

MOS INTEGRATED CIRCUIT μ PD4664312-X

64M-BIT CMOS MOBILE SPECIFIED RAM 4M-WORD BY 16-BIT EXTENDED TEMPERATURE OPERATION

Description

The μ PD4664312-X is a high speed, low power, 67,108,864 bits (4,194,304 words by 16 bits) CMOS Mobile Specified RAM featuring Low Power Static RAM compatible function and pin configuration.

The μPD4664312-X is fabricated with advanced CMOS technology using one-transistor memory cell.

The μ PD4664312-X is packed in 93-pin TAPE FBGA.

Features

• 4,194,304 words by 16 bits organization

★ • Fast access time: 65, 75 ns (MAX.)

★ Fast page access time: 18, 25 ns (MAX.)

• Byte data control: /LB (I/O0 to I/O7), /UB (I/O8 to I/O15)

★ • Low voltage operation: 2.7 to 3.1 V (-B65X)

★ 2.7 to 3.1 V (Chip), 1.65 to 2.1 V (I/O) (-BE75X)

• Operating ambient temperature: $T_A = -25 \text{ to } +85 \text{ }^{\circ}\text{C}$

• Output Enable input for easy application

• Chip Enable input: /CS pin

• Standby Mode input: MODE pin

• Standby Mode1: Normal standby (Memory cell data hold valid)

• Standby Mode2: Density of memory cell data hold is variable

μPD4664312	Access	Operatin	g supply	Operating			Supply current				
	time	volt	age	ambient	At operating		At standby μ A (MAX.)				
	ns (MAX.)	V t		temperature	mA (MAX.)		Density of data hold				
		Chip	I/O	°C		64M bits	16M bits	8M bits	4M bits	0M bit	
-B65X	65	2.7 to 3.1	_	-25 to +85	45	100	60	50	45	10	
-BE75X Note	75	2.7 to 3.1	2.7 to 3.1 1.65 to 2.1		40						

Note Under development

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ Ordering Information

Part number	Package	Access time	Operating su	ipply voltage	Operating
		ns (MAX.)	١	temperature	
			Chip	°C	
μPD4664312F9-B65X-CR2	93-pin TAPE FBGA (12 x 9)	65	2.7 to 3.1	-	–25 to +85
μPD4664312F9-BE75X-CR2 Note		75	2.7 to 3.1	1.65 to 2.1	

Note Under development

Pin Configurations

/xxx indicates active low signal.

93-pin TAPE FBGA (12 x 9)

[μPD4664312F9-B65X-CR2]

Top View

ABCDEFGHJKLMNP

Bottom View PNMLKJHGFEDCBA

	Top View													
	Α	В	С	D	E	F	G	Н	J	K	L	М	N	Р
10	NC	NC	NC				NC	NC				NC	NC	NC
9		NC	NC		A15	A21	NC	A16	NC	GND		NC	NC	
8			NC	A11	A12	A13	A14	NC	I/O15	I/O7	I/O14	NC		
7				A8	A19	A9	A10	1/06	I/O13	I/O12	I/O5			
6			NC	/WE	MODE	A20	NC	NC	I/O4	Vcc	NC	NC		
5			NC	NC	NC	NC	NC	NC	I/O3	NC	I/O11	NC		
4				/LB	/UB	A18	A17	I/O1	I/O9	I/O10	I/O2			
3			NC	A7	A6	A5	A4	GND	/OE	I/O0	I/O8	NC		
2		NC	NC	NC	А3	A2	A1	A0	NC	/CS		NC	NC	
1	NC	NC	NC				NC	NC				NC	NC	NC

A0 to A21 : Address inputs /LB, /UB : Byte data select I/O0 to I/O15 : Data inputs / outputs /CS : Chip Select GND : Ground MODE : Standby mode NC No Connection

/WE : Write enable
/OE : Output enable

Note Some signals can be applied because this pin is not internally connected.

Remarks Refer to **Package Drawing** for the index mark.

93-pin TAPE FBGA (12 x 9)

[μ PD4664312F9-BE75X-CR2]

Top View

ABCDEFGHJKLMNP **Bottom View**

00	0				0	0				0	0	0
0	0		0	0	0	0	0	0		0	0	
	0	0	0	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	0	0		
0	0		0	0	0	0	0	0	0	0	0	
00	0				0	0				0	0	0

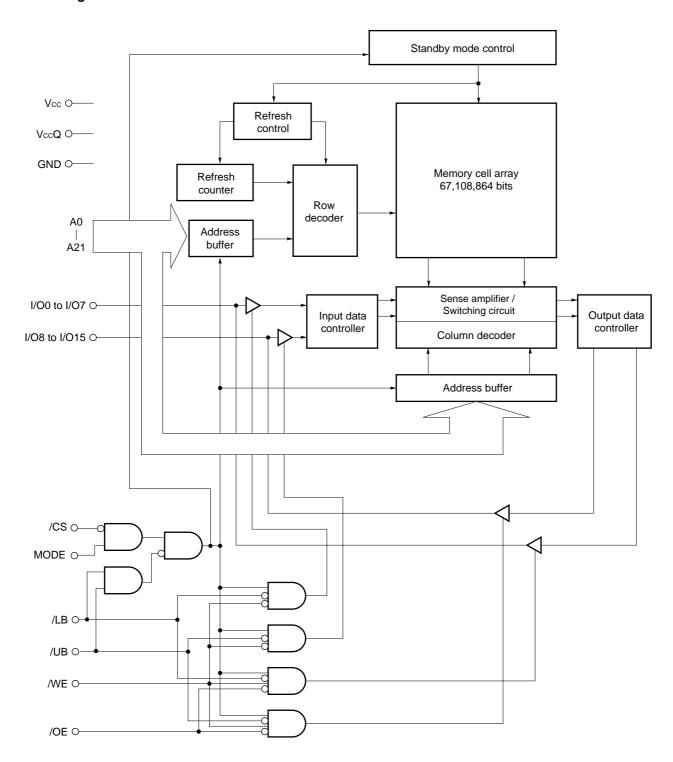
PNMLKJHGFEDCBA

		Top View												
_	Α	В	С	D	E	F	G	Н	J	K	L	М	N	Р
10	NC	NC	NC				NC	NC				NC	NC	NC
9		NC	NC		A15	A21	NC	A16	NC	GND		NC	NC	
8			NC	A11	A12	A13	A14	NC	I/O15	I/O7	I/O14	NC		
7				A8	A19	A9	A10	1/06	I/O13	I/O12	I/O5			
6			NC	/WE	MODE	A20	NC	NC	I/O4	Vcc	VccQ	NC		
5			NC	NC	NC	NC	NC	NC	I/O3	NC	I/O11	NC		
4				/LB	/UB	A18	A17	I/O1	I/O9	I/O10	I/O2			
3			NC	A7	A6	A5	A4	GND	/OE	I/O0	I/O8	NC		
2		NC	NC	NC	А3	A2	A1	A0	NC	/CS		NC	NC	
1	NC	NC	NC				NC	NC				NC	NC	NC

A0 to A21 : Address inputs /LB, /UB : Byte data select I/O0 to I/O15 : Data inputs / outputs Vcc : Power supply

MODE : Standby mode GND : Ground

/WE : Write enable NC No Connection


/OE : Output enable

Note Some signals can be applied because this pin is not internally connected.

Remarks Refer to Package Drawing for the index mark.

Block Diagram

★ Remark VccQ is the input / output power supply for -BE75X.

Truth Table

/CS	MODE	/OE	/WE	/LB	/UB	Mode	1/	I/O		
							I/O0 to I/O7	I/O8 to I/O15	current	
Н	Н	×	×	×	×	Not selected (Standby Mode 1)	High-Z	High-Z	I _{SB1}	
×	Н	×	×	Н	Н	Not selected (Standby Mode 1)	High-Z	High-Z		
×	L	×	×	×	×	Not selected (Standby Mode 2) Note	High-Z	High-Z	I _{SB2}	
L	Н	Н	Н	×	×	Output disable	High-Z	High-Z	Icca	
		L	Н	L	L	Word read	D оит	D оит		
				L	Н	Lower byte read	D оит	High-Z		
				Н	L	Upper byte read	High-Z	D оит		
		Н	L	L	L	Word write	Din	Din		
				L	Н	Lower byte write	Din	High-Z		
				Н	L	Upper byte write	High-Z	Din		

Note MODE pin must be fixed to high level except Standby Mode 2. (refer to 2.3 Standby Mode Status Transition).

Remark ×: VIH or VIL, H: VIH, L: VIL

CONTENTS

1. Initialization	8
2. Partial Refresh	g
2.1 Standby Mode	9
2.2 Density Switching	g
2.3 Standby Mode Status Transition	9
2.4 Addresses for Which Partial Refresh Is Supported	10
3. Page Read Operation	11
3.1 Features of Page Read Operation	11
3.2 Page Length	11
3.3 Page-Corresponding Addresses	11
3.4 Page Start Address	11
3.5 Page Direction	11
3.6 Interrupt during Page Read Operation	11
3.7 When page read is not used	11
4. Mode Register Settings	12
4.1 Mode Register Setting Method	12
4.2 Cautions for Setting Mode Register	13
5. Electrical Specifications	14
6. Timing Charts	20
7. Package Drawing	30
8. Recommended Soldering Conditions	31
9. Revision History	32

1. Initialization

Initialize the μ PD4664312-X at power application using the following sequence to stabilize internal circuits.

- (1) Following power application, make MODE high level after fixing MODE to low level for the period of tvhmh. Make /CS high level before making MODE high level.
- (2) /CS and MODE are fixed to high level for the period of tMHCL.

Normal operation is possible after the completion of initialization.

/CS (Input)

MODE (Input)

Figure1-1. Initialization Timing Chart

Cautions 1. Make MODE low level when starting the power supply.

Vcc (MIN.)

Vcc

2. tvhmh is specified from when the power supply voltage reaches the prescribed minimum value (Vcc (MIN.)).

2. Partial Refresh

2.1 Standby Mode

In addition to the regular standby mode (Standby Mode 1) with a 64M bits density, Standby Mode 2, which performs partial refresh, is also provided.

2.2 Density Switching

In Standby Mode 2, the densities that can be selected for performing refresh are 16M bits, 8M bits, 4M bits, and 0M bit. The density for performing refresh can be set with the mode register. Once the refresh density has been set in the mode register, these settings are retained until they are set again, while applying the power supply. However, the mode register setting will become undefined if the power is turned off, so set the mode register again after power application. (For how to perform mode register settings, refer to section **4. Mode Register Settings**.)

2.3 Standby Mode Status Transition

In Standby Mode 1, MODE and /CS are high level, or MODE, /LB and /UB are high level. In Standby Mode 2, MODE is low level. In Standby Mode 2, if 0M bit is set as the density, it is necessary to perform initialization the same way as after applying power, in order to return to normal operation from Standby Mode 2. When the density has been set to 16M bits, 8M bits, or 4M bits in Standby Mode 2, it is not necessary to perform initialization to return to normal operation from Standby Mode 2.

For the timing charts, refer to Figure 6-14. Standby Mode 2 (data hold: 16M bits / 8M bits / 4M bits) Entry / Exit Timing Chart, Figure 6-15. Standby Mode 2 (data not held) Entry / Exit Timing Chart.

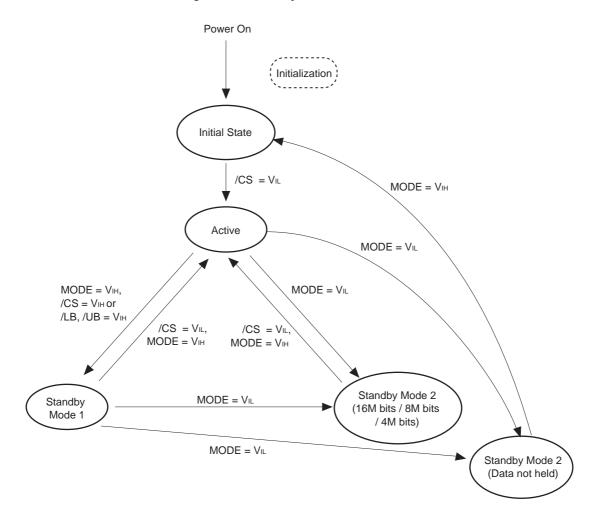


Figure 2-1. Standby Mode State Machine

2.4 Addresses for Which Partial Refresh Is Supported

Data hold density	Correspondence address
16M bits	000000H to 0FFFFFH
8M bits	000000H to 07FFFFH
4M bits	000000H to 03FFFFH

3. Page Read Operation

3.1 Features of Page Read Operation

Features	8 Words Mode
Page length	8 words
Page read-corresponding addresses	A2, A1, A0
Page read start address	Don't care
Page direction	Don't care
Interrupt during page read operation	Enabled Note

Note An interrupt is output when /CS = H or in case A3 or a higher address changes.

3.2 Page Length

8 words is supported as the page lengths.

3.3 Page-Corresponding Addresses

The page read-enabled addresses are A2, A1, and A0. Fix addresses other than A2, A1, and A0 during page read operation.

3.4 Page Start Address

Since random page read is supported, any address (A2, A1, A0) can be used as the page read start address.

3.5 Page Direction

Since random page read is possible, there is not restriction on the page direction.

3.6 Interrupt during Page Read Operation

When generating an interrupt during page read, either make /CS high level or change A3 and higher addresses.

3.7 When page read is not used

Since random page read is supported, even when not using page read, random access is possible as usual.

4. Mode Register Settings

The partial refresh density can be set using the mode register. Since the initial value of the mode register at power application is undefined, be sure to set the mode register after initialization at power application. When setting the density of partial refresh, data before entering the partial refresh mode is not guaranteed. (This is the same for resetup.) However, since partial refresh mode is not entered unless MODE = L when partial refresh is not used, it is not necessary to set the mode register. Moreover, when using page read without using partial refresh, it is not necessary to set the mode register.

4.1 Mode Register Setting Method

The mode register setting mode can be entered by successively writing two specific data after two continuous reads of the highest address (3FFFFFH). The mode register setting is a continuous four-cycle operation (two read cycles and two write cycles).

Commands are written to the command register. The command register is used to latch the addresses and data required for executing commands, and it does not have an exclusive memory area.

For the timing chart and flow chart, refer to Figure 6-12. Mode Register Setting Timing Chart, Figure 6-13. Mode Register Setting Flow Chart.

Table 4-1. shows the commands and command sequences.

Command sequence 1st bus cycle 2nd bus cycle 3rd bus cycle 4th bus cycle (Read cycle) (Read cycle) (Write cycle) (Write cycle) Partial refresh density Address Data Address Data Address Data Address Data 16M bits 3FFFFFH 3FFFFFH 3FFFFFH 00H 3FFFFFH 04H 8M bits 3FFFFFH 3FFFFFH 3FFFFFH 00H 3FFFFFH 05H 4M bits 3FFFFFH 3FFFFFH 3FFFFFH 00H 3FFFFFH 06H 0M bit 3FFFFFH 3FFFFFH 3FFFFFH 00H 3FFFFFH 07H

Table 4-1. Command sequence

4th bus cycle (Write cycle)

- This bus cycle (Write cycle)																
I/O	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Mode Register setting	0	0	0	0	0	0	0	0	0 0 0		0	0	0	PL	Р	D
	Page length 1 8 words															
· · · · · · · · · · · · · · · · · · ·										_						
						I/O1	I/O0	I	Densit	y						
		F	Partial	refresl	n	0	0	1	6M bit	s						
		density			0	1		8M bits	8						•	
						1	0		4M bits	S						
						1	1		0M bit							

4.2 Cautions for Setting Mode Register

Since, for the mode register setting, the internal counter status is judged by toggling /CS and /OE, toggle /CS at every cycle during entry (read cycle twice, write cycle twice), and toggle /OE like /CS at the first and second read cycles.

If incorrect addresses or data are written, or if addresses or data are written in the incorrect order, the setting of the mode register is not performed correctly.

When the highest address (3FFFFH) is read consecutively three or more times, the mode register setting entries are not performed correctly. (Immediately after the highest address is read, the setting of the mode register is not performed correctly.) Perform the setting of the mode register after power application or after accessing other than the highest address.

Once the refresh density has been set in the mode register, these settings are retained until they are set again, while applying the power supply. However, the mode register setting will become undefined if the power is turned off, so set the mode register again after power application.

For the timing chart and flow chart, refer to Figure 6-12. Mode Register Setting Timing Chart, Figure 6-13. Mode Register Setting Flow Chart.

5. Electrical Specifications

Absolute Maximum Ratings

	Parameter	Symbol	Condition	Rat	ting	Unit
*				-B65X	-BE75X	
	Supply voltage	Vcc		-0.5 ^{Note} to +4.0	-0.5 ^{Note} to +4.0	V
	Input / Output supply voltage	VccQ		_	-0.5 ^{Note} to +4.0	V
	Input / Output voltage	VT		-0.5 Note to Vcc + 0.4 (4.0 V MAX.)	-0.5 Note to VccQ + 0.4 (4.0 V MAX.)	V
	Operating ambient temperature	TA		–25 to +85	–25 to +85	°C
	Storage temperature	Tstg		–55 to +125	–55 to +125	°C

Note -1.0 V (MIN.) (Pulse width: 30 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

*	Parameter	Symbol	Condition	-B6	65X	-BE	Unit	
				MIN.	MAX.	MIN.	MAX.	
*	Supply voltage	Vcc		2.7	3.1	2.7	3.1	V
	Input / Output supply voltage	VccQ		_	_	1.65	2.1	V
	High level input voltage	VIH		0.8Vcc	Vcc+0.3	0.8VccQ	VccQ+0.3	V
	Low level input voltage	VIL		-0.3 Note	0.2Vcc	-0.3 Note	0.2VccQ	V
	Operating ambient temperature	TA		-25	+85	-25	+85	°C

Note -0.5 V (MIN.) (Pulse width: 30 ns)

Capacitance (T_A = 25°C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	V _{IN} = 0 V			8	pF
Input / Output capacitance	C _{I/O}	V _{VO} = 0 V			10	pF

Remarks 1. Vin: Input voltage, Vi/o: Input / Output voltage

2. These parameters are not 100% tested.

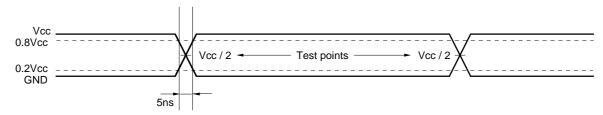
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (1/2)

Parameter Sym		Symbol Test condition I			-B65X		Unit
			data hold	MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to V _{CC}		-1.0		+1.0	μΑ
I/O leakage current	ILO	VI/O = 0 V to Vcc, /CS = VIH or /WE = VIL or /OE = VIH		-1.0		+1.0	μΑ
Operating supply current	Icca	/CS = V _{IL} , Minimum cycle time,				45	mA
Standby supply current Ise		/CS ≥ Vcc - 0.2 V, MODE ≥ Vcc - 0.2 V	64M bits		60	100	μΑ
	I _{SB2}	/CS ≥ Vcc - 0.2 V,	16M bits		50	60	
		MODE ≤ 0.2 V	8M bits		45	50	
			4M bits		40	45	
			0M bit			10	
High level output voltage	Vон	Iон = -0.5 mA		0.8Vcc			٧
Low level output voltage	Vol	IoL = 1 mA				0.2Vcc	٧

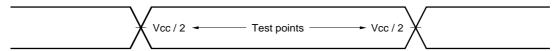
Remark Vin: Input voltage, Vi/o: Input / Output voltage

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (2/2)

			<u> </u>		, ,	-		
Paramet	Parameter Sys		ymbol Test condition De			-BE75X		Unit
				data hold	MIN.	TYP.	MAX.	
Input leakage curre	ent	lu	V _{IN} = 0 V to V _{CC} Q		-1.0		+1.0	μΑ
I/O leakage curren	t	ILO	V _{I/O} = 0 V to V _{CC} Q, /CS = V _{IH} or		-1.0		+1.0	μΑ
			/WE = V _{IL} or /OE = V _{IH}					
Operating supply of	urrent	Icca	/CS = V _{IL} , Minimum cycle time,				40	mA
			Ivo = 0 mA					
Standby supply cu	rrent	I _{SB1}	/CS ≥ Vcc - 0.2 V,	64M bits		60	100	μΑ
			MODE ≥ Vcc - 0.2 V					
		I _{SB2}	/CS ≥ Vcc - 0.2 V,	16M bits		50	60	
			MODE ≤ 0.2 V	8M bits		45	50	
				4M bits		40	45	
				0M bit			10	
High level output v	oltage	Vон	Iон = -0.5 mA		0.8VccQ			٧
Low level output vo	oltage	Vol	IoL = 1 mA				0.2VccQ	V

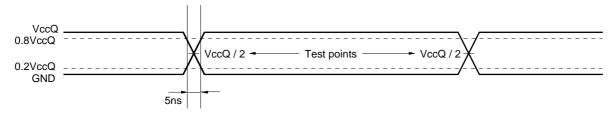

Remark Vin: Input voltage, Vi/o: Input / Output voltage

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

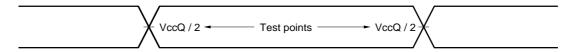

AC Test Conditions

★ [-B65X]

Input Waveform (Rise and Fall Time ≤ 5 ns)



Output Waveform



★ [-BE75X]

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load

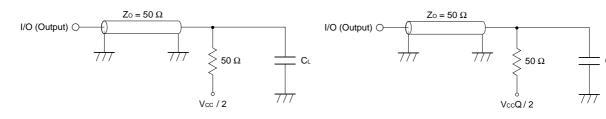
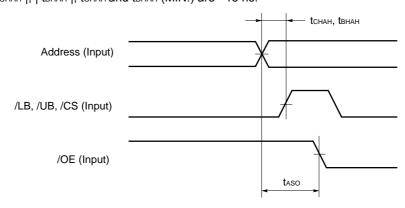

AC characteristics directed with the note should be measured with the output load shown in Figure 5-1, Figure 5-2.

Figure 5-1. [-B65X]

Figure 5-2. [-BE75X]

CL: 30 pF 5 pF (tcLz, toLz, tBLz, tcHz, toHz, tBHz) C_L: 30 pF

5 pF (tclz, tolz, tblz, tchz, tohz, tbhz)

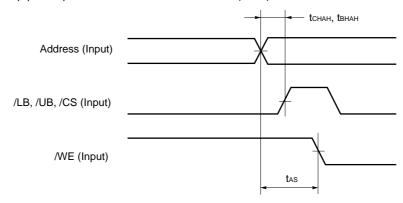

Read Cycle

Parameter	Symbol	-B6	65X	-BE	75X	Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	65		75		ns	1
Address access time	taa		65		75	ns	
/CS access time	tacs		65		75	ns	
/OE to output valid	t oe		45		50	ns	
/LB, /UB to output valid	t BA		65		75	ns	
Output hold from address change	tон	5		5		ns	
Page read cycle time	t PRC	18		25		ns	
Page access time	t paa		18		25	ns	
/CS to output in low impedance	t clz	10		10		ns	2
/OE to output in low impedance	t olz	5		5		ns	
/LB, /UB to output in low impedance	t BLZ	5		5		ns	
/CS to output in high impedance	t cHZ		25		25	ns	
/OE to output in high impedance	tонz		25		25	ns	
/LB, /UB to output in high impedance	t BHZ		25		25	ns	
Address set to /OE low level	taso	0		0		ns	
/OE high level to address hold	tонан	- 5		- 5		ns	
/CS high level to address hold	t CHAH	0		0		ns	3
/LB, /UB high level to address hold	t BHAH	0		0		ns	3, 4
/CS low level to /OE low level	tclol	0	10,000	0	10,000	ns	5
/OE low level to /CS high level	t olch	45		45		ns	
/CS high level pulse width	t cp	10		10		ns	
/LB, /UB high level pulse width	tвр	10		10		ns	
/OE high level pulse width	top	2	10,000	2	10,000	ns	5

Notes 1. Output load: 30 pF

2. Output load: 5 pF

3. When $taso \ge |tchan|$, |tbhan|, tchan and tbhan (MIN.) are -15 ns.


- 4. tbhah is specified from when both /LB and /UB become high level.
- 5. tclol and top (MAX.) are applied while /CS is being hold at low level.

Write Cycle

*	Parameter	Symbol	-B	65X	-BE	Unit	Note	
			MIN.	MAX.	MIN.	MAX.		
	Write cycle time	twc	65		75		ns	
	/CS to end of write	tcw	55		60		ns	
	Address valid to end of write	taw	55		60		ns	
	/LB, /UB to end of write	t BW	55		60		ns	
	Write pulse width	twp	50		55		ns	
	Write recovery time	twr	0		0		ns	
	/CS pulse width	t CP	10		10		ns	
	/LB, /UB high level pulse width	t BP	10		10		ns	
	/WE high level pulse width	twnp	10		10		ns	
	Address setup time	tas	0		0		ns	
	/OE high level to address hold	tонан	-5		– 5		ns	
	/CS high level to address hold	t CHAH	0		0		ns	1
	/LB, /UB high level to address hold	tвнан	0		0		ns	1, 2
	Data valid to end of write	tow	30		35		ns	
	Data hold time	tон	0		0		ns	
	/OE high level to /WE set	toes	0	10,000	0	10,000	ns	3
	/WE high level to /OE set	t oeh	10	10,000	10	10,000	ns	

Notes 1. When tas \geq | tchah |, | tbhah | and tcp \geq 18 ns, tchah and tbhah (MIN.) are −15 ns.

- 2. tbhah is specified from when both /LB and /UB become high level.
- 3. toes and toeh (MAX.) are applied while /CS is being hold at low level.

Initialization

Parameter		MIN.	MAX.	Unit	Note
Power application to MODE low level hold	t∨нмн	50		μs	
/CS high level to MODE high level	tснмн	0		ns	
Following power application	t MHCL	200		μs	
MODE high level hold to /CS low level					

Standby Mode 2 Entry / Exit

Parameter		MIN.	MAX.	Unit	Note
Standby mode 2 entry	tchml	0		ns	
/CS high level to MODE low level					
Standby mode 2 exit to normal operation	tmHCL1	30		ns	1
MODE high level to /CS low level					
Standby mode 2 exit to normal operation	tmHCL2	200		μs	2
MODE high level to /CS low level					


Notes 1. This is the time it takes to return to normal operation from Standby Mode 2 (data hold: 16M bits / 8M bits / 4M bits).

2. This is the time it takes to return to normal operation from Standby Mode 2 (data not held).

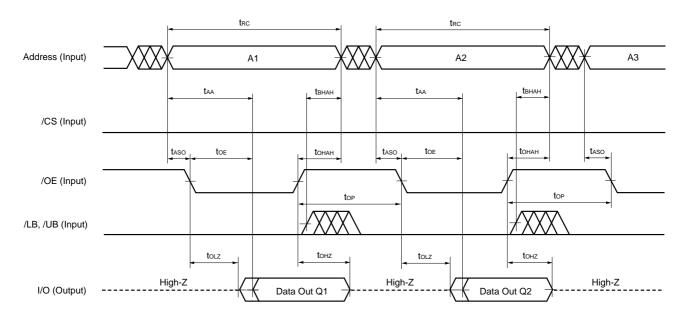
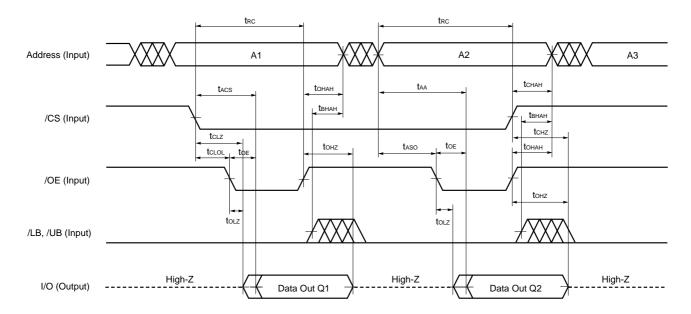

6. Timing Charts

Figure 6-1. Read Cycle Timing Chart 1 (/CS Controlled)


Remark In read cycle, MODE and /WE should be fixed to high level.

★ Figure 6-2. Read Cycle Timing Chart 2 (/OE Controlled)

Remark In read cycle, MODE and /WE should be fixed to high level.

★ Figure 6-3. Read Cycle Timing Chart 3 (/CS, /OE Controlled)

Remark In read cycle, MODE and /WE should be fixed to high level.

Address (Input)

A1

A2

A3

/CS (Input)

/OE (Input)

/LB, /UB (Input)

Data Out Q1

Data Out Q2

Figure 6-4. Read Cycle Timing Chart 4 (Address Controlled)

Remark In read cycle, MODE and /WE should be fixed to high level.

Address (Input)

A1

A2

A3

/CS (Input)

/OE (Input)

/LB, /UB (Input)

Iban

Figure 6-5. Read Cycle Timing Chart 5 (/LB, /UB Controlled)

Remark In read cycle, MODE and /WE should be fixed to high level.

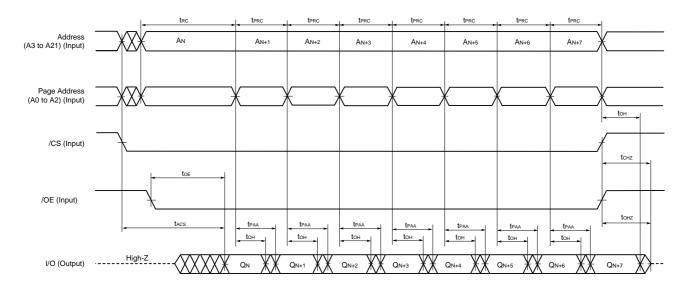


Figure 6-6. Page Read Cycle Timing Chart

Remarks 1. In read cycle, MODE and /WE should be fixed to high level.

2. /LB and /UB are low level.

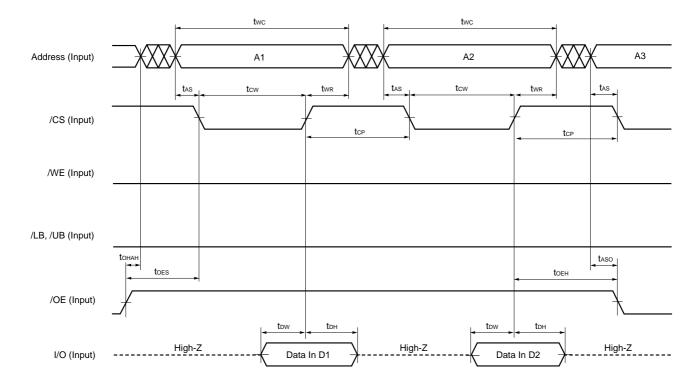


Figure 6-7. Write Cycle Timing Chart 1 (/CS Controlled)

- Cautions 1. During address transition, at least one of pins /CS and /WE, or both of /LB and /UB pins should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.
 - 3. In write cycle, MODE and /OE should be fixed to high level.

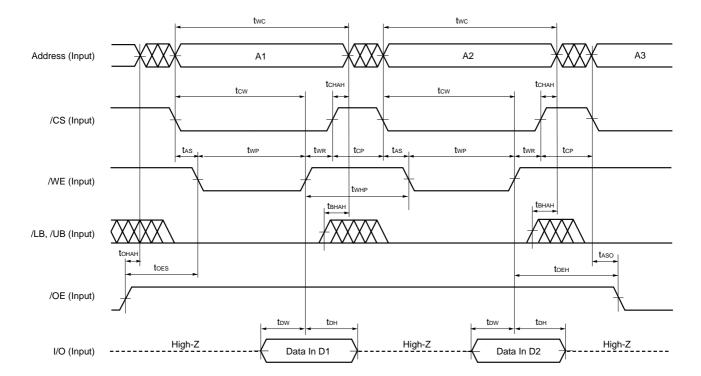


Figure 6-8. Write Cycle Timing Chart 2 (/WE Controlled)

- Cautions 1. During address transition, at least one of pins /CS and /WE, or both of /LB and /UB pins should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.
 - 3. In write cycle, MODE and /OE should be fixed to high level.

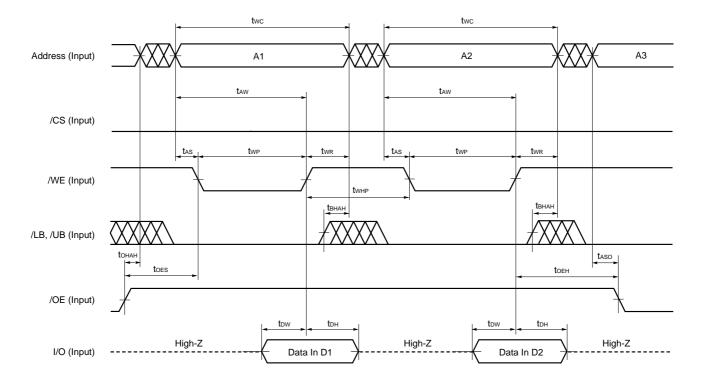


Figure 6-9. Write Cycle Timing Chart 3 (/WE Controlled)

- Cautions 1. During address transition, at least one of pins /CS and /WE, or both of /LB and /UB pins should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.
 - 3. In write cycle, MODE and /OE should be fixed to high level.

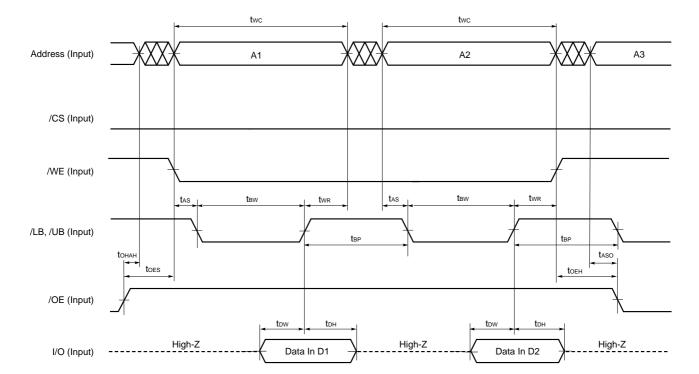


Figure 6-10. Write Cycle Timing Chart 4 (/LB, /UB Controlled)

- Cautions 1. During address transition, at least one of pins /CS and /WE, or both of /LB and /UB pins should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.
 - 3. In write cycle, MODE and /OE should be fixed to high level.

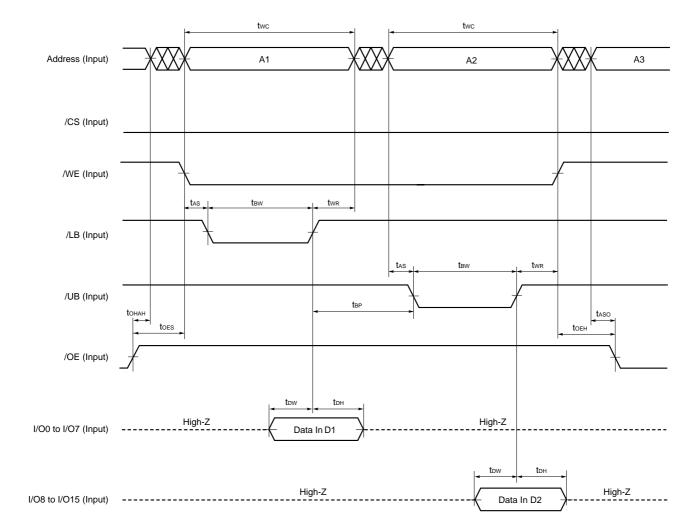


Figure 6-11. Write Cycle Timing Chart 5 (/LB, /UB Independent Controlled)

- Cautions 1. During address transition, at least one of pins /CS and /WE, or both of /LB and /UB pins should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.
 - 3. In write cycle, MODE and /OE should be fixed to high level.

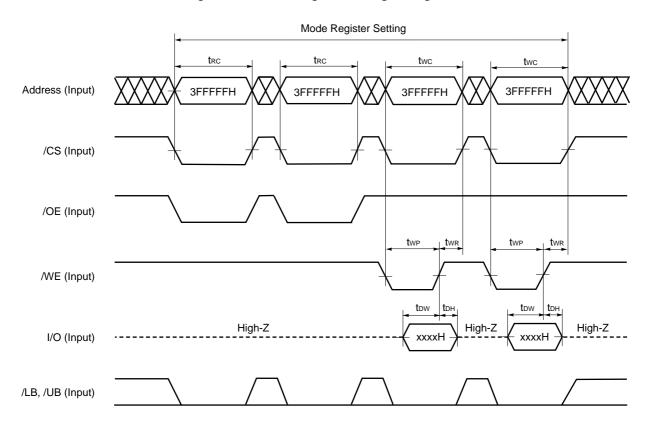
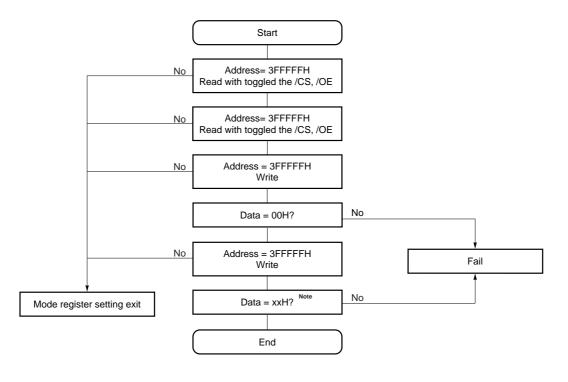



Figure 6-12. Mode Register Setting Timing Chart

Figure 6-13. Mode Register Setting Flow Chart

Note xxH = 04H, 05H, 06H, 07H

Figure 6-14. Standby Mode 2 (data hold: 16M bits / 8M bits / 4M bits) Entry / Exit Timing Chart

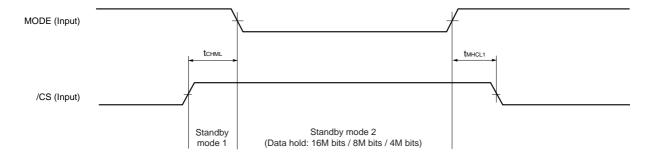
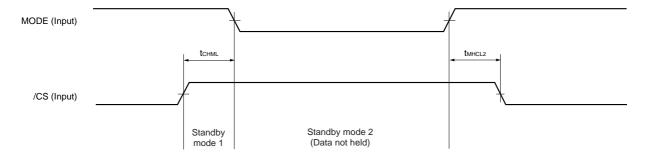
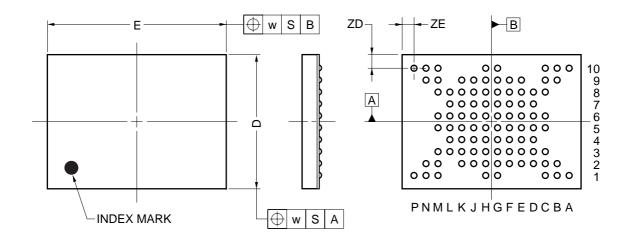





Figure 6-15. Standby Mode 2 (data not held) Entry / Exit Timing Chart

7. Package Drawing

93-PIN TAPE FBGA (12x9)

ITEM	MILLIMETERS
D	9.0±0.1
Е	12.0±0.1
w	0.2
е	0.8
Α	1.3±0.1
A1	0.16±0.05
A2	1.14
b	0.40±0.05
х	0.08
У	0.1
y1	0.2
ZD	0.9
ZE	0.8
	P93F9-80-CR2

8. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD4664312-X.

Type of Surface Mount Device

 μ PD4664312F9-CR2: 93-pin TAPE FBGA (12 x 9)

9. Revision History

Edition/	Pa	ige	Type of	Location	Description
Date	This	Previous	revision		(Previous edition \rightarrow This edition)
	edition	edition			
5th edition/	Throughout	Throughout	Deletion	Class	-C75X, -C85X, -E85X, -E10X,
Aug. 2002					-BE85X, -CE80X, -CE90X
			Modification	Supply Voltage (Chip)	2.6 to 3.1 V \rightarrow 2.7 to 3.1 V
	p.1	p.1	Deletion	Features	Fast access time: 80, 85, 90, 100 ns
					Fast page access time: 30, 35 ns
	pp.1, 15	pp.1, 15	Modification	Operating supply current	-BE75X: TBD → 40 mA
	p.17	pp.17, 18	Addition	Read Cycle	top (MIN.): 2ns
	p.20	p.22	Modification	Figure 6-2	Timing charts are modified.
	p.21	p.23	Modification	Figure 6-3	Timing charts are modified.

NEC μ PD4664312-X

[MEMO]

 μ PD4664312-X

[MEMO]

- NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of August, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4