SN74LS365A SN74LS367A SN74LS368A

3-State Hex Buffers

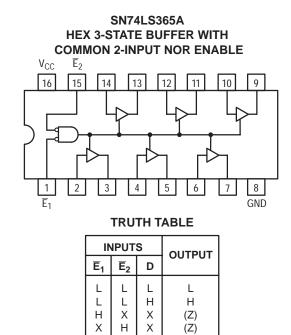
These devices are high speed hex buffers with 3-state outputs. They are organized as single 6-bit or 2-bit/4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15 TTL Unit Loads or 60 Low Power Schottky loads when the Enable (E) is LOW.

When the Output Enable (E) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

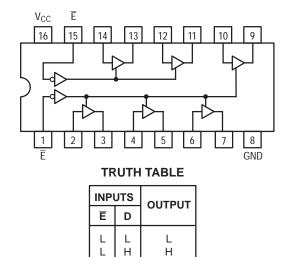
Symbol	Parameter	Min	Тур	Мах	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{ОН}	Output Current – High			-2.6	mA
I _{OL}	Output Current – Low			24	mA

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

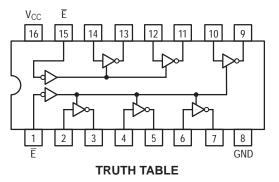
LOW POWER SCHOTTKY



ORDERING INFORMATION


Device	Package	Shipping		
SN74LS365AN	16 Pin DIP	2000 Units/Box		
SN74LS365AD	SN74LS365AD 16 Pin			
SN74LS367AN	16 Pin DIP	2000 Units/Box		
SN74LS367AD	16 Pin	2500/Tape & Reel		
SN74LS368AN	16 Pin DIP	2000 Units/Box		
SN74LS368AD	16 Pin	2500/Tape & Reel		

SN74LS365A SN74LS367A SN74LS368A


SN74LS367A HEX 3-STATE BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

SN74LS368A HEX 3-STATE INVERTER BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

(Z)

н | х

INP	UTS	OUTPUT		
Ē	D			
L	L	Н		
L	Н	L		
Н	X	(Z)		

SN74LS365A SN74LS367A SN74LS368A

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs		
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
V _{OH}	Output HIGH Voltage	2.4	3.1		V	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$ or V_{IL} per Truth Table		
			0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$	
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 24 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table	
I _{OZH}	Output Off Current HIGH			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
I _{OZL}	Output Off Current LOW			-20	μΑ	$V_{CC} = MAX, V_{OUT} = 0.4 V$		
	Input HIGH Current			20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
IIH				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
	Input LOW Current E Inputs			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{IL}	D Inputs			-20	μΑ	$V_{CC} = MAX, V_{IN} = 0.5 V$ Either \overline{E} Input at 2.0 V		
				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V Both Ē Inputs at 0.4 V		
I _{OS}	Short Circuit Current (Note 1)	-40		-225	mA	V _{CC} = MAX		
I _{CC}	Power Supply Current LS365A, 367A			24	mA	V _{CC} = MAX		
	LS368A			21				

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits							
		LS365A/LS367A		LS366A/LS368A					
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Unit	Test Conditions
t _{PLH} t _{PHL}	Propagation Delay		10 9.0	16 22		7.0 12	15 18	ns	C _L = 45 pF,
t _{PZH} t _{PZL}	Output Enable Time		19 24	35 40		18 28	35 45	ns	$R_L = 667 \ \Omega$
t _{PHZ} t _{PLZ}	Output Disable Time			30 35			32 35	ns	C _L = 5.0 pF

SN74LS365A SN74LS367A SN74LS368A

PACKAGE DIMENSIONS

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL

ROOM	COMDED CORNERS OF HOMAE.							
	INC	HES	MILLIMETERS					
DIM	MIN MAX		MIN	MAX				
Α	0.740	0.770	18.80	19.55				
В	0.250	0.270	6.35	6.85				
С	0.145	0.175	3.69	4.44				
D	0.015	0.021	0.39	0.53				
F	0.040	0.70	1.02	1.77				
G	0.100	0.100 BSC		2.54 BSC				
Н	0.050	BSC	1.27 BSC					
J	0.008	0.015	0.21	0.38				
K	0.110	0.130	2.80	3.30				
L	0.295	0.305	7.50	7.74				
M	0 °	10 °	0 °	10 °				
S	0.020	0.040	0.51	1.01				

NOTES

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE

3

MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) Δ PER SIDE

DIMENSION D DOES NOT INCLUDE DAMBAR 5 PROTRUSION ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	1.27 BSC) BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0 °	7°	0 °	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

www are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) French Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support 303-675-2121 (Tue-Fri 9:00am to 1:00pm. Hong Kong Time) Phone: Toll Free from Hong Kong 800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549 Phone: 81-3-5487-8345 Email: r14153@onsemi com

Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.