

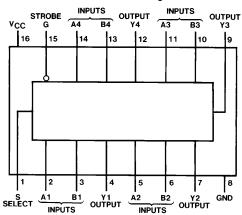
June 1989

54157/DM54157/DM74157 Quad 2-Line to 1-Line Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs.

Applications


- Expand any data input point
- Multiplex dual data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters

Features

- Buffered inputs and outputs
- Typical propagation time 9 ns
- Typical power dissipation 150 mW
- Alternate Military/Aerospace device (54157) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Dual-In-Line Package

TL/F/6550-

Order Number 54157DMQB, 54157FMQB, DM54157J, DM54157W or DM74157N See NS Package Number J16A, N16E or W16A

Function Table

	Output Y			
Strobe	Select	Α	В	Output 1
Н	Х	Х	х	L
L	L	L	X	L
L	L	Н	X	Н
L	Н	X	L	L
L	Н	X	Н	Н

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54157			DM74157			Units
Oyinboi	Farameter	Min	Nom	Max	Min	Nom	Max	Oilles
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.8			0.8	V
Іон	High Level Output Current			-0.8			-0.8	mA
l _{OL}	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condit	ions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I =$	= -12 mA			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH}$ $V_{IL} = Max, V_{IH}$		2.4	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL}$ $V_{IH} = Min, V_{IL}$	-			0.4	V
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I$	= 5.5V			1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I$	= 2.4V			40	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I$	= 0.4V			-1.6	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-55	mA
	Output Current	(Note 2)	DM74	-18		-55	1117
Icc	Supply Current	V _{CC} = Max (No	ote 3)		30	48	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with 4.5V applied to all inputs and all outputs open.

Switching Characteristics at V _{CC} = 5V and T _A = 25°C (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$R_L = 400\Omega$, C _L = 15 pF	Units		
			Min	Max	Oilles		
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Y		14	ns		
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Y		14	ns		
t _{PLH}	Propagation Delay Time Low to High Level Output	Strobe to Y		20	ns		
t _{PHL}	Propagation Delay Time High to Low Level Output	Strobe to Y		21	ns		

Select to Y

Select

to Y

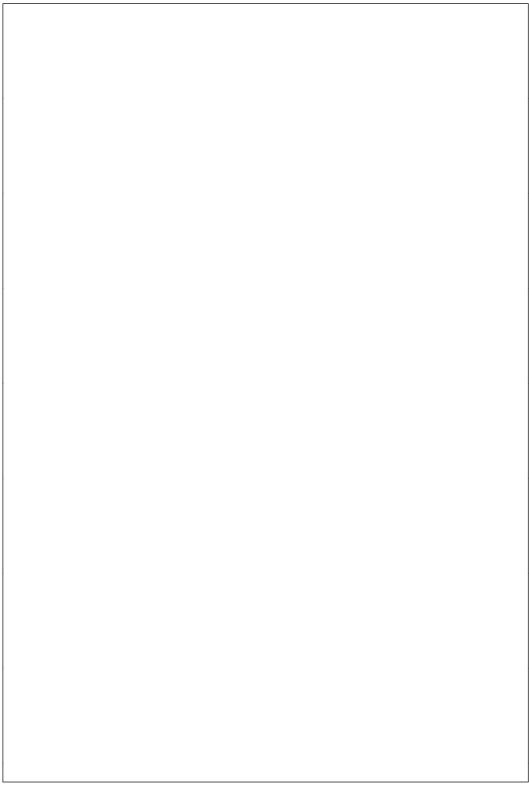
23

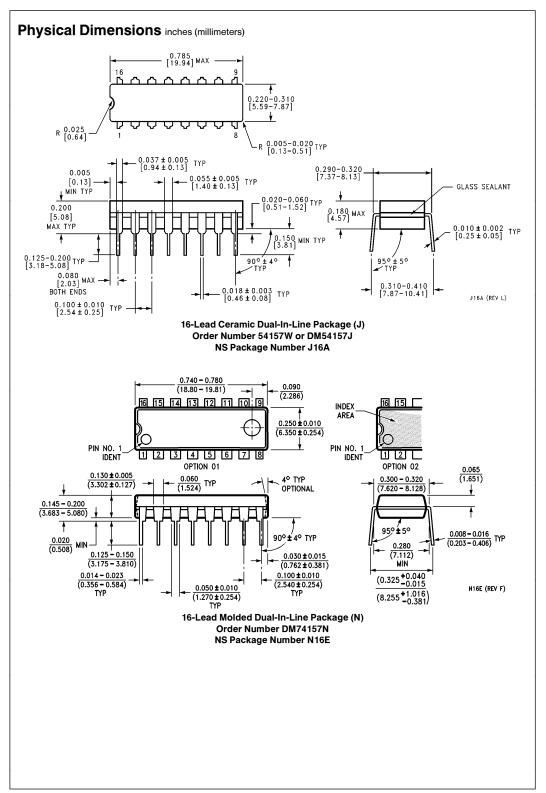
27

ns

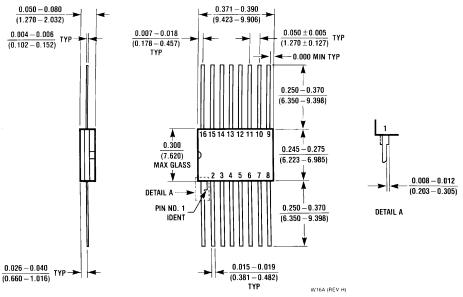
ns

Logic Diagram


 t_{PLH}


 t_{PHL}

Propagation Delay Time Low to High Level Output


Propagation Delay Time High to Low Level Output

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54157FMQB or DM54157W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408