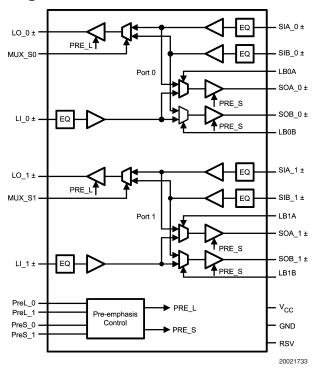
August 2005



**DS40MB200** 

# **Dual 4 Gb/s 1:2 Mux/Buffer with Input Equalization and Output Pre-Emphasis**


## **General Description**

The DS40MB200 is a dual signal conditioning 2:1 multiplexer and 1:2 fan-out buffer designed for use in backplane redundancy applications. Signal conditioning features include input equalization and programmable output preemphasis that enable data communication in FR4 backplanes up to 4 Gb/s. Each input stage has a fixed equalizer to reduce ISI distortion from board traces. All output drivers have 4 selectable steps of pre-emphasis to compensate for transmission losses from long FR4 backplanes and reduce deterministic jitter. The pre-emphasis levels can be independently controlled for the line-side and switch-side drivers. The internal loopback paths from switch-side input to switch-side output enable at-speed system testing. All receiver inputs and driver outputs are internally terminated with  $100\Omega$  differential terminating resistors

#### **Features**

- Dual 2:1 multiplexer and 1:2 buffer
- 1- 4 Gbps fully differential data paths
- Fixed input equalization
- Programmable output pre-emphasis
- Independent switch and line side pre-emphasis controls
- Programmable switch-side loopback mode
- On-chip terminations
- +3.3V supply
- Low power, 1W max
- Lead-less LLP-48 package (7mmx7mmx0.8mm, 0.5mm pitch)
- 0°C to +85°C operating temperature range

#### **Functional Block Diagram**



## **Simplified Block Diagram** DS40MB200 VBB SIA\_0+ M U X SIB\_0+ SIB\_0-MUX\_S0 PORT 0 LB0A LB0B CML SOB\_0+ <u>VBB</u> PreL\_1 Pre-emphasis Control PRE\_S PreS\_0 PreS VBB SIA\_1+ SIA\_1-\_ M U X CML SIB\_1+ SIB\_1-PRE\_L <u>VBB</u> MUX\_S1 PORT 1 LB1A LB1B SOB\_1+ <u>VBB</u> SOB\_1-GND pins & DAP ${\rm V_{CC}}$ pins 20021731

#### **Connection Diagram** MUX\_S0 SOA\_0+ SIB\_0-LB0A LB0B ر دد 48 42 39 36 PreL1 PreS0 $v_{cc}$ 35 DAP = GND $v_{cc}$ 34 LO\_0-SOB\_0-33 SOB\_0+ LO\_0+ 32 GND GND **LLP-48** 31 LI\_0+ LI\_1-**Top View Shown** 30 LI\_1+ LI\_0-29 $V_{CC}$ $V_{CC}$ 28 LO\_1+ SOB\_1+ 10 27 SOB\_1-LO\_1-26 RSV GND 25 12 PreL0 PreS1 MUX\_S1 SIB\_1+ LB1A LB1B ر دد GND

Order number DS40MB200SQ See NS Package Number SQA48D 20021732

## **Pin Descriptions**

| Pin Name         | Pin<br>Number | I/O    | Description                                                                                                                                                                                                            |
|------------------|---------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LINE SIDE H      | IIGH SPEED D  | IFFERE | NTIAL IO's                                                                                                                                                                                                             |
| LI_0+<br>LI_0-   | 6<br>7        | I      | Inverting and non-inverting differential inputs of port_0 at the line side. LI_0+ and LI_0- have an internal $50\Omega$ connected to an internal reference voltage.                                                    |
| LO_0+<br>LO_0-   | 33<br>34      | 0      | Inverting and non-inverting differential outputs of port_0 at the line side. LO_0+ and LO_0- have an internal $50\Omega$ connected to $V_{CC}$ .                                                                       |
| LI_1+<br>LI_1-   | 30<br>31      | I      | Inverting and non-inverting differential inputs of port_1 at the line side. LI_1+ and LI_1- have an internal $50\Omega$ connected to an internal reference voltage.                                                    |
| LO_1+            | 9             | 0      | Inverting and non-inverting differential outputs of port_1 at the line side. LO_1+ and LO_1-                                                                                                                           |
| LO_1-            | 10            |        | have an internal $50\Omega$ connected to $V_{CC}$ .                                                                                                                                                                    |
|                  | T             | 1      | ERENTIAL IO'S                                                                                                                                                                                                          |
| SOA_0+<br>SOA_0- | 46<br>45      | 0      | Inverting and non-inverting differential outputs of mux_0 at the switch_A side. SOA_0+ and SOA_0- have an internal $50\Omega$ connected to $V_{CC}$ .                                                                  |
| SOB_0+<br>SOB_0- | 4 3           | 0      | Inverting and non-inverting differential outputs of mux_0 at the switch_B side. SOB_0+ and SOB_0- have an internal $50\Omega$ connected to $V_{CC}$ .                                                                  |
| SIA_0+<br>SIA_0- | 40<br>39      | I      | Inverting and non-inverting differential inputs to the mux_0 at the switch_A side. SIA_0+ and SIA_0- have an internal 50Ω connected to an internal reference voltage.                                                  |
| SIB_0+<br>SIB_0- | 43<br>42      | I      | Inverting and non-inverting differential inputs to the mux_0 at the switch_B side. SIB_0+ and SIB_0- have an internal $50\Omega$ connected to an internal reference voltage.                                           |
| SOA_1+           | 22            | 0      | Inverting and non-inverting differential outputs of mux_1 at the switch_A side. SOA_1+ and                                                                                                                             |
| SOA_1-           | 21            |        | SOA_1- have an internal $50\Omega$ connected to $V_{CC}$ .                                                                                                                                                             |
| SOB_1+<br>SOB_1- | 28<br>27      | 0      | Inverting and non-inverting differential outputs of mux_1 at the switch_B side. SOB_1+ and SOB_1- have an internal $50\Omega$ connected to $V_{CC}$ .                                                                  |
| SIA_1+<br>SIA_1- | 16<br>15      | I      | Inverting and non-inverting differential inputs to the mux_1 at the switch_A side. SIA_1+ and SIA_1- have an internal 50Ω connected to an internal reference voltage.                                                  |
| SIB_1+<br>SIB_1- | 19<br>18      | I      | Inverting and non-inverting differential inputs to the mux_1 at the switch_B side. SIB_1+ and SIB_1- have an internal $50\Omega$ connected to an internal reference voltage.                                           |
|                  | 3.3V LVCMOS   | )      | and oib_1 mave an internal obsection to an internal relevance voltage.                                                                                                                                                 |
| MUX_S0           | 37            | I      | A logic low at MUX_S0 selects mux_0 to switch B. MUX_S0 is internally pulled high.  Default state for mux_0 is switch A.                                                                                               |
| MUX_S1           | 13            |        | A logic low at MUX_S1 selects mux_1 to switch B. MUX_S0 is internally pulled high.  Default state for mux_1 is switch A.                                                                                               |
| PREL_0<br>PREL_1 | 12<br>1       | I      | PREL_0 and PREL_1 select the output pre-emphasis of the line side drivers (LO_0± and LO_1±). PREL_0 and PREL_1 are internally pulled high. See <i>Table 3</i> for line side pre-emphasis levels.                       |
| PRES_0<br>PRES_1 | 36<br>25      | I      | PRES_0 and PRES_1 select the output pre-emphasis of the switch side drivers (SOA_0±, SOB_0±, SOA_1± and SOB_1±). PRES_0 and PRES_1 are internally pulled high. See <i>Table 4</i> for switch side pre-emphasis levels. |
| LB0A             | 47            | 1      | A logic low at LB0A enables the internal loopback path from SIA_0± to SOA_0±. LB0A is internally pulled high.                                                                                                          |
| LB0B             | 48            | I      | A logic low at LB0B enables the internal loopback path from SIB_0± to SOB_0±. LB0B is internally pulled high.                                                                                                          |
| LB1A             | 23            | I      | A logic low at LB1A enables the internal loopback path from SIA_1± to SOA_1±. LB1A is internally pulled high.                                                                                                          |
| LB1B             | 24            | I      | A logic low at LB1B enables the internal loopback path from SIB_1± to SOB_1±. LB1B is internally pulled high.                                                                                                          |
| RSV              | 26            | I      | Reserve pin to support factory testing. This pin can be left open, or tied to GND, or tied to GND through an external pull-down resistor.                                                                              |

### Pin Descriptions (Continued)

| Pin Name        | Pin<br>Number                      | I/O | Description                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-----------------|------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| POWER           |                                    |     |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| V <sub>CC</sub> | 2, 8, 14,<br>20, 29, 35,<br>38, 44 | Р   | $V_{\rm CC}$ = 3.3V ± 5%. Each $V_{\rm CC}$ pin should be connected to the $V_{\rm CC}$ plane through a low inductance path, typically with a via located as close as possible to the landing pad of the $V_{\rm CC}$ pin. It is recommended to have a 0.01 μF or 0.1 μF, X7R, size-0402 bypass capacitor from each $V_{\rm CC}$ pin to ground plane. |  |  |  |  |
| GND             | 5, 11, 17,<br>32, 41               | Р   | Ground reference. Each ground pin should be connected to the ground plane through a low inductance path, typically with a via located as close as possible to the landing pad of the GND pin.                                                                                                                                                         |  |  |  |  |
| GND             | DAP                                | Р   | Die Attach Pad (DAP) is the metal contact at the bottom side, located at the center of the LLP-48 package. It should be connected to the GND plane with at least 4 via to lower the ground impedance and improve the thermal performance of the package.                                                                                              |  |  |  |  |

Note: I = Input, O = Output, P = Power

#### **Functional Descriptions**

The DS40MB200 is a signal conditioning 2:1 multiplexer and a 1:2 buffer designed to support port redundancy up to 4 Gb/s. Each input stage has a fixed equalizer that provides equalization to compensate about 5 dB of transmission loss from a short backplane trace (about 10 inches backplane). The output driver has pre-emphasis (driver-side equalization) to compensate the transmission loss of the backplane that it is driving. The driver conditions the output signal such that the lower frequency and higher frequency pulses reach approximately the same amplitude at the end of the backplane, and minimize the deterministic jitter caused by the amplitude disparity. The DS40MB200 provides 4 steps of user-selectable pre-emphasis ranging from 0, -3, -6 and –9 dB to handle different lengths of backplane. Figure 1 shows a driver pre-emphasis waveform. The pre-emphasis duration is 200ps nominal, corresponds to 0.75 bit-width at 4 Gb/s. The pre-emphasis levels of switch-side and line-side can be individually programmed. The high speed inputs are self-biased to about 1.5V and are designed for AC coupling. The inputs are compatible to most AC coupling differential signals such as LVDS, LVPECL and CML.

TABLE 1. LOGIC TABLE FOR MULTIPLEX CONTROLS

| MUX_S0      | Mux Function                         |
|-------------|--------------------------------------|
| 0           | MUX_0 select switch_B input, SIB_0±. |
| 1 (default) | MUX_0 select switch_A input, SIA_0±. |
| MUX_S1      | Mux Function                         |
| 0           | MUX_1 select switch_B input, SIB_1±. |
| 1 (default) | MUX_1 select switch_A input, SIA_0±. |

#### **TABLE 2. LOGIC TABLE FOR LOOPBACK Controls**

| LB0A        | Loopback Function                      |
|-------------|----------------------------------------|
| 0           | Enable loopback from SIA_0± to SOA_0±. |
| 1 (default) | Normal mode. Loopback disabled.        |
| LB0B        | Loopback Function                      |
| 0           | Enable loopback from SIB_0± to SOB_0±. |
| 1 (default) | Normal mode. Loopback disabled.        |
| LB1A        | Loopback Function                      |
| 0           | Enable loopback from SIA_1± to SOA_1±. |
| 1 (default) | Normal mode. Loopback disabled.        |
| LB1B        | Loopback Function                      |
| 0           | Enable loopback from SIB_1± to SOB_1±. |
| 1 (default) | Normal mode. Loopback disabled.        |

## Functional Descriptions (Continued)

TABLE 3. LINE-SIDE PRE-EMPHASIS CONTROLS

| PreL_[1:0]    | Pre-Emphasis Level in mV <sub>PP</sub> (VODB) | De-Emphasis Level<br>in mV <sub>PP</sub><br>(VODPE) | Pre-Emphasis in dB<br>(VODPE/VODB) | Typical FR4 board trace |
|---------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------|-------------------------|
| 0 0           | 1200                                          | 1200                                                | 0                                  | 10 inches               |
| 0 1           | 1200                                          | 850                                                 | -3                                 | 20 inches               |
| 1 0           | 1200                                          | 600                                                 | -6                                 | 30 inches               |
| 1 1 (default) | 1200                                          | 426                                                 | -9                                 | 40 inches               |

TABLE 4. SWITCH-SIDE PRE-EMPHASIS CONTROLS

| PreS_[1:0]    | Pre-Emphasis Level in mV <sub>PP</sub> (VODB) | De-Emphasis Level<br>in mV <sub>PP</sub><br>(VODPE) | Pre-Emphasis in dB (VODPE/VODB) | Typical FR4 board trace |
|---------------|-----------------------------------------------|-----------------------------------------------------|---------------------------------|-------------------------|
| 0 0           | 1200                                          | 1200                                                | 0                               | 10 inches               |
| 0 1           | 1200                                          | 850                                                 | -3                              | 20 inches               |
| 1 0           | 1200                                          | 600                                                 | -6                              | 30 inches               |
| 1 1 (default) | 1200                                          | 426                                                 | -9                              | 40 inches               |

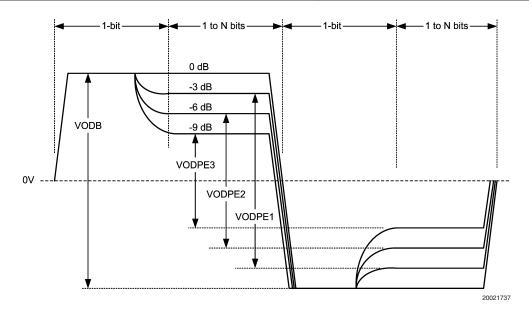



FIGURE 1. Driver Pre-Emphasis Differential Waveform (showing all 4 pre-emphasis steps)

## **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ( $V_{CC}$ ) -0.3V to 4V CMOS/TTL Input Voltage -0.3V to  $(V_{CC} + 0.3V)$  CML Input/Output Voltage -0.3V to

(V<sub>CC</sub> +0.3V) +125°C

Junction Temperature  $+125^{\circ}$ C Storage Temperature  $-65^{\circ}$ C to  $+150^{\circ}$ C

Lead Temperature

Soldering, 4 sec  $+260^{\circ}$ C Thermal Resistance,  $\theta_{JA}$  33.7°C/W

| Thermal Resistance, $\theta_{\text{JC-top}}$    | 20.7°C/W |
|-------------------------------------------------|----------|
| Thermal Resistance, $\theta_{\text{JC-bottom}}$ | 5.8°C/W  |
| Thermal Resistance, $\Phi_{JB}$                 | 18.2°C/W |
| ESD Rating HBM, 1.5 k $\Omega$ , 100 pF         | 2.5 kV   |
| ESD Rating Machine Model                        | 250V     |

## **Recommended Operating Ratings**

|                                       | Min   | Тур | Max   | Units   |
|---------------------------------------|-------|-----|-------|---------|
| Supply Voltage (V <sub>CC</sub> -GND) | 3.135 | 3.3 | 3.465 | V       |
| Supply Noise Amplitude                |       |     | 20    | $mV_PP$ |
| 10 Hz to 2 GHz                        |       |     |       |         |
| Ambient Temperature                   | 0     |     | 85    | °C      |
| Case Temperature                      |       |     | 100   | °C      |

#### **Electrical Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol            | Parameter                                              | Conditions                                                                                                                                                  | Min               | Typ<br>(Note 2) | Max                     | Units                                                       |
|-------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------------|-------------------------------------------------------------|
| LVCMOS            | OC SPECIFICATIONS                                      |                                                                                                                                                             | •                 |                 | •                       |                                                             |
| V <sub>IH</sub>   | High Level Input<br>Voltage                            |                                                                                                                                                             | 2.0               |                 | V <sub>CC</sub><br>+0.3 | V                                                           |
| V <sub>IL</sub>   | Low Level Input<br>Voltage                             |                                                                                                                                                             | -0.3              |                 | 0.8                     | V                                                           |
| I <sub>IH</sub>   | High Level Input<br>Current                            | $V_{IN} = V_{CC}$                                                                                                                                           | -10               |                 | 10                      | μΑ                                                          |
| I <sub>IL</sub>   | Low Level Input<br>Current                             | V <sub>IN</sub> = GND                                                                                                                                       | 75                | 94              | 124                     | μΑ                                                          |
| R <sub>PU</sub>   | Pull-High Resistance                                   |                                                                                                                                                             |                   | 35              |                         | kΩ                                                          |
| RECEIVER          | SPECIFICATIONS                                         |                                                                                                                                                             | •                 | •               | •                       |                                                             |
| $V_{ID}$          | Differential Input<br>Voltage Range                    | AC Coupled Differential Signal Below 1.25 Gb/s At 1.25 Gbps-3.125 Gbps Above 3.125 Gbps This parameter is not production tested.                            | 100<br>100<br>100 |                 | 1750<br>1560<br>1200    | mV <sub>P-P</sub><br>mV <sub>P-P</sub><br>mV <sub>P-P</sub> |
| V <sub>ICM</sub>  | Common Mode<br>Voltage at Receiver<br>Inputs           | Measured at receiver inputs reference to ground.                                                                                                            |                   | 1.3             |                         | V                                                           |
| R <sub>ITD</sub>  | Input Differential<br>Termination                      | On-chip differential termination between IN+ or IN                                                                                                          | 84                | 100             | 116                     | Ω                                                           |
| R <sub>ITSE</sub> | Input Termination (single-end)                         | On-chip termination IN+ or IN- to GND for frequency > 100 MHz.                                                                                              |                   | 50              |                         | Ω                                                           |
| DRIVER S          | PECIFICATIONS                                          |                                                                                                                                                             | •                 | •               | •                       | •                                                           |
| VODB              | Output Differential Voltage Swing without Pre-Emphasis | $R_L = 100\Omega \pm 1\%$ PRES_1=PRES_0=0  PREL_1=PREL_0=0  Driver pre-emphasis disabled.  Running K28.7 pattern at 4 Gbps.  See Figure 5 for test circuit. | 1000              | 1200            | 1400                    | mV <sub>P-P</sub>                                           |

**Electrical Characteristics** (Continued)
Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol            | Parameter            | Conditions                                       | Min | Typ<br>(Note 2) | Max | Units |
|-------------------|----------------------|--------------------------------------------------|-----|-----------------|-----|-------|
| DRIVER S          | PECIFICATIONS        |                                                  |     |                 |     |       |
| $V_{PE}$          | Output Pre-Emphasis  | $R_{L} = 100\Omega \pm 1\%$                      |     |                 |     |       |
|                   | Voltage Ratio        | Running K28.7 pattern at 4 Gbps                  |     |                 |     |       |
|                   | 20*log(VODPE/VODB)   |                                                  |     | 0               |     | dB    |
|                   |                      | PREx_[1:0]=01                                    |     | -3              |     | dB    |
|                   |                      | PREx_[1:0]=10                                    |     | -6              |     | dB    |
|                   |                      | PREx_[1:0]=11                                    |     | -9              |     | dB    |
|                   |                      | x=S for switch side pre-emphasis control         |     |                 |     | u.D   |
|                   |                      | x=L for line side pre-emphasis control           |     |                 |     |       |
|                   |                      | See Figure 1 on waveform.                        |     |                 |     |       |
|                   |                      | See Figure 5 for test circuit.                   |     |                 |     |       |
|                   | Due Francis Mielde   | _                                                |     |                 |     |       |
| t <sub>PE</sub>   | Pre-Emphasis Width   | Tested at –9 dB pre-emphasis level,              |     |                 |     |       |
|                   | (Note 8)             | PREx[1:0]=11                                     |     |                 |     |       |
|                   |                      | x=S for switch side pre-emphasis control         | 125 | 200             | 250 | ps    |
|                   |                      | x=L for line side pre-emphasis control           |     |                 |     |       |
|                   |                      | See Figure 4 on measurement condition.           |     |                 |     |       |
| R <sub>OTSE</sub> | Output Termination   | On-chip termination from OUT+ or OUT- to         | 42  | 50              | 58  | Ω     |
|                   |                      | V <sub>CC</sub>                                  | 42  | 30              | 50  | 22    |
| R <sub>OTD</sub>  | Output Differential  | On-chip differential termination between OUT+    |     | 400             |     |       |
|                   | Termination          | and OUT-                                         |     | 100             |     | Ω     |
| $\Delta R_{OTSE}$ | Mis-Match in Output  | Mis-match in output terminations at OUT+ and     |     |                 |     |       |
| ·OISE             | Termination          | OUT-                                             |     |                 | 5   | %     |
|                   | Resistors            |                                                  |     |                 | Ü   | ,0    |
| V <sub>OCM</sub>  | Output Common        |                                                  |     |                 |     |       |
| VOCM              | Mode Voltage         |                                                  |     | 2.7             |     | V     |
| DOWED D           | ISSIPATION           |                                                  |     |                 |     |       |
|                   |                      | V 0.405V                                         |     |                 |     |       |
| $P_D$             | Power Dissipation    | V <sub>DD</sub> = 3.465V                         |     |                 |     |       |
|                   |                      | All outputs terminated by $100\Omega \pm 1\%$ .  |     |                 | 1   | W     |
|                   |                      | PREL_[1:0]=0, PRES_[1:0]=0                       |     |                 |     |       |
|                   |                      | Running PRBS 2 <sup>7</sup> -1 pattern at 4 Gbps |     |                 |     |       |
|                   | ACTERISTICS          |                                                  |     |                 |     |       |
| $t_R$             | Differential Low to  | Measured with a clock-like pattern at            |     |                 |     |       |
|                   | High Transition Time | 100 MHz, between 20% and 80% of the              |     | 80              |     | ps    |
|                   |                      | differential output voltage. Pre-emphasis        |     |                 |     |       |
| t_                | Differential High to | disabled.                                        |     |                 |     |       |
| t <sub>F</sub>    | Low Transition Time  | Transition time is measured with fixture as      |     |                 |     |       |
|                   | LOW Transition Time  | shown in Figure 5, adjusted to reflect the       |     | 80              |     | ps    |
|                   |                      | transition time at the output pins.              |     |                 |     |       |
| t <sub>PLH</sub>  | Differential Low to  | Measured at 50% differential voltage from        |     |                 |     |       |
|                   | High Propagation     | input to output.                                 |     | 0.5             | 2   | ns    |
|                   | Delay                |                                                  |     |                 |     |       |
| t <sub>PHL</sub>  | Differential High to |                                                  |     |                 |     |       |
| TIL               | Low Propagation      |                                                  |     | 0.5             | 2   | ns    |
|                   | Delay                |                                                  |     |                 | -   | 110   |
| t <sub>aur</sub>  | Pulse Skew (Note 8)  | It <sub>PHL</sub> -t <sub>PLH</sub> I            |     |                 | 20  | ne    |
| t <sub>SKP</sub>  | 1 1                  |                                                  |     |                 | ۷۵  | ps    |
| t <sub>SKO</sub>  | Output Skew          | Difference in propagation delay among data       |     |                 | 200 | ps    |
|                   | (Notes 7, 8)         | paths in the same device.                        |     |                 |     | •     |
| t <sub>SKPP</sub> | Part-to-Part Skew    | Difference in propagation delay between the      |     |                 |     |       |
|                   | (Note 8)             | same output from devices operating under         |     |                 | 500 | ps    |
|                   | 1                    | identical condition.                             |     | 1               |     |       |

#### **Electrical Characteristics** (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol            | Parameter                                           | Conditions                                                                                                                       | Min | Typ<br>(Note 2) | Max | Units          |
|-------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----|----------------|
| AC CHAR           | AC CHARACTERISTICS                                  |                                                                                                                                  |     |                 | •   |                |
| t <sub>SM</sub>   | Mux Switch Time                                     | Measured from $V_{\text{IH}}$ or $V_{\text{IL}}$ of the mux-control or loopback control to 50% of the valid differential output. |     | 1.8             | 6   | ns             |
| RJ                | Device Random Jitter<br>(Note 5) (Note 8)           | See Figure 5 for test circuit.  Alternating-1-0 pattern.  Pre-emphasis disabled.  At 1.25 Gbps  At 4 Gbps                        |     |                 | 2 2 | psrms<br>psrms |
| DJ                | Device Deterministic<br>Jitter (Note 6) (Note<br>8) | See Figure 5 for test circuit. Pre-emphasis disabled. At 4 Gbps, PRBS7 pattern                                                   |     |                 | 30  | pspp           |
| DR <sub>MAX</sub> | Maximum Data Rate (Note 8)                          | Tested with alternating-1-0 pattern                                                                                              | 4   |                 |     | Gbps           |

Note 1: "Absolute Maximum Ratings" are the ratings beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits.

Note 2: Typical parameters measured at  $V_{CC} = 3.3V$ ,  $T_A = 25$  °C. They are for reference purposes and are not production-tested.

Note 3: IN+ and IN- are generic names refer to one of the many pairs of complimentary inputs of the DS40MB200. OUT+ and OUT- are generic names refer to one of the many pairs of the complimentary outputs of the DS40MB200. Differential input voltage  $V_{ID}$  is defined as IIN+-IN-I. Differential output voltage  $V_{OD}$  is defined as IOUT+-OUT-I.

Note 4: K28.7 pattern is a 10-bit repeating pattern of K28.7 code group {001111 1000}

K28.5 pattern is a 20-bit repeating pattern of +K28.5 and -K28.5 code groups {110000 0101 001111 1010}

**Note 5:** Device output random jitter is a measurement of the random jitter contribution from the device. It is derived by the equation  $sqrt(RJ_{OUT}^2 - RJ_{IN}^2)$ , where  $RJ_{OUT}$  is the total random jitter measured at the output of the device in psrms,  $RJ_{IN}$  is the random jitter of the pattern generator driving the device.

**Note 6:** Device output deterministic jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation (DJ<sub>OUT</sub>–DJ<sub>IN</sub>), where DJ<sub>OUT</sub> is the total peak-to-peak deterministic jitter measured at the output of the device in pspp, DJ<sub>IN</sub> is the peak-to-peak deterministic jitter of the pattern generator driving the device.

Note 7: t<sub>SKO</sub> is the magnitude difference in the propagation delays among data paths between switch A and switch B of the same port and similar data paths between port 0 and port 1. An example is the output skew among data paths from SIA\_0± to LO\_0±, SIB\_0± to LO\_0±, SIA\_1± to LO\_1± and SIB\_1± to LO\_1±. Another example is the output skew among data paths from LI\_0± to SOA\_0±, LI\_0± to SOB\_0±, LI\_1± to SOA\_1± and LI\_1± to SOB\_1±. t<sub>SKO</sub> also refers to the delay skew of the loopback paths of the same port and between similar data paths between port 0 and port 1. An example is the output skew among data paths SIA\_0± to SOA\_0±, SIB\_0± to SOB\_0±, SIA\_1± to SOA\_1± and SIB\_1± to SOB\_1±.

Note 8: Guaranteed by desigh and characterization using statistical analysis.

## **Timing Diagrams**

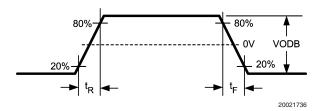



FIGURE 2. Driver Output Transition Time

## Timing Diagrams (Continued)

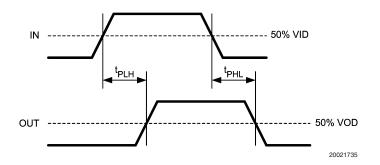



FIGURE 3. Propagation Delay from input to output

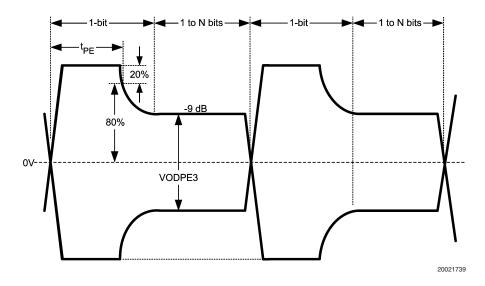



FIGURE 4. Test condition for output pre-emphasis duration

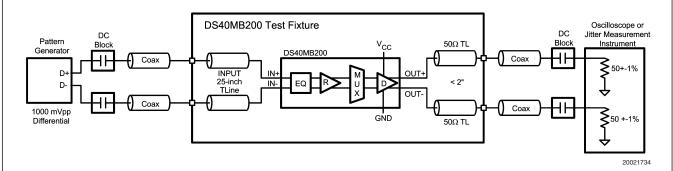



FIGURE 5. AC Test Circuit

The DS40MB200 input equalizer provides equalization to compensate about 5 dB of transmission loss from a short backplane transmission line. For characterization purposes, a 25-inch FR4 coupled micro-strip board trace is used in place of the short backplane link. The 25-inch microstrip board trace has approximately 5 dB of attenuation between

375 MHz and 1.875 GHz, representing closely the transmission loss of the short backplane transmission line. The 25-inch microstrip is connected between the pattern generator and the differential inputs of the DS40MB200 for AC measurements.

## Timing Diagrams (Continued)

|              | Finished Trace | Separation between |                     | <b>Dielectric Constant</b> |              |
|--------------|----------------|--------------------|---------------------|----------------------------|--------------|
| Trace Length | Width W        | Traces             | Dielectric Height H | €R                         | Loss Tangent |
| 25 inches    | 8.5 mil        | 11.5 mil           | 6 mil               | 3.8                        | 0.022        |

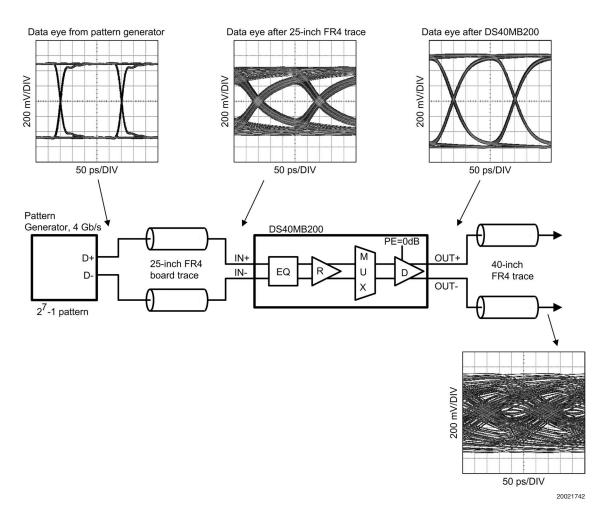



FIGURE 6. Data input and output eye patterns with driver set to 0 dB pre-emphasis

## Timing Diagrams (Continued)

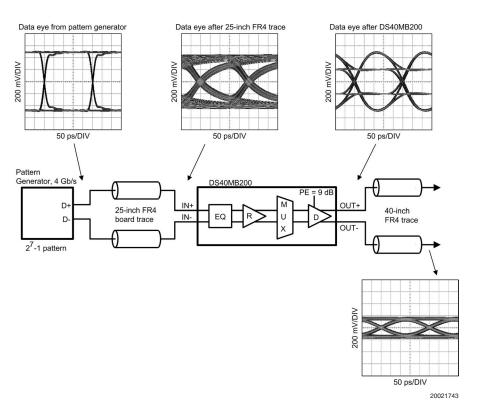



FIGURE 7. Data input and output eye patterns with driver set to 9dB pre-emphasis

## **Application Information**

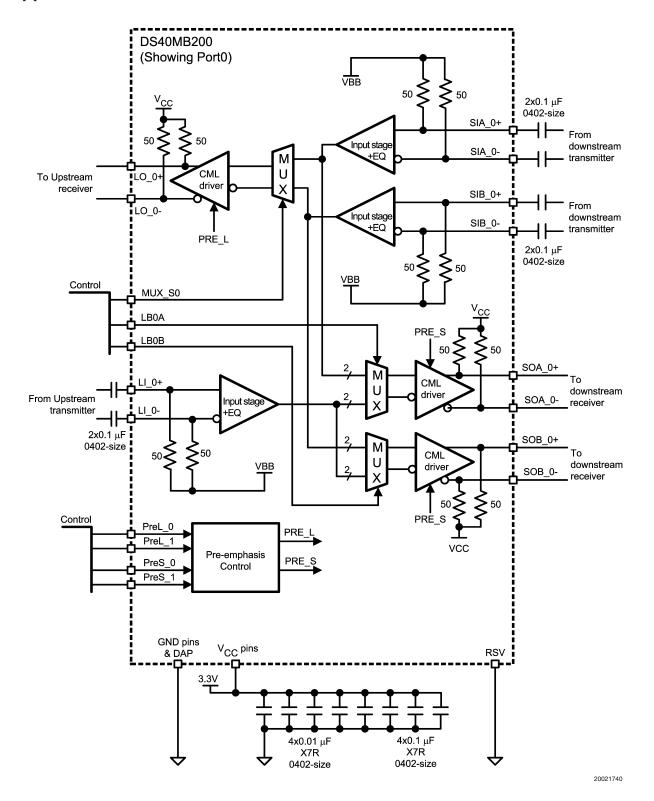



FIGURE 8. Application diagram (showing data paths of port 0)

#### Physical Dimensions inches (millimeters) unless otherwise noted 000000000000 (48X 0 25 DIMENSIONS ARE IN MILLIMETERS MENSIONS IN ( ) FOR REFERENCE ONL (□4 .1) <del>| 000000| 000000</del> - C RECOMMENDED LAND PATTERN 4 X 5 . 5 0.8 MAX - 44X 0.5 PIN 1 INDEX AREA (0.2) $\bigcup$ □4.1±0.1 7+0 1 $\cup$ 48X 0.45±0.1 В \_ A SQA48D (Rev A)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

LLP-48 Package

For the most current product information visit us at www.national.com.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **BANNED SUBSTANCE COMPLIANCE**

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.



National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560