD012, Section IX.A.)

A. 设立新的 Project

- a). 打开由于消减信号而导致的基线升高样品的运行文件夹。
- b). 为了方便,可多次复制样品文件到桌面上,对每个复制文件分别命名。
- c). 在 GeneScan[®]内打开 "New Project"。
- d). 在"Project"下,选择 "Add Samples Files" 添加上每个复制的文件。

B. Matrix 校正

- 1. 在 GeneSacan[®]内,打开当前使用的 matrix 文件。
- 确认有疑难覆盖值的颜色孔道。如图 2 标出,带有升高的基线和倒置的峰。 绿色孔道中升高的基线可以通过改变图 3 中第 2 行、第 3 栏中的数值来调整 (图 3 中 0.3233)。蓝色孔道中升高的基线可以通过改变图 3 中第 1 行、第 2 栏中的数值来调整(图 3 中 0.6269)。
- 3. 最好先调整绿色孔道中的噪音,如有必要,再调整蓝色基线。将疑问覆盖值 减小 2%(现有值-[现有值×0.02]),通过标出图 3 中的数值并输入新的数值 (图 3)。用 "Save As"来贮存改变的 matrix 文件,并重新命名。
- 4. 重复步骤 3,将原始值调整为-4%,-6%,-8%和-10%。

	Reactions			
	в	G	Y	R
в	1.0000	0.6269	0.0228	0.0009
G	0.6706	1.0000	0.3233	0.0052
Y	0.4008	0.6436	1.0000	0.1024
R	0.1806	0.3486	0.5849	1.0000

图 3. Matrix 文件. 此图示中两个圈起来的数值 0.3233 和 0.6269,为分别被减 小以校正绿色和蓝色孔道中升高的基线

C. 应用 Matrix 校正

- 1. 在新建立的 Project 中,标出第一个样品的文件,从工具栏选择"Sample"和 "Install New Matrix",并从显示单中选择原来的 matrix 文件。
- 2. 选择第二个样品文件 (章节 V.A,步骤 2 的一个复制文件),并安装第一个改变的 matrix。
- 3. 选择第三个样品文件,并安装下一个改变的 matrix。
- 4. 继续这些步骤直到完成了所有的校正。
- 5. 分析样品并比较绿色基线。理想的校正噪音小且无拉升现象(图 4, Panel B)。 过份校正会产生图 4, Panels C 和 D 的拉升现象。
- 记录下绿色的理想校正因子,然后重复章节B和C的步骤进行蓝色孔道校正。
 因为蓝色孔道的校正因子通常小于绿色,故可选择更低的校正因子,比如 1%,2%,3%和4%。

Promega Precision Design... for Life www.promega.com

注意:不同的仪器 有不同的起始值。

- 7. 将确认的蓝色和绿色孔道的理想校正因子保存在一个新的 matrix 文件 中。
- 8. 将新的 matrix 用于样品文件并重新分析,不同的仪器会有特定的不同 的校正值。

图 4. 从蓝色孔道中消减绿色信号的优化. 在蓝色覆盖值中消减少量绿色信号 以校正本底(Panels A 和 B),对过分信号消减的过度校正产生了不足消减,导 致拉升 (Panels C 和 D)。

VI. 疑难解答

现象	可能的原因	评论
不 能 产 生	样品没变性	确保进样到凝胶或毛细管前,加热变性样
matrix(由于峰		口 印 o
弱或无峰)	过弱的毛细管电	重新加样品,检查针筒是否漏,检查激光电
	<u>泳</u> 进样	源。
	所用甲酰胺质量	在ABI PRISM [®] 310遗传分析仪上运行样品
	差	时,要保证使用高质量的甲酰胺,去离子甲
		酰胺的电导率应小于 100µS/CM
	不适当贮存导致	将 matrix 在黑暗中,-20°C 保存。
	样品降解	
	峰值太低	峰值应该在 400-3000rfu,增加进样时间或
		进样体积。
无法产生	峰的数目不够	使用至少包括5个峰的区域做 matrix 标准。
matrix (混杂)	给色谱标错了颜	确认色素和颜色的选择
	色	Fluorescein: 蓝色
		JOE: 绿色
		TMR: 黄色
		CXR: 红色

matirx 质量差(在	与 CE 相关的伪峰	微小的电压变化或尿素结晶通过激光
一个或所有颜色孔	("尖刺峰")	光源时会导致"尖刺峰"或意外的峰。
道中可见到额外的		尖刺峰有时仅出现在一种色谱峰,但
峰)		通常出现在多种色谱峰而容易鉴别。
		需重新进样确认。
	与 CE 相关的伪峰	当用于 ABI PRISM [®] 310 遗传分析仪
	(汚染)	上的水和稀释 10×遗传分析仪缓冲液
		的水被污染时,在蓝色和绿色色谱内
		会产生峰。使用高压灭菌的水,更换
		瓶子,并清洗缓冲液槽。
	与 CE 相关的伪峰	用水替代甲酰胺稀释 matrix。在 ABI
	(甲酰胺)	PRISM310 遗传分析仪上运行水稀释
		的 matrix 样品的方法与甲酰胺稀释的
		matrix 样品的方法相同。
在分析的样品内基	所用的 matrix 是在	每一台仪器必须产生各自的 matrix。
线升高或峰倒置	另一台仪器上产生	
(见图 5)	的	
	Matrix 不再有效	在仪器维修后需要产生新的 matrix。
	使用了错误的色素	产生 matrix 时,必须用同样品中一样
		的色素。
	来自其它孔道的过	在制备 matrix 样品的过程中,用水替
	份消减去信号	代甲酰胺,可微弱地改善样品蓝色和
		绿色孔道的升高基线。
		通过用水稀释 matrix 样品(章节 III B
		步骤1或章节IV.D步骤1前)可以改
		善样品的分析。
		需要手工优化 matrix (见章节 V)
matrix 基线有倒置	输入不正确或没输	"Start at"值应有平滑的基线。
峰(见图6)	入"Start at"值	

图 5. 基线升高. 样品在 ABI PRISM[®] 310 遗传分析仪上运行,并用 GeneScan[®]分 析软件分析。电泳结果的图谱显示在小于 270 base 的范围产生了升高的基线。基线 升高的可能原因有,使用了另外一台仪器生成的 matrix;在仪器维修后还在使用以前 生成的同一个 matrix, 使用了不同色谱产生的 matrix。

图 6. 基线倒置. 将来源于 Matrix FL-JOE-TMR-CXR 试剂盒的 4 个 matrix 样品,在 ABI PRISM[®] 310 遗传分析仪上运行。用 GeneScan[®] 分析软件生成了一个 matrix。但未输入 matrix 样品的"start at"点。所制备的 matrix 用于 JOE Matrix 样品文件并用所有 4 种颜色作了分析。导致在蓝色、黄色和红色孔道中产生了倒置峰。

VII. 缓冲液和溶液的组分

10%过硫酸铵

将 0.05g 过硫酸铵溶于 500µl 去离了水中。 每 50ml 丙烯酰胺溶液中加入 250µl 10%过硫酸铵。

去离子甲酰胺

用超纯级甲酰胺(Amresco Cat.#0606)。用电导计检测电导率。甲酰胺的电导率应当<100 µ S/cm。分装去离子甲酰胺并冻存,避免多次冻融。

Blue Dextran 上样缓冲液

88.25%甲酰胺 15mg/ml Blue Dextran 4.1mM EDTA(PH8.0)

TBE 10×缓冲液

107.8g Tris base 7.44g EDTA (Na₂ EDTA・2H₂O) ~55.0g 硼酸 将 Tris base 和 EDTA 溶于 800ml 灭菌水中,缓慢加入硼酸并监测溶液的 PH 至期望值 8.3。用灭菌水补足至溶液终体积为1升。