

April 1996

LMC6008 8 Channel Buffer

General Description

The LMC6008 octal buffer is designed specifically to buffer the multi-level voltages going to the inputs of the integrated circuits. The LMC6008 AC characteristics, including settling time, are specified for a capacitive load of 0.1 μF for this reason

The LMC6008 contains 4 high-speed buffers and 4 low-power buffers. The high-speed buffers can provide an output current of at least 250 mA (minimum), and the low-power buffers can provide at least 150 mA (minimum). By including the 2 types of buffers, the LMC6008 is able to provide this function while consuming a supply current of only 6.5 mA (maximum). The buffers are a rail-to-rail design, which typically swing to within 30 mV of either supply.

The LMC6008 also contains a standby function which puts the buffer into a high-impedance mode. The supply current in the standby mode is a low 500 μA max. Also, a thermal limit circuit is included to protect the device from overload conditions.

Features

■ High Output Current:
High Speed Buffers 250 mA min
Low Power Buffers 150 mA min

■ Slew Rate:

 $\begin{array}{ll} \mbox{High Speed Buffers} & 1.7 \ \mbox{V/} \mu \mbox{s} \\ \mbox{Low Power Buffers} & 0.85 \mbox{V/} \mu \mbox{s} \\ \end{array}$

■ Settling Time, $C_L = 0.1 \mu F$

 $_{\rm 0.1V}$ to $V_{CC}-$ 0.1V min

Wide Input/Output RangeSupply Voltage Range

5V to 16V

■ Supply Current

6.5 mA max

■ Standby Mode Current

500 μΑ

Applications

- AMLCD voltage buffering
- Multi-voltage buffering

Connection Diagram

24-Pin SO GND 23 OUT 1 IN 1 22 IN 2 OUT2 OUT3 20 OUT4 19 NC STD-BY 18 PGND OUT5 IN5 16 IN6 OUT6 15 10 IN7 OUT7 14 IN8 OUT8 GND TL/H/12321-1

Top View

Note: Buffers 1, 3, 5 and 7 are High Speed and Buffers 2, 4, 6 and 8 are Low Speed.

Ordering Information

Package	Temperature Range -40°C to +85°C	NSC Drawing	Transport Media
24-Pin Surface Mount	LMC6008IM	M24B	Rail
	LMC6008IMX	M24B	Tape & Reel

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Tolerance (Note 2) 2000V Voltage at Input Pin $V^+ + 0.4V, V^- - 0.4V$ Voltage at Output Pin $V^+ + 0.4V, V^- - 0.4V$

Supply Voltage ($V^+ - V^-$) 16V

Junction Temperature (Note 4) 150°C
Power Dissipation (Note 4) Internally Limited

Operating Ratings (Note 1)

Supply Voltage $4.5 \text{V} \leq \text{V}^+ \leq 16 \text{V}$ Temperature Range $-20^{\circ}\text{C to} + 100^{\circ}\text{C}$

Thermal Resistance (θ_{JA})

M Package, 24-Pin Surface Mount 50°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J=25^{\circ}\text{C},\,V_{CC}=14.5\text{V}$ and $R_L=0.$

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6008 Limit (Note 6)	Units
V _{OS}	Input Offset Voltage	$R_S = 10 \text{ k}\Omega$		25	mV max
A_V	$V_O = 10 V_{PP}$			0.985	V/V
I _B	Input Bias Current			300	nA max
I _{LP}	Peak Load Current	Hi Speed Buffers		-250	mA max
		$V_O = 13 V_{PP}$		+ 250	mA min
I_{LP}	Peak Load Current	Lo Speed Buffers		-150	mA max
		$V_O = 13 V_{PP}$		+ 150	mA min
V _{ERR}	Output Voltage Difference (Note 9)		35		mV max
V _{IH}	Standby Logic HIgh Voltage			3.30	V min
V _{IL}	I _{STANDBY} Logic Low Voltage			1.80	V max
l _{IH}	Standby High Input Current			1.0	μA max
I _{IL}	Standby Low Input Current			1.0	μA max
I _{O (STD-BY)}	Output Leakage Current	V _{STD-BY} = High		5	μA max
Icc	Supply Current	$V_{IL} = Low, V_{IN} = 7.25V$		6.5	mA max
I _{STD-BY}	Standby Current	V _{STD-BY} = High		500	μA max
PSRR	Power Supply Rejection Ratio	5V < V _{CC} < 14.5V		55	dB min
Vo	Voltage Output Swing			0.1	V min
				V _{CC} - 0.1	V max

AC Electrical Characteristics

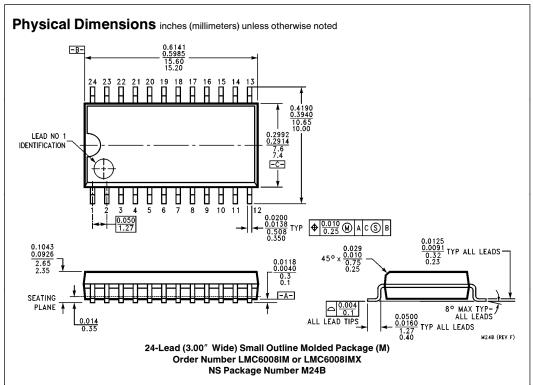
Unless otherwise specified, all limits guaranteed for $T_J=25^{\circ}C$, $V_{CC}=14.5V$ and $R_L=0\Omega$.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6008 Limit (Note 6)	Units
SR	Slew Rate	Buffers 1, 3, 5, 7 (Note 3)		1.70	V/μs min
		Buffers 2, 4, 6, 8 (Note 3)		0.85	V/μs min
ts	Settling Time	(Notes 3, 7)		16	μs max
t _{ON}	Standby Response Time ON			10	μs max
t _{OFF}	Standby Response Time OFF			10	μs max
PBW	Power Bandwidth	$V_O = 10 \text{ V}_{PP}$ for Hi-Speed $V_O = 5 \text{ V}_{PP}$ for Lo-Speed (Note 3)		45	KHz min
CL	Load Capacitance			0.1	μF max

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, 1.5 k Ω in series with 100 pF. Note 3: The Load is a series connection of a 0.1 μ F capacitor and a 1 Ω resistor.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$, where the junction-to-ambient thermal resistance $\theta_{JA} = 50^{\circ}\text{C/W}$. If the maximum allowable power dissipation is exceeded, the thermal limit circuit will limit the die temperature to approximately 160°C. All numbers apply for packages soldered directly into a PC board.


Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: The settling time is measured from the input transition to a point 50 mV of the final value, for both rising and falling transitions. The input swing is 0.5V to 13.5V for buffers 1, 3, 5, 7 and 3.75V to 10.25V for buffers 2, 4, 6, 8. Input rise time should be less than 1 μ s.

Note 8: High-Speed Buffers are 1, 3, 5, 7 and Low-Speed Buffers are 2, 4, 6, 8.

Note 9: Output Voltage Difference is the difference between the highest and lowest buffer output voltage when all buffer inputs are at identical voltages.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Fax: +49 (0) 180-530 so oo Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 95 58 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408