MicrocHiP PIC24FJXXXGA1/GB1

PIC24FJXXXGA1/GB1 Families Flash Programming
Specification

1.0 DEVICE OVERVIEW

This document defines the programming specification
for the PIC24FJXXXGA1/GB1 families of 16-bit
microcontroller devices. This programming specification
is required only for those developing programming
support for the PIC24FJXXXGA1/GB1 families.
Customers using only one of these devices should use
development tools that already provide support for
device programming.

This specification includes programming specifications
for the following devices:

» PIC24FJ256GA106 » PIC24FJ256GB106

2.0

PIC24FJ256GA108
PIC24FJ256GA110
PIC24FJ192GA106
PIC24FJ192GA108
PIC24FJ192GA110
PIC24FJ128GA106
PIC24FJ128GA108
PIC24FJ128GA110
PIC24FJ64GB106

PIC24FJ64GB110

PIC24FJ256GB108
PIC24FJ256GB110
PIC24FJ192GB106
PIC24FJ192GB108
PIC24FJ192GB110
PIC24FJ128GB106
PIC24FJ128GB108
PIC24FJ128GB110
PIC24FJ64GB108

PROGRAMMING OVERVIEW

The Enhanced In-Circuit Serial Programming
(Enhanced ICSP) protocol uses a faster method that
takes advantage of the programming executive, as
illustrated in Figure 2-1. The programming executive
provides all the necessary functionality to erase, pro-
gram and verify the chip through a small command set.
The command set allows the programmer to program
the PIC24FJXXXGA1/GB1 devices without having tg
deal with the low-level programming protocols of the

chip. PIC24FJXXXGA1/GB1
- Programming JII
FIGURE 2-1: | PROGRAMMING'SYSTE
OVERVIEW FQR

ENHANCED IGSP™

On-Chip Memory

Programmer

OF THE PIC24FJXXXGA1/GB1
FAMILIES

There are two methods of programming the
PIC24FJXXXGA1/GB1 families of devices discussed
in this programming specification. They are:

* In-Circuit Serial Programming™ (ICSP™)

» Enhanced In-Circuit Serial Programming
(Enhanced ICSP)

The ICSP programming method is the most direct
method to program the device; however, it is also the
slower of the two methods. It provides native, low-level
programming capability to erase, program and verify
the chip.

This specification is divided into major sections that
describe the programming methods independently.
Section 4.0 “Device Programming - Enhanced
ICSP” describes the Run-Time Self-Programming
(RTSP) method. Section 3.0 “Device Programming —
ICSP” describes the In-Circuit Serial Programming
method.

© 2007 Microchip Technology Inc.

DS39907A-page 1



PIC24F JXXXGA1/GB1

21 Power Requirements

All devices in the PIC24FJXXXGA1/GB1 families are
dual voltage supply designs: one supply for the core
and peripherals and another for the 1/0O pins. A regula-
tor is provided on-chip to alleviate the need for two
external voltage supplies.

All PIC24FJXXXGA1/GB1 devices power their core
digital logic at a nominal 2.5V. To simplify system
design, all devices in the PIC24FJXXXGA1/GB1 fami-
lies incorporate an on-chip regulator that allows the
device to run its core logic from VDD.

The regulator provides power to the core from the other
VDD pins. A low-ESR capacitor (such as tantalum) must
be connected to the VDDCORE pin (Table 2-1 and
Figure 2-2). This helps to maintain the stability of the
regulator. The specifications for core voltage and capac-
itance are listed in Section 7.0 “AC/DC Characteristics
and Timing Requirements”.

2.2 Program Memory Write/Erase
Requirements

The Flash program memory on PIC24FJJXXXGA1/GB1
devices has a specific write/erase requirement that
must be adhered to for proper device operation. The
rule is that any given word in memory must not be writ-
ten more than twice before erasing the page in which it
is located. Thus, the easiest way to conform to this rule
is to write all the data in a programming block within
one write cycle. The programming methods specified in
this specification comply with this requirement.

Note:  Writing to a location multiple times without
erasing is not recommended.

23 Pin Diagrams

The pin diagrams for the PIC24FJXXXGA1/GB1 fami-
lies are shown in the following figures. The pins that are
required for programming are listed in Table 2-1 and
are shown in bold letters in the figures. Refer to the
appropriate device data sheet for complete pin
descriptions.

2.31 PGCx AND PGDx PIN PAIRS

All of the devices in the PIC24FJXXXGA1/GB1 families
have three separate pairs of programming pins,
labelled as PGEC1/PGED1, PGEC2/PGED2, and
PGEC3/PGED3. Any one of these pin pairs may be
used for device programming by either ICSP or
Enhanced ICSP. Unlike voltage supply and ground
pins, it is not necessary to connect all three pin pairs to
program the device. However, the programming
method must use both pins of the same pair.

FIGURE 2-2: CONNECTIONS FOR THE

ON-CHIP REGULATOR

Regulator Enabled (ENVREG tied to VDD):

3.3V
PIC24FJXXXGA1/GB1
VDD
ENVREG
VDDCORE/VCAP
CEFC
(10 uF typ) ves

Regulator Disabled (ENVREG tied to ground):

2.5v(M 3.3y

PIC24FJXXXGA1/GB1
VDD
ENVREG

VDDCORE/VCAP

Vss

Regulator Disabled (VDD tied to VDDCORE):

2.5v(

PIC24FJXXXGA1/GB1
VDD
ENVREG

VDDCORE/VCAP

Vss

Note 1: These are typical operating voltages. Refer
to Section 7.0 “AC/DC Characteristics and
Timing Requirements” for the full operating
ranges of VDD and VDDCORE.

DS39907A-page 2

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING)
During Programming
Pin Name
Pin Name Pin Type Pin Description
MCLR MCLR P Programming Enable
ENVREG ENVREG | Enable for On-Chip Voltage Regulator
VoD and Avop(!) VDD P Power Supply
Vss and Avss(?) Vss P Ground
VDDCORE VDDCORE P Regulated Power Supply for Core
PGECx PGCx | Programming Pin Pairs 1, 2 and 3: Serial Clock
PGEDx PGDx I/0 Programming Pin Pairs 1, 2 and 3: Serial Data
Legend: | = Input, O = Output, P = Power
Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground
(AVss).
FIGURE 2-3: PIN DIAGRAMS
64-Pin TQFP %
Q
Wwwuwwe LZ2o0o000000
roeeerrruw>rerer ey e x
038353 BBLIEIBELIBR
RE5 [ 1 48 ] RC14
RE6 [] 2 47 ] RC13
RE7 [ 3 46 ] RDO
RG6 [ 4 45 ] RD11
RG7 [ 5 44 ] RD10
rRes 16 43 [] RD9
MCLR [ 7 4211 RD8
RGO 8 PIC24FJXXXGA106 41 [ vss
vss ]9 40 ] RC15
Voo [] 10 39 [] RC12
PGEC3/AN5/RP18/C1INA/CN7/RB5 [| 11 38 [ ] Voo
PGED3/AN4/RP28/C1INB/CN6/RB4 [ 12 37 [] RG2
RB3 []13 36 [ ] RG3
RB2 [] 14 35 ] RF6
PGEC1/AN1/RP1/VReF-/CN3/RB1 [| 15 34 ] RF2
PGED1/ANO/RPO/PMAG/VREF+/CN2/RBO [ 1 33 ] RF3
DO T~TANMIT WO OO — N
T AN NN ANANNANNNNOOOO
agRBecgaceTeyy
S>>y 0@0>> om0 Mmyo©
< x o Xoweowo

PGEC2/AN6/RP6/CN24/RB6 17

PGED2/AN7/RP7/CN25/RB7 18

© 2007 Microchip Technology Inc.

DS39907A-page 3



PIC24F JXXXGA1/GB1

FIGURE 2-4: PIN DIAGRAMS (CONTINUED
80-Pin TQFP
w
[4
o
(8]
a
D2
q-mN\_oo«—‘_og&r\(oLowggmc\l‘—
T ETRTITETTIONONTITES- i jalalalalalalalala]
Frryyrr¥y ¥ ¥ ru>¥¥ ¥ e
/ OO MNOULTONTODNDONOLWSTOMON —
O NMMMNMNMMNMNMNMNMNNMDNS O O © © © © © © ©
REs [ 1° 60 [] RC14
RE6 [ 2 59 RC13
RE7 [] 3 58 1 RDO
RC1 [ 4 57 [] RD11
RC3 5 56 [ ] RD10
RG6 [ 6 55 [] RD9
Re7 (17 54 [] RD8
RGs [ 8 53 [] RA15
m:g 52 RA14
51 Vss
RGo [] 10 PIC24FJXXXGA108 50 9 RS
vss [ 11
VDDE12 49 RC12

VbbD
RG2
RG3
RF6
RF7

CN66/RE8 [ 13

CN67/RE9 [] 14
PGEC3/AN5/RP18/C1INA/CN7/RB5 [ 15
PGED3/AN4/RP28/C1INB/CN6/RB4 [ 16
RB3 []17

43 RF8
RE2[ 18 42 [ RF2
PGEC1/AN1/RP1/CN3/RB1 [ | 19 1 RF3
PGED1/ANO/RP0/CN2/RBO [_| 20
O IFTOVOMN~NDO0VWDNDO -~ ANMT W ONODO
N\ N AN ANNANANNOOOOHOONDOHOOOO T
228883828800z eree
m
CFIICCRRTTEERRERRY

PGEC2/AN6/RP6/CN24/RB6 21
PGED2/AN7/RP7/CN25/RB7 22

DS39907A-page 4 © 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

FIGURE 2-5:

PIN DIAGRAMS (CONTINUED)

100-Pin TQFP

RG15 ]

Vop [

RE5 []

RE6 []

RE7 [

RC1 [

RC2 []

RC3 [

RC4 [

RG6 ]

RG7 ]

RG8 ]

MCLR [

RG9 ]

Vss []

Vop []

RA0 [

RE8 []

RE9 [
PGEC3/AN5/RP18/VBUSON/C1INA/CN7/RB5 [
PGED3/AN4/RP28/USBOEN/C1INB/CN6/RB4 [_|
RB3 []

RB2 []
PGEC1/AN1/RP1/CN3/RB1 [_|
PGED1/ANO/RPO/CN2/RB0 [ |

Ve

PGEC2/AN6/RP6/CN24/RB6 | 26
PGED2/AN7/RP7/RCVICN25/RB7 [_| 27

00N U WN =

220

12
13
14
15
16
17
18
19

NNDNDNDNDDN
ahWN =2 O

86 1 ENVREG
85 ] VCAP/VDDCORE

PIC24FJXXXGA110

RA9 [ 28
RA10 29
AVpp |30
AVss [ 31

RB8 [ 32

RB9 33
RB10 |34
RB11 35

Vss [ 36

Vop [ 37

RA1 138
RF13 139
RF12 [ 40
RB12 ] 41
RB13 42
RB14 43
RB15 [ 44

Vss |45

Vpbp 46
RD14 [ 47
RD15 []48

RF4 149

RF5 ] 50

© 2007 Microchip Technology Inc.

DS39907A-page 5



PIC24F JXXXGA1/GB1

FIGURE 2-6:

PIN DIAGRAMS (CONTINUED)

64-Pin TQFP

RE5 [

RE6 []

RE7 [

RG6 []

RG7 [

RG8 [

MCLR []

RG9 []

Vss []

Vobp []
PGEC3/AN5/RP18/VBUSON/C1INA/CN7/RB5 [_|
PGED3/AN4/RP28/USBOEN/C1INB/CN6/RB4 [
RB3 [

RB2 [

PGEC1/AN1/RP1/VREF-/CN3/RB1 [

PGED1/ANO/RP0/PMAG6/VREF+/CN2/RBO [|

RE4
RE3
RE2
RE1
REO
RF1

RFO
ENVREG

VCAP/VDDCORE

RD7
RD6
RD5
RD4
RD3
RD2
RD1

|

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

)

[1 RC14
1 RC13
1 RDO
1 RD11
1 RD10
1 RD9
1 RD8
] Vss
1 RC15
1 RC12
1 VbD

PIC24FJXXXGB106 41

|1 D-/RG3
1 Vuss
1 VBus

16 1 RF3

Avop [ 19
Avss [_]20
RB8 ] 21
RB9 22
RB10 {23
RB11 ] 24
Vss 25
VDD 26
RB12 [ 27
RB13 []28
RB14 []29
RB15 []30

PGEC2/AN6/RP6/CN24/RB6 | 17
PGED2/AN7/RP7/RCVICN25/RB7 [ 18

DS39907A-page 6

© 2007 Microchip Technology Inc.

[ 1 D+/RG2




PIC24F JXXXGA1/GB1

FIGURE 2-7:

PIN DIAGRAMS (CONTINUED)

80-Pin TQFP

RE5 []

RE6 [

RE7 []

RC1 []

RC3 [}

RG6 []

RG7 []

RG8 []

MCLR [

RG9 []

vss []

vop []

CN66/RE8 [

CN67/RE9 [
PGEC3/AN5/RP18/VBUSON/C1INA/CN7/RB5 [
PGED3/AN4/RP28/USBOEN/C1INB/CN6/RB4 [
RB3 ]

RB2 []

PGEC1/AN1/RP1/CN3/RB1 [
PGED1/ANO/RPO/CN2/RBO [

® N OsWN =
(]

A a a
M—‘Ow

-
w

14
15
16
17
18
19

VCAP/VDDCORE

RE4
RE3
RE2
RE1
REO
RGO
RG1
RF1
RFO
ENVREG
RD7
RD6
RD5
RD4
RD13
RD12
RD3
RD2
RD1

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61

PIC24FJXXXGB108

] RC14
1 RC13
[ 1 RDO
] RD11
1 RD10
] RD9
] RD8

[ 1 RA15
] RA14
[ ] Vss

] RC15
] RC12
] VbD

] D+/RG2
] D-/RG3
] Vuse
] VBUS
] RF8
] RF2
] RF3

RA9 []23
RA10 [ 24
AVDD |25
Avss []26

RB8 — 27

RB9 —]28
RB12 33
RB13 [ 34
RB14 [ 35
RB15 [ 36
RD14 —37
RD15 38

RF4 39

RF5 40

PGEC2/AN6/RP6/CN24/RB6 [ | 21
PGED2/AN7/RP7/RCV/CN25/RB7 22

© 2007 Microchip Technology Inc.

DS39907A-page 7



PIC24F JXXXGA1/GB1

FIGURE 2-8:

PIN DIAGRAMS (CONTINUED)

100-Pin TQFP

RG15 ]

Vop []

RE5 []

RE6 []

RE7 [

RC1 [

RC2 ]

RC3 ]

RC4 ]

RG6 []

RG7 []

RG8 []

MCLR [

RG9 []

Vss []

Vop []

RA0 [

RE8 []

RE9 []
PGEC3/AN5/RP18/VBUSON/C1INA/CN7/RB5 [
PGED3/AN4/RP28/USBOEN/C1INB/CN6/RB4 [ |
RB3 []

RB2 ]
PGEC1/AN1/RP1/CN3/RB1 [_|
PGED1/ANO/RPO/CN2/RB0 [_|

PIC24FJXXXGB110

86 1 ENVREG
85 [ 1 VCAP/VDDCORE

[ 1Vss
[ ]RC14
] RC13
[ ] RDO
[ ] RD11
] RD10
1 RD9
1 RD8
[ 1RA15
[ 1 RA14
[ ] Vss
[ ]RC15
__1RC12
__1VbD
[ 1RAS
[ 1 RA4
[ 1RA3
[ 1RA2
[ 1 D+/RG2
[ 1D-/RG3
[ 1Vuse
[ 1VBuUs
1 RF8
| 1RF2
[ 1RF3

PGEC2/AN6/RP6/CN24/RB6 | 26
PGED2/AN7/RP7/RCVICN25/RB7 [ 27

RA9 128
RA10 129
Avpp |30
Avss [ 31

RB8 []32

RB9 ]33
RB10 ] 34

DS39907A-page 8

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

24 Memory Map

The program memory map extends from 000000h to
FFFFFEh. Code storage is located at the base of the
memory map and supports up to 87K instruction words
(about 256 Kbytes). Table 2-2 shows the program
memory size and number of erase and program blocks
present in each device variant. Each erase block, or
page, contains 512 instructions, and each program
block, or row, contains 64 instructions.

Locations 800000h through 8007FEh are reserved for
executive code memory. This region stores the
programming executive and the debugging executive.
The programming executive is used for device pro-
gramming and the debugging executive is used for
in-circuit debugging. This region of memory can not be
used to store user code.

The last three implemented program memory locations
are reserved for the Flash Configuration Words. In
PIC24FJXXXGB1 family devices, the last three loca-
tions are used for the Configuration Words; for
PIC24FJXXXGA1 devices, the last two locations are
used. The reserved addresses are shown in Table 2-2.

Locations FFO000h and FF0002h are reserved for the
Device ID registers. These bits can be used by the
programmer to identify what device type is being
programmed. They are described in Section 6.1
“Device ID”. The Device ID registers read out
normally, even after code protection is applied.

Figure 2-9 shows the memory map for the
PIC24FJXXXGA1/GB1 family variants.

TABLE 2-2: CODE MEMORY SIZE AND FLASH CONFIGURATION WORD LOCATIONS FOR
PIC24FJXXXGA1/GB1 DEVICES
_ User Mem_org_/ Write Erase Configuration Word Addresses
Device Address Limit Blocks Blocks
(Instruction Words) 1 2 3
PIC24FJ64GB1XX 00ABFEh (22K) 344 43 00ABFEh 00ABFCh 00ABFAh
PIC24FJ128GA1XX
0157FEh (44K) 688 86 0157FEh 0157FCh 0157FAh
PIC24FJ128GB1XX
PIC24FJ192GA1XX
020BFEh (67K) 1048 131 020BFEh 020BFCh 020BFA
PIC24FJ192GB1XX
PIC24FJ256GA1XX
02ABFEh (87K) 1368 171 02ABFEh 02ABFCh 02ABFA
PIC24FJ256GB1XX

© 2007 Microchip Technology Inc.

DS39907A-page 9




PIC24F JXXXGA1/GB1

FIGURE 2-9:

PROGRAM MEMORY MAP

y

User Memory
Space

A

User Flash
Code Memory("

Flash Configuration Words

Reserved

Configuration Memory
Space

Executive Code Memory
(1024 x 24-bit)

Diagnostic and Calibration
Words
(8 x 24-bit)

Reserved

Device ID
(2 x 16-bit)

Reserved

000000h

0XXXF9h(1
OXXXFAR(

OXXXFER(
0XXX00h("

7FFFFEh
800000h

8007FAh
8007F0h

800800h

FEFFFEh
FF0000h
FF0002h
FF0004h
FFFFFEh

Note 1: The size and address boundaries for user Flash code memory are device dependent. See Table 2-2 for details.

DS39907A-page 10

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

3.0 DEVICE PROGRAMMING - ICSP

ICSP mode is a special programming protocol that
allows you to read and write to the memory of
PIC24FJXXXGA1/GB1 devices. The ICSP mode is the
most direct method used to program the device; note,
however, that Enhanced ICSP is faster. ICSP mode
also has the ability to read the contents of executive
memory to determine if the programming executive is
present. This capability is accomplished by applying
control codes and instructions, serially to the device,
using pins PGCx and PGDx.

In ICSP mode, the system clock is taken from the
PGCx pin, regardless of the device’s oscillator Config-
uration bits. All instructions are shifted serially into an
internal buffer, then loaded into the Instruction Register
(IR) and executed. No program fetching occurs from
internal memory. Instructions are fed in 24 bits at a
time. PGDx is used to shift data in and PGCx is used
as both the serial shift clock and the CPU execution
clock.

Note: During ICSP operation, the operating
frequency of PGCx must not exceed

FIGURE 3-1: HIGH-LEVEL ICSP™

PROGRAMMING FLOW

10 MHz.

3.1 Overview of the Programming
Process

Figure 3-1 shows the high-level overview of the
programming process. After entering ICSP mode, the
first action is to Chip Erase the device. Next, the code
memory is programmed, followed by the device
Configuration registers. Code memory (including the
Configuration registers) is then verified to ensure that
programming was successful. Then, program the
code-protect Configuration bits, if required.

Enter ICSP™

l

Perform Chip
Erase

l

Program Memory

1

Verify Program

l

Program Configuration Bits

l

Verify Configuration Bits

1

Exit ICSP

!

3.2 ICSP Operation

Upon entry into ICSP mode, the CPU is Idle. Execution
of the CPU is governed by an internal state machine. A
4-bit control code is clocked in using PGCx and PGDx,
and this control code is used to command the CPU (see
Table 3-1).

The SIX control code is used to send instructions to the
CPU for execution, and the REGOUT control code is
used to read data out of the device via the VISI register.

TABLE 3-1: CPU CONTROL CODES IN
ICSP™ MODE
4-Bit . .y

Control Code Mnemonic Description

0000b SIX Shift in 24-bit instruction
and execute.

0001b REGOUT  [Shift out the VISI (0784h)
register.

0010b-1111b|N/A Reserved.

© 2007 Microchip Technology Inc.

DS39907A-page 11




PIC24F JXXXGA1/GB1

3.2.1 SIX SERIAL INSTRUCTION
EXECUTION

The SIX control code allows execution of PIC24F family
assembly instructions. When the SIX code is received,
the CPU is suspended for 24 clock cycles, as the instruc-
tion is then clocked into the internal buffer. Once the
instruction is shifted in, the state machine allows it to be
executed over the next four PGC clock cycles. While the

Coming out of Reset, the first 4-bit control code is
always forced to SIX and a forced NOP instruction is
executed by the CPU. Five additional PGCx clocks are
needed on start-up, resulting in a 9-bit SIX command
instead of the normal 4-bit SIX command.

After the forced SIX is clocked in, ICSP operation
resumes as normal. That is, the next 24 clock cycles
load the first instruction word to the CPU.

received |nstruct|c?;t1 is executed, the state machine Note:  To account for this forced NOP, all example
S|.multaneously shifts in the next 4-bit command (see code in this specification begins with a
Figure 3-2). NOP to ensure that no data is lost.
FIGURE 3-2: SIX SERIAL EXECUTION
~ T~
/ AN . P1.
-—
1 2 3 4/5 6 7 8 X 1 2 3 .4 .5 6 7 8 17 18 19 20 21 22 23 24 1 2 3 4
o JUUHUUUUL TUUUHUTUYUUUUUUULIUU LT
L p3 | 424 PIA-s 'w— 240
; ' ' \ } P']B—»: '<—
P2 1.
o /
PGDXOOOO\OOOOO/LSBXXXXXXX)(((XXXXXXMSB o o0 o0 o
)J
Y S 7 T~ —
Execute PC -1, ? 24-Bit Instruction Fetch Execute 24-Bit
CFetct? (S:I)é Only for Instruction, Fetch
ontrol Code Program Next Control Code
Memory Entry
PGDx = Input
3.2.11 Differences Between Execution of During normal operation, the CPU automatically

SIX and Normal Instructions

There are some differences between executing instruc-
tions normally and using the SIX ICSP command. As a
result, the code examples in this specification may not
match those for performing the same functions during
normal device operation.

The important differences are:

» Two-word instructions require two SIX operations
to clock in all the necessary data.

Examples of two-word instructions are GOTO and
CALL.

» Two-cycle instructions require two SIX operations.

The first SIX operation shifts in the instruction and
begins to execute it. A second SIX operation —which
should shift in a NOP to avoid losing data — provides
the CPU clocks required to finish executing the
instruction.

Examples of two-cycle instructions are table read
and table write instructions.

» The CPU does not automatically stall to account
for pipeline changes.

A CPU stall occurs when an instruction modifies a
register that is used for Indirect Addressing by the
following instruction.

will force a NOP while the new data is read. When
using ICSP, there is no automatic stall, so any
indirect references to a recently modified
register should be preceded by a NOP.

For example, the instructions, MOV #0x0, W0 and
MOV [WO0],Wl, must have a NOP inserted
between them.

If a two-cycle instruction modifies a register that is
used indirectly, it will require two following NOPs: one
to execute the second half of the instruction and a
second to stall the CPU to correct the pipeline.

Instructions such as TBLWTL [WO++], [W1]
should be followed by two NOPs.

» The device Program Counter (PC) continues to
automatically increment during ICSP instruction
execution, even though the Flash memory is not
being used.

As a result, the PC may be incremented to point to
invalid memory locations. Invalid memory spaces
include unimplemented Flash addresses and the
vector space (locations 0x0 to Ox1FF).

If the PC points to these locations, the device will
reset, possibly interrupting the ICSP operation. To
prevent this, instructions should be periodically
executed to reset the PC to a safe space. The opti-
mal method to accomplish this is to perform a
GOTO 0x200.

DS39907A-page 12

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

3.2.2 REGOUT SERIAL INSTRUCTION
EXECUTION

The REGOUT control code allows for data to be
extracted from the device in ICSP mode. It is used to
clock the contents of the VISI register, out of the device,
over the PGDx pin. After the REGOUT control code is
received, the CPU is held Idle for 8 cycles. After these
8 cycles, an additional 16 cycles are required to clock the
data out (see Figure 3-3).

The REGOUT code is unique because the PGDx pin is
an input when the control code is transmitted to the
device. However, after the control code is processed,
the PGDx pin becomes an output as the VISI register is
shifted out.

Note 1: After the contents of VISI are shifted out,
the  PIC24FJXXXGA1/GB1  devices
maintain PGDx as an output until the first
rising edge of the next clock is received.

2: Data changes on the falling edge and
latches on the rising edge of PGCx. For
all data transmissions, the Least
Significant bit (LSb) is transmitted first.

FIGURE 3-3: REGOUT SERIAL EXECUTION
1.2 3 4 1.2 7 8 1ﬁ3456111213141516 1.2 3 4
PGCx kﬁ 5
P4 t . P4A

-~ " P5 !
' . '-<—>I

pebx  /1\ 0 0o o

v \ J

{1 (200 N Naokanfazkaa)aalsd 0 0 o o

'

o

Y
Execute Previous Instruction, CPU Held in Idle
Fetch REGOUT Control Code

Shift Out VISI Register<15:0>

N Y
No Execution Takes Place,
Fetch Next Control Code

PGDx = Input

PGDx = Output PGDx = Input

© 2007 Microchip Technology Inc.

DS39907A-page 13



PIC24F JXXXGA1/GB1

3.3 Entering ICSP Mode

As shown in Figure 3-4, entering ICSP Program/Verify
mode requires three steps:

1. MCLR is briefly driven high, then low.
2. A 32-bit key sequence is clocked into PGDx.

3. MCLR is then driven high within a specified
period of time and held.

The programming voltage applied to MCLR is VIH,
which is essentially VDD in the case of
PIC24FJXXXGA1/GB1 devices. There is no minimum
time requirement for holding at VIH. After VIH is
removed, an interval of at least P18 must elapse before
presenting the key sequence on PGDx.

FIGURE 3-4: ENTERING ICSP™ MODE

The key sequence is a specific 32-bit pattern:
‘0100 1101 0100 0011 0100 1000 0101 0001’
(more easily remembered as 4D434851h in hexa-
decimal). The device will enter Program/Verify mode only
if the sequence is valid. The Most Significant bit (MSb) of
the most significant nibble must be shifted in first.

Once the key sequence is complete, VIH must be
applied to MCLR and held at that level for as long as
Program/Verify mode is to be maintained. An interval of
at least time, P19 and P7, must elapse before present-
ing data on PGDx. Signals appearing on PGCx before
P7 has elapsed will not be interpreted as valid.

On successful entry, the program memory can be
accessed and programmed in serial fashion. While in
ICSP mode, all unused |/Os are placed in the
high-impedance state.

P6

' p18 : — > = P1A
-—

' '« P1B

e P4 L1 PT
_ ! - - - -VH VIH- - - - - -
MCLR VAR . / .
VDD / ' X : !
' | Program/Verify Entry Code = 4D434851h ! I
PGDx ! o/ 1\No o /1 o o o/ 1\ X
' b31 b30 b29 b28 b27 b3 b2 b1 b0 : :
PGCx X

DS39907A-page 14

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

34 Flash Memory Programming in
ICSP Mode

3.4.1 PROGRAMMING OPERATIONS

Flash memory write and erase operations are controlled
by the NVMCON register. Programming is performed by
setting NVMCON to select the type of erase operation
(Table 3-2) or write operation (Table 3-3) and initiating
the programming by setting the WR control bit
(NVMCON<15>).

In ICSP mode, all programming operations are
self-timed. There is an internal delay between the user
setting the WR control bit and the automatic clearing of
the WR control bit when the programming operation
is complete. Please refer to Section 7.0 “AC/DC
Characteristics and Timing Requirements” for
information about the delays associated with various
programming operations.

TABLE 3-2: NVMCON ERASE
OPERATIONS
NVMCON .
Value Erase Operation
404Fh Erase all code memory, executive

memory and Configuration registers
(does not erase Unit ID or Device ID
registers).

4042h Erase a page of code memory or
executive memory.

TABLE 3-3: NVMCON WRITE
OPERATIONS
NVMCON . _
Value Write Operation

4003h Write a Configuration Word register.

4001h Program 1 row (64 instruction words) of
code memory or executive memory.

3.4.2 STARTING AND STOPPING A
PROGRAMMING CYCLE

The WR bit (NVMCON<15>) is used to start an erase or
write cycle. Setting the WR bit initiates the programming
cycle.

All erase and write cycles are self-timed. The WR bit
should be polled to determine if the erase or write cycle
has been completed. Starting a programming cycle is
performed as follows:

BSET NVMCON, #WR

3.5 Erasing Program Memory

The procedure for erasing program memory (all of code
memory, data memory, executive memory and
code-protect bits) consists of setting NVMCON to
404Fh and executing the programming cycle.

A Chip Erase can erase all of user memory or all of both
the user and configuration memory. A table write
instruction should be executed prior to performing the
Chip Erase to select which sections are erased.

When this table write instruction is executed:

« If the TBLPAG register points to user space (is
less than 0x80), the Chip Erase will erase only
user memory.

 If TBLPAG points to configuration space (is
greater than or equal to 0x80), the Chip Erase will
erase both user and configuration memory.

If configuration memory is erased, the internal
oscillator Calibration Word, located at 0x807FE,
will be erased. This location should be stored prior
to performing a whole Chip Erase and restored
afterward to prevent internal oscillators from
becoming uncalibrated.

Figure 3-5 shows the ICSP programming process for
performing a Chip Erase. This process includes the
ICSP command code, which must be transmitted (for
each instruction), Least Significant bit first, using the
PGCx and PGDx pins (see Figure 3-2).

Note: Program memory must be erased before
writing any data to program memory.

FIGURE 3-5: CHIP ERASE FLOW

Write 404Fh to NVMCON SFR

Set the WR bit to Initiate Erase

Delay P11 + P10 Time

( Done )

© 2007 Microchip Technology Inc.

DS39907A-page 15



PIC24F JXXXGA1/GB1

TABLE 3-4: SERIAL INSTRUCTION EXECUTION FOR CHIP ERASE
Command Data Descriotion
(Binary) (Hex) P
Step 1: Exit the Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP
Step 2: Set the NVMCON to erase all program memory.
0000 2404FA MOV #0x404F, W10
0000 883B0A MOV wW1l0, NVMCON
Step 3: Set TBLPAG and perform dummy table write to select what portions of memory are erased.
0000 200000 MOV #<PAGEVAL>, WO
0000 880190 MOV W0, TBLPAG
0000 200000 MOV #0x0000, WO
0000 BB080O TBLWTL WO, [WO]
0000 000000 NOP
0000 000000 NOP
Step 4: |Initiate the erase cycle.
0000 A8E761 BSET NVMCON, #WR
0000 000000 NOP
0000 000000 NOP
Step 5: Repeat this step to poll the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.
0000 040200 GOTO 0x200
0000 000000 NOP
0000 803B02 MOV NVMCON, W2
0000 883C22 MOV W2, VISI
0000 000000 NOP
0001 <VISI> Clock out contents of the VISI register.
0000 000000 NOP

DS39907A-page 16

© 2007 Microchip Technology Inc.




PIC24F JXXXGA1/GB1

3.6 Writing Code Memory

The procedure for writing code memory is the same as
the procedure for writing the Configuration registers,
except that 64 instruction words are programmed at a
time. To facilitate this operation, working registers,
WO0:W5, are used as temporary holding registers for the
data to be programmed.

Table 3-5 shows the ICSP programming details, includ-
ing the serial pattern with the ICSP command code
which must be transmitted, Least Significant bit first,
using the PGCx and PGDx pins (see Figure 3-2).

In Step 1, the Reset vector is exited. In Step 2, the
NVMCON register is initialized for programming a full
row of code memory. In Step 3, the 24-bit starting des-
tination address for programming is loaded into the
TBLPAG register and W7 register. (The upper byte of
the starting destination address is stored in TBLPAG
and the lower 16 bits of the destination address are
stored in W7.)

To minimize the programming time, a packed instruction
format is used (Figure 3-6).

In Step 4, four packed instruction words are stored in
working registers, WO:WS5, using the MOV instruction,
and the Read Pointer, WG, is initialized. The contents of
WO:W5 (holding the packed instruction word data) are
shown in Figure 3-6.

In Step 5, eight TBLWT instructions are used to copy the
data from WO:WS5 to the write latches of code memory.
Since code memory is programmed 64 instruction
words at a time, Steps 4 and 5 are repeated 16 times to
load all the write latches (Step 6).

After the write latches are loaded, programming is
initiated by writing to the NVMCON register in Steps 7
and 8. In Step 9, the internal PC is reset to 200h. This
is a precautionary measure to prevent the PC from
incrementing into unimplemented memory when large
devices are being programmed. Lastly, in Step 10,
Steps 3-9 are repeated until all of code memory is
programmed.

FIGURE 3-6: PACKED INSTRUCTION
WORDS IN W0:W5
15 8 7 0
Wo LSWO
W1 MSB1 \ MSBO
w2 LSW1
w3 LSW2
w4 MSB3 \ MSB2
w5 LSW3

TABLE 3-5: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY
Command Data Descriotion
(Binary) (Hex) P

Step 1: Exit the Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP

Step 2: Set the NVMCON to program 64 instruction words.
0000 24001A MOV #0x4001, W10
0000 883B0OA MOV W10, NVMCON

Step 3: Initialize the Write Pointer (W7) for TBLWT instruction.

0000 200xx0 MOV

0000 2XXXX7 MOV

#<DestinationAddress23:16>, WO
0000 880190 MOV WO, TBLPAG
#<DestinationAddressl5:0>, W7

Step 4: Load WO:W5 with the next 4 instruction words to program.

0000 2xxxx0 MOV #<LSWO>, WO
0000 2xxxx1 MOV #<MSB1:MSBO>, Wl
0000 2XXXX2 MOV #<LSW1>, W2
0000 2xxxx3 MOV #<LSW2>, W3
0000 2xxxx4 MOV #<MSB3:MSB2>, W4
0000 2xxxx5 MOV #<LSW3>, W5

© 2007 Microchip Technology Inc. DS39907A-page 17



PIC24F JXXXGA1/GB1

TABLE 3-5: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

Command Data

(Binary) (Hex) Description

Step 5: Set the Read Pointer (W6) and load the (next set of) write latches.
0000 EB0300 CLR W6
0000 000000 NOP
0000 BBOBB6 TBLWTL [W6++], [W7]
0000 000000 NOP
0000 000000 NOP
0000 BBDBB6 TBLWTH.B  [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BBEBB6 TBLWTH.B  [W6++], [++W7]
0000 000000 NOP
0000 000000 NOP
0000 BB1BB6 TBLWTL [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BBOBB6 TBLWTL [W6++], [W7]
0000 000000 NOP
0000 000000 NOP
0000 BBDBB6 TBLWTH.B  [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BBEBB6 TBLWTH.B  [W6++], [++W7]
0000 000000 NOP
0000 000000 NOP
0000 BB1BB6 TBLWTL [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP

Step 6: Repeat Steps 4 and 5, sixteen times, to load the write latches for 64 instructions.

Step 7: Initiate the write cycle.

0000 A8E761 BSET NVMCON, #WR
0000 000000 NOP
0000 000000 NOP
Step 8: Repeat this step to poll the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.
0000 040200 GOTO 0x200
0000 000000 NOP
0000 803B02 MOV NVMCON, W2
0000 883C22 MOV W2, VISI
0000 000000 NOP
0001 <VISI> Clock out contents of the VISI register.
0000 000000 NOP
Step 9: Reset device internal PC.
0000 040200 GOTO 0x200
0000 000000 NOP

Step 10: Repeat Steps 3-9 until all code memory is programmed.

DS39907A-page 18 © 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

FIGURE 3-7: PROGRAM CODE MEMORY FLOW

( Start )

N=1
LoopCount =0

Configure
Device for
Writes

Load 2 Bytes
N=N+1 to Write
Buffer at <Addr>

l

All
bytes
written?

N=1
LoopCount = Start Write Sequence
LoopCount + 1 and Poll for WR bit
to be Cleared

No All
locations

done?

Done

© 2007 Microchip Technology Inc. DS39907A-page 19



PIC24F JXXXGA1/GB1

3.7 Writing Configuration Words

Device configuration for PIC24FJXXXGA1/GB1 devices
is stored in Flash Configuration Words at the end of the
user space program memory, and in multiple register
Configuration Words located in the test space. These
registers reflect values read at any Reset from program
memory locations. The values for the Configuration
Words for the default device configurations are listed in
Table 3-6.

The values can be changed only by programming the
content of the corresponding Flash Configuration Word
and resetting the device. The Reset forces an automatic
reload of the Flash stored configuration values by
sequencing through the dedicated Flash Configuration
Words and transferring the data into the Configuration
registers.

For the PIC24FJXXXGA1/GB1 families, certain Config-
uration bits have default states that must always be
maintained to ensure device functionality, regardless of
the settings of other Configuration bits. These bits and
their values are listed in Table 3-7.

To change the values of the Flash Configuration Word
once it has been programmed, the device must be Chip
Erased, as described in Section 3.5 “Erasing Program
Memory”, and reprogrammed to the desired value. Itis
not possible to program a ‘0’ to ‘1’, but they may be
programmed from a ‘1’ to ‘0’ to enable code protection.

TABLE 3-6: DEFAULT CONFIGURATION
REGISTER VALUES
Address Name Default Value
Last Word Ccwi1 7FFFh
Last Word — 2 Ccw2 F7FFh
Last Word — 4 Cw3 FFFFh
TABLE 3-7: RESERVED CONFIGURATION
BIT LOCATIONS
Bit Location Value
CW1<15> 0
Cw1<10> 1
Cw2<11> 0
cw2<2>(1 1

Note 1: This bit is implemented as I2C2SEL on
PIC24FJXXXGA110 devices, and should
be programmed as required.

Table 3-8 shows the ICSP programming details for pro-
gramming the Configuration Word locations, including
the serial pattern with the ICSP command code which
must be transmitted, Least Significant bit first, using the
PGCx and PGDx pins (see Figure 3-2).

In Step 1, the Reset vector is exited. In Step 2, the
NVMCON register is initialized for programming of
code memory. In Step 3, the 24-bit starting destination
address for programming is loaded into the TBLPAG
register and W7 register.

The TBLPAG register must be loaded with the
following:

* 64 Kbyte devices: 00h
* 128, 192 and 256 Kbyte devices: 01h

To verify the data by reading the Configuration Words
after performing the write in order, the code protection
bits initially should be programmed to a ‘1’ to ensure
that the verification can be performed properly. After
verification is finished, the code protection bit can be
programmed to a ‘0’ by using a word write to the
appropriate Configuration Word.

DS39907A-page 20

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

TABLE 3-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION REGISTERS
Command Data Description
(Binary) (Hex) P
Step 1: Exit the Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP
Step 2: Initialize the Write Pointer (W7) for the TBLWT instruction.
0000 2xxxx7 | mov <CW2Address15:0>, W7
Step 3: Set the NVMCON register to program CW2.
0000 24003A MOV #0x4003, W10
0000 883B0A MOV W10, NVMCON
Step 4: Initialize the TBLPAG register.
0000 200xx0 MOV <CW2Address23:16>, WO
0000 880190 MOV WO, TBLPAG
Step 5: Load the Configuration register data to W6.
0000 2XXXX6 MOV #<CW2 VALUE>, W6
Step 6: Write the Configuration register data to the write latch and increment the Write Pointer.
0000 000000 NOP
0000 BB1B86 TBLWTL W6, [W7++]
0000 000000 NOP
0000 000000 NOP
Step 7: Initiate the write cycle.
0000 A8E761 BSET NVMCON, #WR
0000 000000 NOP
0000 000000 NOP
Step 8: Repeat this step to poll the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.
0000 040200 GOTO 0x200
0000 000000 NOP
0000 803B02 MOV NVMCON, W2
0000 883C22 MOV W2, VISI
0000 000000 NOP
0001 <VISI> Clock out contents of the VISI register.
0000 000000 NOP
Step 9: Reset device internal PC.
0000 040200 GOTO 0x200
0000 000000 NOP

Step 10: Repeat Steps 5-9 to write CW1.

© 2007 Microchip Technology Inc.

DS39907A-page 21




PIC24F JXXXGA1/GB1

3.8 Reading Code Memory

Reading from code memory is performed by executing
a series of TBLRD instructions and clocking out the data
using the REGOUT command.

Table 3-9 shows the ICSP programming details for
reading code memory. In Step 1, the Reset vector is
exited. In Step 2, the 24-bit starting source address for
reading is loaded into the TBLPAG register and W6
register. The upper byte of the starting source address
is stored in TBLPAG and the lower 16 bits of the source
address are stored in W6.

To minimize the reading time, the packed instruction
word format that was utilized for writing is also used for
reading (see Figure 3-6). In Step 3, the Write Pointer,
W7, is initialized. In Step 4, two instruction words are
read from code memory and clocked out of the device,
through the VISI register, using the REGOUT
command. Step 4 is repeated until the desired amount
of code memory is read.

TABLE 3-9: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY
Command Data Description
(Binary) (Hex) P
Step 1: Exit Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP

Step 2: Initialize TBLPAG and the Read Pointer (W6) for TBLRD instruction.

0000 200xx0 MOV

0000 2XXXX6 MOV

#<SourceAddress23:16>, WO
0000 880190 MOV W0, TBLPAG
#<SourceAddressl5:0>, W6

Step 3: Initialize the Write Pointer (W7) to point to the VISI register.

0000 207847 MOV
0000 000000 NOP

#VISI,

the REGOUT command.

Step 4: Read and clock out the contents of the next two locations of code memory, through the VISI register, using

Clock out contents of VISI register

[W7++]

(W7--]

Clock out contents of VISI register

(w7]

Clock out contents of VISI register

0000 BAOB96 TBLRDL (wel,
0000 000000 NOP

0000 000000 NOP

0001 <VISI>

0000 000000 NOP

0000 BADBB6 TBLRDH.B  [W6++],
0000 000000 NOP

0000 000000 NOP

0000 BAD3D6 TBLRDH.B  [++W6],
0000 000000 NOP

0000 000000 NOP

0001 <VISI>

0000 000000 NOP

0000 BAOBB6 TBLRDL [(W6++1,
0000 000000 NOP

0000 000000 NOP

0001 <VISI>

0000 000000 NOP

Step 5: Repeat Step 4 until all desired code memory is read.

Step 6: Reset device internal PC.

0000 040200 GOTO 0x200
0000 000000 NOP

DS39907A-page 22

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

3.9 Reading Configuration Words

The procedure for reading configuration memory is
similar to the procedure for reading code memory,
except that 16-bit data words are read (with the upper
byte read being all ‘0’s) instead of 24-bit words.
Configuration Words are read one register at a time.

Table 3-10 shows the ICSP programming details for
reading the Configuration Words. Note that the
TBLPAG register must be loaded with 00h for 64 Kbyte
and below devices and 01h for 128 Kbyte and larger
devices (the upper byte address of configuration mem-
ory), and the Read Pointer, W6, is initialized to the
lower 16 bits of the Configuration Word location.

TABLE 3-10: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY
Command Data Descriotion
(Binary) (Hex) P

Step 1: Exit Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP

Step 2: Initialize TBLPAG, the Read Pointer (W6) and the Write Pointer (W7) for TBLRD instruction.
0000 200xx0 MOV <CW3Address23:16>, WO
0000 880190 MOV W0, TBLPAG
0000 2xxxXT MOV <CW3Addressl5:0>, W6
0000 207847 MOV #VISI, W7
0000 000000 NOP

Step 3: Read the Configuration

register and write it to the VISI register (located at 784h), and clock out the

VISI register using the REGOUT command.
0000 BAOBB6 TBLRDL [We++]1, [W7]
0000 000000 NOP
0000 000000 NOP
0001 <VISI> Clock out contents of VISI register
0000 000000 NOP

Step 4: Repeat Step 3 twice to read Configuration Word 2 and Configuration Word 1.

Step 5: Reset device internal PC.

0000
0000

040200

000000

GOTO
NOP

0x200

© 2007 Microchip Technology Inc.

DS39907A-page 23




PIC24F JXXXGA1/GB1

3.10 Verify Code Memory and
Configuration Word

The verify step involves reading back the code memory
space and comparing it against the copy held in the
programmer’s buffer. The Configuration registers are
verified with the rest of the code.

The verify process is shown in the flowchart in
Figure 3-8. Memory reads occur a single byte at a time,
so two bytes must be read to compare against the word
in the programmer’s buffer. Refer to Section 3.8
“Reading Code Memory” for implementation details
of reading code memory.

Note: Because the Configuration registers
include the device code protection bit,
code memory should be verified immedi-
ately after writing if code protection is
enabled. This is because the device will
not be readable or verifiable if a device
Reset occurs after the code-protect bit in
CW1 has been cleared.

FIGURE 3-8: VERIFY CODE

MEMORY FLOW

Set TBLPTR =0

Read Low Byte
with Post-Increment

Read High Byte
with Post-Increment

l

Failure,
Report
Error

Word = Expect

All
code memory
verified?

l Yes

Done

3.11 Reading the Application ID Word

The Application ID Word is stored at address 8005BEh
in executive code memory. To read this memory
location, you must use the SIX control code to move
this program memory location to the VISI register.
Then, the REGOUT control code must be used to clock
the contents of the VISI register out of the device. The
corresponding control and instruction codes that must
be serially transmitted to the device to perform this
operation are shown in Table 3-11.

After the programmer has clocked out the Application
ID Word, it must be inspected. If the Application ID has
the value, BBh, the programming executive is resident
in memory and the device can be programmed using
the mechanism described in Section 4.0 “Device
Programming — Enhanced ICSP”. However, if the
Application ID has any other value, the programming
executive is not resident in memory; it must be loaded
to memory before the device can be programmed. The
procedure for loading the programming executive to
memory is described in Section 5.4 “Programming
the Programming Executive to Memory”.

3.12 Exiting ICSP Mode

Exiting Program/Verify mode is done by removing VIH
from MCLR, as shown in Figure 3-9. The only require-
ment for exit is that an interval, P16, should elapse
between the last clock and program signals on PGCx
and PGDx before removing VIH.

FIGURE 3-9: EXITING ICSP™ MODE
P16 . pq7 .
L VH
MCLR \ X
VDD

PGD = Input

DS39907A-page 24

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

TABLE 3-11: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD
Command Data Descriotion
(Binary) (Hex) P
Step 1: Exit Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP
Step 2: Initialize TBLPAG and the Read Pointer (WO0) for TBLRD instruction.
0000 200800 MOV #0x80, WO
0000 880190 MOV WO, TBLPAG
0000 205BEO MOV #0x5BE, WO
0000 207841 MOV #VISI, Wl
0000 000000 NOP
0000 BA0890 TBLRDL [WO], [W1]
0000 000000 NOP
0000 000000 NOP
Step 3: Output the VISI register using the REGOUT command.
0001 <VISI> Clock out contents of the VISI register
0000 000000 NOP

© 2007 Microchip Technology Inc.

DS39907A-page 25



PIC24F JXXXGA1/GB1

4.0 DEVICE PROGRAMMING -
ENHANCED ICSP

This section discusses programming the device
through Enhanced ICSP and the programming execu-
tive. The programming executive resides in executive
memory (separate from code memory) and is executed
when Enhanced ICSP Programming mode is entered.
The programming executive provides the mechanism
for the programmer (host device) to program and verify
the PIC24FJXXXGA1/GB1 devices using a simple
command set and communication protocol. There are
several basic functions provided by the programming
executive:

* Read Memory

* Erase Memory

* Program Memory

» Blank Check

* Read Executive Firmware Revision

The programming executive performs the low-level
tasks required for erasing, programming and verifying
a device. This allows the programmer to program the
device by issuing the appropriate commands and data.
Table 4-1 summarizes the commands. A detailed
description for each command is provided in
Section 5.2 “Programming Executive Commands”.

TABLE 4-1: COMMAND SET SUMMARY

Command Description

SCHECK Sanity Check

READC Read Device ID Registers

READP Read Code Memory

PROGP Program One Row of Code Memory
and Verify

PROGW Program One Word of Code Memory
and Verify

QBLANK Query if the Code Memory is Blank

QVER Query the Software Version

The programming executive uses the device’s data
RAM for variable storage and program execution. After
the programming executive has run, no assumptions
should be made about the contents of data RAM.

4.1 Overview of the Programming
Process

Figure 4-1 shows the high-level overview of the
programming process. After entering Enhanced ICSP
mode, the programming executive is verified. Next, the
device is erased. Then, the code memory is
programmed, followed by the configuration locations.
Code memory (including the Configuration registers) is
then verified to ensure that programming was successful.

After the programming executive has been verified
inmemory (or loaded if not present), the
PIC24FJXXXGA1/GB1 families can be programmed
using the command set shown in Table 4-1.

FIGURE 4-1: HIGH-LEVEL ENHANCED

ICSP™ PROGRAMMING FLOW

Enter Enhanced ICSP™

l

Perform Chip
Erase

l

Program Memory

l

Verify Program

l

Program Configuration Bits

l

Verify Configuration Bits

|

Exit Enhanced ICSP

( Done )

4.2 Confirming the Presence of the
Programming Executive

Before programming can begin, the programmer must
confirm that the programming executive is stored in
executive memory. The procedure for this task is
shown in Figure 4-2.

First, In-Circuit Serial Programming mode (ICSP) is
entered. Then, the unique Application ID Word stored in
executive memory is read. If the programming executive
is resident, the Application ID Word is BBh, which means
programming can resume as normal. However, if the
Application ID Word is not BBh, the programming
executive must be programmed to executive code
memory using the method described in Section 5.4
“Programming the Programming Executive to
Memory”.

Section 3.0 “Device Programming — ICSP” describes
the ICSP programming method. Section 3.11 “Reading
the Application ID Word” describes the procedure for
reading the Application ID Word in ICSP mode.

DS39907A-page 26

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

FIGURE 4-2: CONFIRMING PRESENCE 4.3 Entering Enhanced ICSP Mode
g;EPCRL?r?\ﬁEAMMING As shown in Figure 4-3, entering Enhanced ICSP

Program/Verify mode requires three steps:
1. The MCLR pin is briefly driven high, then low.

2. A 32-bit key sequence is clocked into PGDx.
3. MCLR is then driven high within a specified

| Enter ICSP™ Mode | period of time and held.
% The programming voltage applied to MCLR is VIH,
which is essentially Vbb in the case of
Apﬁﬁggﬁg‘fm PIC24FJXXXGA1/GB1 devices. There is no minimum
from Address time requirement for holding at VIH. After VIH is
807F0h removed, an interval of at least P18 must elapse before
* presenting the key sequence on PGDx.

The key sequence is a specific 32-bit pattern:
‘0100 1101 0100 0011 0100 1000 0101 0000’
(more easily remembered as 4D434850h in hexa-
decimal format). The device will enter Program/Verify
mode only if the key sequence is valid. The Most

Y Significant bit (MSb) of the most significant nibble must
Prog. Executive is Prog. Executive must be shifted in first.

Resident in Memory be Programmed
I Once the key sequence is complete, VIH must be

Y applied to MCLR and held at that level for as long as
( Finish ) Program/Verify mode is to be maintained. An interval of

atleast time P19 and P7 must elapse before presenting
data on PGDx. Signals appearing on PGDx before P7
has elapsed will not be interpreted as valid.

Is
Application ID
BBh?

On successful entry, the program memory can be
accessed and programmed in serial fashion. While in
the Program/Verify mode, all unused 1/Os are placed in
the high-impedance state.

FIGURE 4-3: ENTERING ENHANCED ICSP™ MODE

o oy le‘_'/:

Program/Verify Entry Code = 4D434850h :
PGDx | 0o/ 1 \ 0 0/ 1 X...\ 0 0 0 O

b31 b30 b29 b28 b27 b3 b2 b1 b0 |
PGCx AVAVAVAVAVAVAVAYAWA N
! p1g | —= ~<P1A !
- P1B

© 2007 Microchip Technology Inc. DS39907A-page 27



PIC24F JXXXGA1/GB1

4.4 Blank Check

The term “Blank Check” implies verifying that the
device has been successfully erased and has no
programmed memory locations. A blank or erased
memory location is always read as ‘1.

The Device ID registers (FFO002h:FF0000h) can be
ignored by the Blank Check since this region stores
device information that cannot be erased. The device
Configuration registers are also ignored by the Blank
Check. Additionally, all unimplemented memory space
should be ignored by the Blank Check.

The QBLANK command is used for the Blank Check. It
determines if the code memory is erased by testing
these memory regions. A ‘BLANK’ or ‘NOT BLANK’
response is returned. If it is determined that the device
is not blank, it must be erased before attempting to
program the chip.

4.5 Code Memory Programming

4.5.1 PROGRAMMING METHODOLOGY

Code memory is programmed with the PROGP
command. PROGP programs one row of code memory
starting from the memory address specified in the
command. The number of PROGP commands
required to program a device depends on the number
of write blocks that must be programmed in the device.

A flowchart for programming the code memory of the
PIC24FJJXXXGA1/GB1 families is shown in Figure 4-4.
In this example, all 87K instruction words of a
256 Kbyte device are programmed. First, the number
of commands to send (called ‘RemainingCmds’ in the
flowchart) is set to 1368 and the destination address
(called ‘BaseAddress’) is set to ‘0’. Next, one write
block in the device is programmed with a PROGP
command. Each PROGP command contains data for
one row of code memory of the device. After the first
command is processed successfully, ‘RemainingCmds’
is decremented by 1 and compared with 0. Since there
are more PROGP commands to send, ‘BaseAddress’
is incremented by 80h to point to the next row of
memory.

On the second PROGP command, the second row is
programmed. This process is repeated until the entire
device is programmed. No special handling must be
performed when a panel boundary is crossed.

FIGURE 4-4: FLOWCHART FOR
PROGRAMMING CODE

MEMORY

BaseAddress = 00h
RemainingCmds = 1368

'

Send PROGP
» Command to Program
BaseAddress

Is
PROGP response
PASS?

No

RemainingCmds =
RemainingCmds — 1

BaseAddress = l
BaseAddress + 80h

ﬂk

Are
RemainingCmds
0?

No

A

- Failure
( Finish >@eportErroD

452 PROGRAMMING VERIFICATION

After code memory is programmed, the contents of
memory can be verified to ensure that programming
was successful. Verification requires code memory to
be read back and compared against the copy held in
the programmer’s buffer.

The READP command can be used to read back all of
the programmed code memory.

Alternatively, you can have the programmer perform
the verification after the entire device is programmed
using a checksum computation.

DS39907A-page 28

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

4.6 Configuration Bits Programming The descriptions for the Configuration bits in the Flash
Configuration Words are shown in Table 4-2.

4.6.1 OVERVIEW

The PIC24FJXXXGA1/GB1 families have Configura-
tion bits stored in the last three locations of imple-
mented program memory (see Table 2-2 for locations).
These bits can be set or cleared to select various
device configurations. There are three types of Config-
uration bits: system operation bits, code-protect bits

Note: Although not implemented with a specific
function, some Configuration bit positions
have default states that must always be
maintained to ensure device functionality,
regardless of the settings of other Config-
uration bits. Refer to Table 3-7 for a list of
these bit positions and their default states.

and unit ID bits. The system operation bits determine
the power-on settings for system level components,
such as oscillator and Watchdog Timer. The
code-protect bits prevent program memory from being
read and written.

TABLE 4-2:

PIC24FJXXXGA1/GB1 CONFIGURATION BITS DESCRIPTION

Bit Field

Register

Description

DEBUG

CW1<11>

Background Debug Enable bit

1 = Device will reset in User mode
0 = Device will reset in Debug mode

DISUVREG("

CW2<3>

Internal USB 3.3v Regulator Disable bit

1 = Regulator is disabled
0 = Regulator is enabled

FCKSM<1:0>

CW2<7:6>

Clock Switching Mode bits

1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled

FNOSC<2:0>

CW2<10:8>

Initial Oscillator Source Selection bits

111 = Internal Fast RC (FRCDIV) oscillator with postscaler

110 = Reserved

101 = Low-Power RC (LPRC) oscillator

100 = Secondary (SOSC) oscillator

011 = Primary (XTPLL, HSPLL, ECPLL) oscillator with PLL

010 = Primary (XT, HS, EC) oscillator

001 = Internal Fast RC (FRCPLL) oscillator with postscaler and PLL
000 = Fast RC (FRC) oscillator

FWDTEN

CW1<7>

Watchdog Timer Enable bit

1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled;
clearing the SWDTEN bit in the RCON register will have no effect)

0 = Watchdog Timer enabled/disabled by user software (LPRC can be
disabled by clearing the SWDTEN bit in the RCON register)

FWPSA

CW1<4>

Watchdog Timer Postscaler bit
1=1:128
0=1:32

GCP

CW1<13>

General Segment Code-Protect bit

1 = User program memory is not code-protected
0 = User program memory is code-protected

GWRP

CW1<12>

General Segment Write-Protect bit

1 = User program memory is not write-protected
0 = User program memory is write-protected

Note 1: Available on PIC24FJXXXGB1XX devices only.
2: Available on PIC24FJXXXGA110 devices only. On other devices, always maintain this bit as ‘1’.

© 2007 Microchip Technology Inc.

DS39907A-page 29



PIC24F JXXXGA1/GB1

TABLE 4-2: PIC24FJXXXGA1/GB1 CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field Register Description
12C2SEL(2) CW2<2> I12C2 Pin Select bit (PIC24FJXXXGA1XX devices only)
1 = Use SCL2/SDA2 pins for [2C™ module 2
0 = Use ASCL2/ASDA2 pins for 12C module 2
ICS1:1CS0 CW1<9,8> ICD Emulator Pin Placement Select bits
11 = Emulator functions are shared with PGEC1/PGED1
10 = Emulator functions are shared with PGEC2/PGED2
01 = Emulator functions are shared with PGEC3/PGED3
00 = Reserved; do not use
IESO CW2<15> Internal External Switchover bit
1 = Two-Speed Start-up enabled
0 = Two-Speed Start-up disabled
IOL1WAY CW2<4> IOLOCK Bit One-Way Set Enable bit
0 = The OSCCON<IOLOCK> bit can be set and cleared as needed
(provided an unlocking sequence is executed)
1= The OSCCON<IOLOCK> bit can only be set once (provided an
unlocking sequence is executed). Once IOLOCK is set, this prevents
any possible future RP register changes
JTAGEN CW1<14> JTAG Enable bit
1 = JTAG enabled
0 = JTAG disabled
OSCIOFNC Cw2<5> OSC2 Pin Function bit (except in XT and HS modes)
1 = OSC2 is clock output
0 = OSC2 is general purpose digital 1/0 pin
PLLDIV2:PLLDIVO(") | CW2<14:12> |USB 96MHz PLL Prescaler Select bits
111 = Oscillator input divided by 12 (48 MHz input)
110 = Oscillator input divided by 10 (40 MHz input)
101 = Oscillator input divided by 6 (24 MHz input)
100 = Oscillator input divided by 5 (20 MHz input)
011 = Oscillator input divided by 4 (16 MHz input)
010 = Oscillator input divided by 3 (12 MHz input)
001 = Oscillator input divided by 2 (8 MHz input)
000 = Oscillator input used directly (4 MHz input)
POSCMD1: CW2<1:0> Primary Oscillator Mode Select bits
POSCMDO 11 = Primary oscillator disabled
10 = HS Crystal Oscillator mode
01 = XT Crystal Oscillator mode
00 = EC (External Clock) mode
WDTPOST3: CW1<3:0> Watchdog Timer Prescaler bit
WDTPOSTO 1111 = 1:32,768
1110 =1:16,384
0001 =1:2
0000 =1:1
Note 1: Available on PIC24FJXXXGB1XX devices only.

2: Available on PIC24FJXXXGA110 devices only. On other devices, always maintain this bit as ‘1’.

DS39907A-page 30

© 2007 Microchip Technology Inc.




PIC24F JXXXGA1/GB1

TABLE 4-2:

PIC24FJXXXGA1/GB1 CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field

Register

Description

WINDIS

CW1<6>

Windowed WDT bit

1 = Watchdog Timer in Non-Window mode
0 = Watchdog Timer in Window mode; FWDTEN must be ‘1’

WPCFG

CW3<14>

Configuration Word Code Page Protection Select bit

1 = Last page (at the top of program memory) and Flash Configuration Words
are not protected

0 = Last page and Flash Configuration Words are code-protected

WPDIS

CW3<13>

Segment Write Protection Disable bit

1 = Segmented code protection disabled

0 = Segmented code protection enabled; protected segment defined by
WPEND, WPCFG and WPFPx Configuration bits

WPEND

CW3<15>

Segment Write Protection End Page Select bit

1 = Protected code segment lower boundary is at the bottom of program
memory (000000h); upper boundary is the code page specified by
WPFP8:WPFPO

0 = Protected code segment upper boundary is at the last page of program
memory; lower boundary is the code page specified by WPFP8:WPFPO

WPFP8:WPFPOQ

CW3<8:0>

Protected Code Segment Boundary Page bits

Designates the 16K word program code page that is the boundary of the
protected code segment, starting with Page 0 at the bottom of program
memory

If WPEND = 1:

Last address of designated code page is the upper boundary of the segment

If WPEND = o:

First address of designated code page is the lower boundary of the segment

Note 1: Available on PIC24FJXXXGB1XX devices only.
2: Available on PIC24FJXXXGA110 devices only. On other devices, always maintain this bit as ‘1’.

© 2007 Microchip Technology Inc.

DS39907A-page 31




PIC24F JXXXGA1/GB1

46.2 PROGRAMMING METHODOLOGY

Configuration bits may be programmed a single byte at
a time using the PROGP command. This command
specifies the configuration data and Configuration
register address. When Configuration bits are
programmed, any unimplemented or reserved bits
must be programmed with a ‘1’.

Two PROGP commands are required to program the

4.6.3 PROGRAMMING VERIFICATION

After the Configuration bits are programmed, the
contents of memory should be verified to ensure that
the programming was successful. Verification requires
the Configuration bits to be read back and compared
against the copy held in the programmer’s buffer. The
READP command reads back the programmed
Configuration bits and verifies that the programming
was successful.

Configuration bits. A flowchart for Configuration bit
programming is shown in Figure 4-5.

Note: If the General Segment Code-Protect bit
(GCP) is programmed to ‘0’, code memory
is code-protected and can not be read.
Code memory must be verified before
enabling read protection. See Section 4.6.4
“Code-Protect Configuration Bits” for
more information about code-protect
Configuration bits.

FIGURE 4-5: CONFIGURATION BIT PROGRAMMING FLOW

ConfigAddress = 0XXXFAh(1)

- Send PROGP
o Command

'

Is
PROGP response
PASS?

No

ConfigAddress =

ConfigAdd
ConfigAddress + 2 ona o

OXXXFERh?(1)

Y
L Failure
Report Error

Note 1: Refer to Table 2-2 for Flash Configuration Word addresses.

DS39907A-page 32 © 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

46.4 CODE-PROTECT CONFIGURATION
BITS

PIC24FJXXXGA1/GB1 family devices provide two
complimentary methods to protect application code
from overwrites and erasures. These also help to pro-
tect the device from inadvertent configuration changes
during run time. Additional information is available in
the product data sheet.

46.4.1 GENERAL SEGMENT

PROTECTION

For all devices in the PIC24FJXXXGA1/GB1 families,
the on-chip program memory space is treated as a
single block, known as the General Segment (GS).
Code protection for this block is controlled by one Con-
figuration bit, GCP. This bit inhibits external reads and
writes to the program memory space. It has no direct
effect in normal execution mode.

Write protection is controlled by the GWRP bit in the
Configuration Word. When GWRP is programmed to
‘0’, internal write and erase operations to program
memory are blocked.

4642 CODE SEGMENT PROTECTION

In addition to global General Segment protection, a
separate subrange of the program memory space can
be individually protected against writes and erases.
This area can be used for many purposes where a
separate block of write and erase-protected code is
needed, such as bootloader applications. Unlike
common boot block implementations, the specially pro-
tected segment in PIC24FJXXXGA1/GB1 devices can
be located by the user anywhere in the program space,
and configured in a wide range of sizes.

Code segment protection provides an added level of
protection to a designated area of program memory by
disabling the NVM safety interlock whenever a write or
erase address falls within a specified range. It does not
override general segment protection controlled by the
GCP or GWRP bits. For example, if GCP and GWRP
are enabled, enabling segmented code protection for
the bottom half of program memory does not undo
general segment protection for the top half.

Note:  Bulk Erasing in ICSP mode is the only way
to reprogram code-protect bits from an ON
state (‘0’) to an Off state (‘1’).

4.7 Exiting Enhanced ICSP Mode

Exiting Program/Verify mode is done by removing VIH
from MCLR, as shown in Figure 4-6. The only require-
ment for exit is that an interval, P16, should elapse
between the last clock and program signals on PGCx
and PGDx before removing VIH.

FIGURE 4-6: EXITING ENHANCED

ICSP™ MODE

P16 pi7

e e =2

PGDx = Input

© 2007 Microchip Technology Inc.

DS39907A-page 33



PIC24F JXXXGA1/GB1

5.0 THE PROGRAMMING
EXECUTIVE

5.1 Programming Executive
Communication

The programmer and programming executive have a
master-slave relationship, where the programmer is
the master programming device and the programming
executive is the slave.

All communication is initiated by the programmer in the
form of a command. Only one command at a time can
be sent to the programming executive. In turn, the
programming executive only sends one response to
the programmer after receiving and processing a
command. The programming executive command set
is described in Section 5.2 “Programming Executive
Commands”. The response set is described in
Section 5.3 “Programming Executive Responses”.

5.1.1 COMMUNICATION INTERFACE
AND PROTOCOL

The Enhanced ICSP interface is a 2-wire SPI,
implemented using the PGCx and PGDx pins. The
PGCx pin is used as a clock input pin and the clock
source must be provided by the programmer. The
PGDx pin is used for sending command data to, and
receiving response data from, the programming
executive.

Data transmits to the device must change on the rising
edge and hold on the falling edge. Data receives from
the device must change on the falling edge and hold on
the rising edge.

All data transmissions are sent to the Most Significant
bit (MSDb) first, using 16-bit mode (see Figure 5-1).
FIGURE 5-1: PROGRAMMING
EXECUTIVE SERIAL
TIMING FOR DATA
RECEIVED FROM DEVICE

1 2 3 .4 5 6 11 12 13 14 15 16

PGCx k
PIA o =— . P3
P1B —»1 1<— _.>. -~
C P2 ',
PGDx -

"—
wso) ) 13) 1211 X 5 4 X3 2 X1 Hso)

FIGURE 5-2: PROGRAMMING
EXECUTIVE SERIAL TIMING
FOR DATA TRANSMITTED

TO DEVICE

1 2 ,3 4 5 6 11 12 13 14 15 16

PGCx k
PIA - - ' ps

>~

P2 !
— -
EOCE0080080800F

Since a 2-wire SPI is used, and data transmissions are
half duplex, a simple protocol is used to control the
direction of PGDx. When the programmer completes a
command transmission, it releases the PGDx line and
allows the programming executive to drive this line
high. The programming executive keeps the PGDx line
high to indicate that it is processing the command.

P1B —m 1w

After the programming executive has processed the
command, it brings PGDx low for 15 ps to indicate to the
programmer that the response is available to be clocked
out. The programmer can begin to clock out the response
23 us after PGDx is brought low, and it must provide the
necessary amount of clock pulses to receive the entire
response from the programming executive.

After the entire response is clocked out, the program-
mer should terminate the clock on PGCx until it is time
to send another command to the programming
executive. This protocol is shown in Figure 5-3.

5.1.2 SPI RATE

In Enhanced ICSP mode, the PIC24FJXXXGA1/GB1
devices operate from the Internal Fast RC oscillator
(FRCDIV), which has a nominal frequency of 8 MHz.
This oscillator frequency yields an effective system
clock frequency of 4 MHz. To ensure that the program-
mer does not clock too fast, it is recommended that a
4 MHz clock be provided by the programmer.

5.1.3 TIME-OUTS

The programming executive uses no Watchdog Timer
or time-out for transmitting responses to the program-
mer. If the programmer does not follow the flow control
mechanism using PGCx, as described in Section 5.1.1
“Communication Interface and Protocol”, it is
possible that the programming executive will behave
unexpectedly while trying to send a response to the
programmer. Since the programming executive has no
time-out, it is imperative that the programmer correctly
follow the described communication protocol.

As a safety measure, the programmer should use the
command time-outs identified in Table 5-1. If the
command time-out expires, the programmer should
reset the programming executive and start
programming the device again.

DS39907A-page 34

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

FIGURE 5-3:

PROGRAMMING EXECUTIVE — PROGRAMMER COMMUNICATION PROTOCOL

Host Transmits
' Last Command Word '

1 2 15 16

Programming Executive
Processes Command

Host Clocks Out Response

15 16 12 15 16 |

rees [ LU

PGDx / ‘MSB XXX LSB \/—\/ 1 \

. P8 | P9

0/ MsB XXX LsB | ((/5 MSB XXX LSB \
: ) 5

P20 'p21!

'
' ' '
' '

" PGCx = Input

PGDx = Input PGDx = Output

PGCx = Input (Idle)

-~
I

PGCx = Input
PGDx = Output

5.2 Programming Executive

Commands

The programming executive command set is shown in
Table 5-1. This table contains the opcode, mnemonic,
length, time-out and description for each command.
Functional details on each command are provided in
Section 5.2.4 “Command Descriptions”.

5.2.1 COMMAND FORMAT

All programming executive commands have a general
format consisting of a 16-bit header and any required
data for the command (see Figure 5-4). The 16-bit
header consists of a 4-bit opcode field, which is used to
identify the command, followed by a 12-bit command
length field.

FIGURE 5-4: COMMAND FORMAT
15 12 11 0
Opcode Length

Command Data First Word (if required)

.

Command Data Last Word (if required)

The command opcode must match one of those in the
command set. Any command that is received which
does not match the list in Table 5-1 will return a “NACK”
response (see Section 5.3.1.1 “Opcode Field”).

The command length is represented in 16-bit words
since the SPI operates in 16-bit mode. The program-
ming executive uses the command length field to
determine the number of words to read from the SPI
port. If the value of this field is incorrect, the command
will not be properly received by the programming
executive.

5.2.2 PACKED DATA FORMAT

When 24-bit instruction words are transferred across
the 16-bit SPI interface, they are packed to conserve
space using the format shown in Figure 5-5. This
format minimizes traffic over the SPI and provides the
programming executive with data that is properly
aligned for performing table write operations.

FIGURE 5-5: PACKED INSTRUCTION
WORD FORMAT
15 8 7 0
LSW1
MSB2 MSB1
LSW2

LSWx: Least Significant 16 bits of instruction word
MSBx: Most Significant Bytes of instruction word

Note: When the number of instruction words
transferred is odd, MSB2 is zero and
LSW2 can not be transmitted.
5.2.3 PROGRAMMING EXECUTIVE
ERROR HANDLING
The programming executive will “NACK” all
unsupported commands. Additionally, due to the

memory constraints of the programming executive, no
checking is performed on the data contained in the
programmer command. It is the responsibility of the
programmer to command the programming executive
with valid command arguments or the programming
operation may fail. Additional information on error
handling is provided in Section 5.3.1.3 “QE_Code
Field”.

© 2007 Microchip Technology Inc.

DS39907A-page 35



PIC24F JXXXGA1/GB1

TABLE 5-1: PROGRAMMING EXECUTIVE COMMAND SET
Opcode | Mhemonic ( 16_";:3:; ds) Time-out Description
Oh SCHECK 1 1ms Sanity check.
1h READC 3 1ms Read an 8-bit word from the specified Device ID register.
2h READP 4 1 ms/row |Read N 24-bit instruction words of code memory starting from
the specified address.
3h RESERVED N/A N/A This command is reserved. It will return a NACK.
4h PROGC 4 5ms Write an 8-bit word to the specified Device ID registers.
5h PROGP 99 5ms Program one row of code memory at the specified address,
then verify.(")
6h PROGW 5 5ms Program one instruction word of code memory at the specified
address, then verify.
7h RESERVED N/A N/A This command is reserved. It will return a NACK.
8h RESERVED N/A N/A This command is reserved. It will return a NACK.
9h RESERVED N/A N/A This command is reserved. It will return a NACK.
Ah QBLANK 3 TBD Query if the code memory is blank.
Bh QVER 1 1ms Query the programming executive software version.
Legend: TBD = To Be Determined
Note 1: One row of code memory consists of (64) 24-bit words. Refer to Table 2-2 for device-specific information.

524 COMMAND DESCRIPTIONS

All commands supported by the programming executive
are described in Section 5.2.5 “SCHECK Command”
through Section 5.2.12 “QVER Command”.

The SCHECK command instructs the programming
executive to do nothing but generate a response. This
command is used as a “Sanity Check” to verify that the
programming executive is operational.

Expected Response (2 words):

525 SCHECK COMMAND 1000h
15 12 11 0 0002h
Opcode Length Note: This instruction is not required for
programming but is provided for
Field Description development purposes only.
Opcode Oh
Length 1h

DS39907A-page 36

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

5.2.6 READC COMMAND

15 12 1 8 7 0
Opcode Length
N Addr_MSB
Addr_LS
Field Description

Opcode 1h

Length 3h

N Number of 8-bit Device ID registers to

read (max. of 256)

Addr_MSB | MSB of 24-bit source address

Addr_LS Least Significant 16 bits of 24-bit

5.2.7 READP COMMAND

15 12 11 8 7 0
Opcode Length
N
Reserved Addr_MSB
Addr_LS
Field Description

Opcode 2h

Length 4h

N Number of 24-bit instructions to read

(max. of 32768)

Reserved Oh

source address

The READC command instructs the programming
executive to read N or Device ID registers, starting from
the 24-bit address specified by Addr_ MSB and
Addr_LS. This command can only be used to read 8-bit
or 16-bit data.

When this command is used to read Device ID
registers, the upper byte in every data word returned by
the programming executive is 00h and the lower byte
contains the Device ID register value.
Expected Response (4 + 3 * (N —1)/2 words for N odd):
1100h
2+N
Device ID Register 1

Device ID Register N

Addr_MSB MSB of 24-bit source address

Addr_LS Least Significant 16 bits of 24-bit

source address

Note: Reading unimplemented memory will
cause the programming executive to
reset. Please ensure that only memory
locations present on a particular device

are accessed.

The READP command instructs the programming
executive to read N 24-bit words of code memory,
including Configuration Words, starting from the 24-bit
address specified by Addr_MSB and Addr_LS. This
command can only be used to read 24-bit data. All data
returned in response to this command uses the packed
data format described in Section 5.2.2 “Packed Data
Format”.
Expected Response (2 + 3 * N/2 words for N even):

1200h

2+3*N/2

Least significant program memory word 1

Least significant data word N
Expected Response (4 + 3 * (N - 1)/2 words for N odd):
1200h
4+3*(N-1)2
Least significant program memory word 1

MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will
cause the programming executive to
reset. Please ensure that only memory
locations present on a particular device

are accessed.

© 2007 Microchip Technology Inc.

DS39907A-page 37



PIC24F JXXXGA1/GB1

5.2.8 PROGC COMMAND

15 12 1 8 7 0
Opcode Length
Reserved Addr_MSB
Addr_LS
Data
Field Description
Opcode 4h
Length 4h
Reserved Oh
Addr_MSB | MSB of 24-bit destination address
Addr_LS Least Significant 16 bits of 24-bit
destination address
Data 8-bit data word

The PROGC command instructs the programming
executive to program a single Device ID register
located at the specified memory address.

After the specified data word has been programmed to
code memory, the programming executive verifies the
programmed data against the data in the command.

Expected Response (2 words):

1400h
0002h

5.2.9 PROGP COMMAND

15 12 1 8 7 0
Opcode Length
Reserved Addr_MSB
Addr_LS
D 1
D 2
D_96
Field Description
Opcode 5h
Length 63h

Reserved Oh
Addr_MSB | MSB of 24-bit destination address

Addr_LS Least Significant 16 bits of 24-bit
destination address

D 1 16-bit data word 1

D 2 16-bit data word 2

16-bit data word 3 through 95

D_96 16-bit data word 96

The PROGP command instructs the programming
executive to program one row of code memory, includ-
ing Configuration Words (64 instruction words), to the
specified memory address. Programming begins with
the row address specified in the command. The
destination address should be a multiple of 80h.

The data to program to memory, located in command
words, D_1 through D_96, must be arranged using the
packed instruction word format shown in Figure 5-5.

After all data has been programmed to code memory,
the programming executive verifies the programmed
data against the data in the command.
Expected Response (2 words):

1500h

0002h

Note: Refer to Table 2-2 for code memory size

information.

DS39907A-page 38

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

5211 QBLANK COMMAND
15 12 1 0
Opcode Length
PSize_ MSW
PSize_LSW
Field Description
Opcode Ah
Length 3h
PSize Length of program memory to check
in 24-bit words plus one (max. of
49152)

5.2.10 PROGW COMMAND
15 12 1 8 7 210
Opcode Length
Data_MSB Addr_MSB
Addr_LS
Data_LS
Field Description
Opcode 6h
Length 5h
Reserved Oh
Addr_MSB MSB of 24-bit destination address
Addr_LS Least Significant 16 bits of 24-bit
destination address
Data_MSB MSB of 24-bit data
Data_LS Least Significant 16 bits of 24-bit data

The PROGW command instructs the programming
executive to program one word of code memory
(3 bytes) to the specific memory address.

After the word has been programmed to code memory,
the programming executive verifies the programmed
data against the data in the command.
Expected Response (2 words):

1600h

0002h

The QBLANK command queries the programming
executive to determine if the contents of code memory
and code-protect Configuration bits (GCP and GWRP)
are blank (contain all ‘1’s). The size of code memory to
check must be specified in the command.

The Blank Check for code memory begins at Oh and
advances toward larger addresses for the specified
number of instruction words.

QBLANK returns a QE_Code of FOh if the specified
code memory and code-protect bits are blank;
otherwise, QBLANK returns a QE_Code of OFh.

Expected Response (2 words for blank device):
1AFOh
0002h

Expected Response (2 words for non-blank device):
1AOFh
0002h

Note: QBLANK does not check the system
operation Configuration bits, since these
bits are not set to ‘1’ when a Chip Erase is

performed.

© 2007 Microchip Technology Inc.

DS39907A-page 39



PIC24F JXXXGA1/GB1

5.2.12 QVER COMMAND

15 12 1 0
Opcode | Length
Field Description
Opcode Bh
Length 1h

The QVER command queries the version of the
programming executive software stored in test
memory. The “version.revision” information is returned
in the response’s QE_Code using a single byte with the
following format: main version in upper nibble and
revision in the lower nibble (i.e., 23h means version 2.3
of programming executive software).

Expected Response (2 words):
1BMNh (where “MN” stands for version M.N)
0002h

5.3 Programming Executive
Responses

The programming executive sends a response to the
programmer for each command that it receives. The
response indicates if the command was processed
correctly. It includes any required response data or
error data.

The programming executive response set is shown in
Table 5-2. This table contains the opcode, mnemonic
and description for each response. The response format
is described in Section 5.3.1 “Response Format”.

TABLE 5-2: PROGRAMMING EXECUTIVE
RESPONSE OP CODES
Opcode | Mnemonic Description
1h PASS Command successfully
processed
2h FAIL Command unsuccessfully
processed
3h NACK Command not known

5.3.1 RESPONSE FORMAT

All programming executive responses have a general
format consisting of a two-word header and any
required data for the command.

15 12 1 8 7 0
Opcode Last Cmd QE_Code
Length

D_1 (if applicable)

D_N (if applicable)

Field Description
Opcode Response opcode
Last_Cmd Programmer command that
generated the response
QE_Code Query code or error code.
Length Response length in 16-bit words
(includes 2 header words)
D 1 First 16-bit data word (if applicable)
D_N Last 16-bit data word (if applicable)
5.3.11 Opcode Field

The opcode is a 4-bit field in the first word of the
response. The opcode indicates how the command
was processed (see Table 5-2). If the command was
processed successfully, the response opcode is PASS.
If there was an error in processing the command, the
response opcode is FAIL and the QE_Code indicates
the reason for the failure. If the command sent to
the programming executive is not identified, the
programming executive returns a NACK response.

5.3.1.2 Last_Cmd Field

The Last_Cmd is a 4-bit field in the first word of
the response and indicates the command that the
programming executive processed. Since the program-
ming executive can only process one command at a
time, this field is technically not required. However, it
can be used to verify that the programming executive
correctly received the command that the programmer
transmitted.

DS39907A-page 40

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

5.3.1.3 QE_Code Field

The QE_Code is a byte in the first word of the
response. This byte is used to return data for query
commands and error codes for all other commands.

When the programming executive processes one of the
two query commands (QBLANK or QVER), the
returned opcode is always PASS and the QE_Code
holds the query response data. The format of the
QE_Code for both queries is shown in Table 5-3.

TABLE 5-3: QE_Code FOR QUERIES

Query QE_Code

QBLANK | OFh = Code memory is NOT blank
FOh = Code memory is blank

QVER 0xMN, where programming executive
software version = M.N (i.e., 32h means

software version 3.2)

When the programming executive processes any
command other than a query, the QE_Code represents
an error code. Supported error codes are shown in
Table 5-4. If a command is successfully processed, the
returned QE_Code is set to Oh, which indicates that
there was no error in the command processing. If the
verify of the programming for the PROGP or PROGC
command fails, the QE_Code is set to 1h. For all other
programming executive errors, the QE_Code is 2h.

TABLE 5-4: QE_Code FOR NON-QUERY
COMMANDS
QE_Code Description
Oh No error
1h Verify failed
2h Other error
5314 Response Length

The response length indicates the length of the
programming executive’s response in 16-bit words.
This field includes the 2 words of the response header.

With the exception of the response for the READP
command, the length of each response is only 2 words.

The response to the READP command uses the
packed instruction word format described in
Section 5.2.2 “Packed Data Format”. When reading
an odd number of program memory words (N odd), the
response to the READP command is (3 * (N + 1)/2 + 2)
words. When reading an even number of program
memory words (N even), the response to the READP
command is (3 * N/2 + 2) words.

© 2007 Microchip Technology Inc.

DS39907A-page 41



PIC24F JXXXGA1/GB1

54 Programming the Programming
Executive to Memory
541 OVERVIEW

If it is determined that the programming executive is
not present in executive memory (as described
in Section 4.2 “Confirming the Presence of the
Programming Executive”), it must be programmed
into executive memory using ICSP, as described in
Section 3.0 “Device Programming — ICSP”.

Storing the programming executive to executive
memory is similar to normal programming of code
memory. Namely, the executive memory must be
erased, and then the programming executive must be
programmed 64 words at a time. Erasing the last page
of executive memory will cause the FRC oscillator
calibration settings and device diagnostic data in the
Diagnostic and Calibration Words, at addresses
8007F0h to 8007FEh, to be erased. In order to retain
this calibration, these memory locations should be read
and stored prior to erasing executive memory. They

should then be reprogrammed in the last words of pro-
gram memory. This control flow is summarized in

Table 5-5.
TABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE
Command Data Description
(Binary) (Hex) P
Step 1: Exit Reset vector and erase executive memory.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP
Step 2: Initialize pointers to read Diagnostic and Calibration Words for storage in W6-W13.
0000 200800 MOV #0x80, WO
0000 880190 MOV W0, TBLPAG
0000 207F00 MOV #0x07F0, W1
0000 2000C2 MOV #0xC, W2
0000 000000 NOP

Step 3: Repeat this step 8 times to read Diagnostic and Calibration Words, storing them in W registers, W6-W13.

0000 BA1931 TBLRDL [WLl++]. [W2++]
0000 000000 NOP
0000 000000 NOP
Step 4: Initialize the NVMCON to erase executive memory.
0000 240420 MOV #0x4042, WO
0000 883B00 MOV WO, NVMCON
Step 5: Initialize Erase Pointers to first page of executive and then initiate the erase cycle.
0000 200800 MOV #0x80, WO
0000 880190 MOV WO, TBLPAG
0000 200001 MOV #0x0, Wl
0000 000000 NOP
0000 BB0881 TBLWTL Wl, [Wl]
0000 000000 NOP
0000 000000 NOP
0000 ABET61 BSET NVMCON, #15
00000 000000 NOP
0000 000000 NOP

Step 6: Repeat this step to poll

the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.

0000 040200 GOTO 0x200
0000 000000 NOP
0000 803B02 MOV NVMCON, W2
0000 883C22 MOV W2, VISI
0001 000000 NOP
<VISI> Clock out contents of the VISI register.
0000 000000 NOP

DS39907A-page 42

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

TABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)

Command Data
(Binary) (Hex)

Description

Step 7: Repeat Steps 5 and 6 to erase the second page of executive memory. The W1 Pointer should be
incremented by 400h to point to the second page.

Step 8: Initialize TBLPAG and NVMCON to write stored diagnostic and calibration as single words. Initialize W1
and W2 as Write and Read Pointers to rewrite stored Diagnostic and Calibration Words.

0000 200800 MOV #0x80, WO
0000 880190 MOV W0, TBLPAG
0000 240031 MOV #0x4003, Wl
0000 883B01 MOV W1, NVMCON
0000 207F00 MOV #0x07F0, Wl
0000 2000C2 MOV #0xC, W2
0000 000000 NOP
Step 9: Perform write of a single word of calibration data and initiate single-word write cycle.
0000 BB18B2 TBLWTL  [W2++], [Wl++]
0000 000000 NOP
0000 000000 NOP
0000 ABET61 BSET NVMCON, #15
0000 000000 NOP
0000 000000 NOP
Step 10: Repeat this step to poll the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.
0000 040200 GOTO 0x200
0000 000000 NOP
0000 803B00 MOV NVMCON, WO
0000 883C20 MOV W0, VISI
0000 000000 NOP
0001 <VISI> Clock out contents of VISI register.
0000 000000 NOP

Step 11: Repeat steps 9-10 seven more times to program the remainder of the Diagnostic and Calibration Words
back into program memory.

Step 12: Initialize the NVMCON to program 64 instruction words.

0000 240010 MOV #0x4001, WO

0000 883B00 MOV W0, NVMCON
Step 13: Initialize TBLPAG and the Write Pointer (W?7).

0000 200800 MOV #0x80, WO

0000 880190 MOV W0, TBLPAG

0000 EB0380 CLR W7

0000 000000 NOP

Step 14: Load WO:W5 with the next four words of packed programming executive code and initialize W6 for
programming. Programming starts from the base of executive memory (800000h) using W6 as a Read
Pointer and W7 as a Write Pointer.

0000 2<LSW0>0 MOV #<LSWO0>, WO
0000 2<MSB1:MSB0>1 |MOV #<MSB1:MSBO>, Wl
0000 2<LSW1>2 MOV #<LSW1>, W2
0000 2<LSW2>3 MOV #<LSW2>, W3
0000 2<MSB3:MSB2>4 MOV #<MSB3:MSB2>, W4
0000 2<LSW3>5 MOV #<LSW3>, W5

© 2007 Microchip Technology Inc. DS39907A-page 43



PIC24F JXXXGA1/GB1

TABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)
Command Data Description
(Binary) (Hex)
Step 15: Set the Read Pointer (W6) and load the (next four write) latches.
0000 EB0300 CLR W6
0000 000000 NOP
0000 BBOBB6 TBLWTL [W6++], [W7]
0000 000000 NOP
0000 000000 NOP
0000 BBDBB6 TBLWTH.B [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BBEBB6 TBLWTH.B [W6++], [++W7]
0000 000000 NOP
0000 000000 NOP
0000 BB1BB6 TBLWTL  [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BBOBB6 TBLWTL [W6++], [W7]
0000 000000 NOP
0000 000000 NOP
0000 BBDBB6 TBLWTH.B [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BBEBB6 TBLWTH.B [W6++], [++W7]
0000 000000 NOP
0000 000000 NOP
0000 BB1BB6 TBLWTL  [W6++], [W7++]
0000 000000 NOP
0000 000000 NOP

Step 16: Repeat Steps 14-15, sixteen times, to load the write latches for the 64 instructions.

Step 17: Initiate the programming cycle.

BSET
NOP
NOP

NVMCON, #15

the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.

GOTO 0x200

NOP

MOV NVMCON, W2
MOV W2, VISI
NOP

Clock out contents of the VISI register.

NOP

GOTO
NOP

0x200

0000 ABET761
0000 000000
0000 000000
Step 18: Repeat this step to poll
0000 040200
0000 000000
0000 803B02
0000 883C22
0000 000000
0001 <VISI>
0000 000000
Step 19: Reset the device internal PC.
0000 040200
0000 000000

Step 20: Repeat Steps 14-19 until all 16 rows of executive memory have been programmed. On the final row, make
sure to initialize the write latches at the Diagnostic and Calibration Words locations with OxFFFFFF to
ensure that the calibration is not overwritten.

DS39907A-page 44

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

5.4.2 PROGRAMMING VERIFICATION

After the programming executive has been
programmed to executive memory using ICSP, it must
be verified. Verification is performed by reading out the
contents of executive memory and comparing it with
the image of the programming executive stored in the

Reading the contents of executive memory can be
performed using the same technique described in
Section 3.8 “Reading Code Memory”. A procedure
for reading executive memory is shown in Table 5-6.
Note that in Step 2, the TBLPAG register is set to 80h,
such that executive memory may be read. The last
eight words of executive memory should be verified

programmer.

with stored values of the Diagnostic and Calibration
Words to ensure accuracy.

TABLE 5-6: READING EXECUTIVE MEMORY
Command Data Descriotion
(Binary) (Hex) P
Step 1: Exit the Reset vector.
0000 000000 NOP
0000 040200 GOTO 0x200
0000 000000 NOP
Step 2: Initialize TBLPAG and the Read Pointer (W6) for TBLRD instruction.
0000 200800 MOV #0x80, WO
0000 880190 MOV W0, TBLPAG
0000 EB0300 CLR W6
Step 3: Initialize the Write Pointer (W7) to point to the VISI register.
0000 207847 MOV #VISI, W7
0000 000000 NOP

Step 4: Read and clock out the contents of the next two locations of executive memory through the VISI register

using the REGOUT command.
0000 BAOB96 TBLRDL [Wel, [W7]
0000 000000 NOP
0000 000000 NOP
0001 <VISI> Clock out contents of VISI register
0000 000000 NOP
0000 BADBB6 TBLRDH.B [We++], [W7++]
0000 000000 NOP
0000 000000 NOP
0000 BAD3D6 TBLRDH.B  [++W6], [W7--]
0000 000000 NOP
0000 000000 NOP
0001 <VISI> Clock out contents of VISI register
0000 000000 NOP
0000 BAOBB6 TBLRDL [(W6++], [W7]
0000 000000 NOP
0000 000000 NOP
0001 <VISI> Clock out contents of VISI register
0000 000000 NOP
Step 5: Reset the device internal PC.
0000 040200 GOTO 0x200
0000 000000 NOP

Step 6: Repeat Steps 4-5 until all 1024 instruction words of executive memory are read.

© 2007 Microchip Technology Inc.

DS39907A-page 45



PIC24F JXXXGA1/GB1

6.0 DEVICE DETAILS

6.1 Device ID

The Device ID region of memory can be used to
determine mask, variant and manufacturing
information about the chip. The Device ID region is
2 x 16 bits and it can be read using the READC
command. This region of memory is read-only and can
also be read when code protection is enabled.

Table 6-1 shows the Device ID for each device, Table 6-2
shows the Device ID registers and Table 6-3 describes
the bit field of each register.

TABLE 6-1: DEVICE IDs

Device DEVID
PIC24FJ128GA106 1008h
PIC24FJ192GA106 1010h
PIC24FJ256GA106 1018h
PIC24FJ128GA100 100Ah
PIC24FJ192GA108 1012h
PIC24FJ256GA108 101Ah
PIC24FJ128GA110 100Eh
PIC24FJ192GA110 1016h
PIC24FJ256GA110 101Eh
PIC24FJ64GB106 1001h
PIC24FJ128GB106 1009h
PIC24FJ192GB106 1011h
PIC24FJ256GB106 1019h
PIC24FJ64GB108 1003h
PIC24FJ128GB108 100Bh
PIC24FJ192GB108 1013h
PIC24FJ256GB108 101Bh
PIC24FJ64GB110 1007h
PIC24FJ128GB110 100Fh
PIC24FJ192GB110 1017h
PIC24FJ256GB110 101Fh

TABLE 6-2: PIC24FJXXXGA1/GB1 DEVICE ID REGISTERS
Bit
Address Name

15|1413|12‘11|10‘9|8‘7|6 5‘4|3‘2|1‘0
FFO000h DEVID = FAMID<7:0> DEV<5:0>
FF0002h DEVREV — | MAJRV<2:0> — | DOT<2:0>
TABLE 6-3: DEVICE ID BIT DESCRIPTIONS

Bit Field Register Description

FAMID<7:0> DEVID Encodes the family ID of the device
DEV<5:0> DEVID Encodes the individual ID of the device
MAJRV<2:0> DEVREV Encodes the major revision number of the device
DOT<2:0> DEVREV Encodes the minor revision number of the device

DS39907A-page 46

© 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

6.2 Checksum Computation

Checksums for the PIC24FJXXXGA1/GB1 families are
16 bits in size. The checksum is calculated by summing
the following:

» Contents of code memory locations

Table 6-4 describes how to calculate the checksum for
each device. All memory locations are summed, one
byte at a time, using only their native data size. More
specifically, Configuration registers are summed by
adding the lower two bytes of these locations (the
upper byte is ignored), while code memory is summed

» Contents of Configuration registers

by adding all three bytes of code memory.

TABLE 6-4: CHECKSUM COMPUTATION
Erased Checksum with
Device iisfeft?:: Checksum Computation Checksum 0’:\2'?2:? Ce::::o
Value Address
PIC24FJ128GA106 Disabled CFGB + SUM(0:1F7F9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ192GA106 Disabled CFGB + SUM(0:20BF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ256GA106 Disabled CFGB + SUM(0:2ABF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ128GA108 Disabled CFGB + SUM(0:1F7F9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ192GA108 Disabled CFGB + SUM(0:20BF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ256GA108 Disabled CFGB + SUM(0:2ABF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ128GA110 Disabled CFGB + SUM(0:1F7F9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ192GA110 Disabled CFGB + SUM(0:20BF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ256GA110 Disabled CFGB + SUM(0:2ABF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ64GB106 Disabled CFGB + SUM(0:ABF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ128GB106 Disabled CFGB + SUM(0:1F7F9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ192GB106 Disabled CFGB + SUM(0:20BF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ256GB106 Disabled CFGB + SUM(0:2ABF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ64GB108 Disabled CFGB + SUM(0:ABF9) TBD TBD
Enabled 0 TBD TBD
Legend: ltem Description

SUM[a:b] =
CFGB =

CW3 & OxE1FF)
TBD To Be Determined

Byte sum of locations, a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked) Byte sum of (CW1 & Ox7BDF + CW2 & OxF7FF +

Note: CW1 address is last location of implemented program memory; CW?2 is (last location — 2); CW3 is (last

location — 4).

© 2007 Microchip Technology Inc.

DS39907A-page 47



PIC24F JXXXGA1/GB1

TABLE 6-4: CHECKSUM COMPUTATION (CONTINUED)

Erased Checksum with
Device Read Cc_>de Checksum Computation Checksum OXAAAAAA at 0x0
Protection and Last Code
Value
Address
PIC24FJ128GB108 Disabled CFGB + SUM(0:1F7F9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ192GB108 Disabled CFGB + SUM(0:0157FB) TBD TBD
Enabled 0 TBD TBD
PIC24FJ256GB108 Disabled CFGB + SUM(0:0157FB) TBD TBD
Enabled 0 TBD TBD
PIC24FJ64GB110 Disabled CFGB + SUM(0:ABF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ128GB110 Disabled CFGB + SUM(0:1F7F9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ192GB110 Disabled CFGB + SUM(0:20BF9) TBD TBD
Enabled 0 TBD TBD
PIC24FJ256GB110 Disabled CFGB + SUM(0:2ABF9) TBD TBD
Enabled 0 TBD TBD
Legend: [tem Description
SUM[a:b] = Byte sum of locations, a to b inclusive (all 3 bytes of code memory)
CFGB = CFGB = Configuration Block (masked) Byte sum of (CW1 & 0x7BDF + CW2 & OxF7FF +
CW3 & OxE1FF)
TBD = To Be Determined
Note: CW1 address is last location of implemented program memory; CW2 is (last location — 2); CW3 is (last
location — 4).

DS39907A-page 48 © 2007 Microchip Technology Inc.



PIC24F JXXXGA1/GB1

7.0

AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

Standard Operating Conditions
Operating Temperature: 0°C to +70°C. Programming at +25°C is recommended.

P?‘;:m Symbol Characteristic Min Max | Units Conditions
D111 |VDD Supply Voltage During Programming VDDCORE 3.60 V  |Normal programming(1’2)
D112 |lpP Programming Current on MCLR — 5 HA
D113 |IpDP Supply Current During Programming — 2 mA
D031 [VIL Input Low Voltage Vss 0.2 VpD Vv
D041 |VH Input High Voltage 0.8 VDD VDD \%
D080 |VoL Output Low Voltage — 0.4 V |loL=85mA@ 3.6V
D090 (VoH Output High Voltage 3.0 — V [loH=-3.0mA @ 3.6V
D012 (Cio Capacitive Loading on I/O pin (PGDx) — 50 pF | To meet AC specifications
D013 |CF Filter Capacitor Value on VcAP 4.7 10 uF  |Required for controller core
P1 TPGC Serial Clock (PGCx) Period 100 — ns
P1A |TpccL |Serial Clock (PGCx) Low Time 40 — ns
P1B |TpccH |Serial Clock (PGCx) High Time 40 — ns
P2 Tset1 |Input Data Setup Time to Serial Clock T 15 — ns
P3 THLD1  |Input Data Hold Time from PGCx T 15 — ns
P4 ToLy1 |Delay Between 4-Bit Command and 40 — ns
Command Operand
P4A |TpoLy1A |Delay Between 4-Bit Command Operand 40 — ns
and Next 4-Bit Command
P5 ToLY2 |Delay Between Last PGCx { of Command 20 — ns
Byte to First PGCx T of Read of Data Word
P6 Tset2 |Vop T Setup Time to MCLR 1 100 — ns
P7 THLD2  |Input Data Hold Time from MCLR T 25 — ms
P8 ToLy3 |Delay Between Last PGCx { of Command 12 — us
Byte to PGDx T by Programming Executive
P9 TbLy4 |Programming Executive Command 40 — us
Processing Time
P10 |TpoLy6 |PGCx Low Time After Programming 400 — ns
P11 ToLy7 |Chip Erase Time 400 — ms
P12 |TpLy8 |Page Erase Time 40 — ms
P13 |TpbLy9 |Row Programming Time 2 — ms
P14 |TR MCLR Rise Time to Enter ICSP™ mode 1.0 us
P15 |TvALD |Data Out Valid from PGCx T 10 — ns
P16 |TpLY10 |Delay Between Last PGCx 4 and MCLR { 0 — s
P17 |THD3 |MCLR ! to VoD { — 100 ns
P18 |Tkevy1 |Delay from First MCLR 4 to First PGCx T for 40 — ns
Key Sequence on PGDx
P19 |TKey2 |Delay from Last PGCx { for Key Sequence 1 — ms
on PGDx to Second MCLR T
P20 |ToLy11 |Delay Between PGDx J by Programming 23 — us
Executive to PGDx Driven by Host
P21 TpLy12 |Delay Between Programming Executive 8 — ns
Command Response Words
Note 1: VDDCORE must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See
Section 2.1 “Power Requirements” for more information. (Minimum VDDCORE allowing Flash programming is
2.25V.)
2: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within £0.3V

of VDD and Vss, respectively.

© 2007 Microchip Technology Inc.

DS39907A-page 49



PIC24F JXXXGA1/GB1

NOTES:

DS39907A-page 50 © 2007 Microchip Technology Inc.



Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 =

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLoq, KEELOQ logo, microlD, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The
Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the
US.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
Powerinfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2007 Microchip Technology Inc.

DS39907A-page 51



OO0O0O0D0D0OO000O0O00 (Microchip Authorized Design Partner)d O O O O

Add Room 1203-1205 Top office,Glittery City,No. 3027, Shennan Road Central,Futian , (I
Shenzhen City [

O O (tel) O 86-755-88845951,82543411 0 O (fax) O 86-755-82543511[]

Web: Http://www.Enroo.com ,"o"00 O O .0

E-maillJ enroo@enroo.com jason.ma@139.com [J

Ooooooo,oon O0000000QQ:27781279 MSN:picmcu@hotmail.com]

DS39907A-page 52 © 2007 Microchip Technology Inc.


dadaeng
深圳市英锐恩科技有限公司(Microchip Authorized Design Partner)指定授权
Add： Room 1203-1205 Top office,Glittery City,No. 3027, Shennan Road Central,Futian , Shenzhen City  
电话(tel) ：86-755-88845951,82543411                 传真(fax) ：86-755-82543511
Web: Http://www.Enroo.com ,"o"为字母.
E-mail： enroo@enroo.com  jason.ma@139.com 
联系人：马先生,王小姐        公司在线咨询：QQ:27781279 MSN:picmcu@hotmail.com
7x24小时在线产品咨询:0755-81258700  13510398583 13798484366


	1.0 Device Overview
	2.0 Programming Overview of the PIC24FJXXXGA1/GB1 Families
	FIGURE 2-1: Programming System Overview for Enhanced ICSP™
	2.1 Power Requirements
	2.2 Program Memory Write/Erase Requirements
	2.3 Pin Diagrams
	2.3.1 PGCx and PGDx Pin Pairs
	FIGURE 2-2: Connections for the On-Chip Regulator
	TABLE 2-1: Pin Descriptions (During Programming)
	FIGURE 2-3: Pin Diagrams
	FIGURE 2-4: Pin Diagrams (Continued
	FIGURE 2-5: Pin Diagrams (Continued)
	FIGURE 2-6: Pin Diagrams (Continued)
	FIGURE 2-7: Pin Diagrams (Continued)
	FIGURE 2-8: Pin Diagrams (Continued)


	2.4 Memory Map
	TABLE 2-2: Code Memory Size and Flash Configuration Word Locations for PIC24FJXXXGA1/GB1 Devices
	FIGURE 2-9: Program Memory Map


	3.0 Device Programming - ICSP
	3.1 Overview of the Programming Process
	FIGURE 3-1: High-Level ICSP™ Programming Flow

	3.2 ICSP Operation
	TABLE 3-1: CPU Control Codes in ICSP™ Mode
	3.2.1 Six Serial Instruction Execution
	FIGURE 3-2: Six Serial Execution

	3.2.2 Regout Serial Instruction execution
	FIGURE 3-3: Regout Serial Execution


	3.3 Entering ICSP Mode
	FIGURE 3-4: Entering ICSP™ Mode

	3.4 Flash Memory Programming in ICSP Mode
	3.4.1 Programming Operations
	TABLE 3-2: NVMCON Erase Operations
	TABLE 3-3: NVMCON Write Operations

	3.4.2 Starting and Stopping a Programming Cycle

	3.5 Erasing Program Memory
	FIGURE 3-5: Chip Erase Flow
	TABLE 3-4: Serial Instruction Execution for Chip Erase

	3.6 Writing Code Memory
	FIGURE 3-6: Packed Instruction Words in W0:W5
	TABLE 3-5: Serial Instruction Execution for Writing Code Memory
	FIGURE 3-7: Program Code Memory Flow

	3.7 Writing Configuration Words
	TABLE 3-6: Default Configuration Register Values
	TABLE 3-7: Reserved configuration Bit Locations
	TABLE 3-8: Serial Instruction Execution for Writing Configuration Registers

	3.8 Reading Code Memory
	TABLE 3-9: Serial Instruction Execution for Reading Code Memory

	3.9 Reading Configuration Words
	TABLE 3-10: Serial Instruction Execution for Reading All Configuration Memory

	3.10 Verify Code Memory and Configuration Word
	FIGURE 3-8: Verify Code Memory Flow

	3.11 Reading the Application ID Word
	3.12 Exiting ICSP Mode
	FIGURE 3-9: Exiting ICSP™ Mode
	TABLE 3-11: Serial Instruction Execution for Reading the Application ID Word


	4.0 Device Programming - Enhanced ICSP
	TABLE 4-1: Command Set Summary
	4.1 Overview of the Programming Process
	FIGURE 4-1: High-Level Enhanced ICSP™ Programming Flow

	4.2 Confirming the Presence of the Programming Executive
	FIGURE 4-2: Confirming Presence of Programming Executive

	4.3 Entering Enhanced ICSP Mode
	FIGURE 4-3: Entering Enhanced ICSP™ Mode

	4.4 Blank Check
	4.5 Code Memory Programming
	4.5.1 Programming Methodology
	FIGURE 4-4: Flowchart for Programming Code Memory

	4.5.2 Programming Verification

	4.6 Configuration Bits Programming
	4.6.1 Overview
	TABLE 4-2: PIC24FJXXXGA1/GB1 Configuration Bits Description

	4.6.2 Programming Methodology
	4.6.3 Programming Verification
	FIGURE 4-5: Configuration Bit Programming Flow

	4.6.4 Code-Protect Configuration Bits

	4.7 Exiting Enhanced ICSP Mode
	FIGURE 4-6: Exiting Enhanced ICSP™ Mode


	5.0 The Programming Executive
	5.1 Programming Executive Communication
	5.1.1 Communication Interface and Protocol
	FIGURE 5-1: Programming Executive Serial Timing for Data Received From Device
	FIGURE 5-2: Programming Executive Serial Timing for Data Transmitted to Device

	5.1.2 SPI Rate
	5.1.3 Time-Outs
	FIGURE 5-3: Programming Executive - Programmer Communication Protocol


	5.2 Programming Executive Commands
	5.2.1 Command Format
	FIGURE 5-4: Command Format

	5.2.2 Packed Data Format
	FIGURE 5-5: Packed Instruction Word Format

	5.2.3 Programming Executive Error Handling
	TABLE 5-1: Programming Executive Command Set

	5.2.4 Command Descriptions
	5.2.5 SCHECK Command
	5.2.6 READC Command
	5.2.7 READP Command
	5.2.8 PROGC Command
	5.2.9 PROGP Command
	5.2.10 Progw Command
	5.2.11 QBLANK Command
	5.2.12 QVER Command

	5.3 Programming Executive Responses
	TABLE 5-2: Programming Executive Response Op Codes
	5.3.1 Response Format
	TABLE 5-3: QE_Code for Queries
	TABLE 5-4: QE_Code for Non-Query Commands


	5.4 Programming the Programming Executive to Memory
	5.4.1 Overview
	TABLE 5-5: Programming the Programming Executive

	5.4.2 Programming Verification
	TABLE 5-6: Reading Executive Memory



	6.0 Device Details
	6.1 Device ID
	TABLE 6-1: Device IDs
	TABLE 6-2: PIC24FJXXXGA1/GB1 Device ID Registers
	TABLE 6-3: Device ID Bit Descriptions

	6.2 Checksum Computation
	TABLE 6-4: Checksum Computation


	7.0 AC/DC Characteristics and Timing Requirements
	contacts with us


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.2
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /3Of9Barcode
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /Arnprior
    /BaskOldFace
    /Batang
    /Bauhaus93
    /Baveuse
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /Berylium
    /Berylium-BoldItalic
    /BlackadderITC-Regular
    /BlueHighway
    /BlueHighway-Bold
    /BlueHighwayCondensed
    /BlueHighwayDType
    /BlueHighwayLinocut
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /BurnstownDam
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /CarbonBlock
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CreditValley
    /CreditValley-Bold
    /CreditValley-BoldItalic
    /CreditValley-Italic
    /CurlzMT
    /EarwigFactory
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HandelGothicEFBold
    /HandelGothicEFMedium
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HurryUp
    /Impact
    /ImprintMT-Shadow
    /INCONTROL
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /Kredit
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /Map-Symbols
    /MaturaMTScriptCapitals
    /MICROCHIP
    /MicrosoftSansSerif
    /MinyaNouvelle
    /MinyaNouvelleBold
    /MinyaNouvelleBoldItalic
    /MinyaNouvelleItalic
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MonotypeSorts
    /MS-Mincho
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MT-Extra
    /MVBoli
    /Neuropol
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PlanetBenson2
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Pupcat
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SimSun
    /SnapITC-Regular
    /Stencil
    /Stereofidelic
    /SybilGreen
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Teen
    /Teen-Bold
    /Teen-BoldItalic
    /Teen-Italic
    /TeenLight
    /TeenLight-Italic
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /VelvendaCooler
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Waker
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice




