

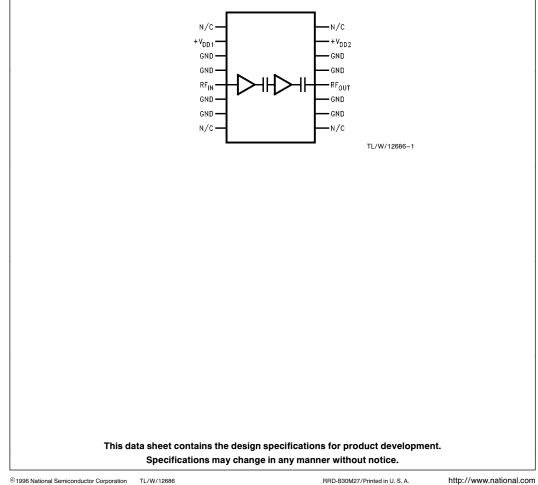
LMX2119 1.9 GHz Power Amplifier

General Description

The LMX2119 1.9 GHz Power Amplifier is a monolithic, integrated power amplifier suitable for use in the Digital European Cordless Telecommunications (DECT) system as well as other mobile telephony and wireless communications applications. It is fabricated using an advanced Gallium Arsenide technology that allows single supply (+3V) operation.

The LMX2119 consists of two MESFETs cascaded to provide 24.5 dB of power gain. The output power at 3.6V is \pm 26.5 dBm with an input power level of \pm 2 dBm. The input VSWR of the power amplifier remains constant in the ON and OFF state.

The LMX2119 is available in a 16-pin SOIC surface mount plastic package.


Features

- Single +3V supply operation
- Class A bias; >30% power added efficiency
- 24.5 dB power gain; +26.5 dBm output power
- 50 Ω input/output impedance
- 350 mA current consumption at +3.6V

Applications

- Digital European Cordless Telecommunications (DECT)
- Portable wireless communications (PCS/PCN, cordless)
- Wireless local area networks (WLANs)
- Other wireless communications systems

Functional Block Diagram

LMX2119 1.9 GHz Power Amplifier

PRELIMINARY

June 1996

Small Outline Package (SOP)					
$\frac{N/C}{V_{DD1}} \frac{1}{2}$ $\frac{V_{DD1}}{GND} \frac{4}{3}$ $\frac{LMX2119}{Top View}$ $\frac{16}{15} N/C$ $\frac{15}{14} GND$ $\frac{13}{GND}$ $\frac{13}{GND}$ $\frac{12}{12} RF_{OUT}$ $\frac{10}{GND}$ $\frac{10}{9} N/C$ $\frac{10}{9} N/C$ $TL/W/12686-2$ $TL/W/12686-2$					
Pin D	escriptio	n			
Pin No.	Pin Name	1/0	Description		
1 2	N/C + V _{DD1}		No Connect. Positive supply voltage. V _{DD1} must equal V _{DD2} . Decoupling capacitors should be placed as close to the pin as possible.		
3	GND		Ground.		
4	GND		Ground.		
5	RF In	1	RF input to the power amplifier.		
6	GND		Ground.		
7	GND		Ground.		
8	N/C		No Connect.		
9	N/C		No Connect.		
10	GND		Ground.		
11	GND		Ground.		
12	RF Out	0	Power amplifier's RF output.		
13	GND		Ground.		
14	GND		Ground.		
15	$+V_{DD2}$		Positive supply voltage. V_{DD2} must equal V_{DD1} . Decoupling capacitors should be placed as close to the pin as possible.		
16	N/C		No Connect.		

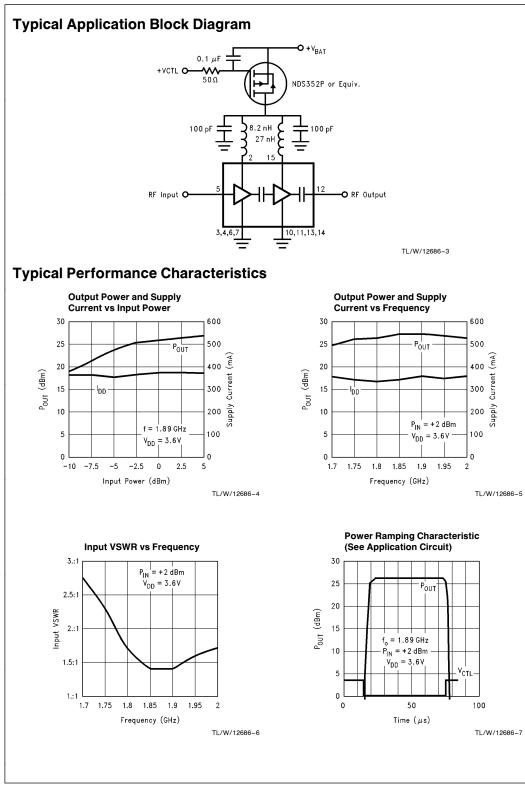
Absolute Maximum Ratings

Supply Voltage (V _{DD})	5.5V			
RF Input Power (P _{IN})	6 mW			
Storage Temperature (T _{STG})	-40° C to $+150^{\circ}$ C			
ESD Rating (Note)	< 2 keV			
Note: This device is a high performance RF integrated circuit with an ESD Rating < 2 keV, and is ESD sensitive. Handling and assembly of this device should only be done at ESD workstations.				

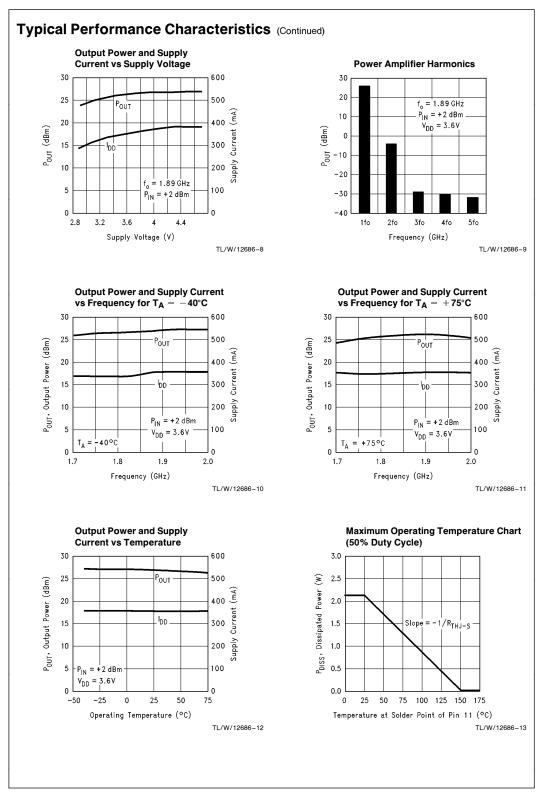
Recommended Operating Conditions

win	тур	wax	Units	
3.0	3.6	4.6	V	
-25		+65	°C	
0	+2	+4	dBm	
	3.0 25	3.0 3.6 -25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 3.6 4.6 V -25 $+65$ °C

Electrical Characteristics

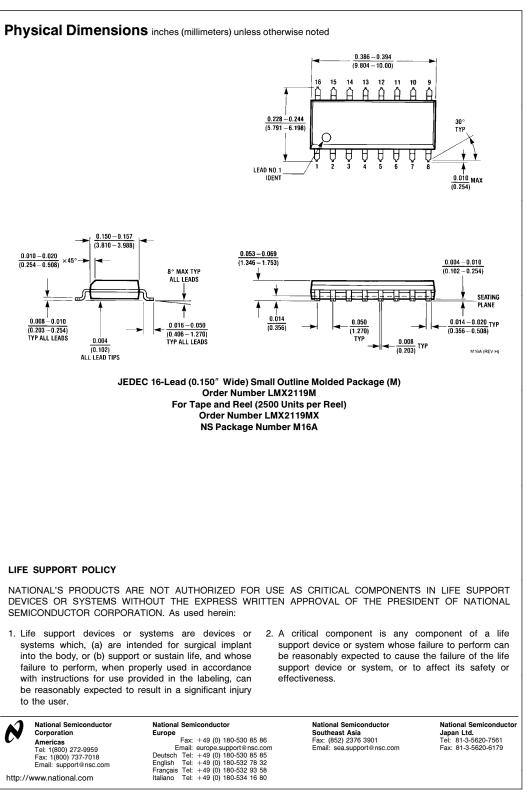

(The following specifications are guaranteed for V _{DD1}	$= V_{DD2} = 3.6V, T_A =$	25°C, 50 Ω system unless otherwise specified.)
---	---------------------------	---

Symbol	Parameter	Conditions	Min	Value Typ	Мах	Unit
	Frequency Range		1880		1900	MHz
POUT	Output Power	$P_{IN} = 1.0 \text{ mW} - 2.5 \text{ mW}$	25.5	26.5	27.5	dBm
	Isolation	$PA \text{ off } (V_{DD1} = V_{DD2} = 0V)$	40			dB
	Frequency Dependency	$P_{IN} = 1.0 \text{ mW} - 2.5 \text{ mW}$		0.2	0.5	dB
I _{DD}	Current Consumption	$P_{OUT} = 450 \text{ mW}, P_{IN} = 1.6 \text{ mW}$		350	420	mA
	Input VSWR, PA On	$P_{OUT} = 450 \text{ mW}, P_{IN} = 1.6 \text{ mW}$		1.6:1	2.0:1	
	Input VSWR, PA Off	$V_{DD1} = V_{DD2} = 0V, P_{IN} = 1.6 \text{ mW}$		1.4:1	2.0:1	
	Load Mismatch (Note 1)	$V_{DD1} = V_{DD2} = 4.6V, VSWR = 10:1, P_{IN} = 6 \text{ mW}$	No Degradation in Output Power All Non-Harmonically Related Outputs More Than 60 dB Below Desired Signal			
	Stability (Note 2)	$\begin{array}{l} {\sf P}_{IN} = 0{\rm -3} \mbox{ mW}, {\sf V}_{DD1,2} = 0{\rm -4.6V}, \\ 0 \mbox{ mW} < {\sf P}_{OUT} < 450 \mbox{ mW}, \\ \mbox{ Load VSWR} = 10{\rm :1} \end{array}$				


Note 1: The device is adjusted to provide maximum load power into a 50Ω load under stress conditions specified by adjusting V_{DD1}. The device is switched off and a 10:1 load replaces the 50Ω load. The device is switched on and the phase of the 10:1 load is varied through 360 electrical degrees during a 60 second test period. The device is switched off and the load is restored to 50Ω . When the device is switched on, no change in load power is permitted. The pre and post load power measurements are recorded after a 5 minute stabilization period. This parameter is not tested in production but is guaranteed by design and characterization.

Note 2: The device is adjusted to provide 400 mW of load power into a 50Ω load by changing and recording the value of the supply voltage. The device is switched off and a 10:1 load replaces the 50Ω load. The device is switched on and the phase of the 10:1 load is varied through 360 electrical degrees during a 60 second test period. The value of $V_{DD1} = V_{DD2}$ is adjusted from the initial value to a lower value greater than 0V. The phase of the 10:1 load is varied through 360 electrical degrees during a 60 second test period. For any value of the publy voltage between 0V and the initial setting, the non-harmonically related output signals shall be as specified herein for any electrical phase. This parameter is not tested in production but is guaranteed by design and characterization.

http://www.national.com



http://www.national.com

5

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications