Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed primarily for industrial and consumer applications for full wave control of ac loads such as appliance controls, heater controls, motor controls, and other power switching applications.

- Sensitive Gate Triggering in 3 Modes for AC Triggering on Sinking Current Sources
- Four Mode Triggering for Drive Circuits that Source Current
- All Diffused and Glass–Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance and High Heat Dissipation
- Center Gate Geometry for Uniform Current Spreading
- Device Marking: Logo, Device Type, e.g., MAC228A4, Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) MAC228A4 MAC228A6 MAC228A8 MAC228A10	VDRM, VRRM	200 400 600 800	Volts
On-State RMS Current (T _C = 80°C) Full Cycle Sine Wave 50 to 60 Hz	IT(RMS)	8.0	Amps
Peak Non–Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 110°C)	ITSM	80	Amps
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	26	A ² s
Peak Gate Current (t $\leq 2 \mu$ s, T _C = 80°C)	IGM	±2.0	Amps
Peak Gate Voltage (t $\leq 2 \mu$ s, T _C = 80°C)	VGM	±10	Volts
Peak Gate Power (t $\leq 2 \mu$ s, T _C = 80°C)	PGM	20	Watts
Average Gate Power (t \leq 8.3 ms, T _C = 80°C)	PG(AV)	0.5	Watt
Operating Junction Temperature Range	Тj	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C
Mounting Torque	_	8.0	in. lb.

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor

http://onsemi.com

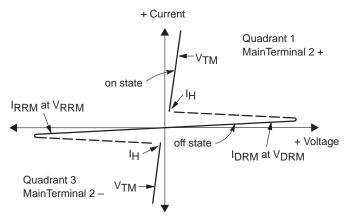
TRIACS 8 AMPERES RMS 200 thru 800 VOLTS

CASE 221A STYLE 4

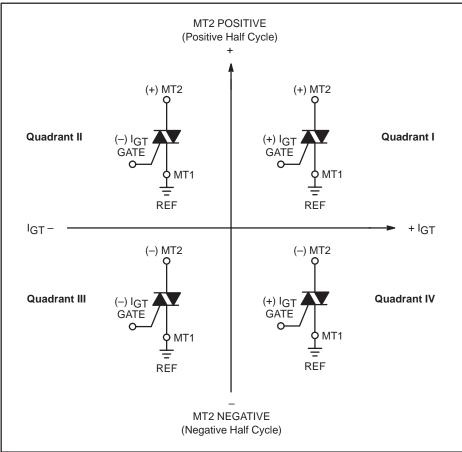
PIN ASSIGNMENT			
Main Terminal 1			
Main Terminal 2			
Gate			
Main Terminal 2			

ORDERING INFORMATION

Device	Package	Shipping
MAC228A4	TO220AB	500/Box
MAC228A6	TO220AB	500/Box
MAC228A8	TO220AB	500/Box
MAC228A10	TO220AB	500/Box


Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS


Characteristic		Symbol		Value		Unit
nermal Resistance — Junction to Case — Junction to Ambient		R _{θJC} R _{θJA}		2.0 62.5		°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Se	Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds		TL		260	
ELECTRICAL CHARACTERISTICS (T _C = 25° C unless otherwise noted	; Electric	cals apply	in both dire	ections)		
Characteristic	Sy	mbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS						-
Peak Repetitive Blocking Current $(V_D = Rated V_{DRM}, V_{RRM}; Gate Open)$ $T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$		I _{DRM} , I _{RRM}			10 2.0	μA mA
ON CHARACTERISTICS	•		•			•
Peak On-State Voltage (ITM = \pm 11 A Peak, Pulse Width \leq 2 ms, Duty Cycle \leq 2%)	\	/TM	-	-	1.8	Volts
Gate Trigger Current (Continuous dc) $(V_D = 12 V, R_L = 100 \Omega)$ MT2(+), G(+); MT2(+), G(-); MT2(-), G(-) MT2(-), G(+)		lgt			5.0 10	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 V, R_L = 100 \Omega)$ MT2(+), G(+); MT2(+), G(-); MT2(-), G(-) MT2(-), G(+)	\	/GT			2.0 2.5	Volts
Gate Non–Trigger Voltage (Continuous dc) $(V_D = 12 V, T_C = 110^{\circ}C, R_L = 100 \Omega)$ All Four Quadrants		/ _{GD}	0.2	—	—	Volts
Holding Current (V _D = 12 Vdc, Initiating Current = ± 200 mA, Gate Open)		ΙΗ	_	—	15	mA
Gate–Controlled Turn–On Time (V_D = Rated V_{DRM} , I _{TM} = 16 A Peak, I _G = 30 mA)		^t gt	—	1.5	—	μs
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off-State Voltage (V _D = Rated V _{DRM} , Exponential Waveform, T _C = 110°C)	с	lv/dt	-	25	_	V/µs
Critical Rate of Rise of Commutation Voltage (V _D = Rated V _{DRM} , I _{TM} = 11.3 A, Commutating di/dt = 4.1 A/ms, Gate Unenergized, T _C = 80°C)	dv	v/dt(c)	-	5.0	_	V/µs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
VDRM	Peak Repetitive Forward Off State Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Reverse Off State Voltage
IRRM	Peak Reverse Blocking Current
VTM	Maximum On State Voltage
Ι _Η	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

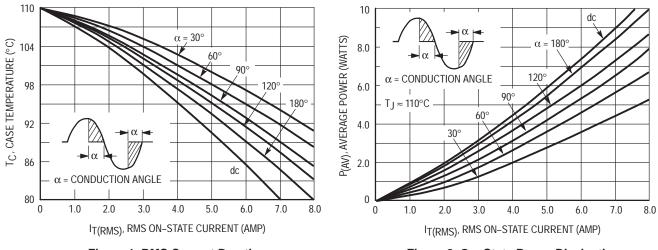
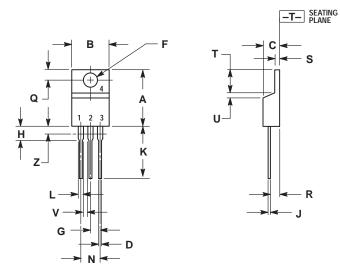


Figure 1. RMS Current Derating

Figure 2. On–State Power Dissipation


PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 ISSUE Z

- S

R

J

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.022	0.36	0.55	
К	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Ζ		0.080		2.04	

STYLE 4: PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2 3. GATE 4. MAIN TERMINAL 2

Notes

Notes

ON Semiconductor and without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" parameters, including parameters, including or the application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized provided in support.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.