

LMX2335U/LMX2336U PLLatinum[™] Ultra Low Power Dual Frequency Synthesizer for RF Personal Communications LMX2335U 1.2 GHz/1.2 GHz LMX2336U 2.0 GHz/1.2 GHz

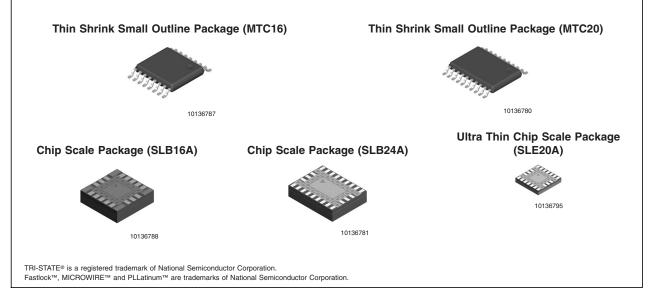
General Description

Features

The LMX2335U and LMX2336U devices are high performance frequency synthesizers with integrated dual modulus prescalers. The LMX2335U and LMX2336U devices are designed for use in applications requiring two RF phase-locked loops.

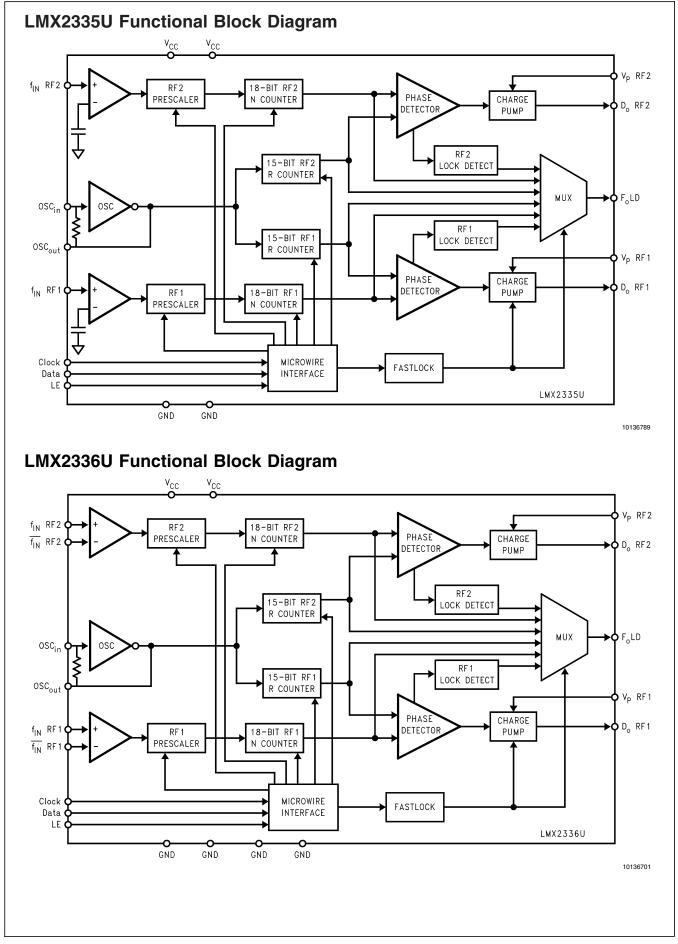
A 64/65 or a 128/129 prescale ratio can be selected for each RF synthesizer. Using a proprietary digital phase locked loop technique, the LMX2335U and LMX2336U devices generate very stable, low noise control signals for the RF voltage controlled oscillators. Both RF synthesizers include a two-level programmable charge pump. The RF1 synthesizer has dedicated Fastlock circuitry.

Serial data is transferred to the devices via a three wire interface (Data, LE, Clock). Supply voltages from 2.7V to 5.5V are supported. The LMX2335U and the LMX2336U feature very low current consumption:

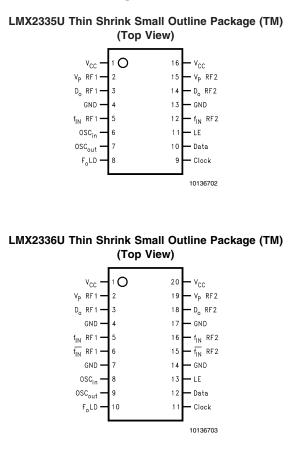

LMX2335U (1.2 GHz)– 3.0 mA, LMX2336U (2.0 GHz)– 3.5 mA at 3.0V.

The LMX2335U device is available in 16-pin TSSOP, and 16-pin Chip Scale Package (CSP) surface mount plastic packages. The LMX2336U device is available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP surface mount plastic packages.

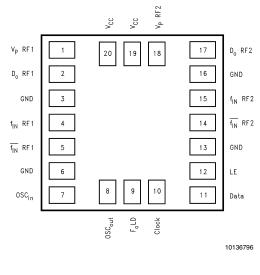
- Ultra Low Current Consumption
 Upgrade and Compatible to the LMX2335L and LMX2336L devices
- 2.7V to 5.5V operation
- Selectable Synchronous or Asynchronous Powerdown Mode:
 - $I_{CC-PWDN} = 1 \ \mu A \ typical \ at \ 3.0V$
- Selectable Dual Modulus Prescaler RF1: 64/65 or 128/129 RF2: 64/65 or 128/129
- Selectable Charge Pump TRI-STATE[®] Mode
- Programmable Charge Pump Current Levels RF1 and RF2: 0.95 or 3.8 mA
- Selectable Fastlock[™] Mode for the RF1 Synthesizer
- Push-Pull Analog Lock Detect Mode
- LMX2335U is available in 16-Pin TSSOP and 16-Pin CSP
- LMX2336U is available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP

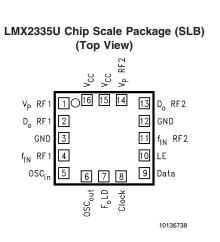

Applications

- Mobile Handsets (GSM, GPRS, W-CDMA, CDMA, PCS, AMPS, PDC, DCS)
- Cordless Handsets (DECT, DCT)
- Wireless Data
- Cable TV Tuners

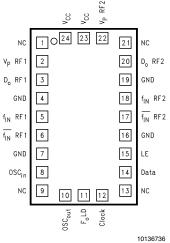


November 2002



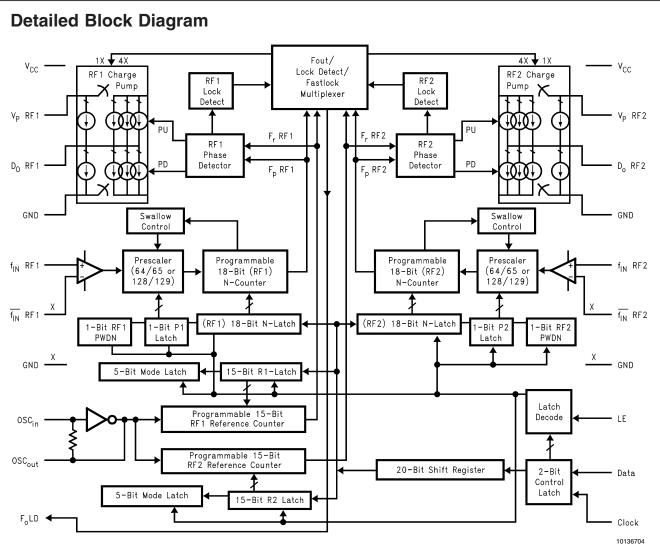


Connection Diagrams



LMX2336U Ultra Thin Chip Scale Package (SLE) (Top View)

LMX2336U Chip Scale Package (SLB) (Top View)



Pin Descriptions

Pin Name	Pin No. LMX2336U 20-Pin UTCSP	Pin No. LMX2336U 20-Pin TSSOP	Pin No. LMX2336U 24-Pin CSP	Pin No. LMX2335U 16-Pin TSSOP	Pin No. LMX2335U 16-Pin CSP	I/O	Description
V _{cc}	20	1	24	1	16	-	Power supply bias for the RF1 PLL analog and digital circuits. V_{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
V _P RF1	1	2	2	2	1	-	RF1 PLL charge pump power supply. Must be $\geq V_{CC}$.
D _o RF1	2	3	3	3	2	0	RF1 PLL charge pump output. The output is connected to the external loop filter, which drive the input of the VCO.
GND	3	4	4	4	3	_	LMX2335U: Ground for the RF1 PLL analog and digital circuits. LMX2336U: Ground for the RF1 PLL digital circuitry.
f _{IN} RF1	4	5	5	5	4	I	RF1 PLL prescaler input. Small signal input from the VCO.
f _{IN} RF1	5	6	6	X	X	I	LMX2335U: Don't care. LMX2336U: RF1 PLL prescaler complementary input. For single ended operation, this pin shoul be AC grounded. The LMX2336U RF1 PLL can be driven differentially when the bypass capacitor is omitted.
GND	6	7	7	Х	Х	-	LMX2335U: Don't care. LMX2336U: Ground for the RF1 PLL analog circuitry.
OSC _{in}	7	8	8	6	5	I	Oscillator input. It has an approximate $V_{CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate.
OSC _{out}	8	9	10	7	6	0	Oscillator output. This output is connected directly to a crystal. If a TCXO is used, it is left open.
F _o LD	9	10	11	8	7	0	Programmable multiplexed output pin. Functions as a general purpose CMOS TRI-STATE output RF1/RF2 PLL push-pull analog lock detect output, N and R divider output, or Fastlock output, which connects a parallel resistor to the external loop filter.
Clock	10	11	12	9	8	I	MICROWIRE Clock input. High impedance CMOS input. Data is clocked into the 22-bit shif register on the rising edge of Clock.
Data	11	12	14	10	9	I	MICROWIRE Data input. High impedance CMOS input. Binary serial data. The MSB of Data is entered first. The last two bits are the control bits.
LE	12	13	15	11	10	I	MICROWIRE Latch Enable input. High impedance CMOS input. When LE transitions HIGH, Data stored in the shift registers is loade into one of 4 internal control registers.

Pin Name	Pin No. LMX2336U 20-Pin UTCSP	Pin No. LMX2336U 20-Pin TSSOP	Pin No. LMX2336U 24-Pin CSP	Pin No. LMX2335U 16-Pin TSSOP	Pin No. LMX2335U 16-Pin CSP	I/O	Description
GND	13	14	16	Х	Х	-	LMX2335U: Don't care. LMX2336U: Ground for the RF2 PLL analog circuitry.
f _{IN} RF2	14	15	17	Х	Х	I	LMX2335U: Don't care. LMX2336U: RF2 PLL prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX2336U RF2 PLL can be driven differentially when the bypass capacitor is omitted.
f _{IN} RF2	15	16	18	12	11	I	RF2 PLL prescaler input. Small signal input from the VCO.
GND	16	17	19	13	12	_	LMX2335U: Ground for the RF2 PLL analog and digital circuits, MICROWIRE, F _o LD and oscillator circuits. LMX2336U: Ground for the RF2 PLL digital circuitry, MICROWIRE, F _o LD and oscillator circuits.
D _o RF2	17	18	20	14	13	0	RF2 PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
V _P RF2	18	19	22	15	14	-	RF2 PLL charge pump power supply. Must be $\geq V_{CC}$.
V _{cc}	19	20	23	16	15	_	Power supply bias for the RF2 PLL analog and digital circuits, MICROWIRE, F_oLD and oscillator circuits. V_{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
NC	Х	Х	1, 9, 13, 21	Х	Х	-	LMX2335U: Don't Care. LMX2336U: No connect.

Model	Temperature Range	Package Description	Packing	NS Package Number
LMX2335USLBX	-40°C to +85°C	Chip Scale Package	2500 Units Per Reel	SLB16A
		(CSP) Tape and Reel		
LMX2335UTM	–40°C to +85°C	Thin Shrink Small	96 Units Per Rail	MTC16
		Outline Package		
		(TSSOP)		
LMX2335UTMX	–40°C to +85°C	Thin Shrink Small	2500 Units Per Reel	MTC16
		Outline Package		
		(TSSOP) Tape and		
		Reel		
LMX2336USLEX	-40°C to +85°C	Ultra Thin Chip Scale	2500 Units Per Reel	SLE20A
		Package (UTCSP)		
		Tape and Reel		
LMX2336USLBX	-40°C to +85°C	Chip Scale Package	2500 Units Per Reel	SLB24A
		(CSP) Tape and Reel		
LMX2336UTM	-40°C to +85°C	Thin Shrink Small	73 Units Per Rail	MTC20
		Outline Package		
		(TSSOP)		
LMX2336UTMX	-40°C to +85°C	Thin Shrink Small	2500 Units Per Reel	MTC20
		Outline Package		
		(TSSOP) Tape and		
		Reel		

Notes:

1. V_{CC} supplies power to the RF1 and RF2 prescalers, RF1 and RF2 feedback dividers, RF1 and RF2 reference dividers, RF1 and RF2 phase detectors, the OSC_{in} buffer, MICROWIRE, and F₀LD circuits.

2. V_P RF1 and V_P RF2 supply power to the charge pumps. They can be run separately as long as V_P RF1 \ge V_{CC} and V_P RF2 \ge V_{CC}.

3. X signifies a pin that is NOT available on the LMX2335U PLL.

LMX2335U/LMX2336U

Absolute Maximum Ratings (Notes 1,

2, 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	
V _{CC} to GND	-0.3V to +6.5V
V _P RF1 to GND	-0.3V to +6.5V
V _P RF2 to GND	-0.3V to +6.5V
Voltage on any pin to GND (V_I)	
V_1 must be < +6.5V	–0.3V to $V_{\rm CC}\text{+}0.3\text{V}$
Storage Temperature Range (T_S)	-65°C to +150°C
Lead Temperature (solder 4 s) (T_L)	+260°C
16-Pin TSSOP θ_{JA} Thermal	
Impedance	137.1°C/W
20-Pin TSSOP θ_{JA} Thermal	
Impedance	114.5°C/W

16-Pin CSP θ_{JA} Thermal Impedance	130°C/W
24-Pin CSP θ_{JA} Thermal Impedance	112°C/W

Recommended Operating Conditions (Note 1)

Power Supply Voltage	
V _{CC} to GND	+2.7V to +5.5V
V _P RF1 to GND	$V_{\rm CC}$ to +5.5V
V _P RF2 to GND	$V_{\rm CC}$ to +5.5V
Operating Temperature (T _A)	-40°C to +85°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations. **Note 3:** GND = 0V

Electrical Characteristics

Symbol	Parame	tor	Conditions		Value		Units
Symbol	Falalite	iter	Conditions	Min	Тур	Max	Units
I _{cc} PARAM	ETERS						
I _{CCRF1 + RF2}	Power Supply Current, RF1 + RF2	LMX2335U	Clock, Data and LE = GND OSC _{in} = GND		3.0	4.0	mA
	Synthesizers	LMX2336U	PWDN RF1 Bit = 0 PWDN RF2 Bit = 0		3.5	1	mA
I _{CCRF1}	Power Supply Current, RF1	LMX2335U	Clock, Data and LE = GND OSC _{in} = GND		1.5	2.0	mA
	Synthesizer Only	LMX2336U	PWDN RF1 Bit = 0 PWDN RF2 Bit = 1		2.0	Typ Max 3.0 4.0 3.5 4.5 1.5 2.0 2.0 2.5 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.0 10.0 2000 131135 262143 32767 10 0	mA
I _{CCRF2}	Power Supply Current, RF2	LMX2335U	Clock, Data and LE = GND OSC _{in} = GND		1.5	2.0	mA
	Synthesizer Only	LMX2336U	PWDN RF1 Bit = 1 PWDN RF2 Bit = 0		1.5	2.0	
I _{CC-PWDN}	Powerdown Current	LMX2335U/ LMX2336U	Clock, Data and LE = GND OSC _{in} = GND PWDN RF1 Bit = 1 PWDN RF2 Bit = 1		1.0	10.0	μA
RF1 SYNTH	IESIZER PARAMETER	S			I		
f _{IN} RF1	RF1 Operating	LMX2335U		100		1200	MHz
	Frequency	LMX2336U		200		2000	MHz
N _{RF1}	RF1 N Divider Range		OSC _{in} = GND 1.5 2.0 336U PWDN RF1 Bit = 1 PWDN RF2 Bit = 0 1.5 2.0 335U/ Clock, Data and LE = GND OSC _{in} = GND PWDN RF1 Bit = 1 PWDN RF2 Bit = 1 1.0 10.0 335U 100 1200 336U Prescaler = 64/65 (Note 4) 192 131135				
				384		262143	
R _{RF1}	RF1 R Divider Range			3		32767	
$F_{\phi RF1}$	RF1 Phase Detector I	requency				10	MHz
Pf _{IN} RF1	RF1 Input Sensitivity		$2.7V \le V_{CC} \le 3.0V$ (Note 5)	-15		0	dBm
			$3.0V < V_{CC} \le 5.5V$ (Note 5)	-10		0	dBm

O	Parameter		Operativity	Value			11
Symbol			Conditions	Min	Тур	Мах	Units
RF1 SYNTH	ESIZER PARAMETERS	6				·	
ID_{o} RF1	RF1 Charge Pump Ou	Itput Source	$VD_{o} RF1 = V_{P} RF1/2$		-0.95		mA
SOURCE	Current		ID_{o} RF1 Bit = 0				
			(Note 6)				
			$VD_{o} RF1 = V_{P} RF1/2$		-3.80		mA
			ID_{o} RF1 Bit = 1				
			(Note 6)				
ID_{o} RF1	RF1 Charge Pump Ou	itput Sink	$VD_{o} RF1 = V_{P} RF1/2$		0.95		mA
SINK	Current		ID_{o} RF1 Bit = 0				
			(Note 6)				
			$VD_o RF1 = V_P RF1/2$		3.80		mA
			ID_{o} RF1 Bit = 1				
			(Note 6)				
ID_{o} RF1	RF1 Charge Pump Ou	Itput TRI-STATE	$0.5V \le VD_o \text{ RF1} \le V_P \text{ RF1} - 0.5V$	-2.5		2.5	nA
TRI-STATE	Current		(Note 6)				
$ID_o RF1$	RF1 Charge Pump Ou	itput Sink	$VD_{o} RF1 = V_{P} RF1/2$		3	10	%
SINK	Current Vs Charge Pu	mp Output	$T_A = +25^{\circ}C$				
Vs	Source Current Misma	itch	(Note 7)				
ID_{o} RF1							
SOURCE							
ID_{o} RF1	RF1 Charge Pump Ou	•	$0.5V \le VD_o RF1 \le V_P RF1 - 0.5V$		10	15	%
Vs	Magnitude Variation V	s Charge Pump	$T_A = +25^{\circ}C$				
VD_{o} RF1	Output Voltage		(Note 7)				
$ID_o RF1$	RF1 Charge Pump Ou	•	$VD_{o} RF1 = V_{P} RF1/2$		10		%
Vs	Magnitude Variation V	s Temperature	(Note 7)				
T _A							
	ESIZER PARAMETER	5	1	1	T	1	
f _{IN} RF2	RF2 Operating	LMX2335U		100		1200	MHz
	Frequency	LMX2336U		100		1200	MHz
N _{RF2}	RF2 N Divider Range		Prescaler = 64/65	192		131135	
			(Note 4)				
			Prescaler = 128/129	384		262143	
			(Note 4)				
R _{RF2}	RF2 R Divider Range			3		32767	
$F_{\phi RF2}$	RF2 Phase Detector F	requency				10	MHz
Pf _{IN} RF2	RF2 Input Sensitivity		$2.7V \leq V_{CC} \leq 3.0V$	-15		0	dBm
			(Note 5)				
			$3.0V < V_{CC} \le 5.5V$	-10		0	dBm
			(Note 5)				1

Symbol	Parameter	Conditions		Value	
-		Conditions	Min	Тур	Max
			1 1		
ID _o RF2 SOURCE	RF2 Charge Pump Output Source Current	$VD_o RF2 = V_P RF2/2$ $ID_o RF2 Bit = 0$ (Note 6)		-0.95	
		$VD_o RF2 = V_P RF2/2$ $ID_o RF2 Bit = 1$ (Note 6)		-3.80	
ID _o RF2 SINK	RF2 Charge Pump Output Sink Current	$VD_o RF2 = V_P RF2/2$ $ID_o RF2 Bit = 0$ (Note 6)		0.95	
		$VD_o RF2 = V_P RF2/2$ $ID_o RF2 Bit = 1$ (Note 6)		3.80	
ID _o RF2 TRI-STATE	RF2 Charge Pump Output TRI-STATE Current	$0.5V \le VD_o RF2 \le V_P RF2 - 0.5V$ (Note 6)	-2.5		2.5
ID _o RF2 SINK Vs ID _o RF2 SOURCE	RF2 Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	$VD_{o} RF2 = V_{P} RF2/2$ $T_{A} = +25^{\circ}C$ (Note 7)		3	10
ID _o RF2 Vs VD _o RF2	RF2 Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage	$0.5V \le VD_o RF2 \le V_P RF2 - 0.5V$ $T_A = +25^{\circ}C$ (Note 7)		10	15
ID _o RF2 Vs T _A	RF2 Charge Pump Output Current Magnitude Variation Vs Temperature	$VD_{o} RF2 = V_{P} RF2/2$ (Note 7)		10	
OSCILLATO	R PARAMETERS	1	11		1
F _{osc}	Oscillator Operating Frequency		2		40
V _{osc}	Oscillator Sensitivity	(Note 8)	0.5		V _{cc}
l _{osc}	Oscillator Input Current	$V_{OSC} = V_{CC} = 5.5V$ $V_{OSC} = 0V, V_{CC} = 5.5V$	-100		100
DIGITAL IN	TERFACE (Data, LE, Clock, F _o LD)				I
V _{IH}	High-Level Input Voltage		0.8 V _{CC}		
V _{IL}	Low-Level Input Voltage				0.2 V _c
<u>I</u> IH	High-Level Input Current	$V_{IH} = V_{CC} = 5.5V$	-1.0		1.0

Units

mΑ

mΑ

mΑ

mΑ

nA

%

%

%

MHz

 V_{PP}

μΑ

μΑ V .2 V_{CC} V $V_{IH} = V_{CC} = 5.5V$ $V_{IL} = 0V, V_{CC} = 5.5V$ $I_{OH} = -500 \ \mu A$ 1.0 μA High-Level Input Current -1.0 I_{H} Low-Level Input Current -1.0 1.0 μA $I_{\rm IL}$ V_{OH} High-Level Output Voltage V_{CC} – V 0.4 V_{OL} Low-Level Output Voltage $I_{OL}=500~\mu A$ 0.4 ٧ MICROWIRE INTERFACE Data to Clock Set Up Time (Note 9) 50 t_{cs} ns Data to Clock Hold Time (Note 9) 10 ns t_{CH} Clock Pulse Width HIGH 50 (Note 9) ns t_{CWH} t_{CWL} Clock Pulse Width LOW (Note 9) 50 ns Clock to Load Enable Set Up Time 50 (Note 9) t_{ES} ns Latch Enable Pulse Width (Note 9) 50 ns t_{EW}

Symbol	Parameter		Conditions		Value		
Symbol	Param	eter	Conditions	Min	Тур	Мах	Units
PHASE NO	SE CHARACTERISTI	cs					
L _N (f) RF1	RF1 Synthesizer Nor Noise Contribution (Note 10)	malized Phase	TCXO Reference Source ID _o RF1 Bit = 1		-212.0		dBc/ Hz
L(f) RF1	RF1 Synthesizer Single Side Band Phase Noise Measured	LMX2335U			-85.94		dBc/ Hz
		LMX2336U			-79.18		dBc/ Hz

www.national.com

Electrical Characteristics (Continued)

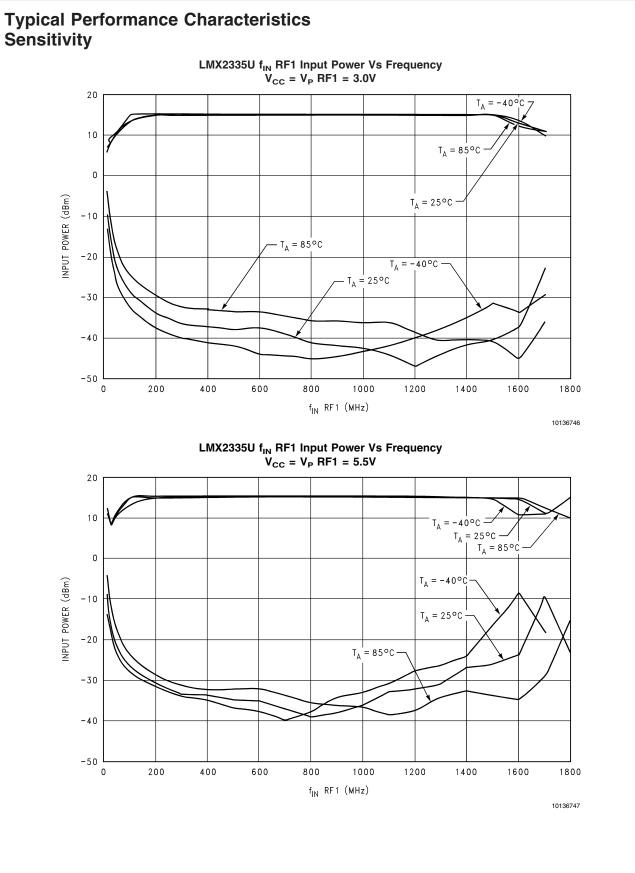
 $V_{CC} = V_P RF1 = V_P RF2 = 3.0V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$, unless otherwise specified

O	Daman	-4			Value			
Symbol	Param	leter	Conditions	Min	Тур	Мах	Units	
PHASE NO	ISE CHARACTERISTI	CS						
L _N (f) RF2	RF2 Synthesizer Nor Noise Contribution (Note 10)	rmalized Phase	TCXO Reference Source ID _o RF2 Bit = 1		-212.0		dBc/ Hz	
L(f) RF2	RF2 Synthesizer Single Side Band Phase Noise Measured	LMX2335U	$f_{IN} RF2 = 900 MHz$ f = 1 kHz Offset $F_{\phi RF2} = 200 kHz$ Loop Bandwidth = 12 kHz N = 4500 $F_{OSC} = 10 MHz$ $V_{OSC} = 0.632 V_{PP}$ ID _o RF2 Bit = 1 PWDN RF1 Bit = 1 $T_A = +25^{\circ}C$ (Note 11)		-85.94		dBc, Hz	
		LMX2336U	$f_{IN} RF2 = 900 MHz$ $f = 1 kHz Offset$ $F_{\phi RF2} = 200 kHz$ Loop Bandwidth = 12 kHz $N = 4500$ $F_{OSC} = 10 MHz$ $V_{OSC} = 0.632 V_{PP}$ $ID_o RF2 Bit = 1$ $PWDN RF1 Bit = 1$ $T_A = +25^{\circ}C$ (Note 11)		-85.94		dBc, Hz	

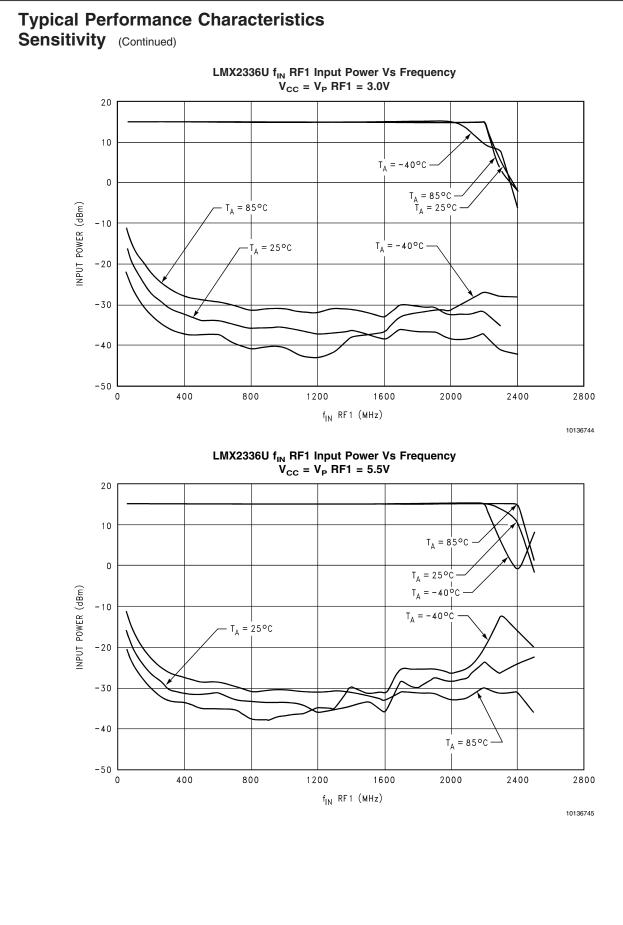
Note 4: Some of the values in this range are illegal divide ratios (B < A). To obtain continuous legal division, the Minimum Divide Ratio must be calculated. Use N \geq P * (P-1), where P is the value selected for the prescaler.

Note 5: Refer to the LMX2335U and LMX2336U f_{IN} Sensitivity Test Setup section

Note 6: Refer to the LMX2335U and LMX2336U Charge Pump Test Setup section

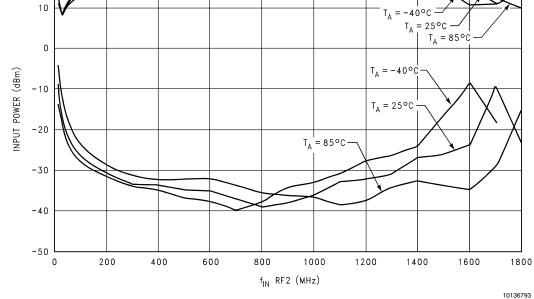

Note 7: Refer to the Charge Pump Current Specification Definitions for details on how these measurements are made.

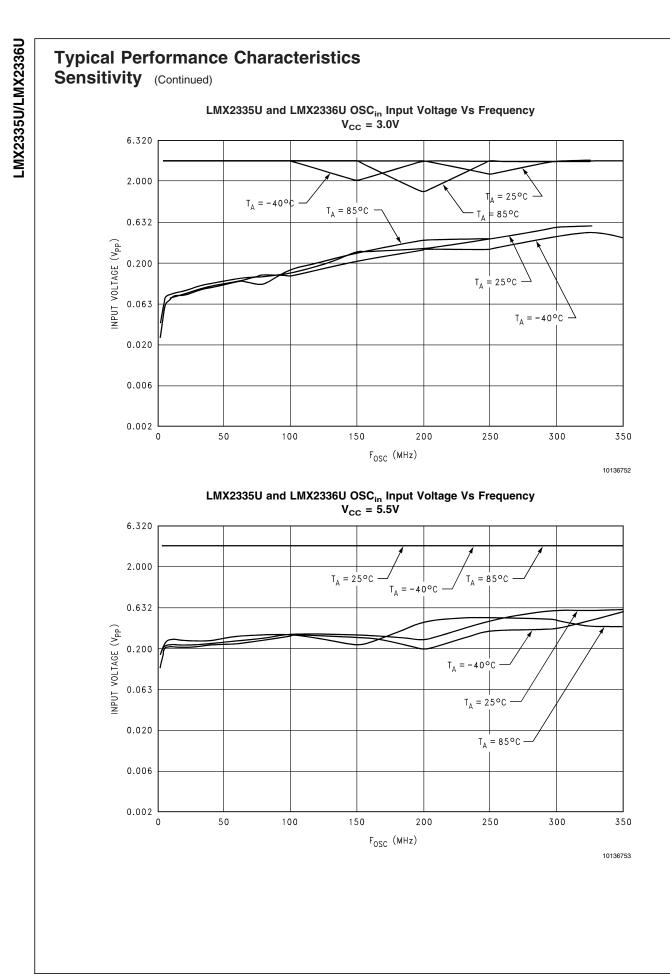
Note 8: Refer to the LMX2335U and LMX2336U OSC_{in} Sensitivity Test Setup section


Note 9: Refer to the LMX2335U and LMX2336U Serial Data Input Timing section

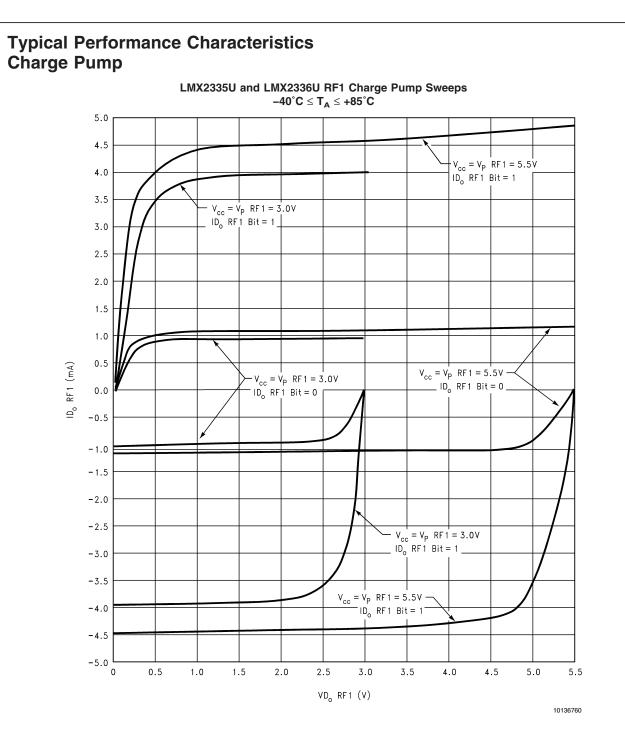
Note 10: Normalized Phase Noise Contribution is defined as : $L_N(f) = L(f) - 20 \log (N) - 10 \log (F_{\phi})$, where L(f) is defined as the single side band phase noise measured at an offset frequency, f, in a 1 Hz bandwidth. The offset frequency, f, must be chosen sufficiently smaller than the PLL's loop bandwidth, yet large enough to avoid substantial phase noise contribution from the reference source. N is the value selected for the feedback divider and F_{ϕ} is the RF1/RF2 phase detector comparison frequency.

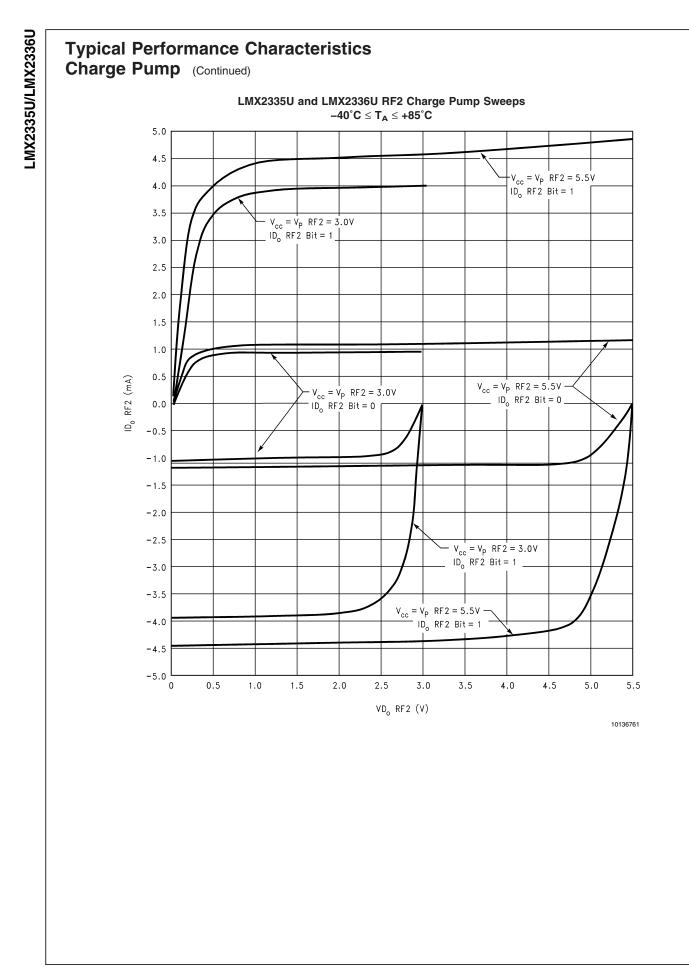
Note 11: The synthesizer phase noise is measured with the LMX2335TMEB/LMX2335SLBEB or LMX2336TMEB/LMX2336SLBEB/LMX2336SLEEB Evaluation boards and the HP8566B Spectrum Analyzer.

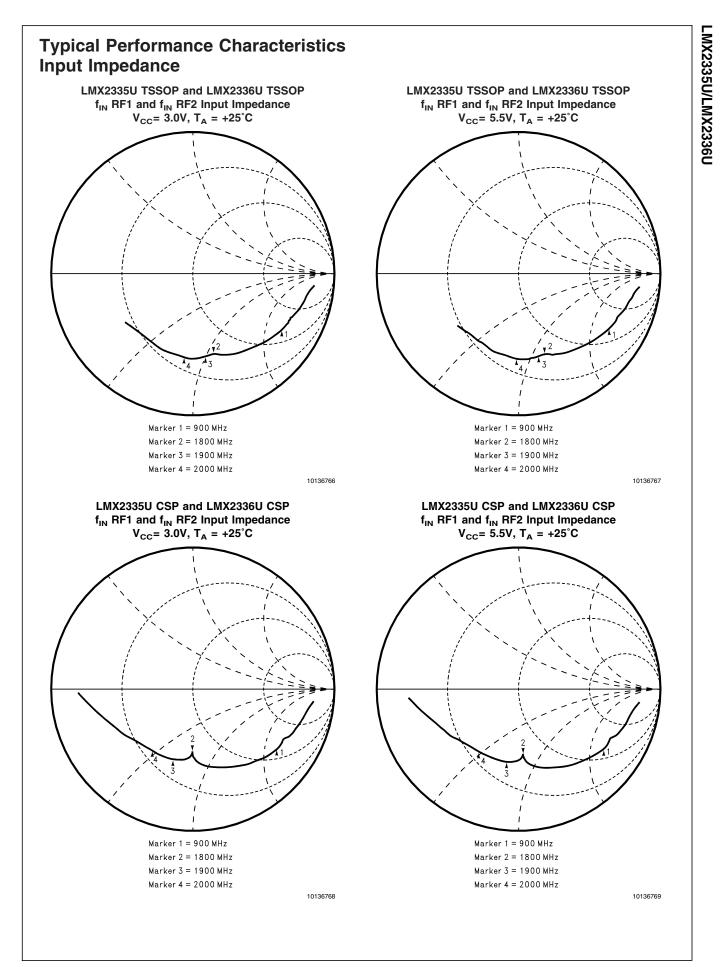



Typical Performance Characteristics Sensitivity (Continued) LMX2335U and LMX2336U f_{IN} RF2 Input Power Vs Frequency $V_{\rm CC}$ = $V_{\rm P}$ RF2 = 3.0V 20 $T_A = -40$ °C 10 $T_A = 85 °C$ 0 INPUT POWER (dBm) $T_A = 25 °C$ -10 $T_A = 85^{\circ}C$ -20 $T_A = -40 \circ C$ T_A = 25°C -30 -40 -50 1400 0 200 400 600 800 1000 1200 1600 1800 f_{IN} RF2 (MHz) LMX2335U and LMX2336U f_{IN} RF2 Input Power Vs Frequency $V_{\rm CC}$ = $V_{\rm P}$ RF2 = 5.5V 20 10 $T_A = -40^{\circ}C$ $T_A = 25 °C$ T_A = 85°C 0 $T_A = -40 \, \text{oC}$

www.national.com

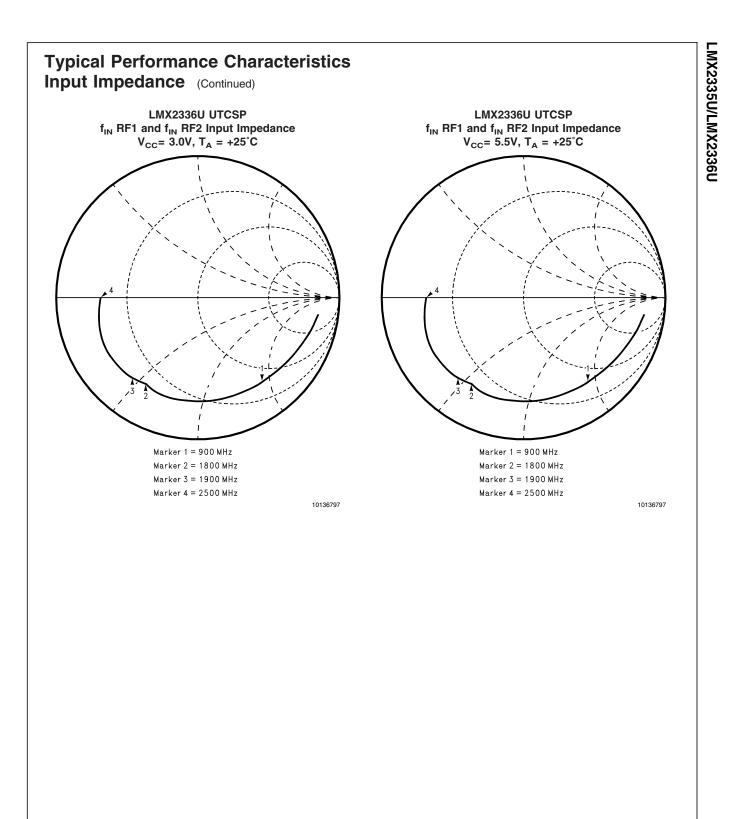

10136792




www.national.com

16

www.national.com

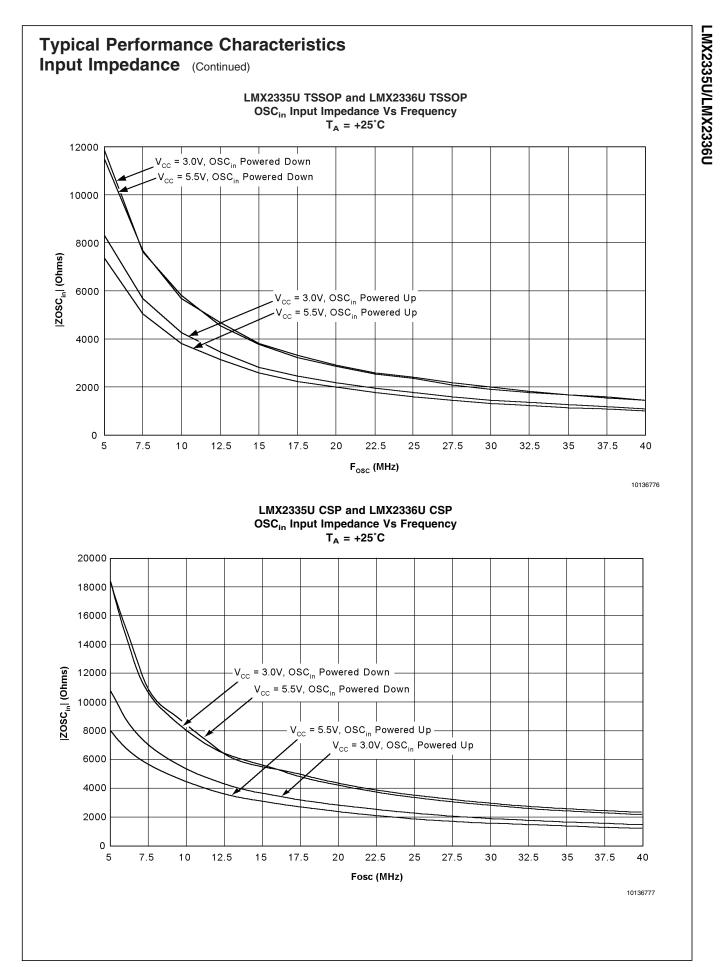


Typical Performance Characteristics Input Impedance (Continued)

LMX2335U/LMX2336U TSSOP and LMX2335U/LMX2336U CSP f_{IN} RF1 and f_{IN} RF2 Input Impedance Table

			LMX2335U TSSOP/		-MX2336U TSSOP (Zfin RF1 and Zfin RF2)	TSSOP	(Zfin R	F1 and Z	f _{IN} RF2)				LMX233(5U CSP/L	LMX2335U CSP/LMX2336U CSP (Zf _{IN} RF1 and Zf _{IN}	CSP (Z	fin RF1	and Zf _{IN}	RF2)	
	۲ در	V _P RF1	V _{cc} = V _P RF1 = V _P RF2 = 3.0V		$(T_A = 25^{\circ}C) V_{CC}$	$V_{cc} = V$	'P RF1 :	= V _P RF1 = V _P RF2 = 5.5V		$(T_A = 25^{\circ}C)$ V _{cc}	V _{cc} = V _P	RF1	= V _P RF2 = 3.0V	= 3.0V (T	$(T_A = 25^{\circ}C)$ V _{cc} = V _P RF1 = V _P RF2	V _{cc} =	V _P RF1	= V _P RF2	= 5.5V (T _A	= 25°C)
f _{in} (MHz)	L	21	ж Zf _{in} [0]	‰ Zf _{IN} (0)	IZf _{IN} I (O)	Irl	2۲	Zf _{in}	مر Zf _{IN}	IZf _{IN}	LI	ZL	St _{in}	3€ Zf _{IN}	IZf _{IN} I	디	ZL	Zí _N	2f _{IN}	IZf _{IN}
	0.862	-6.23	4	-319.866	543.798	0.862	-6.07	ļ	-318.841	7	0.864	-6.44	14	-330.013	8	0.864	-6.30	438.240	-327.814	547.281
200	0.834	0.834 -9.30			410.803		_							-277.923			-		-277.552	408.838
300		-12.11		-249.291	344.452	0.821 -11.66	11.66	247.264 -251.098		352.406	0.821 -13.24		215.318	-248.361	328.702 0.821 -12.76	0.821 -		224.624	-249.637	335.819
400		-15.25	0.808 -15.25 185.048 -227.17	-227.171	293.001	0.808 -	14.61	293.001 0.808 -14.61 194.668 -229.054		300.601 0.808 -16.88 163.190 -219.893	0.808 -	16.88	163.190	-219.893	273.832 0.808 -16.24	0.808 -	-16.24	171.345	-222.518	280.844
500	Concession of the local division of the loca	-18.51	0.796 -18.51 147.785 -203.92	-203.923	251.843		17.66	0.796 -17.66 156.935 -207.313		260.014 0.793 -20.90	0.793 -	20.90	126.193	-191.939	229.707	0.794 -20.00		133.885	-196.200	237.528
600		-21.81	0.781 -21.81 122.091 -181.461	-181.461	218.710		20.70	130.906	0.782 -20.70 130.906 -185.850	227.325	0.775 -	24.82	102.956	-168.026	227.325 0.775 -24.82 102.956 -168.026 197.060 0.777 -23.70	0.777		109.531	-172.887	204.663
700		-24.72	0.765 -24.72 106.107 -163.758	-163.758	195.129	0.767 -:	-23.45	113.780 -168.514	-168.514	203.329	0.749 -28.29	28.29	90.820	-146.582	172.437	0.752 -	-27.02	96.279	-151.333	179.363
800		-28.35	0.760 -28.35 87.984 -150.52	-150.524	174.352	0.762 -26.97	26.97	94.255	-155.481	181.819	0.742 -31.22	31.22	79.737	-136.782	158.327	0.746 -29.85	-29.85	84.470	-141.473	164.772
006	0.747	-32.60	0.747 -32.60 73.777 -134.50	-134.500	153.406	0.750 -30.95		79.270 -139.668		160.596	0.739 -36.04	36.04	64.577	-123.951	-123.951 139.764 0.742	0.742	-34.37	69.006	-128.610	145.954
1000	0.732	-36.68	1000 0.732 -36.68 64.122 -120.90	-120.908	136.859	0.735 -34.73	34.73	69.215	-126.104 143.851		0.719 -	-41.44	55.019	-108.415	121.577	0.723 -39.46	-39.46	58.684	-113.123	127.439
1100	0.717	-41.25	55.780	1100 0.717 -41.25 55.780 -108.398	121.908 0.720 -39.12	0.720 -	39.12	60.041	-113.215	128.151	0.694 -47.27	47.27	48.056	-94.403	105.931	0.698	-45.08	51.159	-98.547	111.035
1200	0.698	-46.24	0.698 -46.24 49.180	-96.605	108.403	0.702 -	-43.84	52.848	-101.254	114.216	0.669 -	-53.59	42.269	-82.401	92.610	0.674 -	-51.01	45.061	-86.388	97.434
1300		-51.43	0.678 -51.43 43.982	-86.291	96.853	0.683 -	-48.77	47.173	-90.676	102.212	0.641 -60.42	-60.42	37.856	-71.653	81.039	0.647 -	-57.50	40.230	-75.400	85.461
1400	0.663	-56.68	1400 0.663 -56.68 39.397	-77.901	87.296	0.667 -	-53.71	42.317	-82.070	92.337	0.610 -68.33	-68.33	34.108	-61.481	70.308	0.613 -	-64.90	36.477	-64.872	74.424
1500	0.649	-62.08	1500 0.649 -62.08 35.566	-70.500	78.963	0.653 -58.74	58.74	38.281	-74.569	83.821	0.577 -77.01	-77.01	31.049	-52.388	60.898	0.581 -	-73.18	33.064	-55.554	64.649
1600	0.630	-67.58	1600 0.630 -67.58 32.912	-63.544	71.562	0.634 -	-63.96	35.335	-67.423	76.121	0.539 -84.86	-84.86	29.732	-44.952	53.895	0.543 -	-80.36	31.654	-48.119	57.597
1700	0.608	-72.22	1700 0.608 -72.22 31.565	-57.996	66.030	0.614 -	-68.51	33.590	-61.632	70.191	0.477 -27.97		100.359	-58.171	115.999	0.487 -	-84.99	33.106	-42.105	53.562
1800	0.596	-75.66	1800 0.596 -75.66 30.440	-54.462	62.392	0.601 -71.81	71.81	32.358	-57.943	66.366	0.455 89.90	89.90	32.829	-37.624	49.933	0.468 -85.87	-85.87	33.886	-40.554	52.847
1900	0.598	-80.06	1900 0.598 -80.06 27.915	-51.164	58.284	0.602 -76.22	76.22	29.678	-54.335	61.912	0.493 87.34	87.34	29.357	-38.214	48.189	0.500 -88.90	-88.90	29.576	-39.369	49.241
2000	0.607	-85.31	2000 0.607 -85.31 24.914	-47.651	53.771	0.607 -81.32		26.675	-50.603	57.203	0.520 79.89	79.89	25.120	-35.225	43.264	0.521 84.05	84.05	26.396	-37.576	45.921
																				10136770

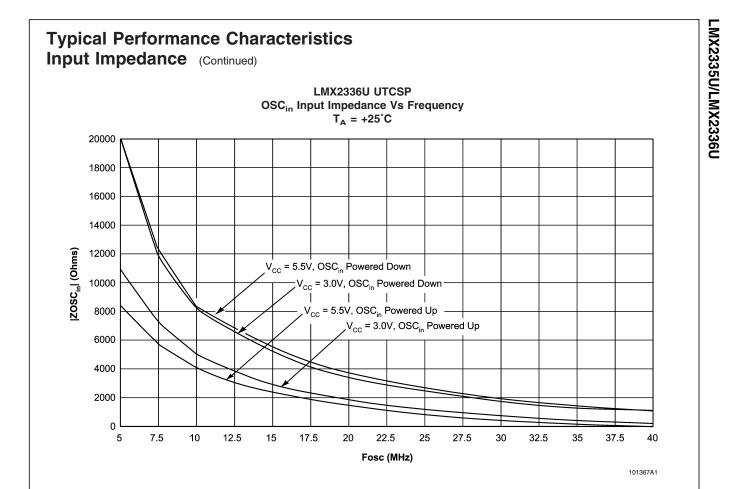
10136770



Typical Performance Characteristics Input Impedance (Continued)

LMX2336U UTCSP $f_{\rm in}$ RF1 and $f_{\rm in}$ RF2 Input Impedance Table

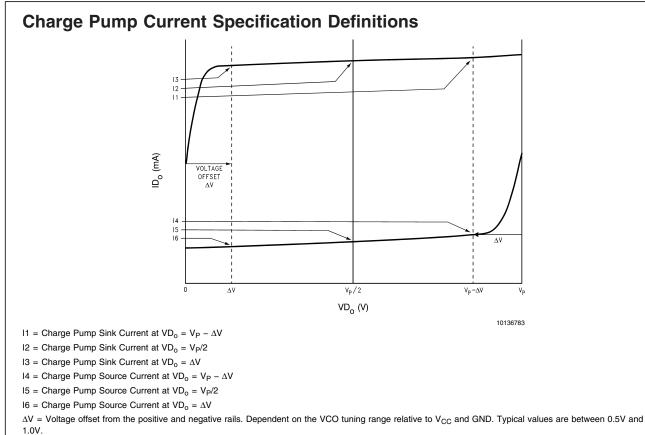
				LMX	LMX2336U UTCSP Zfin RF1 and Zfin RF2	fin RF1 and	Zf _{IN} RF2			
		V _{cc} = V _P RF	² 1 = V _P RF2 = (V _{cc} = V _P RF1 = V _P RF2 = 3.0V (T _A = 25°C)			$V_{cc} = V_P H$	F1 = V _P RF2 =	$V_{cc} = V_P RF1 = V_P RF2 = 5.5V (T_A = 25^{\circ}C)$	
f _{IN} (MHz)	IJ	Z	Re Zf _{IN} (Ω)	т Zf _{IN} (Ω)	IZf _{IN} I (Ω)	Ľ	77	Re Zf _{in} (Ω)	Im Zf _{IN} (Ω)	IZf _{IN} I (Ω)
100	0.86	-8.57	335.53	-330.26	470.80	0.86	-8.61	333.98	-330.26	469.70
200	0.83	-13.59	206.36	-258.74	330.95	0.83	-13.55	207.11	-258.92	331.57
300	0.81	-18.53	143.19	-214.36	257.79	0.81	-18.45	144.05	-214.75	258.59
400	0.80	-23.67	103.09	-183.95	210.86	0.80	-23.63	103.36	-184.12	211.15
500	0.79	-29.24	76.58	-157.24	174.89	0.79	-29.07	77.30	-157.87	175.78
600	0.77	-34.87	61.79	-133.64	147.24	0.77	-34.64	62.46	-134.31	148.12
200	0.76	-40.52	50.03	-116.97	127.23	0.76	-40.33	50.42	-117.43	127.80
800	0.76	-46.45	39.82	-103.86	111.24	0.76	-46.18	40.22	-104.42	111.89
900	0.75	-53.27	32.87	-90.33	96.13	0.75	-52.89	33.27	-90.97	96.86
1000	0.74	-60.04	27.98	-79.30	84.09	0.74	-59.70	28.24	-79.77	84.63
1100	0.73	-66.62	24.49	-70.27	74.42	0.73	-66.10	24.81	-70.90	75.11
1200	0.73	-74.07	20.63	-62.00	65.34	0.73	-73.57	20.85	-62.52	65.91
1300	0.73	-81.67	17.67	-54.66	57.45	0.73	-81.15	17.85	-55.13	57.95
1400	0.73	-89.59	15.34	-47.95	50.34	0.73	-88.94	15.51	-48.47	50.89
1500	0.73	-97.85	13.48	-41.75	43.87	0.73	-97.12	13.63	-42.27	44.41
1600	0.73	-106.72	11.96	-35.80	37.74	0.73	-105.87	12.09	-36.34	38.30
1700	0.72	-115.82	11.22	-30.21	32.22	0.72	-114.76	11.35	-30.82	32.84
1800	0.70	-123.41	11.28	-25.85	28.20	0.70	-122.28	11.40	-26.45	28.80
1900	0.72	-130.68	9.80	-22.22	24.29	0.72	-129.92	9.86	-22.61	24.66
2000	0.74	-140.55	8.41	-17.48	19.39	0.74	-139.88	8.44	-17.80	19.70
2100	0.74	-150.74	7.97	-12.74	15.03	0.74	-150.01	7.99	-13.07	15.32
2200	0.73	-160.86	8.02	-8.22	11.48	0.73	-160.03	8.04	-8.58	11.76
2300	0.71	-170.43	8.54	-4.06	9.46	0.71	-169.62	8.55	-4.41	9.62
2400	0.69	-179.08	9.17	-0.39	9.18	0.69	-178.32	9.17	-0.71	9.20
2500	0.67	172.38	9.92	3.20	10.43	0.67	173.11	9.91	2.89	10.33


10136798

Typical Performance Characteristics Input Impedance (Continued)

LMX2335U/LMX2336U TSSOP and LMX2335U/LMX2336U CSP OSC_{in} Input Impedance Table

			Ľ	LMX2335U TSSOP/LMX2336U TSSOP	'SSOP/LN	1X2336U		ZOSC							(W)	X2335U (LMX2335U CSP/LMX2336U CSP ZOSCin	2336U C	SOZ 4S	ů			
		$V_{cc} = 3.0$	$V_{cc} = 3.0V (T_A = 25^{\circ}C)$	25°C)			Š	$V_{cc} = 5.5V (T_A = 25^{\circ}C)$	(T _A = 25°	0			Vcc	V _{cc} = 3.0V (T _A = 25°C)	T _A = 25°(Vcc	$V_{cc} = 5.5V (T_A = 25^{\circ}C)$	T _A = 25°(0	
	OSCIII BUFFER POWERED ON	JFFER ED ON	20	OSCII BUFFER POWERED DOWN	FER	8 S	OSCIn BUFFER POWERED ON	S N	OS(OSCin BUFFER POWERED DOWN	ER	0S(POI	OSCIn BUFFER POWERED ON	Ψ.X	DOWI POWI	OSCin BUFFER POWERED DOWN	ER	DOWI DOWI	OSCin BUFFER POWERED DOWN	DWN	POWI	OSC _{In} BUFFER POWERED DOWN	NNN NNN
- ~o~	Re Im ZOSC _{in} ZOSC _{in} (Ω) (Ω)	C _{in} IZOSC _{in} I	in I ZOSCin (Ω)	in ZOSCin (Ω)	izosc _h l (Ω)	Re ZOSC _{in} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{In} I (Ω)	Re ZOSC _{in} (Ω)	IM ZOSCin (Ω)	IZOSC _{In} 1 (Ω)	Re ZOSC _{in} (Ω)	Im ZOSC _{in} I (Ω)	IZOSC _{In} l (Ω)	Re ZOSC _{in} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{In} l (Ω)	Re ZOSC _{In} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSC _{in} (Ω)	Im ZOSC _{in} I	IZOSC _{in} l (Ω)
	5.0 2291.113 -8000.376 8321.972 985.863 -11825.209 11866.234 2832.878 6774.525 7342.982 1246.071 -11436.600 11504.282 5107.688 -9526.374 10809.27	376 8321.97	72 985.86	3 -11825.20	111866.234	1 2832.878	-6774.525	7342.982	1246.071 -	11436.600	11504.282	5107.688	9526.374	10809.27	4154.104 -	-18073.24	18544.50	4698.960 -	6544.007	4154.104 -18073.24 18544.50 4698.960 -6544.007 8056.318 4154.104 -18073.24 18544.50	4154.104 -	18073.24	18544.
. ∩ I	1202.389 -5538.197 5667.218 294.460 -7640.322 7645.994 1267.479 -4861.053	197 5667.21	18 294.46	0 -7640.32	2 7645.994	1267.479	-4861.053	5023.579	520.098 -	-7675.309 7692.910 2249.061 -6544.475 6920.146	7692.910	2249.061	6544.475 (5920.146	1571.331 -	-10205.48	10325.74	2626.329 -	4998.105	1571.331 -10205.48 10325.74 2626.329 -4998.105 5646.119 1812.311 -10602.90 10756.68	1812.311	10602.90	10756.
- ×'	791.970 4218.658 4292.353 266.942 -5793.060 5799.207	358 4292.35	33 266.94	2 -5793.06	0 5799.207	739.926	739.926 -3754.673 3826.886			484.656 -5659.675 5680.388 1664.886 -5170.920 5432.335 1066.661 -8350.651 8418.499 1625.723 -4209.219 4512.261	5680.388	1664.886	5170.920	5432.335	1066.661 -	-8350.651	8418.499	1625.723 -	4209.219	4512.261	976.808	976.808 -8800.590 8854.633	8854.6
i ìð	527.664 -3418.978 3459.456	378 3459.45	56 197.874	4 -4547.09	-4547.094 4551.397		544.280 -3078.845 3126.584		196.239 -	-4665.169	4669.295 1048.750 -4245.537 4373.153	1048.750	4245.537		727.756 -	-6341.105	727.756 -6341.105 6382.730 1182.342 -3466.982 3663.045	1182.342 -	-3466.982			899.697 -6248.932 6313.367	6313.3
പ്	343.020 -2817.993 2838.794	393 2838.75	94 161.801		-3761.566 3765.044	416.644	-2536.243 2570.238	2570.238	160.236 -	-3799.626	3803.003	872.629 -	-3558.426 3663.861	3663.861	442.319	-5658.273 5675.536		856.006	856.006 -2977.931 3098.519			436.542 -5712.788 5729.443	5729.4
1 0	316.446 -2439.647 2460.085 141.326 -3203.351 3206.467	347 2460.05	35 141.32	6 -3203.35	1 3206.467		309.867 -2192.584 2214.372	_	196.400	-3305.741	3311.570	691.377	-3158.030 3232.825		296.061 -	-4799.917 4809.039		697.781	697.781 -2605.886 2697.692		309.618 -	-4985.007 4994.613	4994.6
1	228.526 -2179.146 2191.096	146 2191.05	96 63.505		-2879.931 2880.631		227.640 -1974.267 1987.347	1987.347	73.816 -	-2917.281	2918.215	559.597	-2791.912 2847.441	2847.441	194.872 -	-4242.475 4246.948		554.417 -	554.417 -2318.961 2384.315		303.378 -	4345.597 4356.174	4356.1
N	211.659 -1932.535 1944.091	535 1944.05	91 98.108		-2543.330 2545.222	214.873	214.873 -1741.101 1754.310		103.131 -	-2608.411 2610.449	2610.449		442.147 -2512.522 2551.129		186.123 -	-3777.847	186.123 -3777.847 3782.429	485.437	-2041.170	485.437 -2041.170 2098.100 168.163	168.163 -	-3935.873 3939.464	3939.4
¥	163.618 -1762.903 1770.480	303 1770.45		89.270 -2340.221 2341.923	1 2341.923		169.812 -1589.814 1598.857	1598.857	67.246 -	-2388.967	2389.913		444.524 -2261.024 2304.307		170.072 -	170.072 -3402.400 3406.648		424.599 -	424.599 -1865.270 1912.986	1912.986	174.460 -	174.460 -3506.895 3511.232	3511.2
Ψ	163.733 -1589.620 1598.030	320 1598.05		69.675 -2106.253 2107.405 160.401 -1435.7	3 2107.405	160.401	-1435.713	13 1444.646	69.923 -	-2161.702 2162.832 367.245 -2060.013 2092.491	2162.832	367.245	2060.013		191.739 -	191.739 -3114.867 3120.763		379.086	-1714.793	379.086 -1714.793 1756.195 159.273 -3213.478 3217.422	159.273 -	3213.478	3217.4
-	148.446 -1463.071 1470.583	371 1470.56		81.310 -1926.889 1928.604	9 1928.604	141.501	141.501 -1314.929 1322.520	1322.520	67.843 -	-1984.769 1985.928	1985.928		356.692 -1893.442 1926.747		188.280 -	188.280 -2837.317 2843.557		357.340	-1567.979	357.340 -1567.979 1608.182 157.424 -2934.223 2938.443	157.424 -	2934.223	2938.4
- 21	130.683 -1340.206 1346.562	206 1346.56	52 46.548		-1750.824 1751.443		121.612 -1213.403 1219.482	1219.482	37.610 -	-1812.700	1813.090	348.916	-1776.540 1810.480		129.014 -	129.014 -2664.486 2667.608		332.065	332.065 -1461.571 1498.818			157.389 -2780.469 2784.920	2784.9
- 22	126.059 -1255.034 1261.349	334 1261.34	49 38.046	5 -1662.23	-1662.230 1662.666		116.385 -1131.429 1137.399	1137.399	45.646 -	-1689.748	1690.365		302.932 -1648.356 1675.961	1675.961	95.424 -	-2471.170 2473.011		299.913 -	299.913 -1358.120 1390.840		125.530	-2600.472 2603.500	2603.5
	115.848 -1178.954 1184.632	354 1184.60	32 37.202		-1547.816 1548.263		109.381 -1064.461 1070.066	1070.066	36.346	-1591.439	1591.854		300.020 -1549.601 1578.377		117.732 -	-2331.694 2334.664		284.654 -	284.654 -1274.370 1305.774		144.727	-2419.904 2424.228	2424.2
_ <u> </u>	40.0 108.280 -1089.931 1095.296	331 1095.25		36.351 -1439.460 1439.919 100.267	0 1439.919	100.267	-985.544	990.631	39.180	-1470.482 1471.004 281.334 -1454.298 1481.260	1471.004	281.334	1454.298	1481.260		-2182.473	81.318 -2182.473 2183.987 273.323 -1199.918 1230.654 152.283 -2302.913 2307.942	273.323	-1199.918	1230.654	152.283	2302.913	2307.9


Typical Performance Characteristics Input Impedance (Continued)

LMX2336U UTCSP OSC_{in} Input Impedance Table

LMX2336U UTCSP ZOSCin

			V _{cc} = 3.0V	= 3.0V (T _A = 25°C)					V _{cc} = 5.5V	= 5.5V (T _A = 25°C)		
	0 L	OSCIn BUFFER POWERED UP	<u>к</u> е	Pool	OSC _{in} BUFFER POWERED DOWN	R WN	ŌŒ	OSCIn BUFFER POWERED UP	œ a.	PO	OSC _{in} BUFFER POWERED DOWN	~ N
F _{osc} (MHz)	Re ZOSC _{In} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSCin (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSCin (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSC _{in} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)
5.0	5918.57	-9897.80	11532.39	1822.62	-19947.73	20030.82	4982.73	-7668.32	9144.98	2478.02	-19591.11	19747.21
7.5	3097.46	-7441.43	8060.35	2238.93	-12114.22	12319.38	2742.97	-6062.16	6653.85	2483.54	-12531.99	12775.71
10.0	1695.22	-5720.83	5966.72	998.16	-9046.84	9101.74	1582.29	-4875.36	5125.70	1064.38	-9063.97	9126.25
12.5	1241.03	-4759.14	4918.29	660.39	-7338.93	7368.58	1150.39	-4034.66	4195.46	621.48	-7679.86	7704.97
15.0	820.55	-3955.33	4039.55	471.57	-6142.40	6160.48	861.48	-3448.80	3554.76	591.34	-6481.87	6508.79
17.5	646.18	-3417.20	3477.76	317.24	-5165.41	5175.14	599.49	-3009.04	3068.18	154.67	-5518.01	5520.17
20.0	520.20	-3006.22	3050.90	223.35	-4567.95	4573.41	491.78	-2647.38	2692.67	120.99	-4867.07	4868.57
22.5	459.63	-2666.05	2705.38	219.57	-4040.96	4046.92	396.64	-2342.62	2375.96	137.85	-4301.63	4303.84
25.0	391.21	-2398.19	2429.89	172.20	-3664.77	3668.81	323.46	-2108.25	2132.92	89.00	-3864.60	3865.62
27.5	348.79	-2210.66	2238.01	169.02	-3291.50	3295.84	312.14	-1920.70	1945.90	114.48	-3476.68	3478.56
30.0	285.07	-1996.71	2016.96	110.02	-3005.42	3007.43	260.59	-1763.82	1782.97	121.11	-3185.26	3187.56
32.5	267.83	-1847.30	1866.61	117.14	-2725.46	2727.97	239.41	-1612.35	1630.02	111.70	-2876.34	2878.50
35.0	252.27	-1719.32	1737.73	114.38	-2558.44	2561.00	222.16	-1503.76	1520.08	115.42	-2690.37	2692.84
37.5	224.94	-1639.80	1655.15	70.31	-2408.64	2409.67	191.46	-1422.88	1435.71	48.06	-2550.41	2550.86
40.0	208.96	-1512.91	1527.27	76.50	-2242.79	2244.09	180.75	-1329.24	1341.47	72.61	-2353.73	2354.85
												101367A2

www.national.com

 V_{P} refers to either V_{P} RF1 or V_{P} RF2

 VD_o refers to either VD_o RF1 or VD_o RF2

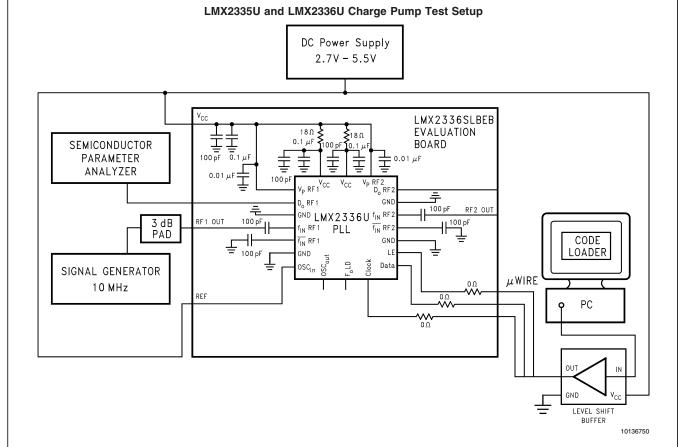
 ID_o refers to either ID_o RF1 or ID_o RF2

Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage

$$ID_{o} Vs VD_{o} = \frac{(|11| - |13|)}{(|11| + |13|)} \times 100\%$$
$$= \frac{(|14| - |16|)}{(|14| + |16|)} \times 100\%$$

Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch

$$ID_{o}$$
 SINK Vs ID_{o} SOURCE = $\frac{|12| - |15|}{\frac{1}{2}(|12| + |15|)} \times 100\%$


Charge Pump Output Current Magnitude Variation Vs Temperature

$$ID_{o}$$
 Vs $T_{A} = \frac{|I_{2}||_{T_{A}} - |I_{2}||_{T_{A} = 25^{\circ}C}}{|I_{2}||_{T_{A} = 25^{\circ}C}} \times 100\%$

$$= \frac{|I_5||_{T_A} - |I_5||_{T_A} = 25^{\circ}C}{|I_5||_{T_A} = 25^{\circ}C} \times 100\%$$

Test Setups

The block diagram above illustrates the setup required to measure the LMX2336U device's RF1 charge pump sink current. The same setup is used for the LMX2336TMEB/LMX2336SLEEB Evaluation Boards. The RF2 charge pump measurement setup is similar to the RF1 charge pump measurement setup. The purpose of this test is to assess the functionality of the RF1 charge pump.


This setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7V to 5.5V. By means of a signal generator, a 10 MHz signal is typically applied to the f_{IN} RF1 pin. The signal is one of two inputs to the phase detector. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC_{in} pin is tied to V_{cc}. This establishes the other input to the phase detector. Alternatively, this input can be tied directly to the ground plane. With the D_o RF1 pin connected to a Semiconductor Parameter Analyzer in this way, the sink, source, and TRI-STATE currents can be measured by simply toggling the **Phase Detector Polarity** and **Charge Pump State** states in Code Loader. Similarly, the LOW and HIGH currents can be measured by switching the **Charge Pump Gain's** state between **1X** and **4X** in Code Loader.

Let F_r represent the frequency of the signal applied to the OSC_{in} pin, which is simply zero in this case (DC), and let F_p represent the frequency of the signal applied to the f_{IN} RF1 pin. The phase detector is sensitive to the rising edges of F_r and F_p . Assuming positive VCO characteristics; the charge pump turns ON and sinks current when the first rising edge of F_p is detected. Since F_r has no rising edge, the charge pump continues to sink current indefinitely.

Toggling the **Phase Detector Polarity** state to negative VCO characteristics allows the measurement of the RF1 charge pump source current. Likewise, selecting **TRI-STATE** (TRI-STATE ID_o RF1 Bit = 1) for **Charge Pump State** in Code Loader facilitates the measurement of the TRI-STATE current.

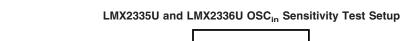
The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}C$, +25°C, and +85°C.

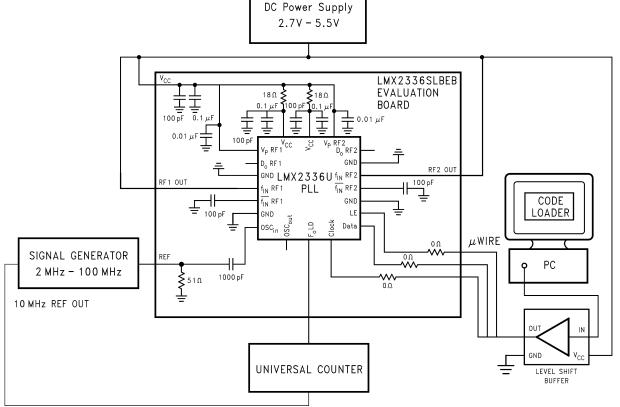
The LMX2335U charge pump test setup is very much similar to the above test setup.

10136740

LMX2335U/LMX2336U

The block diagram above illustrates the setup required to measure the LMX2336U device's RF1 input sensitivity level. The same setup is used for the LMX2336TMEB/ LMX2336SLEEB Evaluation Boards. The RF2 input sensitivity test setup is similar to the RF1 sensitivity test setup. The purpose of this test is to measure the acceptable signal level to the f_{IN} RF1 input of the PLL chip. Outside the acceptable signal range, the feedback divider begins to divide incorrectly and miscount the frequency.


The setup uses an open loop configuration. A power supply is connected to $V_{\rm cc}$ and the bias voltage is swept from 2.7V to 5.5V. The RF2 PLL is powered down (PWDN RF2 Bit = 1). By means of a signal generator, an RF signal is applied to the f_{IN} RF1 pin. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC_{in} pin is tied to V_{cc} . The N value is typically set to 10000 in Code Loader, i.e. RF1 N_CNTRB Word = 156 and RF1 N_CNTRA Word = 16 for PRE RF1 Bit = 0. The feedback divider output is routed to the F_oLD pin by selecting the RF1 PLL N Divider **Output** word (F_0LD Word = 6 or 14) in Code Loader. A Universal Counter is connected to the FoLD pin and tied to the 10 MHz reference output of the signal generator. The output of the feedback divider is thus monitored and should be equal to f_{IN} RF1 / N.


The f_{IN} RF1 input frequency and power level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}C$, +25°C, and +85°C. Sensitivity is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz. The power attenuation from the cable and the 3 dB pad must be accounted for. The feedback divider will actually miscount if too much or too little power is applied to the f_{IN} RF1 input. Therefore, the allowed input power level will be bounded by the upper and lower sensitivity limits. In a typical application, if the power level to the fIN RF1 input approaches the sensitivity limits, this can introduce spurs and degradation in phase noise. When the power level gets even closer to these limits, or exceeds it, then the RF1 PLL loses lock.

The LMX2335U f_{IN} sensitivity test setup is very much similar to the above test setup.

Test Setups (Continued)

10136741

The block diagram above illustrates the setup required to measure the LMX2336U device's OSC_{in} buffer sensitivity level. The same setup is used for the LMX2336TMEB/LMX2336SLEEB Evaluation Boards. This setup is similar to the f_{IN} sensitivity setup except that the signal generator is now connected to the OSC_{in} pin and both f_{IN} pins are tied to V_{CC}. The 51 Ω shunt resistor matches the OSC_{in} input to the signal generator. The R counter is typically set to 1000, i.e. RF1 R_CNTR Word = 1000 or RF2 R_CNTR Word = 1000. The reference divider output is routed to the F_oLD pin by selecting the **RF1 PLL R Divider Output** word (F_oLD Word = 2 or 10) or the **RF2 PLL R Divider Output** word (F_oLD Word = 1 or 9) in Code Loader. Similarly, a Universal

Counter is connected to the F_oLD pin and is tied to the 10 MHz reference output from the signal generator. The output of the reference divider is monitored and should be equal to $OSC_{in}/$ RF1 R_CNTR or $OSC_{in}/$ RF2 R_CNTR.

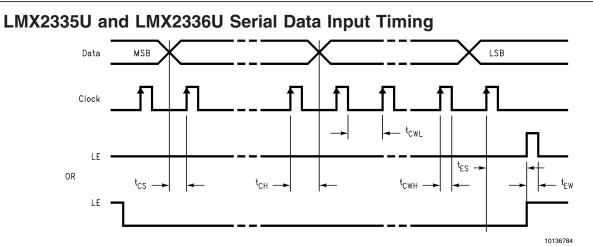
Again, V_{CC} is swept from 2.7V to 5.5V. The OSC_{in} input frequency and voltage level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}$ C, +25°C, and +85°C. Sensitivity is reached when the frequency error of the divided input signal is greater than or equal to 1 Hz.

The LMX2335U $\mbox{OSC}_{\mbox{in}}$ sensitivity test setup is very much similar to the above test setup.

Test Setups (Continued) LMX2335U and LMX2336U f_{IN} Impedance Test Setup DC Power Supply 2.7V - 5.5V LMX2336SLBEB EVALUATION **€**18Ω 18.0 BOARD 0.01 µF Τ Ŧ 0.01 µ 100 pł Vcc D, RF D_ RF 1 GNI 100 pF RF2 OUT GND LMX2336U fin RF2 RF1 OUT 100 pF $\overline{f_{IN}}$ RF2 f_{IN} RF 1 NETWORK ANALYZER PLL f_{IN} RF 1 CODE GND Ē LE LOADER 100 pF GND 2 Clock Data μ WIRE 0.0 PC ₹51Ω ____ \sim 0.0 GND LEVEL SHIFT BUFFER 10136779

LMX2335U/LMX2336U

The block diagram above illustrates the setup required to measure the LMX2336U device's RF1 input impedance. The RF2 input impedance and reference oscillator impedance setups are very much similar. The same setup is used for a LMX2336TMEB Evaluation Board. Measuring the device's input impedance facilitates the design of appropriate matching networks to match the PLL to the VCO, or in more critical situations, to the characteristic impedance of the printed circuit board (PCB) trace, to prevent undesired transmission line effects.


Before the actual measurements are taken, the Network Analyzer needs to be calibrated, i.e. the error coefficients need to be calculated. Therefore, three standards will be used to calculate these coefficients: an **open**, **short** and a **matched load**. A 1-port calibration is implemented here.

To calculate the coefficients, the PLL chip is first removed from the PCB. The Network Analyzer port is then connected to the RF1 OUT connector of the evaluation board and the desired operating frequency is set. The typical frequency range selected for the LMX2336U device's RF1 synthesizer is from 100 MHz to 2000 MHz. The standards will be located down the length of the RF1 OUT transmission line. The transmission line adds electrical length and acts as an offset from the reference plane of the Network Analyzer; therefore, it must be included in the calibration. Although not shown, 0 Ω resistors are used to complete the RF1 OUT transmission line (trace).

To implement an **open** standard, the end of the RF1 OUT trace is simply left open. To implement a **short** standard, a 0 Ω resistor is placed at the end of the RF1 OUT transmission line. Last of all, to implement a **matched load** standard, two 100 Ω resistors in parallel are placed at the end of the RF1 OUT transmission line. The Network Analyzer calculates the calibration coefficients based on the measured S₁₁ parameters. With this all done, calibration is now complete.

The PLL chip is then placed on the PCB. A power supply is connected to V_{CC} and the bias voltage is swept from 2.7V to 5.5V. The OSC_{in} pin is tied to the ground plane. Alternatively, the OSC_{in} pin can be tied to V_{CC}. In this setup, the complementary input ($\overline{f_{IN}}$ RF1) is AC coupled to ground. With the Network Analyzer still connected to RF1 OUT, the measured f_{IN} RF1 impedance is displayed.

Note: The impedance of the reference oscillator is measured when the oscillator buffer is powered up (PWDN RF1 Bit = 0 **or** PWDN RF2 Bit = 0), and when the oscillator buffer is powered down (PWDN RF1 Bit = 1 **and** PWDN RF2 Bit = 1). The LMX2335U f_{IN} impedance test setup is very much similar to the above test setup. Note that there are no complementary inputs in the LMX2335U device.

Notes:

- 1. Data is clocked into the 22-bit shift register on the rising edge of Clock
- 2. The MSB of Data is shifted in first.

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2335U or LMX2336U, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, programmable reference R and feedback N frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the reference divider to obtain a comparison reference frequency. This reference signal, F_r, is then presented to the input of a phase/frequency detector and compared with the feedback signal, $\mathrm{F}_{\mathrm{p}},$ which was obtained by dividing the VCO frequency down by way of the feedback divider. The phase/frequency detector measures the phase error between the F_r and F_p signals and outputs control signals that are directly proportional to the phase error. The charge pump then pumps charge into or out of the loop filter based on the magnitude and direction of the phase error. The loop filter converts the charge into a stable control voltage for the VCO. The phase/frequency detector's function is to adjust the voltage presented to the VCO until the feedback signal's frequency and phase match that of the reference signal. When this "Phase-Locked" condition exists, the VCO frequency will be N times that of the comparison frequency, where N is the feedback divider ratio.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for both the RF1 and RF2 PLLs is provided from an external reference via the OSC_{in} pin. The reference buffer circuit supports input frequencies from 5 to 40 MHz with a minimum input sensitivity of 0.5 V_{PP}. The reference buffer circuit has an approximate V_{CC}/2 input threshold and can be driven from an external CMOS or TTL logic gate. Typically, the OSC_{in} pin is connected to the output of a crystal oscillator.

1.2 REFERENCE DIVIDERS (R COUNTERS)

The reference dividers divide the reference input signal, OSC_{in} , by a factor of R. The output of the reference divider circuits feeds the reference input of the phase detector. This reference input to the phase detector is often referred to as the comparison frequency. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi RF1}$ or $F_{\phi RF2}$) of 10 MHz is not exceeded.

The RF1 and RF2 reference dividers are each comprised of 15-bit CMOS binary counters that support a continuous integer divide ratio from 3 to 32767. The RF1 and RF2 reference divider circuits are clocked by the output of the reference buffer circuit which is common to both.

1.3 PRESCALERS

The $f_{\rm IN}$ RF1 ($f_{\rm IN}$ RF2) and $\overline{f_{\rm IN}}$ RF1 ($\overline{f_{\rm IN}}$ RF2) input pins of the LMX2336U device drives the input of a bipolar, differential-pair amplifier. The output of the bipolar, differential-pair amplifier drives a chain of ECL D-type flip-flops in a dual modu-

lus configuration. The output of the prescaler is used to clock the subsequent feedback dividers. The complementary inputs of both the RF1 and RF2 synthesizers can be driven differentially, or the negative input can be AC coupled to ground through an external capacitor for single ended configuration. A 64/65 or a 128/129 prescale ratio can be selected for the both the RF1 and RF2 synthesizers. On the other hand, the LMX2335U PLL is only intended for single ended operation. Similarly, a 64/65 or a 128/129 prescale ratio can be selected for both the RF1 and RF2 synthesizers.

1.4 PROGRAMMABLE FEEDBACK DIVIDERS (N COUNTERS)

The programmable feedback dividers operate in concert with the prescalers to divide the input signal $f_{\rm IN}$ by a factor of N. The output of the programmable reference divider is provided to the feedback input of the phase detector circuit. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi RF1}$ or $F_{\phi RF2}$) of 10 MHz is not exceeded.

The programmable feedback divider circuit is comprised of an A counter (swallow counter) and a B counter (programmble binary counter). The RF1 N CNTRA counter and RF2 N_CNTRA counter are both 7-bit CMOS swallow counters, programmable from 0 to 127. The RF1 N_CNTRB and RF2 N_CNTRB counters are both 11-bit CMOS binary counters, programmable from 3 to 2047. A continuous integer divide ratio is achieved if $N \ge P^*$ (P-1), where P is the value of the prescaler selected. Divide ratios less than the minimum continuous divide ratio are achievable as long as the binary programmable counter value is greater than the swallow counter value (N_CNTRB ≥ N_CNTRA). Refer to Sections 2.5.1, 2.5.2, 2.7.1 and 2.7.2 for details on how to program the N_CNTRA and N_CNTRB counters. The following equations are useful in determining and programming a particular value of N:

 $N = (P \times N_CNTRB) + N_CNTRA$

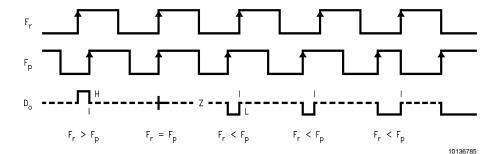
 $\mathsf{f}_{\mathsf{IN}} = \mathsf{N} \ \mathsf{x} \ \mathsf{F}_\varphi$

Definitions:

- $\mathsf{F}_{\varphi}:$ RF1 or RF2 phase detector comparison frequency
- f_{IN}: RF1 or RF2 input frequency
- N_CNTRA: RF1 or RF2 A counter value
- N_CNTRB: RF1 or RF2 B counter value
- P: Preset modulus of the dual modulus prescaler

LMX2335U RF1 synthesizer: P = 64 or 128

LMX2336U RF1 synthesizer: P = 64 or 128


- LMX2335U RF2 synthesizer: P = 64 or 128
- LMX2336U RF2 synthesizer: P = 64 or 128

1.0 Functional Description (Continued)

1.5 PHASE/FREQUENCY DETECTORS

The RF1 and RF2 phase/frequency detectors are driven from their respective N and R counter outputs. The maximum frequency for both the RF1 and RF2 phase detector inputs is 10 MHz. The phase/frequency detector outputs control the respective charge pumps. The polarity of the pump-up or pump-down control signals are programmed using the **PD_POL RF1** or **PD_POL RF2** control bits, depending on whether the RF1 or RF2 VCO characteristics are positive or negative. Refer to **Sections 2.4.2** and **2.6.2** for more details. The phase/frequency detectors have a detection range of -2π to $+2\pi$. The phase/frequency detectors also receive a feedback signal from the charge pump in order to eliminate dead zone.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes:

- 1. The minimum width of the pump-up and pump-down current pulses occur at the Do RF1 or Do RF2 pins when the loop is phase locked.
- 2. The diagram assumes positive VCO characteristics, i.e. PD_POL RF1 or PD_POL RF2 = 1.
- 3. Fr is the phase detector input from the reference divider (R counter).
- 4. F_p is the phase detector input from the programmable feedback divder (N counter).
- 5. Do refers to either the RF1 or RF2 charge pump output.

1.6 CHARGE PUMPS

The charge pump directs charge into or out of an external loop filter. The loop filter converts the charge into a stable control voltage which is applied to the tuning input of the VCO. The charge pump steers the VCO control voltage towards V_P RF1 or V_P RF2 during pump-up events and towards GND during pump-down events. When locked, D_o RF1 or D_o RF2 are primarily in a TRI-STATE mode with small corrections occuring at the phase comparator rate. The charge pump output current magnitude can be selected by toggling the **ID_o RF1** or **ID_o RF2** control bits.

1.7 MICROWIRE SERIAL INTERFACE

The programmable register set is accessed via the MI-CROWIRE serial interface. The interface is comprised of three signal pins: Clock, Data and LE (Latch Enable). Serial data is clocked into the 22-bit shift register on the rising edge of Clock. The last two bits decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of four control registers depending on the state of the address bits. The MSB of Data is loaded in first. The synthesizers can be programmed even in power down mode. A complete programming description is provided in **Section 2.0 Programming Description**.

1.8 MULTI-FUNCTION OUTPUTS

The F_oLD output pin is a multi-function output that can be configured as the RF1 FastLock output, a push-pull analog lock detect output, counter reset, or used to monitor the output of the various reference divider (R counter) or feedback divider (N counter) circuits. The F_oLD control word is used to select the desired output function. When the PLL is in powerdown mode, the F_oLD output is pulled to a LOW state. A complete programming description of the multi-function output is provided in **Section 2.8** F_oLD .

1.8.1 Push-Pull Analog Lock Detect Output

An analog lock detect status generated from the phase detector is available on the F_oLD output pin if selected. The lock detect output goes HIGH when the charge pump is inactive. It goes LOW when the charge pump is active during a comparison cycle. When viewed with an oscilloscope, narrow negative pulses are observed when the charge pump turns on. The lock detect output signal is a push-pull configuration.

Three separate lock detect signals are routed to the multiplexer. Two of these monitor the 'lock' status of the individual synthesizers. The third detects the condition when both the RF1 and RF2 synthesizers are in a 'locked state'. External circuitry however, is required to provide a steady DC signal to indicate when the PLL is in a locked state. Refer to **Section 2.8 F_oLD** for details on how to program the different lock detect options.

1.0 Functional Description (Continued)

1.8.2 Open Drain FastLock Output

The LMX233xU Fastlock feature allows faster loop response time during lock aquisition. The loop response time (lock time) can be approximately halved if the loop bandwidth is doubled. In order to achieve this, the same gain/ phase relationship at twice the loop bandwidth must be maintained. This can be achieved by increasing the charge pump current from 0.95 mA (ID_o RF1 Bit = 0) in the steady state mode, to 3.8 mA (ID, RF1 Bit = 1) in Fastlock. When the F₂LD output is configured as a FastLock output, an open drain device is enabled. The open drain device switches in a parallel resistor R2' to ground, of equal value to resistor R2 of the external loop filter. The loop bandwidth is effectively doubled and stability is maintained. Once locked to the correct frequency, the PLL will return to a steady state condition. Refer to Section 2.8 FoLD for details on how to configure the FoLD output to an open drain Fastlock output.

1.8.3 Counter Reset

Three separate counter reset functions are provided. When the F_oLD is programmed to **Reset RF2 Counters**, both the RF2 feedback divider and the RF2 reference divider are held at their load point. When the **Reset RF1 Counters** is programmed, both the RF1 feedback divider and the RF1 reference divider are held at their load point. When the **Reset All Counters** mode is enabled, all feedback dividers and reference dividers are held at their load point. When the device is programmed to normal operation, both the feedback divider and reference divider are enabled and resume counting in 'close' alignment to each other. Refer to **Section 2.8 F_oLD** for more details.

1.8.4 Reference Divider and Feedback Divider Output

The outputs of the various N and R dividers can be monitored by selecting the appropriate F_oLD word. This is essential when performing OSC_{in} or f_{IN} sensitivity measurements. Refer to the **Test Setups** section for more details. Refer to **Section 2.8** F_oLD for more details on how to route the appropriate divider output to the F_oLD pin.

1.9 POWER CONTROL

Each synthesizer in the LMX2335U or LMX2336U is individually power controlled by device powerdown bits. The powerdown word is comprised of the **PWDN RF1 (PWDN RF2)** bit, in conjuction with the **TRI-STATE ID**_o **RF1** (**TRI-STATE ID**_o **RF2**) bit. The powerdown control word is used to set the operating mode of the device. Refer to **Sections 2.4.4, 2.5.4, 2.6.4**, and **2.7.4** for details on how to program the RF1 or RF2 powerdown bits.

When either the RF1 synthesizer or the RF2 synthesizer enters the powerdown mode, the respective prescaler, phase detector, and charge pump circuit are disabled. The D_0 RF1 (D_0 RF2), f_{IN} RF1 (f_{IN} RF2), and $\overline{f_{IN}}$ RF1 ($\overline{f_{IN}}$ RF2) pins are all forced to a high impedance state. The reference divider and feedback divider circuits are held at the load point during powerdown. The oscillator buffer is disabled when both the RF1 and RF2 synthesizers are powered down. The OSC_{in} pin is forced to a HIGH state through an approximate 100 k Ω resistance when this condition exists. When either synthesizer is activated, the respective prescaler, phase detector, charge pump circuit, and the oscillator buffer are all powered up. The feedback divider, and the reference divider are held at load point. This allows the reference oscillator, feedback divider, reference divider and prescaler circuitry to reach proper bias levels. After a finite delay, the feedback and reference dividers are enabled and they resume counting in 'close' alignment (the maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching data while in the powerdown mode.

Synchronous Powerdown Mode

In this mode, the powerdown function is gated by the charge pump. When the device is configured for synchronous powerdown, the device will enter the powerdown mode upon completion of the next charge pump pulse event.

Asynchronous Powerdown Mode

In this mode, the powerdown function is NOT gated by the completion of a charge pump pulse event. When the device is configured for asynchronous powerdown, the part will go into powerdown mode immediately.

TRI-STATE ID _o	PWDN	Operating Mode
0	0	PLL Active, Normal Operation
1	0	PLL Active, Charge Pump Output in High Impedance State
0	1	Synchronous Powerdown
1	1	Asynchronous Powerdown

Notes:

1. TRI-STATE $\rm ID_o$ refers to either the TRI-STATE $\rm ID_o$ RF1 or TRI-STATE $\rm ID_o$ RF2 bit .

2. PWDN refers to either the PWDN RF1 or PWDN RF2 bit.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The 22-bit shift register is loaded via the MICROWIRE interface. The shift register consists of a 20-bit *Data*[19:0] *Field* and a 2-bit *Address*[1:0] *Field* as shown below. The Address Field is used to decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of 4 control registers depending on the state of the address bits. The MSB of Data is loaded in first. The Data Field assignments are shown in **Section 2.3 CONTROL REGISTER CONTENT MAP**.

MSB			L	SB
	Data[19:0]		Address[1:0]	
21		2	1	0

2.2 CONTROL REGISTER LOCATION

The address bits Address[1:0] decode the internal register address. The table below shows how the address bits are mapped into the target control register.

Addre	ss[1:0]	Target
Fi	eld	Register
0	0	RF2 R
0	1	RF2 N
1	0	RF1 R
1	1	RF1 N

2.3 CONTROL REGISTER CONTENT MAP

The control register content map describes how the bits within each control register are allocated to specific control functions.

	3it							
	cant E	0	Address Field	0	-	0		-
	Signifi	-	Adi	0	0	-		-
	Least Significant Bit	2						
		e						
		4			[o:			[0:
					RF2 N_CNTRA[6:0]			RF1 N_CNTRA[6:0]
		5			S N O			
		9			HE I			н
		2						
	TION	8		[14:0]		14:0]		
	LOCA	6		RF2 R_CNTR[14:0]		RF1 R_CNTR[14:0]		
	ER BIT	10		RF2 R		RF1 R		
	EGISTI		pi					
	SHIFT REGISTER BIT LOCATION	12	Data Field					
	S	13 1	1					
		14 1			3[10:0]			8[10:0]
(5)					RF2 N_CNTRB[10:0]			RF1 N_CNTRB[10:0]
		3 15			RF2 N			RF1 N
		16						
•		17		PD_ POL RF2		PD_ POL RF1		
		18		ID _o RF2		D BF1		
)	nt Bit	19		TRI- STATE ID _o RF2		TRI- STATE ID _o RF1		
	gnificar	20			PRE RF2	F _o LD3	PRE	RF1
	Most Significant Bit	21		Foldo Foldo	PWDN RF2	F _o LD1	PWDN	RF1
	Reg.	. 1		RF2 R	RF2 I	F R	_	

LMX2335U/LMX2336U

2.4 RF2 R REGISTER

The RF2 R register contains the RF2 R_CNTR, PD_POL RF2, ID_o RF2, and TRI-STATE ID_o RF2 control words, in addition to two bits that compose the F_oLD control word. The detailed description and programming information for each control word is discussed in the following sections. RF2 R_CNTR[14:0]

Reg.	Most	t Sign	ifican	t Bit					SHI	FT R	EGIS	TERE	BIT LC	OCATIO	ON				Leas	t Sig	nifica	nt Bi
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										Data	Fiela										Ada	ress
									1	Dala	rieiu										Fi	eld
			TRI-																			
RF2	F _o LD0	EID2	STATE	ID ₀	PD_ POL						F	RF2 R	CNT	R[14:0	1						0	0
R	F ₀ LD0	F ₀ LD2	ID ₀	RF2	RF2								_		-							
			RF2																			
2.4	I.1 RF	2 R_0		[14:0]	RF2	SYN	ГНЕ	SIZER	PRO	GRAI	MMA	BLE R	EFER	ENCE	DIV	IDER	(R C	OUNT	ER)	RF2 I	R[2:16	5]
Th	e RF2	2 refer	ence d	divider	(RF2	R_CN	TR)	can be	e progr	ramm	ned to	supp	ort div	ide rat	ios fre	om 3	to 327	767. D	ivide r	atios	less th	nan
3 a	are pro	ohibite	ed.																			
	Divide	e Rati	0									RE2 B	CNT	R[14:0	1							
1	Divia	- nau	0	14	13	1	2	11	10			8	7	6	_	5	4	3	2		1	0
		3		0	0			0	0	-)	0	0	0	_	0	0	0	0		1	1
		4		0	0			0	0	-))	0	0	0	_	0	0	0	1		0	0
		•		•	•			•	•	-	•	•	•	•	_	•	•	•	•		•	•
	20	767		1	1	1		1	1	_	1	1	1	1	_	1	1	1	1		1	1
	PD I	POL F	F2		F	RF2 R[171		BE	2 Ph	ase D	etecto	or	RF2		0 Nega	ative		RF2 V	1 CO P	ositive	
	Cor	ntrol E	Bit		Regis	ster Lo	ocat	ion		Des	scrip	tion					F	unctio	n			
							1 71			0.06						-						
	FD_I		IΓZ		Г	ורב חן	17]			arity	ase L	elecit		Tunir		nega	uive		uning		USILIVE	
										any				Char	-	stics			Charao		ics	
							OL	2 VCO ITPUT QUENCY	RF2		\times		PD_F	POL RF2 POL RF2 1013								
		, RF2			RF2 SY		-	-	-	-	-	-	-		le arc	a avai	lahlo			RF2	R[18]
	e ID _o	RF2 b	oit con		ne RF2	2 synth	nesiz	er's c	-	pump	o gain	. Two	-		ls are	e avai	lable.			RF2	R[18]
	e ID _o		oit con		ne RF2		nesiz	er's c	-	pump	-	. Two	-		ls are	e avai		unctio	n	RF2	R[18]
	e ID _o Cor	RF2 t	oit con Bit		ne RF2 Regis	2 synth ster Lo	nesiz ocat	er's c	harge	pump Des	o gain script	. Two tion	-			0		unctio	n	1]
	e ID _o Cor	RF2 b	oit con Bit		ne RF2 Regis	2 synth	nesiz ocat	er's c	harge	Des 2 Ch	o gain script	. Two	-		L			unctio			H]

2.4.4 TRI-STATE ID, RF2 **RF2 SYNTHESIZER CHARGE PUMP TRI-STATE CURRENT**

The TRI-STATE ID_o RF2 bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID_o RF2 bit.

Furthermore, the TRI-STATE ID_o RF2 bit operates in conjuction with the PWDN RF2 bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fund	ction
			0	1
TRI-STATE ID _o RF2	RF2 R[19]	RF2 Charge Pump	RF2 Charge Pump	RF2 Charge Pump
		TRI-STATE Current	Normal Operation	Output in High
				Impedance State

2.5 RF2 N REGISTER

The RF2 N register contains the RF2 N CNTRA, RF2 N CNTRB, PRE RF2, and PWDN RF2 control words, The RF2 N CNTRA and RF2 N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most	Sign	ifican	t Bit					SH	IFT R	EGIS	rer b	IT LC	CATI	ON				Leas	t Sigi	nificar	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Data Field													ress eld							
RF2 N	PWDN RF2	PRE RF2 N_CNTRB[10:0] RF2 N_CNTRA[6:0]											D]		0	1						

RF2 SYNTHESIZER SWALLOW COUNTER (A COUNTER) 2.5.1 RF2 N_CNTRA[6:0]

RF2 N[2:8]

The RF2 N_CNTRA control word is used to setup the RF2 synthesizer's A counter. The A counter is a 7-bit swallow counter used in the programmable feedback divider. The RF2 N_CNTRA control word can be programmed to values ranging from 0 to 127.

Divide Ratio			R	F2 N_CNTRA[6:	0]		
	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
•	•	•	•	•	•	•	•
127	1	1	1	1	1	1	1

2.5.2 RF2 N_CNTRB[10:0] **RF2 SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER)** RF2 N[9:19]

The RF2 N CNTRB control word is used to setup the RF2 synthesizer's B counter. The B counter is an 11-bit programmable binary counter used in the programmable feedback divider. The RF2 N_CNTRB control word can be programmed to values ranging from 3 to 2047.

Divide					RF2	N_CNTRB[10:0]				
Ratio	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
•	٠	•	٠	•	•	•	•	•	•	•	•
2047	1	1	1	1	1	1	1	1	1	1	1

2.5.3 PRE RF2

RF2 SYNTHESIZER PRESCALER SELECT The RF2 synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Fun	ction
			0	1
PRE RF2	RF2 N[20]	RF2 Prescaler Select	64/65 Prescaler Selected	128/129 Prescaler Selected

RF2 R[19]

LMX2335U/LMX2336U

RF2 N[20]

2.5.4 PWDN RF2

RF2 SYNTHESIZER POWERDOWN

RF2 N[21]

The PWDN RF2 bit is used to switch the RF2 PLL between a powered up and powered down mode.

Furthermore, the PWDN RF2 bit operates in conjuction with the TRI-STATE ID $_{o}$ RF2 bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fund	ction
			0	1
PWDN RF2	RF2 N[21]	RF2 Powerdown	RF2 PLL Active	RF2 PLL Powerdown

2.6 RF1 R REGISTER

The RF1 R register contains the RF1 R_CNTR, PD_POL RF1, ID_o RF1, and TRI-STATE ID_o RF1 control words, in addition to two bits that compose the F_oLD control word. The detailed description and programming information for each control word is discussed in the following sections.

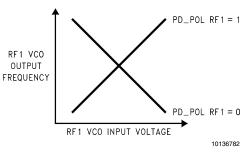
Reg.	Most	Sign	ifican	t Bit					SH	IFT R	EGIS	FER B	BIT LO	CATI	ON				Leas	t Sigr	nificar	ificant Bit	
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
										Data	Field										Add	lress	
		Data Field													Fie	Field							
RF1			TRI-																				
R			STATE	IDo	PD_						F	RF1 R	CNIT	R[1/·(าเ						1	0	
	F ₀ LD1	F₀LD3	ID ₀	RF1	POL						'		_0111	11[14.0	<u>]</u>						'	Ŭ	
			RF1		RF1																		

2.6.1 RF1 R_CNTR[14:0] RF1 SYNTHESIZER PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) RF1 R[2:16]

The RF1 reference divider (RF1 R_CNTR) can be programmed to support divide ratios from 3 to 32767. Divide ratios less than 3 are prohibited.

Divide Ratio							RF1 R		R[14:0]						
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

2.6.2 PD_POL RF1


RF1 SYNTHESIZER PHASE DETECTOR POLARITY

RF1 R[17]

The PD_POL RF1 bit is used to control the RF1 synthesizer's phase detector polarity based on the VCO tuning characteristics.

Control Bit	Register Location	Description	Fund	ction
			0	1
PD_POL RF1	RF1 R[17]	RF1 Phase Detector	RF1 VCO Negative	RF1 VCO Positive
		Polarity	Tuning	Tuning
			Characteristics	Characteristics

RF1 VCO Characteristics

2.6.3 ID_o RF1

RF1 SYNTHESIZER CHARGE PUMP CURRENT GAIN

RF1 R[18]

The ID_{o} RF1 bit controls the RF1 synthesizer's charge pump gain. Two current levels are available.

Control Bit	Register Location	Description	Fund	ction
			0	1
ID _o RF1	RF1 R[18]	RF1 Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2.6.4 TRI-STATE ID_o RF1 RF1 SYNTHESIZER CHARGE PUMP TRI-STATE CURRENT

RF1 R[19]

The TRI-STATE ID_o RF1 bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID_o RF1 bit.

Furthermore, the TRI-STATE ID $_{o}$ RF1 bit operates in conjuction with the PWDN RF1 bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function	
			0	1
TRI-STATE ID _o RF1	RF1 R[19]	RF1 Charge Pump	RF1 Charge Pump	RF1 Charge Pump
		TRI-STATE Current	Normal Operation	Output in High
				Impedance State

2.7 RF1 N REGISTER

The RF1 N register contains the RF1 N_CNTRA, RF1 N_CNTRB, PRE RF1, and PWDN RF1 control words. The RF1 N_CNTRA and RF1 N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most Significant Bit SHIFT REGISTER BIT LOCATION Least Signif											nifica	nt Bit
	21	21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2										1	0
	Data Field										Address Field		
RF1 N	PWDN PRE RF1 N_CNTRB[10:0] RF1 N_CNTRA[6:0]									1	1		

2.7.1 RF1 N_CNTRA[6:0] RF1 SYNTHESIZER SWALLOW COUNTER (A COUNTER)

RF1 N[2:8]

The RF1 N_CNTRA control word is used to setup the RF1 synthesizer's A counter. The A counter is a 7-bit swallow counter used in the programmable feedback divider. The RF1 N_CNTRA control word can be programmed to values ranging from 0 to 127.

Divide Ratio	RF1 N_CNTRA[6:0]								
-	6	5	4	3	2	1	0		
0	0	0	0	0	0	0	0		
1	0	0	0	0	0	0	1		
•	•	•	٠	•	•	•	•		
127	1	1	1	1	1	1	1		

2.7.2 RF1 N_CNTRB[10:0] RF1 SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER) RF1 N[9:19]

The RF1 N_CNTRB control word is used to setup the RF1 synthesizer's B counter. The B counter is an 11-bit programmable binary counter used in the programmable feedback divider. The RF1 N_CNTRB control word can be programmed to values ranging from 3 to 2047.

Divide		RF1 N_CNTRB[10:0]									
Ratio	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•
2047	1	1	1	1	1	1	1	1	1	1	1

2.7.3 PRE RF1

RF1 SYNTHESIZER PRESCALER SELECT

RF1 N[20]

The RF1 synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Function		
			0	1	
PRE RF1	RF1 N[20]	RF1 Prescaler Select	64/65 Prescaler Selected	128/129 Prescaler Selected	

2.7.4 PWDN RF1 RF1 SYNTHESIZER POWERDOWN

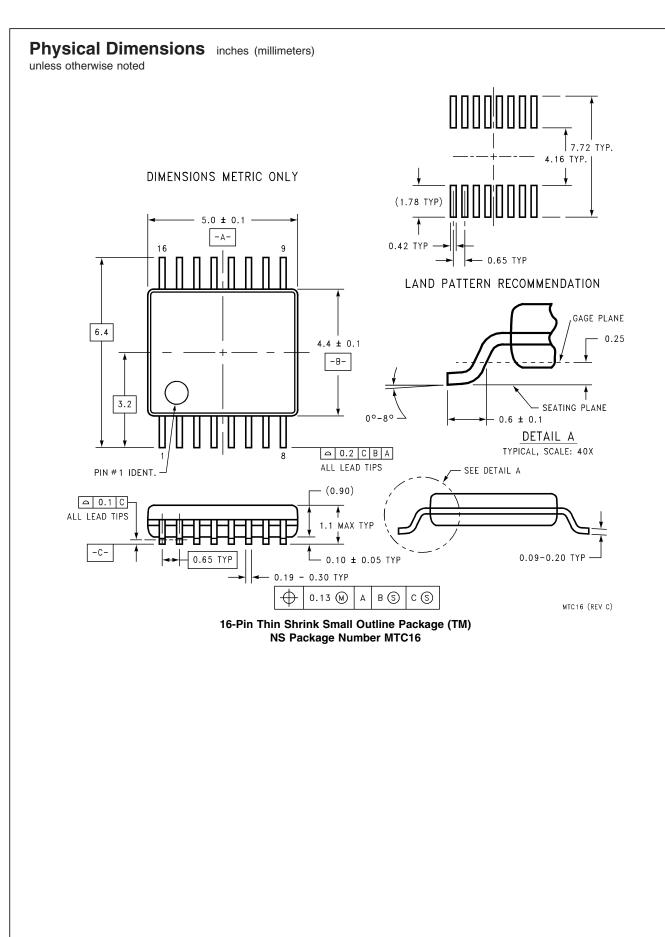
RF1 N[21]

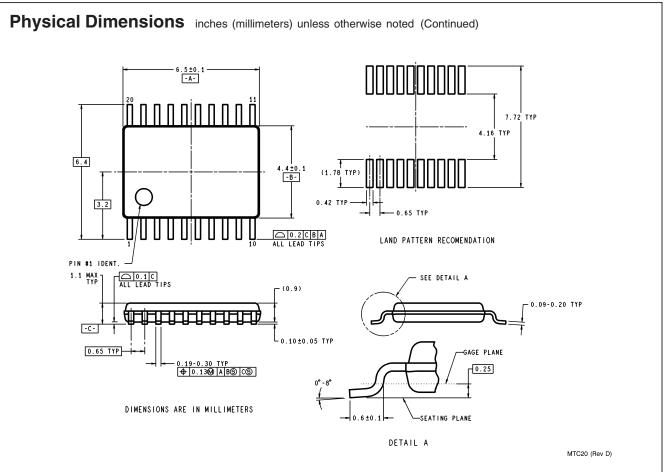
The PWDN RF1 bit is used to switch the RF1 PLL between a powered up and powered down mode.

Furthermore, the PWDN RF1 bit operates in conjuction with the TRI-STATE ID_o RF1 bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function		
			0	1	
PWDN RF1	RF1 N[21]	RF1 Powerdown	RF1 PLL Active	RF1 PLL Powerdown	

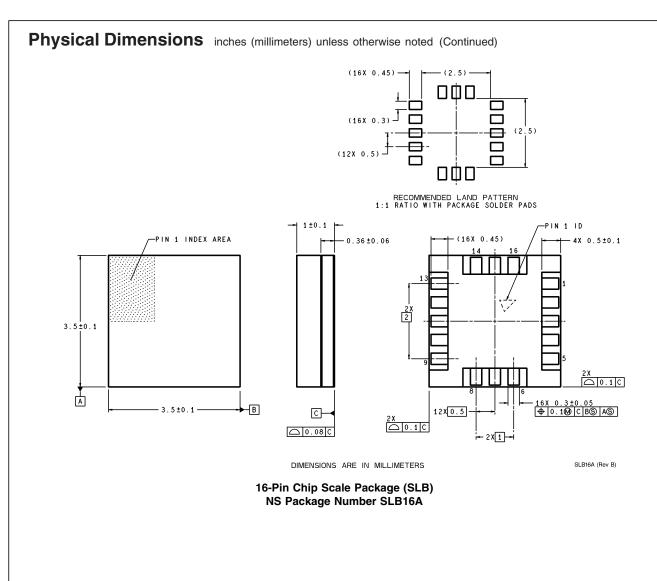
2.8 F_oLD[3:0]

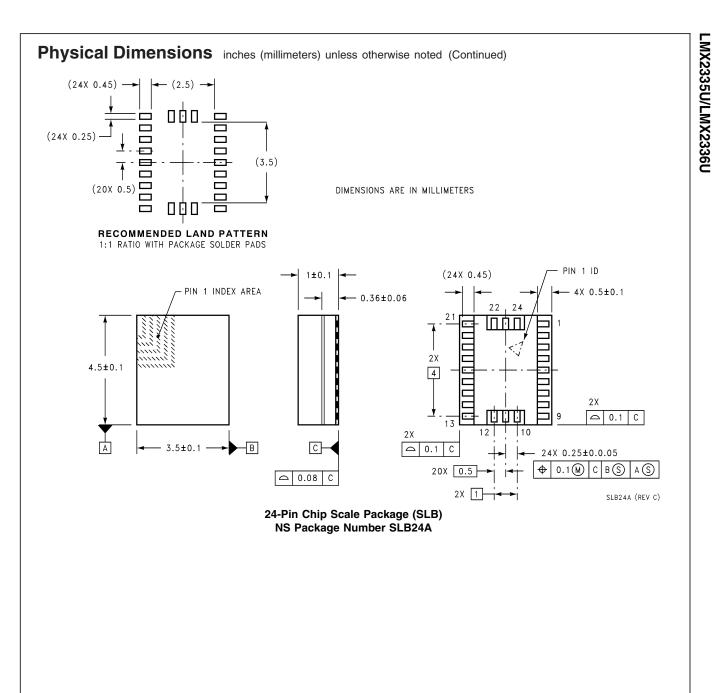

[RF1 R[20], RF2 R[20], RF1 R [21], RF2 R[21]]

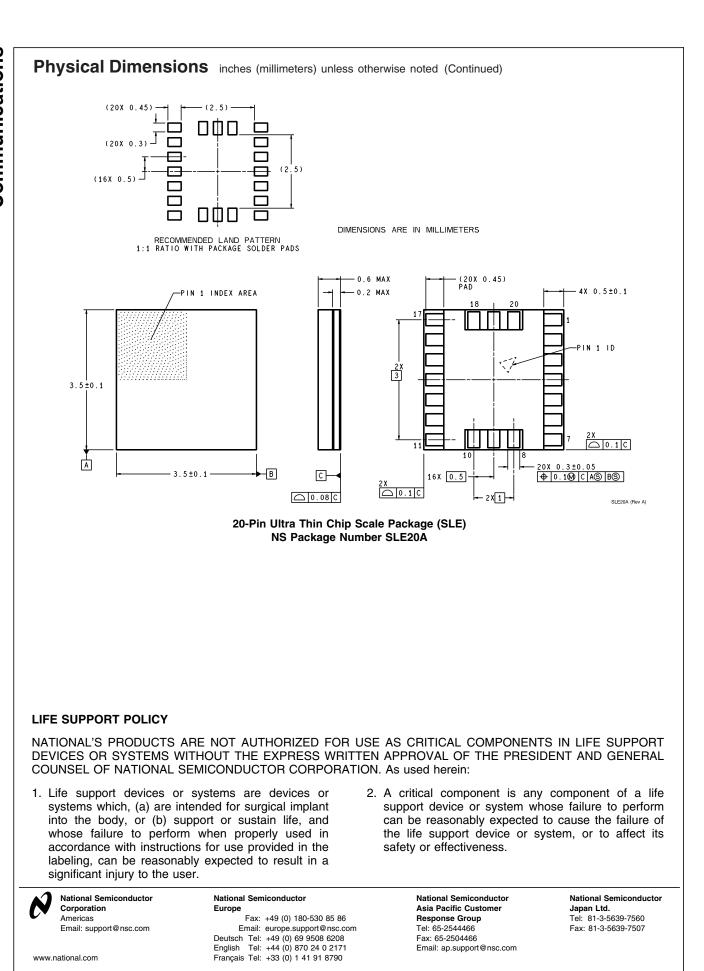

The $\rm F_oLD$ control word is used to select which signal is routed to the $\rm F_oLD$ pin.

MULTI-FUNCTION OUTPUT SELECT

F _o LD3	F _o LD2	F _o LD1	F _o LD0	F _o LD Output State
0	0	0	0	LOW Logic State Output
0	0	0	1	RF2 PLL R Divider Output, Push-Pull Output
0	0	1	0	RF1 PLL R Divider Output, Push-Pull Output
0	0	1	1	Open Drain Fastlock Output
0	1	0	0	RF2 PLL Analog Lock Detect, Push-Pull Output
0	1	0	1	RF2 PLL N Divider Output, Push-Pull Output
0	1	1	0	RF1 PLL N Divider Output, Push-Pull Output
0	1	1	1	Reset RF2 Counters, LOW Logic State Output
1	0	0	0	RF1 Analog Lock Detect, Push-Pull Output
1	0	0	1	RF2 PLL R Divider Output, Push-Pull Output
1	0	1	0	RF1 PLL R Divider Output, Push-Pull Output
1	0	1	1	Reset RF1 Counters, LOW Logic State Output
1	1	0	0	RF1 and RF2 Analog Lock Detect, Push-Pull Output
1	1	0	1	RF2 PLL N Divider Output, Push-Pull Output
1	1	1	0	RF1 PLL N Divider Output, Push-Pull Output
1	1	1	1	Reset All Counters, LOW Logic State Output


LMX2335U/LMX2336U





20-Pin Thin Shrink Small Outline Package (TM) NS Package Number MTC20 LMX2335U/LMX2336U

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.