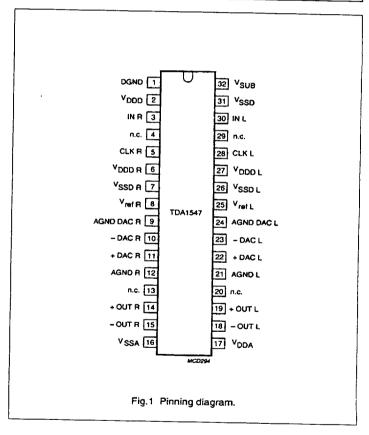
TDA1547

FEATURES

- · Top-grade audio performance
 - very low harmonic distortion
 - high signal-to-noise ratio
 - wide dynamic range of approximately 108 dB (not A-weighted)
- · High crosstalk immunity
- · Bitstream concept
 - high over-sampling rate up to 192 f.
 - pulse-density modulation
 - inherently monotonic
 - no zero-crossing distortion


GENERAL DESCRIPTION

The TDA1547 is a dedicated one-bit digital-to-analog converter to facilitate a high fidelity sound reproduction of digital audio. The TDA1547 is extremely suitable for use in high quality audio systems such as Compact Disc and DAT players, or in digital amplifiers and digital signal processing systems. The TDA1547 is used in combination with the SAA7350 bitstream circuit, which includes the third-order noise shaper. The excellent performance of the SAA7350 and TDA1547 bitstream conversion system is obtained by separating the noise shaping circuit and the one-bit conversion circuit over two IC's, thereby reducing the crosstalk between the digital and analog parts. The TDA1547 one-bit converter is processed in BIMOS. In the digital logic and drivers bipolar transistors are used to optimize speed and to reduce digital noise generation. In the analog part the bipolar transistors are used to obtain high performance of the operational amplifiers. Special layout precautions have been taken to achieve a high crosstalk immunity. The layout of the TDA1547 has fully separated left and right channels

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE					
	PINS	PIN POSITION	MATERIAL	CODE		
TDA1547	32	SDIL	plastic	SOT232A		

and supply voltage lines between the digital and analog sections.

September 1991

825

7110826 0079158 03T ■

TDA1547

PINNING

SYMBOL	PIN	DESCRIPTION			
DGND	1	0 V digital supply			
V _{DDD}	2	5 V digital supply for both channels			
N R	3	serial one-bit data input for the right channel			
n.c.	4	pin not connected; should preferably be connected to digital ground			
CLK B	5	clock input for the right channel			
V _{000 R}	6	5 V digital supply for the right channel; this voltage determines the internal logic HIGH level in the right channel			
V _{SSO R}	7	-3.5 V digital supply for the right channel; this voltage determines the internal logic LOW level in the right channel			
V _{rel B}	8	-4 V reference voltage for the right channel switched capacitor DAC			
AGNO DAC R	9	0 V reference voltage for the right channel switched capacitor DAC; this pin should be connected to analog ground			
-DAC R	10	output from the right negative switched capacitor DAC; feedback connection for the right negative operational amplifier			
+DAC R	11	output from the right positive switched capacitor DAC; feedback connection for the right positive operational amplifier			
AGND R	12	0 V reference voltage for both right channel operational amplifiers			
n.c.	13	pin not connected; should preferably be connected to analog ground			
+OUT R	14	+ output of the switched capacitor operational amplifier			
-OUT R	15	- output of the switched capacitor operational amplifier			
V _{SSA}	16	-5 V analog supply			
V _{DDA}	17	5 V analog supply			
-OUT L	18	- output of the switched capacitor operational amplifier			
+OUT L	19	+ output of the switched capacitor operational amplifier			
n.c.	20	pin not connected; should preferably be connected to analog ground			
AGND L	21	0 V reference voltage for both left channel operational amplifiers			
+DAC L	22	output from the left positive switched capacitor DAC; feedback connection for the left positive operational amplifier			
-DAC L	23	output from the left negative switched capacitor DAC; feedback connection for the left negative operational amplifier			
AGND DAC L	24	0 V reference voltage for the left channel switched capacitor DAC; this pin should be connected to analog ground			
V _{ref L}	25	-4 V reference voltage for the left channel switched capacitor DAC			
V _{SSD L}	26	-3.5 V digital supply for the left channel; this voltage determines the internal logic LOW level in the left channel			
V ₀₀₀ L	27	5 V digital supply for the left channel; this voltage determines the internal logic HIGH level in the left channel			

September 1991

826

TDA1547

SYMBOL	PIN	DESCRIPTION
CLK L	28	clock input for the left channel
n.c.	29	pin not connected; should preferably be connected to digital ground
IN L	30	serial one-bit data input for the left channel
V _{SSD}	31	-5 V digital supply for both channels
V _{SUB}	32	-5 V substrate voltage

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Supply volta	ges				1	
V _{DDD L. A}	positive digital supply voltage for one channel; pins 27 and 6		4.5	5.0	5.5	V
V _{DDD}	digital supply voltage for both channels; pin 2		4.5	5.0	5.5	V
V _{SSD L} A	negative digital supply voltage for one channel; pins 26 and 7		-4.0	-3.5	-3.0	V
V _{sso}	negative digital supply voltage for both channels; pin 31		-5.5	-5.0	-4.5	V
V _{DDA}	positive analog supply voltage; pin 17		4.5	5.0	6	V
V _{SSA}	negative analog supply voltage; pin 16		-6.0	-5.0	-4.5	v
Supply curre	nt					-L
000 L. A	positive digital supply current for one channel; pins 27 and 6		-	0.1	•	mA
DDD	digital supply current for both channels; pin 2		-	29.0	-	mA
SSO L R	negative digital supply current for one channel; pins 26 and 7		-	-0.1	-	mA
SSO	negative supply current for both channels; pin 31		-	-28.0	-	mA
DOA	positive analog supply current; pin 17		-	51.0	-	mA
SSA	negative analog supply current; pin 16		-	-51.0		mA
tot	total power dissipation		-	800		mW
OUT(RMS)	output voltage (RMS value)	f _{CUK} = 8.46 MHz; notes 1 and 2	0.85	1.0	1.15	V

September 1991

827

TDA1547

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Supply currer	nt	· · ·				
(THD + N)/S	THD + Noise; 0 dB	1 kHz;	-	-101	-96	dB
(1110 + 11)/6		notes 2 and 3	1-	0.0009	0.0016	%
(THD + N)/S	THD + Noise; 0 dB	f = 20 Hz to 20	-	-101	-	dB
(1110 1117		kHz; notes 2 and 4	Ī-	0.0009	-	%
(THD + N)/S	THD + Noise; -20 dB	f = 1 kHz; notes 2 and 3		-88	-84	dB
(THD + N)/S	THD + Noise; -60 dB	f = 1 kHz; notes 2 and 3	-	-48	-44	d₿
S/N	signal-to-noise ratio	pattern 0101; notes 2 and 5	109	111	-	dB
S/N	signal-to-noise ratio; "A"-weighting	pattern 0101; notes 2 and 5	-	113	-	dB
f _{cux}	maximum clock frequency		1-	-	10	MHz
α	channel separation	f = 1 kHz	101	115	-	dВ
T _{amb}	operating ambient temperature		-20	-	70	°C

Notes to the quick reference data

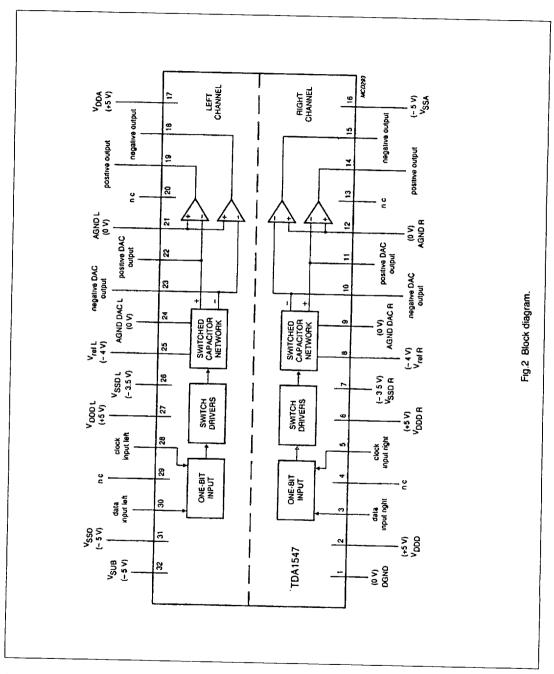
- 1. Output level tracks linearly with both the clock frequency and the reference voltage (V, or V ref R)
- 2. Device measured in differential mode with external components as shown in Fig.5.
- Measured with a one-bit data signal generated by the SAA7350 from an 8 f, (352.8 kHz), 20-bit, 1 kHz digital sinewave. Measured over a 20 Hz to 20 kHz bandwidth.
- Measured with a one-bit data signal generated by the SAA7350 from an 8 f_s (352.8 kHz), 20-bit, 20 Hz to 20 kHz digital sinewave. Measured over a 20 Hz to 20 kHz bandwidth.
- 5. The specified signal-to-noise ratio includes noise introduced by the application components as shown in Fig.5.

FUNCTIONAL DESCRIPTION

Both channels are completely separated to reach the desired high crosstalk suppression level. Each channel consists of the following functional parts:

- One-bit input, which latches the incoming data to the system clock.
- Switch driver circuit, which generates the non-overlapping clock- and data-signals that control the DAC switched capacitor networks.
- Switched capacitor network, this forms the actual DAC function, it supplies charge packets to the low-pass filter, under control of the incoming one-bit code.
- Two high performance operational amplifiers, that perform the charge packet to voltage conversion and deliver a differential output signal. The first pole of the low-pass filter is built around them.

THERMAL RESISTANCE


SYMBOL	PARAMETER	MAX.	UNIT	
R _{th P4}	from junction to ambient	60	KW	

September 1991

828

| 7110826 0079161 624 📰

TDA1547

September 1991

829

7110826 0079162 560

TDA1547

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX.	UNIT
V _{SUB}	negative substrate voltage; pin 32	note 1	-7.0		
V _{OOD L. R}	positive digital supply voltage; pins 27 and 6		-	5.5	V
V _{DOD}	positive digital supply voltage; pin 2		-	5.5	V
V _{SSO L. R}	negative digital supply voltage; pins 26 and 7		-4.0	•	٧
V _{SSD}	negative digital supply voltage; pin 31		-5.5	-	V
V _{DDA}	positive analog supply voltage; pin 17		•	6.0	v
V _{SSA}	negative analog supply voltage; pin 16		6.0	•	V
V _{DDO L R} - V _{SSD L R}	supply voltage difference between pins 27, 6 and pins 26, 7		-	9.0	V
P _{lot}	total power dissipation	T _{amb} = 70 °C	·	1300	mW
V _{ref L R}	input reference voltage; pins 25 and 8		-6.0		V
V _{CLK L. R}	input voltage clock; pins 28 and 5		-0.5	V ₀₀₀ +0.5	V
VIL	input voltage channel; pin 30		-0.5	V ₀₀₀ +0.5	V
V _{1 B}	input voltage channel; pin 3		-0.5	V ₀₀₀ +0.5	V
T _{amb}	operating ambient temperature		-20	70	°C
T _{stg}	storage temperature		-40	150	.€
T _{XTAL}	maximum crystal temperature		·	150	°C
V _{ES}	electrostatic handling	note 2	-	2000	V

Notes to the limiting values

- 1. The substrate voltage must be lower than or equal to the lowest supply voltage.
- 2. Equivalent to discharging a 100 pF capacitor through a 1.5 $k\Omega$ series resistor.

September 1991

830

TDA1547

CHARACTERISTICS

 V_{DDO} , V_{DDD} L R, V_{DDA} = +5 V; V_{SSO} , V_{SSO} L, R = -3.5 V; V_{ref} L R = -4 V; T_{amb} = 25°C; f_{CLK} = 8.46 MHz; unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNI
SUPPLY						
V _{sue}	negative substrate voltage; pin 32	note 1	-7.0	Ţ-	-4.5	٧
V _{DDD L R}	positive digital supply voltage for one channel; pins 27 and 6		4.5	5.0	5.5	V
V _{DDD}	digital supply voltage for both channels; pin 2		4.5	5.0	5.5	V
V _{SSD L. R}	negative digital supply voltage for one channel; pins 26 and 7		-4.0	-3.5	-3.0	V
V _{sso}	negative digital supply voltage for both channels; pin 31		-5.5	-5.0	-4.5	V
V _{DDA}	positive analog supply voltage; pin 17		4.5	5.0	6.0	·
V _{SSA}	negative analog supply voltage; pin 16		-6.0	-5.0	-4.5	·
V _{DOD L. A} - V _{SSD L. R}	supply voltage difference between pins 27, 6 and pins 26, 7		-	-	9.0	V
V _{SSD L. R} - V _{SSO}	pins 26, 7 and pin 31		1.3	-	-	V
DOD L. R	positive digital supply current for one channel; pins 27 and 6		-	0.1	-	mA
DDD	digital supply current for both channels; pin 2			29.0	46	mA
SSO L. A	negative digital supply current for one channel; pins 26 and 7		-	-0.1	-	mA
SSD	negative supply current for both channels; pin 31		-45	-28.0	-	mA
DDA	positive analog supply current; pin 17		1.	51.0	63	mA
SA	negative analog supply current; pin 16		-63.0	-51.0	-	mA
SSRI	power supply rejection ratio	V _{DDD L. B} ; note 6	50	-	-	dΒ
SSR2	power supply rejection ratio	V _{DDD} , note 6	50	-		dB
SSR3	power supply rejection ratio	V _{SSD L R} , note 6	60	†		dB
SSR4	power supply rejection ratio	V _{sso} ; note 6	50	-	-	dB
SSAS	power supply rejection ratio	V _{DDA} ; note 6	60	1-	 	dΒ
SSR6	power supply rejection ratio	V _{SSA} ; note 6	60	†-	-	dB
01	total power dissipation		 -	800	-	mW
lock - Input				<u> Т. </u>	<u> </u>	L
ι	input voltage LOW		-	1.	0.5	V
H	input voltage HIGH		4.5		-	v
	input current LOW	V, = 0.5 V	-10		10	μА

September 1991

831

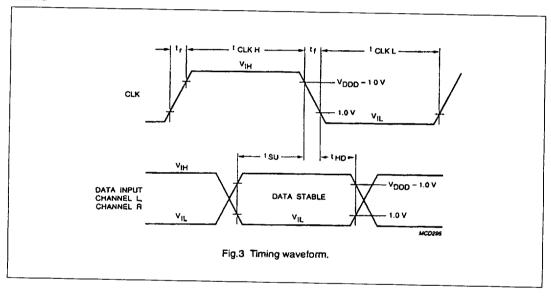
7110826 0079164 333

TDA1547

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Clock - Input						
th .	input current HIGH	V, = 4.5 V	-10	-	10	μА
C ₁	clock input capacitance		-	5		pF
CLK	clock input frequency		•	<u> </u>	10	MHz
Channel left/rig	ht inputs					
V _{IL}	input voltage LOW		-		0.5	٧
V _M	input voltage HIGH		-	4.5	-	٧
I _{IL}	input current LOW	V; = 0.5 V	-10	-	10	μА
I _{IH}	input current HIGH	V, = 4.5 V	10		10	μА
C _i	channel input capacitance; pins 3, 30		-	5	-	pF
V _{ref}	reference input voltage; pins 8, 25	note 2	•	-4 ±0.4	-	\ <u>\</u>
Audio outputs						
V _{OUT(RMS)}	output voltage (RMS value); pins 14, 19; pins 15, 18	notes 2 and 3	0.85	1.0	1.15	٧
(THD + N)/S	THD + Noise; 0 dB	f = 1 kHz; notes 3 and 4		-101	-96	dB
(11.5 : 11,70			-	0.0009	0.0016	%
(THD + N)/S	THD + Noise; 0 dB	20 Hz - 20 kHz;	•	-101	-	dB
(11.15		notes 3 and 5	·	0.0009	<u> -</u>	%
(THD + N)/S	THD + Noise; -20 dB	f = 1 kHz; notes 3 and 4	-	88	-84	dB
(THD + N)/S	THD + Noise; -60 dB	f = 1 kHz; notes 3 and 4	•	-48	-44	dB
S/N	signal-to-noise ratio	pattern 0101; notes 3 and 7	109	111	-	dB
S/N	signal-to-noise ratio; "A"-weighting	pattern 0101; notes 3 and 7	-	113	-	dB
α	channel separation	f = 1 kHz	101	115	<u> </u>	dB
Timing						
ţ.	rise time clock input	C _L = 20 pF	-	5	10	ns
t	fall time clock input	C _L = 20 pF	-	5	10	ns
t _{cux i}	clock input LOW time		45	- <u> </u>		ns
t _{CLK H}	clock input HIGH time		45	-	-	ns
t,	channel input rise time	C _L = 20 pF	-	10	15	ns
4	channel input fall time	C _L = 20 pF	-	10	15	ns
t _{HD}	channel input hold time		25	-	-	ns
t _{su}	channel input set-up time		0	-	-	ns

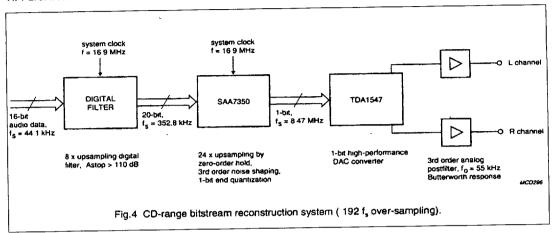
September 1991

832

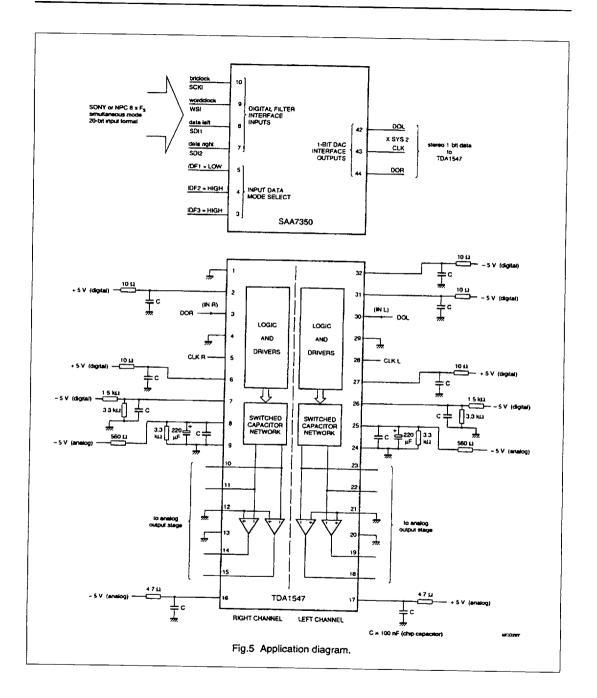

7110826 0079165 277

TDA1547

Notes to the characteristics


- 1. The substrate voltage must be lower than or to equal than the lowest supply voltage.
- 2. Output level tracks linearly with both the clock frequency and the reference voltage (V_{ref L} or V_{ref R}).
- 3. Device measured in differential mode with external components as shown in Fig.5.
- Measured with a one-bit data signal generated by the SAA7350 from an 8 f₃ (352.8 kHz), 20-bit, 1 kHz digital sinewave. Measured over a 20 Hz to 20 kHz bandwidth.
- Measured with a one-bit data signal generated by the SAA7350 from an 8 f_s (352.8 kHz), 20-bit, 20 Hz to 20 kHz digital sinewave. Measured over a 20 Hz to 20 kHz bandwidth.
- 6. Power supply rejection ratio measured with $f_{riople} = 1$ kHz and $v_{riople} = 100$ mV.
- 7. The specified signal-to-noise ratio includes noise introduced by the application components as shown in Fig.5.

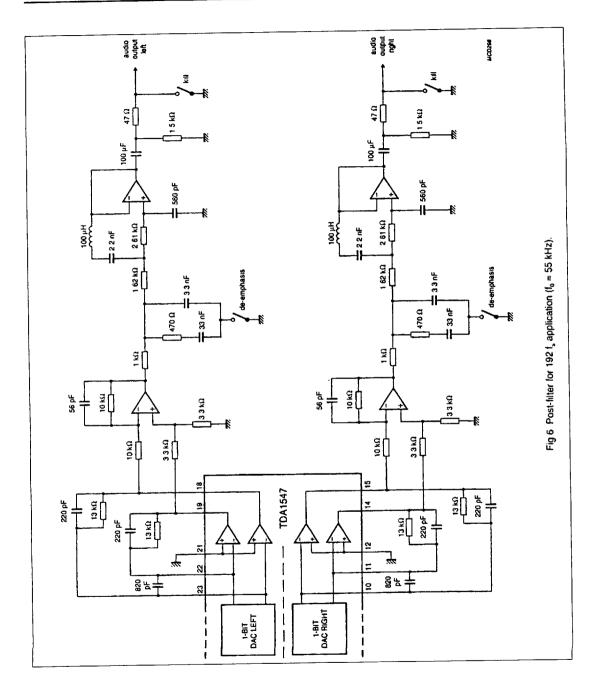
TIMING



TDA1547

APPLICATION INFORMATION

TDA1547

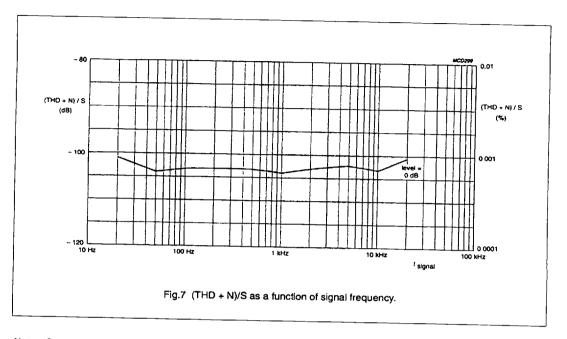


September 1991

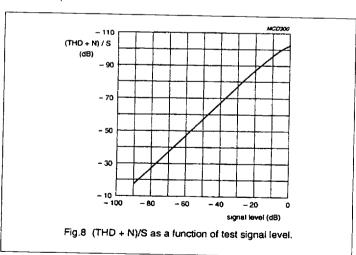
835

■ 7110826 0079168 T89 ■

TDA1547



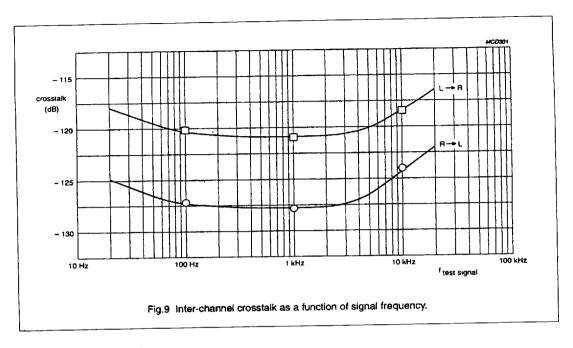
September 1991


836

■ 7110826 0079169 915

TDA1547

Note: Graph constructed from average measurements values of a small amount of engineering samples. No guarantee for typical values is implied.


Note: Graph constructed from average measurement values of a small amount of engineering samples. No guarantee for typical values is implied.

September 1991

837

■ 7110826 0079170 637 **■**

TDA1547

Note: Graph constructed from average measurements values of a small amount of engineering samples. No guarantee for typical values is implied.

September 1991

838

| 7110826 0079171 573 **|**