

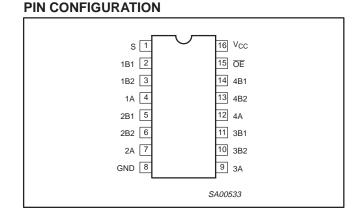
Product data

2002 Sep 27

CBTS3257

FEATURES

- 5 Ω switch connection between two ports
- TTL-compatible input levels
- Schottky diodes on I/O clamp undershoot
- Minimal propagation delay through the switch
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101


DESCRIPTION

The CBTS3257 is a quad 1-of-2 high-speed TTL-compatible multiplexer/demultiplexer. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

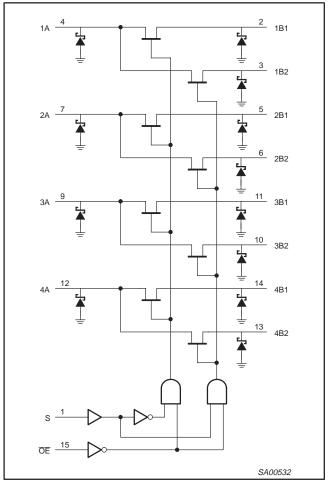
Output Enable (\overline{OE}) and select-control (S) inputs select the appropriate B1 and B2 outputs for the A-input data.

Internal Schottky diode provides I/O undershoot protection.

The CBTS3257 is characterized for operation from -40 to +85 °C.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	S	Select-control input
2, 3, 5, 6, 10, 11, 13, 14	1B1, 1B2, 2B1, 2B2 3B1, 3B2 4B1, 4B2	B outputs
4, 7, 9, 12	1A, 2A, 3A, 4A	A inputs
8	GND	Ground (0 V)
15	ŌĒ	Output enable
16	V _{CC}	Positive supply voltage


ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	TOPSIDE MARK	DWG NUMBER
16-pin plastic SO	–40 to 85 °C	CBTS3257D	CBTS3257D	SOT109-1
16-pin plastic SSOP	–40 to 85 °C	CBTS3257DB	CS3257	SOT338-1
16-pin plastic SSOP (QSOP)	–40 to 85 °C	CBTS3257DS	CBS3257	SOT519-1
16-pin plastic TSSOP	–40 to 85 °C	CBTS3257PW	CBS3257	SOT403-1

Standard packing quantities and other packaging data is available at www.philipslogic.com/packaging.

CBTS3257

LOGIC DIAGRAM (positive logic)

FUNCTION TABLE

INP	UTS	FUNCTION
OE	S	FUNCTION
L	L	A port = B1 port
L	Н	A port = B2 port
Н	Х	Disconnect

CBTS3257

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
VI	DC input voltage ²		-0.5 to +7.0	V
	Continuous channel current		128	mA
۱ _K	Input clamp current	V _{I/O} < 0	-50	mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT		
STMBOL	PARAMETER	MIN	MAX	UNIT	
V _{CC}	DC supply voltage	4.5	5.5	V	
V _{IH}	High-level input voltage	2.0	—	V	
V _{IL}	Low-level Input voltage	—	0.8	V	
T _{amb}	Operating free-air temperature range	-40	+85	°C	

NOTE:

1. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS

						LIMITS					
SYMBOL	PARAM	PARAMETER TEST CONDITIONS					T _{amb} = −40 to +85 °C				
					MIN	MIN TYP ¹ MAX					
V		A or B inp	outs	1/-45/(1-19m)	_	—	-0.8	V			
V _{IK}	Input clamp voltage	Control in	puts	V _{CC} = 4.5 V; I _I = -18 mA	—	—	-1.2	V			
VP	Pass voltage	_		$V_{I} = V_{CC} = 5.0 \text{ V}; \text{ I/O} = -100 \text{ mA}$	3.4	3.6	3.9	V			
lı	Input leakage current			V_{CC} = 5.5 V; V_I = GND or 5.5 V	—	—	±1	μA			
I _{CC}	Quiescent supply curr	rent		V_{CC} = 5.5 V; I_O = 0, V_I = V_{CC} or GND	—	—	3	μA			
ΔI _{CC}	Additional supply curr	ent per inpu	ut pin ²	V_{CC} = 5.5 V, one input at 3.4 V, other inputs at V_{CC} or GND	_	—	2.5	mA			
Cl	Control pins capacitar	nce		V _I = 3 V or 0	—	3.3	—	pF			
0	0#		A port	$V_0 = 3 V \text{ or } 0; \overline{OE} = V_{CC}$	—	9.9	—	pF			
C _{IO(OFF)}	Off capacitance	Г	B port	$V_{O} = 3 V \text{ or } 0; \overline{OE} = V_{CC}$	—	6.4	—	pF			
	· · ·			$V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}; \text{ I}_{I} = 64 \text{ mA}$		5	7	Ω			
r _{on} ³	On-resistance			$V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}; \text{ I}_{I} = 30 \text{ mA}$	_	5	7	Ω			
				$V_{CC} = 4.5$ V; $V_{I} = 2.4$ V; $I_{I} = 15$ mA	_	10	15	Ω			

NOTES:

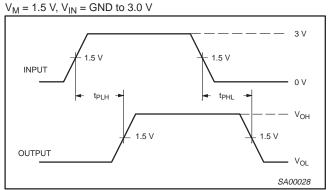
1. All typical values are at $V_{CC} = 5 \text{ V}$, $T_{amb} = 25 \text{ °C}$. 2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND 3. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch.

On-state resistance is determined by the lowest voltage of the two (A or B) terminals.

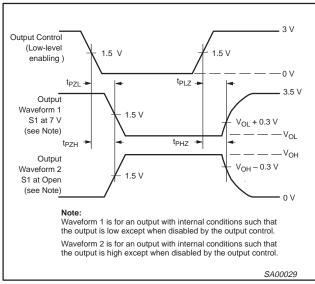
Product data

CBTS3257

AC CHARACTERISTICS

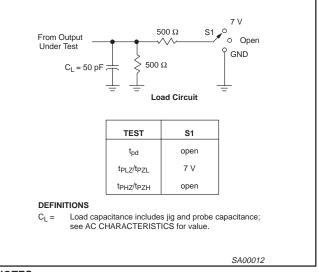

 $T_{amb} = -40$ to +85 °C; $C_L = 50$ pF

		LIMITS				
SYMBOL	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = +5.0	0 V ±0.5 V	UNIT
			(,	MIN	MAX	
t _{pd}	Propagation delay ¹	A or B	B or A	—	0.25	ns
t _{pd}	Propagation delay	S	A	1.6	5.0	ns
	Output enable time	ŌĒ	A or B	1.8	5.1	ns
t _{en}	to High and Low level	S	В	1.6	5.2	ns
.	Output disable time	ŌĒ	A or B	2.2	5.5	ns
t _{dis}	from High and Low level	S	В	1.0	5.0	ns


NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

AC WAVEFORMS



Waveform 2. 3-State Output Enable and Disable Times NOTES:

- 1. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- 2. t_{PZL} and t_{PZH} are the same as t_{en}.
- 3. t_{PLH} and t_{PHL} are the same as t_{pd}.

TEST CIRCUIT AND WAVEFORMS

NOTES:

- 1. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 $\Omega,$ t_r \leq 2.5 ns. t_f \leq 2.5 ns.
- 2. The outputs are measured one at a time with one transition per measurement.

- **(** w (M)

5 mm

bp

detail X

SO16: plastic small outline package; 16 leads; body width 3.9 mm

е

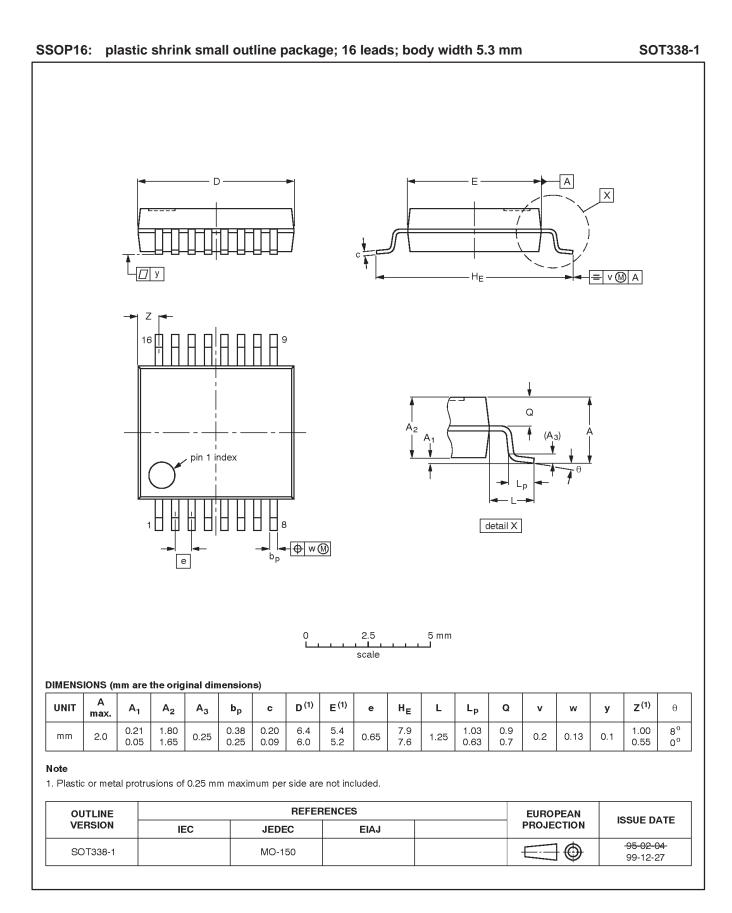
UNIT	A max.	A ₁	A ₂	A ₃	b р	с	D ⁽¹⁾	E ⁽¹⁾	е	Η _E	L	Lp	Q	×	w	У	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004		0.01		0.0100 0.0075		0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

2.5

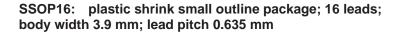
scale

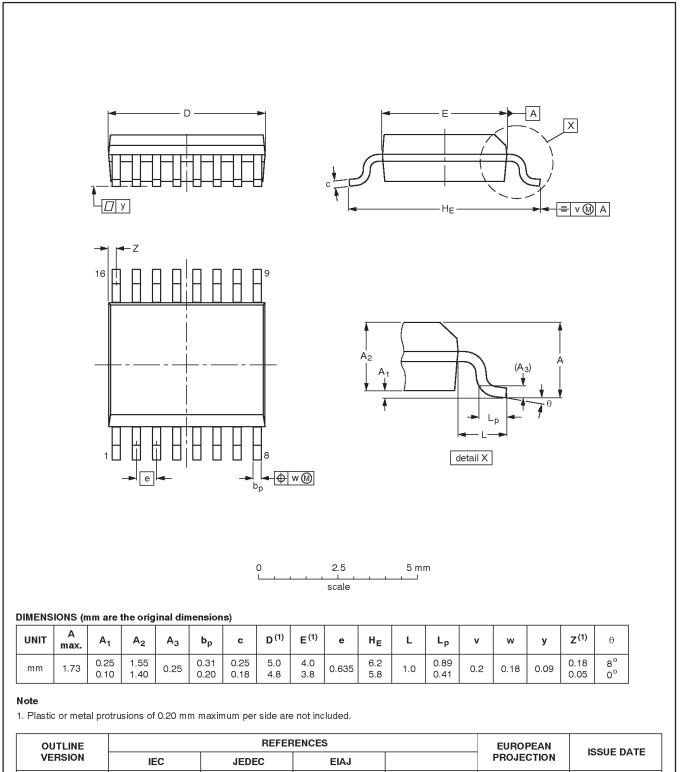
0

Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1550E DATE		
SOT109-1	076E07	MS-012			97-05-22 99-12-27		

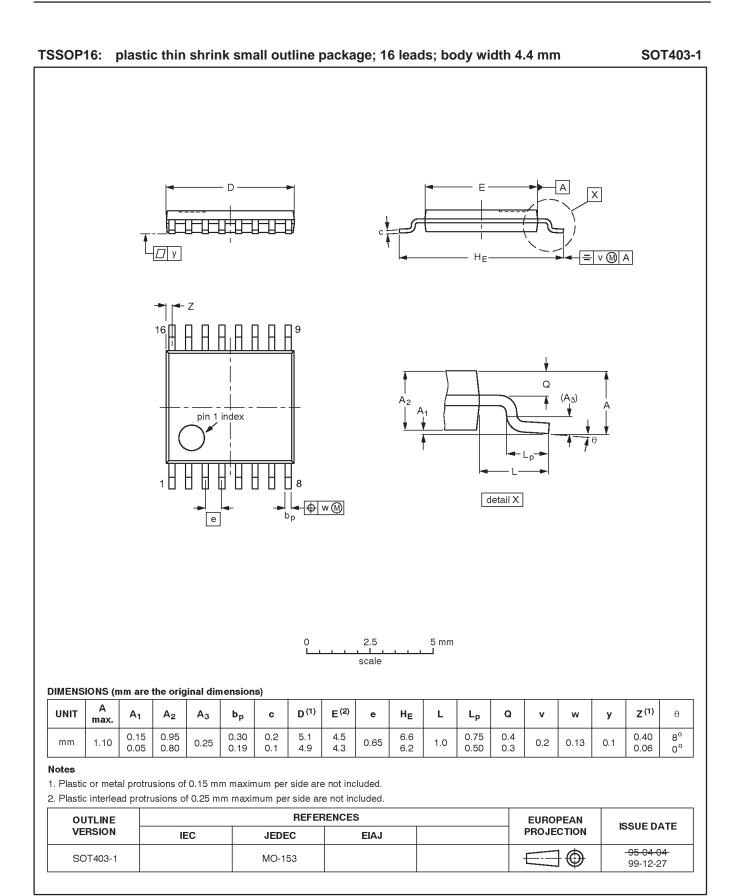

CBTS3257


SOT109-1

CBTS3257

SOT519-1

CBTS3257


SOT519-1

 \odot

 \leftarrow

99-05-04

CBTS3257

2002 Sep 27

CBTS3257

REVISION HISTORY

	Rev	Date	Description			
Γ	_1	2002 Sep 27	Product data (9397 750 10333); initial version			
			Engineering Change Notice: 853–2380 28892 (2002 Sep 10)			

CBTS3257

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 © Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 09-02

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 10333

Let's make things better.

