Power MOSFET 45 Amps, 60 Volts

N-Channel TO-220 and D2PAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

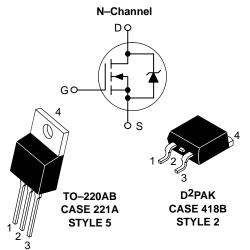
- Higher Current Rating
- Lower R_{DS(on)}
- Lower V_{DS(on)}
- Lower Capacitances
- Lower Total Gate Charge
- Tighter V_{SD} Specification
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge

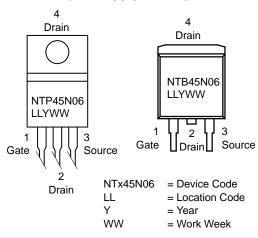
Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	Vdc
Drain-to-Gate Voltage ($R_{GS} = 10 \text{ M}\Omega$)	VDGR	60	Vdc
Gate-to-Source Voltage			Vdc
Continuous	Vgs	±20	
Non–Repetitive (t_p≤10 ms)	VGS	±30	
Drain Current			
– Continuous @ T _A = 25°C	ΙD	45	Adc
– Continuous @ T _A = 100°C	ΙD	30	
– Single Pulse (t _p ≤10 μs)	IDM	150	Apk
Total Power Dissipation @ T _A = 25°C	P_{D}	125	W
Derate above 25°C		0.83	W/°C
Total Power Dissipation @ T _A = 25°C (Note 1.)		3.2	W
Total Power Dissipation @ T _A = 25°C (Note 2.)		2.4	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to	°C
		+175	
Single Pulse Drain-to-Source Avalanche	EAS	240	mJ
Energy – Starting T _J = 25°C			
$(V_{DD} = 50 \text{ Vdc}, V_{GS} = 10 \text{ Vdc}, RG = 25 \Omega,$			
$I_{L(pk)} = 40 \text{ A}, L = 0.3 \text{ mH}, V_{DS} = 60 \text{ Vdc})$			


- When surface mounted to an FR4 board using 1" pad size, (Cu Area 1.127 in²).
- When surface mounted to an FR4 board using the minimum recommended pad size, (Cu Area 0.412 in²).


ON Semiconductor™

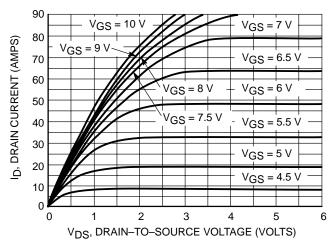
http://onsemi.com

45 AMPERES 60 VOLTS RDS(on) = 26 m Ω

MARKING DIAGRAMS & PIN ASSIGNMENTS

ORDERING INFORMATION

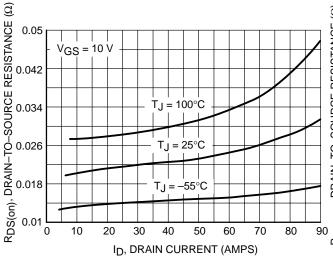
Device	Package	Shipping
NTP45N06	TO-220AB	50 Units/Rail
NTB45N06	D ² PAK	50 Units/Rail
NTB45N06T4	D ² PAK	800/Tape & Reel


MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Thermal Resistance – Junction–to–Case – Junction–to–Ambient (Note 3.) – Junction–to–Ambient (Note 4.)	R _θ JC R _θ JA R _θ JA	1.2 46.8 63.2	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise noted)

DFF CHARACTERISTICS Drain-to-Source Breakdown Voltage (Note 5.) V(BR)DSS 60 70 - (VGS = 0 Vdc, ID = 250 μAdc) - 57 - mV/°C Zero Gate Voltage Drain Current IDSS - - 1.0 μAdc (VDS = 60 Vdc, VGS = 0 Vdc) - - 10 - 10 - Gate-Body Leakage Current (VGS = ±20 Vdc, VDS = 0 Vdc) IGSS - - ±100 nAdc ON CHARACTERISTICS (Note 5.) VGS(th) 2.0 2.8 4.0 mV/°C Gate Threshold Voltage (Note 5.) VGS(th) 2.0 2.8 4.0 mV/°C Threshold Temperature Coefficient (Negative) RDS(on) - 7.2 - mOhm (VGS = 10 Vdc, ID = 22.5 Adc) VDS(on) - 21 26 Vdc Static Drain-to-Source On-Voltage (Note 5.) VDS(on) - 0.93 1.4 (VGS = 10 Vdc, ID = 45 Adc) - 0.93 - - 0.93 - (VGS = 10 Vdc, ID = 22.5 Adc, TJ	CI	Symbol	Min	Тур	Max	Unit	
Drain-to-Source Breakdown Voltage (Note 5.)	OFF CHARACTERISTICS		<u>-</u>	I	1	I	I
(VDS = 60 Vdc, VGS = 0 Vdc), VDS = 0 Vdc, TJ = 150°C) 1.0 1.0 1.0 Gate-Body Leakage Current (VGS = ±20 Vdc, VDS = 0 Vdc) IGSS ±100 nAdc ON CHARACTERISTICS (Note 5.) VGS(th) 2.0 2.8 4.0 MVCC Threshold Voltage (Note 5.) VGS(th) 2.0 2.8 4.0 MVCC Threshold Temperature Coefficient (Negative) - 7.2 <td< td=""><td>$(V_{GS} = 0 \text{ Vdc}, I_{D} = 250 \mu \text{Add})$</td><td>V(BR)DSS</td><td></td><td>_</td><td>_ _</td><td>Vdc mV/°C</td></td<>	$(V_{GS} = 0 \text{ Vdc}, I_{D} = 250 \mu \text{Add})$	V(BR)DSS		_	_ _	Vdc mV/°C	
Concentration Characteristics Concentration Concentra	$(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	IDSS	_ _	- -		μAdc	
Gate Threshold Voltage (Note 5.) (Vps = Vgs, lp = 250 μAdc) (Vps = Vgs, lp = 250 μAdc) Threshold Temperature Coefficient (Negative) 2.0	Gate-Body Leakage Current (V	$V_{GS} = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$	IGSS	_	_	±100	nAdc
(Vps = Vgs, lp = 250 μAdc)	ON CHARACTERISTICS (Note 5	5.)					
VGS = 10 Vdc, ID = 22.5 Adc)	$(V_{DS} = V_{GS}, I_{D} = 250 \mu Adc)$		VGS(th)	2.0			Vdc mV/°C
		R _{DS(on)}	-	21	26	mOhm	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(VGS = 10 Vdc, ID = 45 Adc)	V _{DS(on)}	_ _			Vdc	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance (No	9FS	_	16.6	_	mhos	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance		C _{iss}	-	1224	1725	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance		C _{oss}	-	345	485	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transfer Capacitance	- ,	C _{rss}	_	76	160	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTIC	S (Note 6.)		-			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		^t d(on)	_	10	25	ns
	Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_{D} = 45 \text{ Adc},$	t _r	-	101	200	
	Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc}, R_{G} = 9.1 \Omega) \text{ (Note 5.)}$	t _d (off)	-	33	70	
	Fall Time		t _f	-	106	220	
$V_{GS} = 10 \text{ Vdc}) \text{ (Note 5.)} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate Charge		Q _T	-	33	46	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Q ₁	-	6.4	_	1
Forward On–Voltage		163 = 10 146) (166 6.)	Q ₂	-	15	-	
	SOURCE-DRAIN DIODE CHAR	ACTERISTICS		•	•		•
$(I_S = 45 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 5.)}$ t_a $ t_b$ $ 16.9$ $-$	Forward On-Voltage		V _{SD}				Vdc
$\frac{dI_{S}/dt = 100 \text{ A/µs) (Note 5.)}}{t_{b}} = \frac{t_{a}}{t_{b}} = \frac{30}{t_{b}} = \frac{-16.9}{t_{b}} = \frac$	Reverse Recovery Time		t _{rr}	_	53.1	_	ns
t _b – 16.9 –			ta	-	36	-	
Reverse Recovery Stored Charge Q _{RR} - 0.087 - μC			t _b	-	16.9	-]
	Reverse Recovery Stored Char	ge	Q _{RR}	_	0.087	-	μС


- 3. When surface mounted to an FR4 board using 1" pad size, (Cu Area 1.127 in 2).
- 4. When surface mounted to an FR4 board using the minimum recommended pad size, (Cu Area 0.412 in²).
- 5. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

 $V_{DS} > = 10 \text{ V}$ 80 ID, DRAIN CURRENT (AMPS) 70 60 50 40 30 $T_{.1} = 25^{\circ}C_{.1}$ 20 $T_{.1} = 100^{\circ}C$ 10 $T_{.1} = -55^{\circ}C$ 0 5.5 6 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

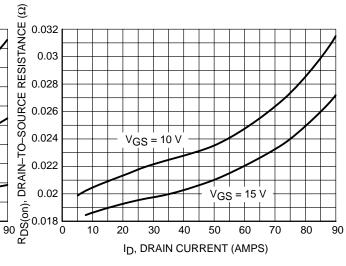
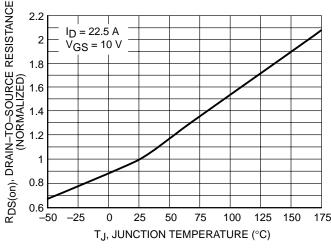



Figure 3. On–Resistance vs. Gate–to–Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

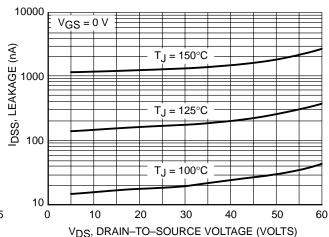


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

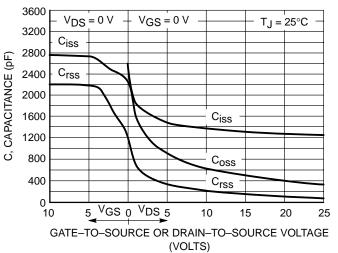


Figure 7. Capacitance Variation

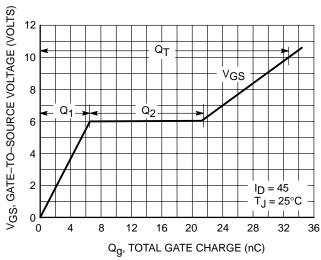


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

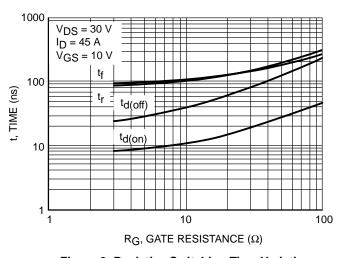


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

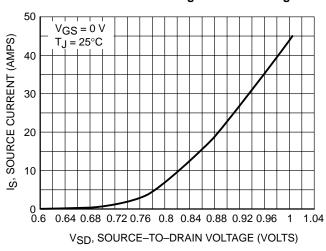


Figure 10. Diode Forward Voltage vs. Current

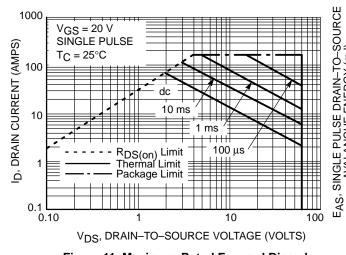


Figure 11. Maximum Rated Forward Biased Safe Operating Area

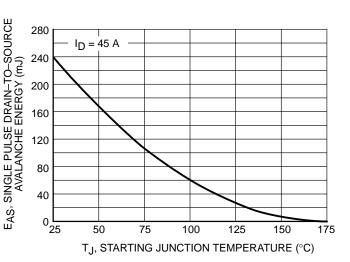


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

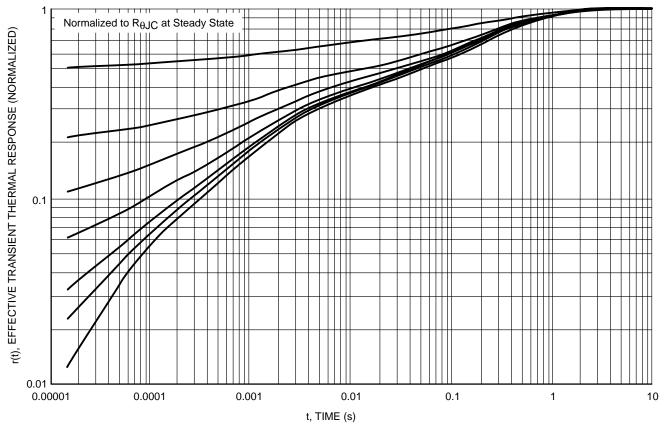


Figure 13. Thermal Response

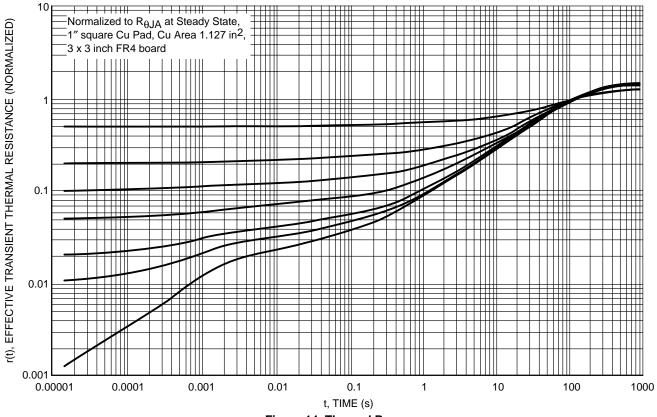
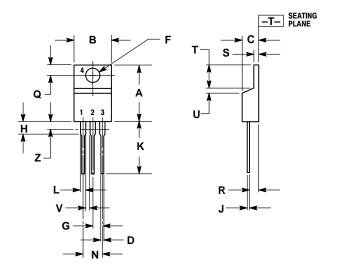
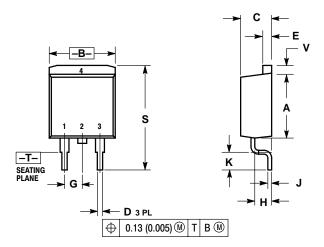



Figure 14. Thermal Response

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB

CASE 221A-09 **ISSUE AA**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN MAX	
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
7	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Ø	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
5	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

- STYLE 5:
 PIN 1. GATE
 2. DRAIN
 3. SOURCE
 4. DRAIN

PACKAGE DIMENSIONS

D²PAK CASE 418B-03 ISSUE D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN MAX	
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
S	0.575	0.625	14.60	15.88
٧	0.045	0.055	1.14	1.40

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

http://onsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.