Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

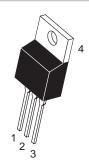
Designed for industrial and consumer applications for full wave control of ac loads such as appliance controls, heater controls, motor controls, and other power switching applications.

- Sensitive Gate allows Triggering by Microcontrollers and other Logic Circuits
- High Immunity to dv/dt 25 V/μs minimum at 110°C
- High Commutating di/dt 8.0 A/ms minimum at 110°C
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- On-State Current Rating of 15 Amperes RMS at 70°C
- High Surge Current Capability 120 Amperes
- Blocking Voltage to 800 Volts
- Rugged, Economical TO220AB Package
- Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2, and Q3
- Device Marking: Logo, Device Type, e.g., MAC15SD, Date Code

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage(1) (T _J = -40 to 110°C, Sine Wave, 50 to 60Hz, Gate Open)	VDRM, VRRM		Volts
MAC15SD MAC15SM MAC15SN		400 600 800	
On–State RMS Current (Full Cycle Sine Wave, 60Hz, T _J = 70°C)	IT(RMS)	15	А
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 110°C)	ITSM	120	А
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	60	A ² s
Peak Gate Power (Pulse Width ≤ 1.0 μs, T _C = 70°C)	Рдм	20	Watts
Average Gate Power (t = 8.3 ms, T _C = 70°C)	PG(AV)	0.5	Watts
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor

http://onsemi.com

TRIACS 15 AMPERES RMS 400 thru 800 VOLTS

TO-220AB CASE 221A STYLE 4

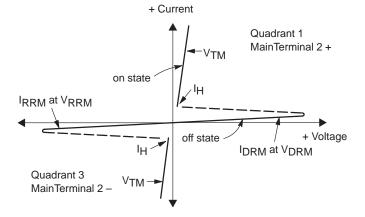
PIN ASSIGNMENT			
1 Main Terminal 1			
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

ORDERING INFORMATION

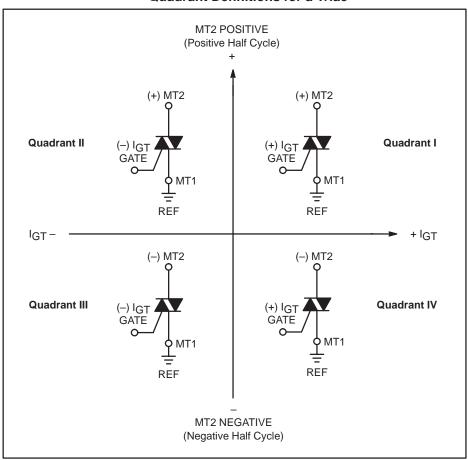
Device	Package	Shipping
MAC15SD	TO220AB	50 Units/Rail
MAC15SM	TO220AB	50 Units/Rail
MAC15SN	TO220AB	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

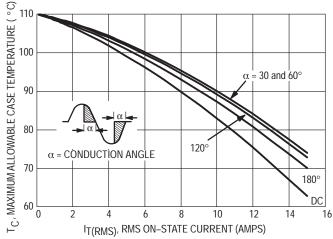

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _Ð JC R _Ð JA	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	•	
Peak Repetitive Blocking Current $(V_D = Rated \ V_{DRM}, \ V_{RRM}; \ Gate \ Open) \\ T_J = 25^{\circ}C \\ T_J = 110^{\circ}C$	I _{DRM} , I _{RRM}	_ _	_ _	0.01 2.0	mA
ON CHARACTERISTICS	•			•	
Peak On-State Voltage ⁽¹⁾ ($I_{TM} = \pm 21A$)	V _{TM}	_	_	1.8	Volts
Gate Trigger Current (Continuous dc) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	^I GT	.8 .8 .8	2.0 3.0 3.0	5.0 5.0 5.0	mA
Hold Current (V _D = 12 V, Gate Open, Initiating Current = ±150mA)	lн	1.0	3.0	10	mA
Latching Current ($V_D = 24V$, $I_G = 5mA$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	IL	2.0 2.0 2.0	5.0 10 5.0	15 20 15	mA
Gate Trigger Voltage (Continuous dc) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	VGТ	0.45 0.45 0.45	0.62 0.60 0.65	1.5 1.5 1.5	Volts
DYNAMIC CHARACTERISTICS					
Rate of Change of Commutating Current ($V_D = 400V$, $I_{TM} = 3.5A$, Commutating dv/dt = $10V\mu/sec$, Gate Open, $T_J = 110^{\circ}C$, f= $500Hz$, Snubber: $C_S = 0.01\mu$ F, $R_S = 15\Omega$, see Figure 15.)	(di/dt)c	8.0	10	_	A/ms
Critical Rate of Rise of Off-State Voltage $(V_D = Rate \ V_{DRM}, Exponential \ Waveform, R_{GK} = 510\Omega, T_J = 110^{\circ}C)$	dv/dt	25	75	_	V/µs


⁽¹⁾ Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
VDRM	Peak Repetitive Forward Off State Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Reverse Off State Voltage
IRRM	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
lΗ	Holding Current



Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

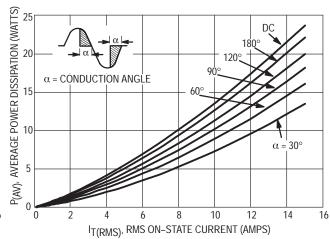
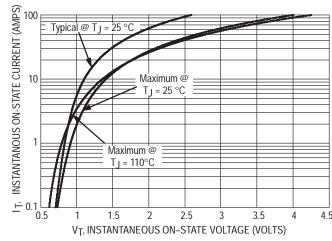



Figure 1. RMS Current Derating

Figure 2. Maximum On-State Power Dissipation

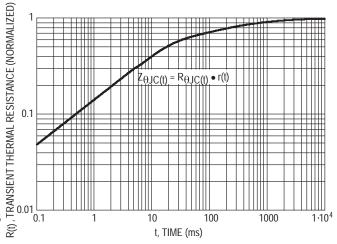
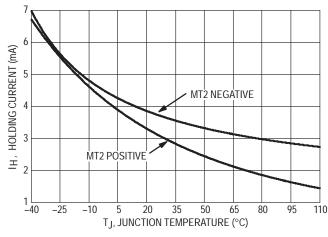



Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

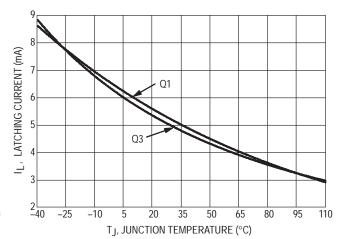


Figure 5. Typical Holding Current Versus
Junction Temperature

Figure 6. Typical Latching Current Versus Junction Temperature

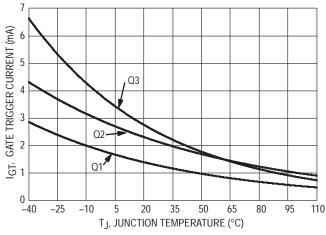


Figure 7. Typical Gate Trigger Current Versus Junction Temperature

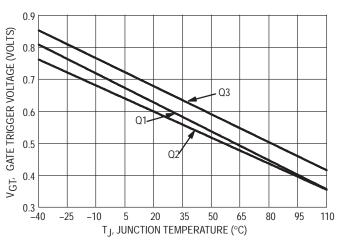


Figure 8. Typical Gate Trigger Voltage Versus Junction Temperature

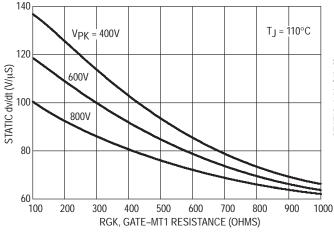


Figure 9. Typical Exponential Static dv/dt Versus Gate-MT1 Resistance, MT2(+)

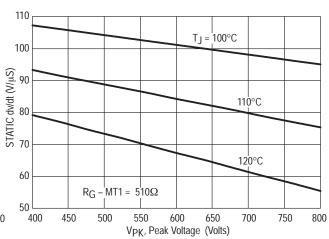


Figure 10. Typical Exponential Static dv/dt Versus Peak Voltage, MT2(+)

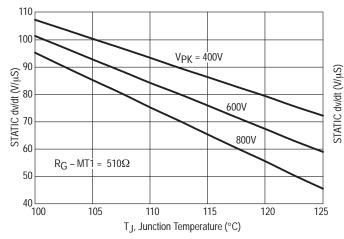


Figure 11. Typical Exponential Static dv/dt Versus Junction Temperature, MT2(+)

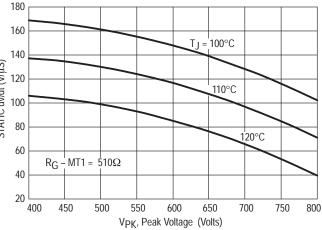
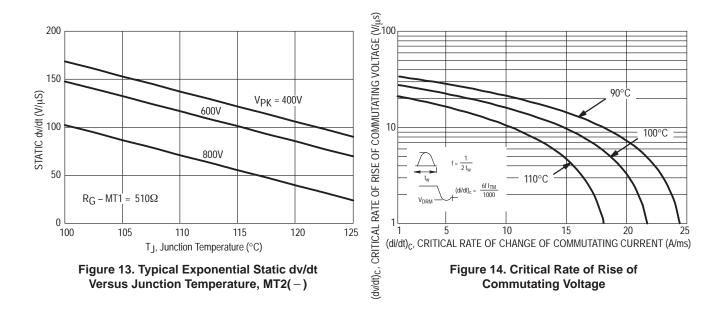



Figure 12. Typical Exponential Static dv/dt Versus Peak Voltage, MT2(-)

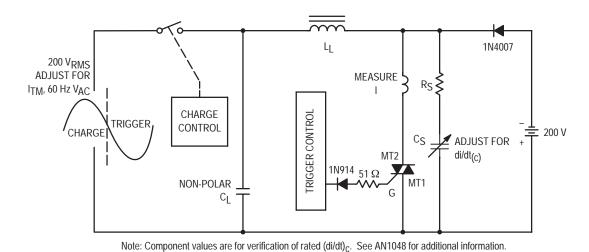
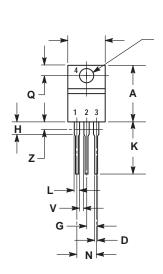
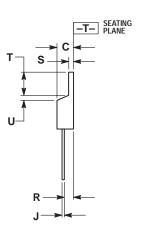




Figure 15. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)_C

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE Z**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 4:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. $SCILLC\ products\ are\ not\ designed,\ intended,\ or\ authorized\ for\ use\ as\ components\ in\ systems\ intended\ for\ surgical\ implant\ into\ the\ body,\ or\ other\ applications$ intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore: 001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.