

LM833

Dual Audio Operational Amplifier

General Description

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.

This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.

The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.

Features

■ Wide dynamic range:

>140dB

January 2003

■ Low input noise voltage: ■ High slew rate:

4.5nV/√Hz 7 V/μs (typ); 5V/μs (min)

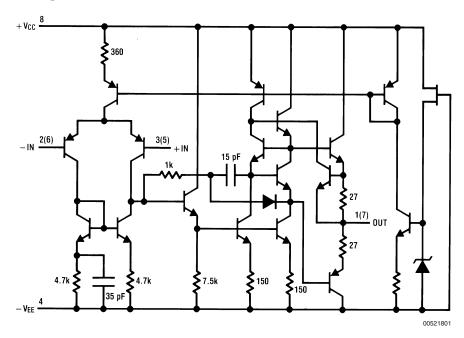
■ High gain bandwidth:

15MHz (typ); 10MHz (min)

■ Wide power bandwidth:

120KHz 0.002%

■ Low distortion:


Low offset voltage:

0.3mV 60°


■ Large phase margin:

■ Available in 8 pin MSOP package

Schematic Diagram (1/2 LM833)

Connection Diagram

Order Number LM833M, LM833MX, LM833N, LM833MM or LM833MMX See NS Package Number M08A, N08E or MUA08A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage $V_{CC}-V_{EE}$ 36V Differential Input Voltage (Note 3) V_{I} $\pm 30V$ Input Voltage Range (Note 3) V_{IC} $\pm 15V$ Power Dissipation (Note 4) P_{D} 500 mW Operating Temperature Range T_{OPB} $-40 \sim 85^{\circ}C$

DC Electrical Characteristics (Notes 1, 2)

 $(T_A = 25^{\circ}C, V_S = \pm 15V)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OS}	Input Offset Voltage	$R_S = 10\Omega$		0.3	5	mV
I _{os}	Input Offset Current			10	200	nA
I _B	Input Bias Current			500	1000	nA
A _V	Voltage Gain	$R_L = 2 k\Omega, V_O = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_L = 10 \text{ k}\Omega$	±12	±13.5		V
		$R_L = 2 k\Omega$	±10	±13.4		V
V _{CM}	Input Common-Mode Range		±12	±14.0		V
CMRR	Common-Mode Rejection Ratio	$V_{IN} = \pm 12V$	80	100		dB
PSRR	Power Supply Rejection Ratio	V _S = 15~5V, -15~-5V	80	100		dB
IQ	Supply Current	V _O = 0V, Both Amps		5	8	mA

AC Electrical Characteristics

 $(T_A = 25^{\circ}C, V_S = \pm 15V, R_L = 2 \text{ k}\Omega)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 2 k\Omega$	5	7		V/µs
GBW	Gain Bandwidth Product	f = 100 kHz	10	15		MHz

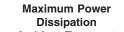
Design Electrical Characteristics

 $(T_A = 25^{\circ}C, V_S = \pm 15V)$ The following parameters are not tested or guaranteed.

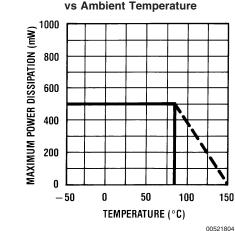
Symbol	Parameter	Conditions	Тур	Units
$\Delta V_{OS}/\Delta T$	Average Temperature Coefficient		2	μV/°C
	of Input Offset Voltage			
THD	Distortion	$R_L = 2 k\Omega$, $f = 20~20 \text{ kHz}$	0.002	%
		$V_{OUT} = 3 \text{ Vrms}, A_V = 1$		
e _n	Input Referred Noise Voltage	$R_S = 100\Omega$, $f = 1 \text{ kHz}$	4.5	nV/√ Hz
i _n	Input Referred Noise Current	f = 1 kHz	0.7	pA/√ Hz
PBW	Power Bandwidth	$V_O = 27 V_{pp}, R_L = 2 k\Omega, THD \le 1\%$	120	kHz
f _U	Unity Gain Frequency	Open Loop	9	MHz
φм	Phase Margin	Open Loop	60	deg
	Input Referred Cross Talk	f = 20~20 kHz	-120	dB

Design Electrical Characteristics (Continued)

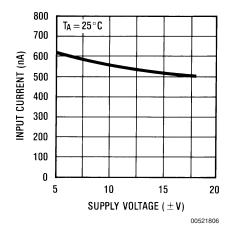
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

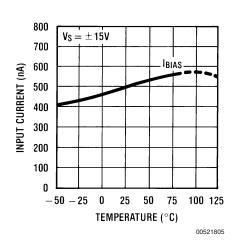

Note 2: All voltages are measured with respect to the ground pin, unless otherwise specified.

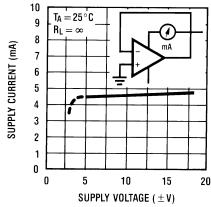
Note 3: If supply voltage is less than ±15V, it is equal to supply voltage.


Note 4: This is the permissible value at $T_A \le 85^{\circ}C$.

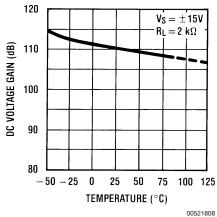
Note 5: Human body model, 1.5 k Ω in series with 100 pF.


Typical Performance Characteristics

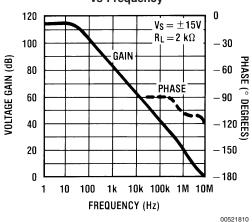



Input Bias Current vs **Supply Voltage**

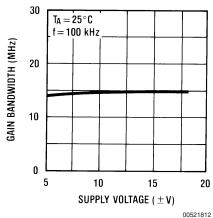
Input Bias Current vs **Ambient Temperature**



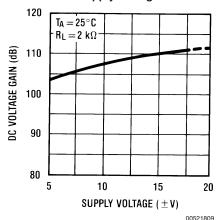
Supply Current vs Supply Voltage



00521807

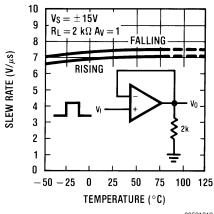


Voltage Gain & Phase vs Frequency

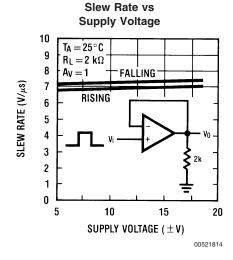


Gain Bandwidth

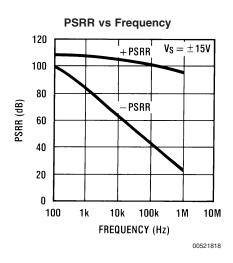
vs Supply Voltage


DC Voltage Gain vs Supply Voltage

Gain Bandwidth Product vs Ambient Temperature

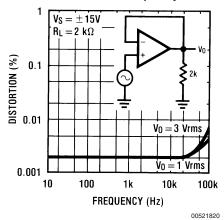

$V_S = \pm 15V$ GAIN BANDWIDTH PRODUCT (MHz) f=100 kHz 20 10 0 -50 - 250 25 50 75 100 125 TEMPERATURE (°C)

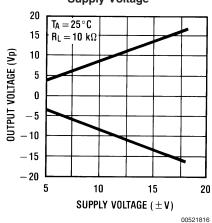
Slew Rate vs **Ambient Temperature**

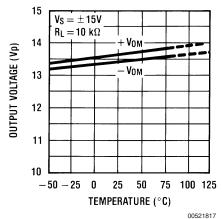


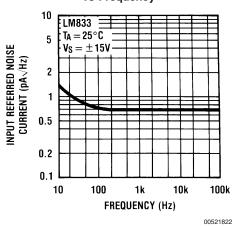
00521813

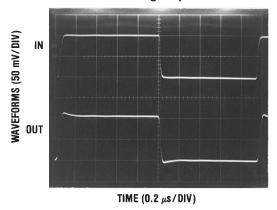

00521811


CMR vs Frequency 120 $V_S = \pm 15V$ 100 80 CMR (dB) 60 40 20 0 100k 100 1k 10k 1M 10M FREQUENCY (Hz) 00521819

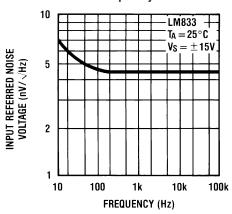

Power Bandwidth


Distortion vs Frequency

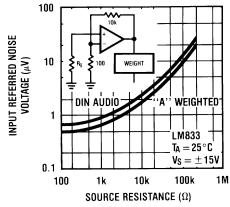

Maximum Output Voltage vs Supply Voltage


Maximum Output Voltage vs Ambient Temperature

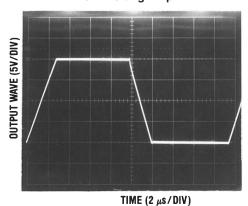
Spot Noise Current vs Frequency



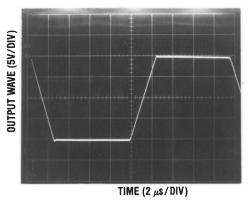
Noninverting Amp


00521824

Spot Noise Voltage vs Frequency


00521821

Input Referred Noise Voltage vs Source Resistance

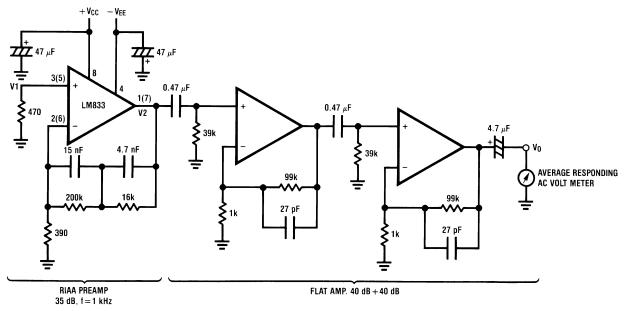

00521823

Noninverting Amp

00521825

Inverting Amp

00521826

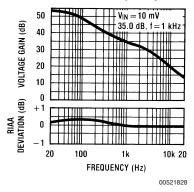

Application Hints

The LM833 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 50 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

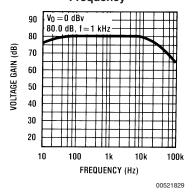
Capacitive loads greater than 50 pF must be isolated from the output. The most straightforward way to do this is to put

a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

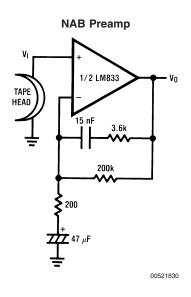
Noise Measurement Circuit

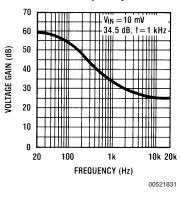


00521827

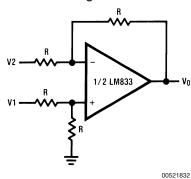

Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

Total Gain: 115 dB @f = 1 kHz Input Referred Noise Voltage: e_n = V0/560,000 (V)

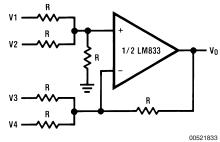

RIAA Preamp Voltage Gain, RIAA Deviation vs Frequency


Flat Amp Voltage Gain vs Frequency

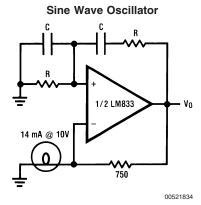
Typical Applications



NAB Preamp Voltage Gain vs Frequency

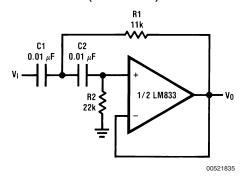

 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \ \mu\text{V}$ A Weighted

Balanced to Single Ended Converter



 $V_O = V1-V2$

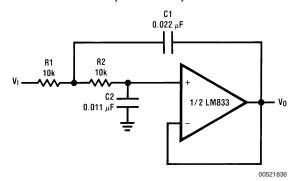
Adder/Subtracter



 $V_0 = V1 + V2 - V3 - V4$

$$f_0 = \frac{1}{2\pi RC}$$

Second Order High Pass Filter (Butterworth)

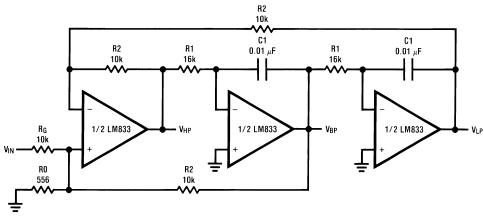


if
$$C1 = C2 = C$$

$$R1 \, = \, \frac{\sqrt{2}}{2\omega_0 C}$$

Illustration is $f_0 = 1 \text{ kHz}$

Second Order Low Pass Filter (Butterworth)

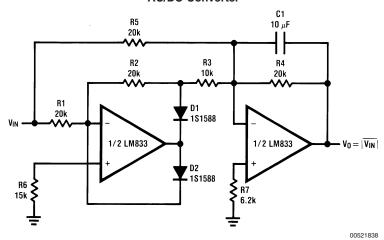

if
$$R1 = R2 = R$$

$$C1 = \frac{\sqrt{2}}{\omega_0 B}$$

$$C2 = \frac{C1}{2}$$

Illustration is $f_0 = 1 \text{ kHz}$

State Variable Filter



00521837

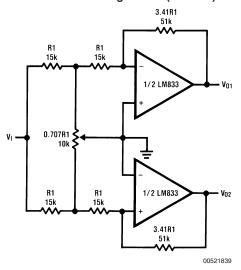
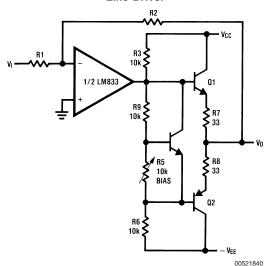
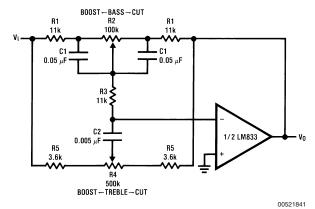
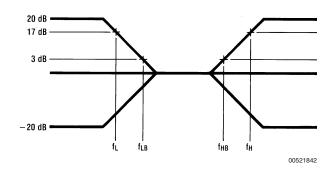

$$f_0 = \frac{1}{2\pi C1R1}, Q = \frac{1}{2}\left(1 + \frac{R2}{R0} + \frac{R2}{RG}\right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$

Illustration is $f_0 = 1 \text{ kHz}$, Q = 10, $A_{BP} = 1$


AC/DC Converter


2 Channel Panning Circuit (Pan Pot)

Line Driver


Tone Control

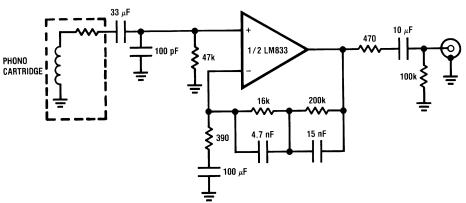

$$\begin{split} & \mathbf{f_L} = \frac{1}{2\pi \text{R2C1}}, \mathbf{f_{LB}} = \frac{1}{2\pi \text{R1C1}} \\ & \mathbf{f_H} = \frac{1}{2\pi \text{R5C2}}, \mathbf{f_{HB}} = \frac{1}{2\pi (\text{R1} + \text{R5} + 2\text{R3})\text{C2}} \end{split}$$

Illustration is:

$$f_L = 32 \text{ Hz}, f_{LB} = 320 \text{ Hz}$$

 $f_H = 11 \text{ kHz}, f_{HB} = 1.1 \text{ kHz}$

RIAA Preamp

00521803

 $A_v = 35 \text{ dB}$

 $E_n = 0.33 \ \mu V$

S/N = 90 dB

f = 1 kHz

A Weighted

A Weighted, $V_{IN} = 10 \text{ mV}$

@f = 1 kHz

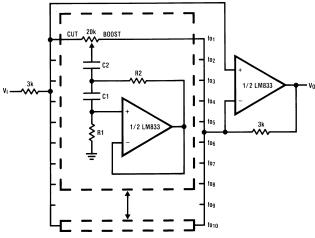
Balanced Input Mic Amp

00521843

If R2 = R5, R3 = R6, R4 = R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

R6 10k


1/2 LM833

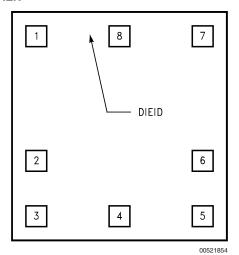
R7 10k

Illustration is:

V0 = 101(V2 - V1)

10 Band Graphic Equalizer

00521844


fo(Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω

Note 6: At volume of change = $\pm 12 \text{ dB}$

Q = 1.

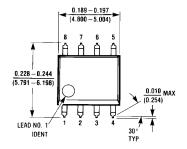
Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

LM833 MDC MWC
DUAL AUDIO OPERATIONAL AMPLIFIER

Die Layout (A - Step)

DIE/WAFER CHARACTERISTICS

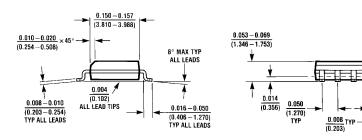
Fabrication Attributes	General Die Information			
Physical Die Identification	LM833A	Bond Pad Opening Size (min)	110µm x 110µm	
Die Step	A	Bond Pad Metalization	ALUMINUM	
Physical Attributes	Passivation	VOM NITRIDE		
Wafer Diameter	150mm	Back Side Metal	BARE BACK	
Dise Size (Drawn)	1219µm x 1270µm	Back Side Connection	Floating	
	48mils x 50mils			
Thickness	406µm Nominal		·	
Min Pitch	288µm Nominal			

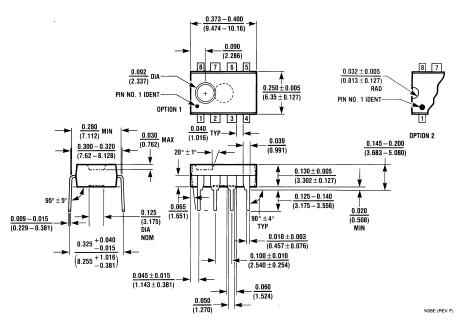

Special Assembly Requirements:

Note: Actual die size is rounded to the nearest micron.

Die Bond Pad Coordinate Locations (A - Step)							
(Referenced to die center, coordinates in μm) NC = No Connection							
SIGNAL NAME	PAD# NUMBER	X/Y COORDINATES		PAD SIZE			
	PAD# NUMBER	Х	Y	Х		Y	
OUTPUT A	1	-476	500	110	х	110	
INPUT A-	2	-476	-212	110	х	110	
INPUT A+	3	-476	-500	110	х	110	
VEE-	4	-0	-500	110	х	110	
INPUT B+	5	476	-500	110	х	110	
INPUT B-	6	476	-212	110	х	110	
OUTPUT B	7	476	500	110	х	110	
VCC+	8	0	500	110	х	110	

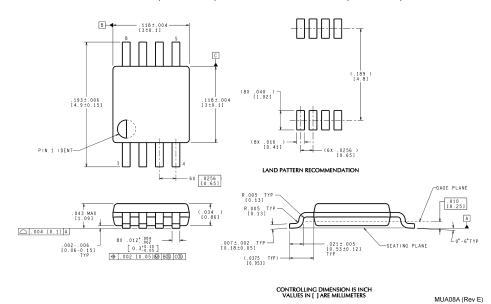
IN U.S.A	
Tel #:	1 877 Dial Die 1 877 342 5343
Fax: 1 207 541 6140	
IN EUROPE	
Tel:	49 (0) 8141 351492 / 1495
Fax:	49 (0) 8141 351470
IN ASIA PACIFIC	
Tel:	(852) 27371701
IN JAPAN	
Tel:	81 043 299 2308


Physical Dimensions inches (millimeters) unless otherwise noted


 $\frac{0.004-0.010}{(0.102-0.254)}$

0.014 - 0.020 (0.356 - 0.508)

SEATING



Molded Small Outline Package (M) Order Number LM833M or LM833MX NS Package Number M08A

Molded Dual-In-Line Package (N) Order Number LM833N NS Package Number N08E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Lead (0.118" Wide) Molded Mini Small Outline Package Order Number LM833MM or LM833MMX NS Package Number MUA08A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560