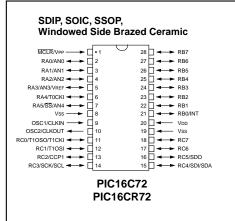


8-Bit CMOS Microcontrollers with A/D Converter


Devices included:

- PIC16C72
- PIC16CR72

Microcontroller Core Features:

- High-performance RISC CPU
- · Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 2K x 14 words of Program Memory, 128 x 8 bytes of Data Memory (RAM)
- · Interrupt capability
- · Eight level deep hardware stack
- · Direct, indirect, and relative addressing modes
- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode
- · Selectable oscillator options
- · Low-power, high-speed CMOS technology
- Fully static design
- · Wide operating voltage range:
 - 2.5V to 6.0V (PIC16C72)
 - 2.5V to 5.5V (PIC16CR72)
- High Sink/Source Current 25/25 mA
- Commercial, Industrial and Extended temperature ranges
- Low-power consumption:
 - < 2 mA @ 5V, 4 MHz
 - 15 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current

Pin Diagrams

Peripheral Features:

- · Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM (CCP) module
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit
- · 8-bit 5-channel analog-to-digital converter
- Synchronous Serial Port (SSP) with $SPI^{^{\rm TM}}$ and $I^2C^{^{\rm TM}}$
- Brown-out detection circuitry for Brown-out Reset (BOR)

Table of Contents

1.0	Device Overview	3						
2.0	Memory Organization	5						
3.0	I/O Ports	19						
4.0	Timer0 Module	25						
5.0	Timer1 Module	27						
6.0	Timer2 Module							
7.0	Capture/Compare/PWM (CCP) Module							
8.0	Synchronous Serial Port (SSP) Module	39						
9.0	Analog-to-Digital Converter (A/D) Module							
10.0	Special Features of the CPU							
11.0	Instruction Set Summary							
12.0	Development Support							
	Electrical Characteristics - PIC16C72 Series							
	DC and AC Characteristics Graphs and Tables - PIC16C72							
	DC and AC Characteristics Graphs and Tables - PIC16CR72 1							
	Packaging Information1							
	ndix A: What's New in this Data Sheet 1							
Appe	ndix B: What's Changed in this Data Sheet1							
Appe	ndix C: Device Differences 1	115						
Index		117						
	ne Support1							
	er Response 1							
	IC16C72 Series Product Identification System							
Sales	and Support1	125						

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

Key Reference Manual Features	PIC16C72	PIC16CR72
Operating Frequency	DC - 20MHz	DC - 20MHz
Resets	POR, PWRT, OST, BOR	POR, PWRT, OST, BOR
Program Memory - (14-bit words)	2K (EPROM)	2K (ROM)
Data Memory - RAM (8-bit bytes)	128	128
Interrupts	8	8
I/O Ports	PortA, PortB, PortC	PortA, PortB, PortC
Timers	Timer0, Timer1, Timer2	Timer0, Timer1, Timer2
Capture/Compare/PWM Modules	1	1
Serial Communications	Basic SSP	SSP
8-Bit A/D Converter	5 channels	5 channels
Instruction Set (No. of Instructions)	35	35

1.0 DEVICE OVERVIEW

This document contains device-specific information for the operation of the PIC16C72 device. Additional information may be found in the PICmicro[™] Mid-Range MCU Reference Manual (DS33023) which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16C72 belongs to the Mid-Range family of the PICmicro devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 2K words which translate to 2048 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 128 bytes.

There are also 22 I/O pins that are user-configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- Change on PORTB interrupt
- Timer0 clock input
- Timer1 clock/oscillator
- Capture/Compare/PWM
- A/D converter
- SPI/I²C

Table 1-1 details the pinout of the device with descriptions and details for each pin.

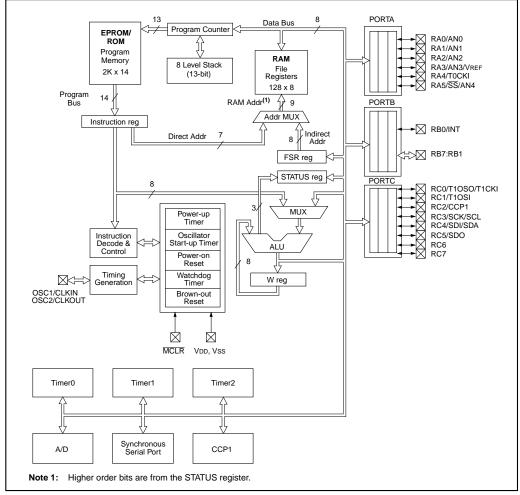


FIGURE 1-1: PIC16C72/CR72 BLOCK DIAGRAM

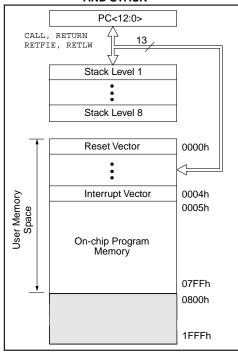
TABLE 1-1 PIC16C72/CR72 PINOUT DESCRIPTION

Pin Name	Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	1	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
RA0/AN0	2	I/O	TTL	RA0 can also be analog input0.
RA1/AN1	3	I/O	TTL	RA1 can also be analog input1.
RA2/AN2	4	I/O	TTL	RA2 can also be analog input2.
RA3/AN3/VREF	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
				PORTB is a bi-directional I/O port. PORTB can be software
				programmed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	I/O	TTL	
RB2	23	I/O	TTL	
RB3	24	I/O	TTL	
RB4	25	I/O	TTL	Interrupt on change pin.
RB5	26	I/O	TTL	Interrupt on change pin.
RB6	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
				PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	I/O	ST	
RC7	18	I/O	ST	
Vss	8, 19	P		Ground reference for logic and I/O pins.
VDD	20	P	_	Positive supply for logic and I/O pins.
Legend: I = input	O = output	I	I/O = input/o	
•	— = Not use	ed	TTL = TTL i	nput ST = Schmitt Trigger input

2.0 MEMORY ORGANIZATION

There are two memory blocks in PIC16C72 Series devices. These are the program memory and the data memory. Each block has its own bus, so that access to both blocks can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.


Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, DS33023.

2.1 Program Memory Organization

PIC16C72 Series devices have a 13-bit program counter capable of addressing a 2K x 14 program memory space. The address range for this program memory is 0000h - 07FFh. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1* RP0 (STATUS<6:5>)

- = 00 \rightarrow Bank0
- = 01 \rightarrow Bank1
- = 10 \rightarrow Bank2 (not implemented)
- = 11 \rightarrow Bank3 (not implemented)
- * Maintain this bit clear to ensure upward compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM.

All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access (ex; the STATUS register is in Bank 0 and Bank 1).

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 2.5).

FIGURE 2-2: REGISTER FILE MAP

	-2. KEOISTE		
File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	
03h	STATUS	STATUS	83h
04h	FSR	FSR	
05h	PORTA	TRISA	
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	
08h			
09h			89h
0Ah	PCLATH	PCLATH	 8Ah
0Bh	INTCON	INTCON	 8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h			 A0h
2011	General	General	7011
	Purpose Register	Purpose	
	Register	Register	BFh
			C0h
7Fh			FFh
/FN	Bank 0	Bank 1	
	plemented data me	mory locations. re	ead as '0'.
	Not a physical regis		

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						XXXX XXXX	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	С	0001 1xxx	000g guuu					
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	-	-	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		0x 0000	0u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	RTB pins wh	nen read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Dat	a Latch whe	n written: PC	ORTC pins w	hen read				XXXX XXXX	uuuu uuuu
08h	_	Unimpleme	nted							—	_
09h	_	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	-	_	-	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	—	Unimpleme	Unimplemented								—
0Eh	TMR1L	Holding regi	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding regi	ister for the M	Nost Significa	ant Byte of th	ne 16-bit TMF	R1 register			XXXX XXXX	uuuu uuuu
10h	T1CON	—	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	s Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	SB)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	—	Unimpleme	nted							—	—
1Eh	ADRES	A/D Result I	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

 $\label{eq:legend: condition} \mbox{Legend: } x \mbox{=} unknown, u \mbox{=} unchanged, q \mbox{=} value depends on condition, - \mbox{=} unimplemented read as '0'.$

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear. 4:

5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	register)	0000 0000	0000 0000					
81h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	IRP ⁽⁴⁾ RP1 ⁽⁴⁾ RP0 TO PD Z DC C								000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					XXXX XXXX	uuuu uuuu
85h	TRISA	—	—	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
88h	—	Unimpleme	nted							-	—
89h	—	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	—	Unimpleme	nted							-	—
8Eh	PCON	—	-	_	_	-	-	POR	BOR	dd	uu
8Fh	—	Unimpleme	nted							-	—
90h	—	Unimpleme	nted							-	—
91h	—	Unimpleme	nted							-	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Port	(I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽⁵⁾	CKE ⁽⁵⁾	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	_	Unimpleme	nted							-	—
96h	_	Unimpleme	nted							-	—
97h	—	Unimpleme	nted							-	_
98h	_	Unimpleme	nted							-	—
99h	—	Unimpleme	nted							_	—
9Ah	—	Unimpleme	nted							-	—
9Bh	—	Unimpleme	nted							-	_
9Ch	_	Unimpleme	nted							-	_
9Dh	—	Unimpleme	nted							-	—
9Eh		Unimpleme	nted							-	_
9Fh	ADCON1	_	-	_	_	-	PCFG2	PCFG1	PCFG0	000	000

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 2-1

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear.

5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 2-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: These devices do not use bits IRP and RP1 (STATUS<7:6>). Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

R/W-0	R/W-0	R/W-0	<u>R-1</u> TO	R-1 PD	R/W-x	R/W-x	R/W-x	R = Readable bit			
IRP bit7	RP1	RP0	10	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7:	1 = Bank 2	RP: Register Bank Select bit (used for indirect addressing) = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)									
bit 6-5:	 RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. For devices with only Bank0 and Bank1, the IRP bit is reserved. Always maintain this bit clear. 										
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred										
bit 3:		r-down bit bower-up o ecution of t									
bit 2:		sult of an		0 1	peration is z						
bit 1:	1 = A carr	y-out from	the 4th lo	w order bit	of the resu	It occurred		porrow the polarity is reversed)			
bit 0:	0 = No carry-out from the 4th low order bit of the result C : Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.										

FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h)

^{© 1998} Microchip Technology Inc.

2.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

FIGURE 2-4: OPTION_REG REGISTER (ADDRESS 81h)

R/W-1	R/W-1		/W-1 R/W-1	R/W-1	R/W-1	R/W-1					
RBPU	INTEDG	TOCS T	OSE PSA	PS2	PS1	PS0	R = Readable bit				
it7						bit0	W = Writable bit U = Unimplemented bit,				
							read as '0'				
							- n = Value at POR reset				
L 11 7			The shifts in the				- II = Value at FOR Teset				
bit 7:	RBPU : PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled										
	0 = PORT	B pull-ups are	e enabled by in	dividual por	latch valu	es					
bit 6:	INTEDG: I	nterrupt Edge	e Select bit								
	1 = Interru	1 = Interrupt on rising edge of RB0/INT pin									
	0 = Interru	pt on falling e	edge of RB0/IN	T pin							
bit 5:	TOCCUTM		urce Select bit	•							
DIL 5.											
		ion on RA4/T									
	0 = Interna	al instruction	cycle clock (CL	KOUT)							
bit 4:	TOSE: TM	R0 Source E	dge Select bit								
			o-low transition	on RA4/T0	CKI pin						
	0 = Increm	ent on low-to	-high transition	on RA4/T0	CKI pin						
bit 3:		caler Assigni	mont hit		•						
DIL J.			ed to the WDT								
			ed to the Timer								
	0 = Presca	aler is assigned	ed to the Timer) module							
bit 2-0:	PS2:PS0:	Prescaler Ra	te Select bits								
	Bit Value	TMR0 Rate	WDT Rate								
	000	1:2	1:1								
	001	1:4	1:2								
	010	1:8	1:4								
	011	1:16	1:8								
	100	1:32	1:16								
			1:32								
	101	1:64									
	101 110 111	1 : 64 1 : 128 1 : 256	1:64								

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0 GIE	R/W-0 PEIE	R/W-0 TOIE	R/W-0 INTE	R/W-0 RBIE	R/W-0 T0IF	R/W-0	R/W-x RBIF	R = Readable bit		
bit7		TOLE		KBIE	TOF		bit0	W = Writable bit W = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts									
bit 6:	1 = Enabl	ripheral In les all un-i bles all per	nasked pe	eripheral in	iterrupts					
bit 5:	ToIE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt									
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt									
bit 3:	1 = Enabl	les the RB	port char	upt Enable nge interru nge interru	pt					
bit 2:	1 = TMR0	R0 Overflo) register I) register o	nas overflo	wed (mus	t be clear	ed in softwa	are)			
bit 1:	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur									
bit 0:	1 = At lea	ast one of	the RB7:R	upt Flag bi B4 pins ch s have cha	nanged sta		e cleared in	software)		

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

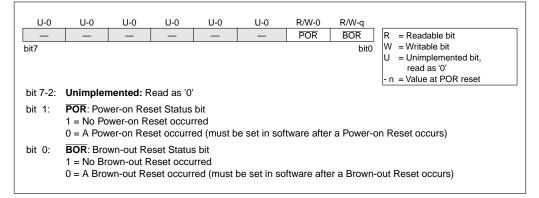
Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 			
bit 7:	Unimpler	nented: R	lead as '0	1							
bit 6:	1 = Enabl	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt									
bit 5-4:	Unimpler	Unimplemented: Read as '0'									
bit 3:	1 = Enabl	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt									
bit 2:	CCP1IE : 1 = Enabl 0 = Disab	es the CC	P1 interru	pt							
bit 1:	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt										
bit 0:	TMR1IE: 1 = Enabl 0 = Disab	es the TM	R1 overflo	w interrup	ot						

2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

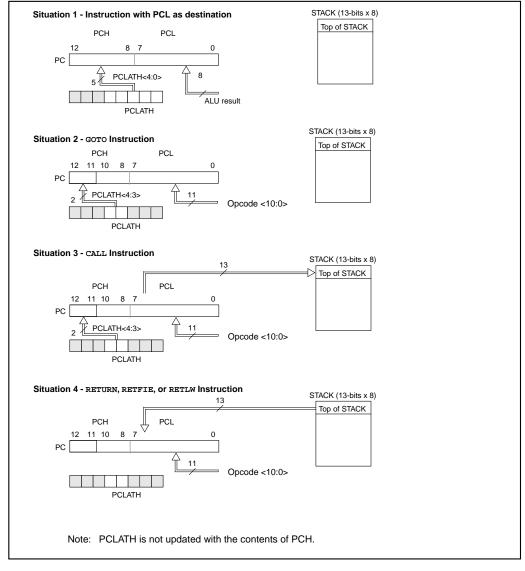

FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit			
bit7							bit0	W = Writable bit U = Unimplemented bit,			
								read as '0'			
								- n = Value at POR reset			
bit 7:	Unimpler	nented: F	Read as '0	1							
bit 6:	ADIF: A/D	O Converte	er Interrup	t Flag bit							
					st be cleare	d in softwa	are)				
	0 = The A	/D conver	sion is no	t complete	1						
bit 5-4:	Unimpler	nented: R	ead as '0	1							
bit 3:	SSPIF: Sy	ynchronou	is Serial F	ort Interru	pt Flag bit						
		1 = The transmission/reception is complete (must be cleared in software)									
	0 = Waiting to transmit/receive										
bit 2:	CCP1IF: CCP1 Interrupt Flag bit										
	Capture N						<i>.</i>				
		•	•		must be cle	eared in so	ftware)				
	Compare	0	er capture	e occurred							
			r compare	e match oc	curred (mu	st be clear	ed in softw	vare)			
				re match o							
	PWM Mo	<u>de</u>									
	Unused ir	n this mod	е								
bit 1:	TMR2IF:	TMR2 to F	PR2 Match	n Interrupt	Flag bit						
				``	t be cleared	d in softwa	re)				
	0 = No TN	/IR2 to PR	2 match o	occurred							
bit 0:				rrupt Flag							
					cleared in s	software)					
	0 = TMR1	register o	aid not ove	WOITIOW							

2.2.2.6 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

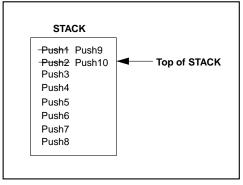
FIGURE 2-8: PCON REGISTER (ADDRESS 8Eh)


DS39016A-page 14

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 2-9 shows the four situations for the loading of the PC. Example 1 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). Example 2 shows how the PC is loaded during a GOTO instruction (PCLATH<4:3> \rightarrow PCH). Example 3 shows how the PC is loaded during a CALL instruction (PCLATH<4:3> \rightarrow PCH), with the PC loaded (PUSHed) onto the Top of Stack. Finally, example 4 shows how the PC is loaded during one of the return instructions where the PC is loaded (POPed) from the Top of Stack.


2.3.1 STACK

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Midrange devices have an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

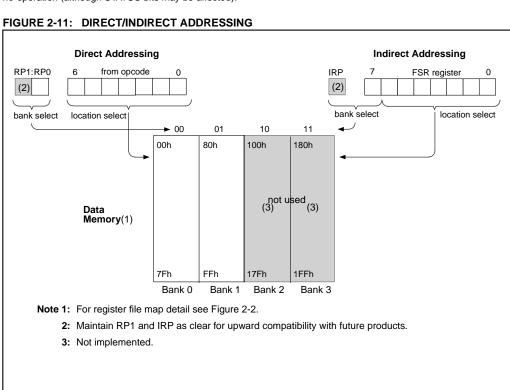
After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). An example of the overwriting of the stack is shown in Figure 2-10.

FIGURE 2-10: STACK MODIFICATION

2.4 Program Memory Paging

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

Note: PIC16C72 Series devices ignore paging bit PCLATH<4>. The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products.


Indirect Addressing, INDF and FSR 2.5 **Registers**

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- · Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- · A read of the INDF register will return the value of 10h
- · Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEWE	movwf	FSR	;initialize pointer ; to RAM
NEXT			<pre>;clear INDF register ;inc pointer</pre>
			<pre>/all done?</pre>
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-11. However, IRP is not used in the PIC16C72 Series.

NOTES:

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range MCU Reference Manual, DS33023.

3.1 PORTA and the TRISA Register

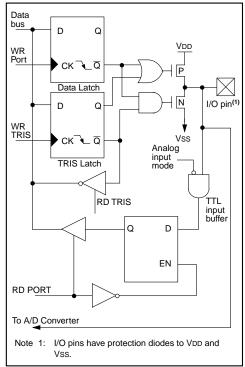
PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.


The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

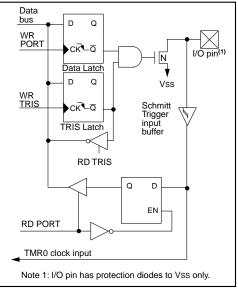

BCF	STATUS,	RP0	;	
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF

RA3:RA0 AND RA5 PINS

FIGURE 3-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

TABLE 3-1 PORTA FUNCTIONS

Name	Bit#	Buffer	Function						
RA0/AN0	bit0	TTL	Input/output or analog input						
RA1/AN1	bit1	TTL	Input/output or analog input						
RA2/AN2	bit2	TTL	Input/output or analog input						
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF						
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type						
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input						
Legend: TTL = T	Legend: TTL = TTL input, ST = Schmitt Trigger input								

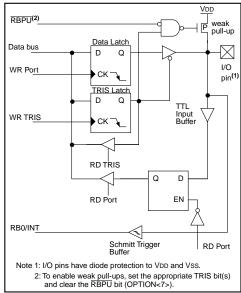
TABLE 3-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—	—	PORTA Data Direction Register						11 1111	11 1111
9Fh	ADCON1	—	_	—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

PORTB and the TRISB Register 3.2

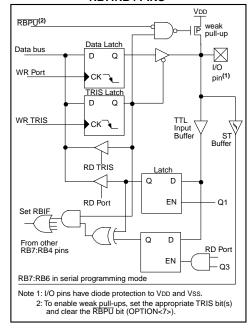
PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the selected pin.


EXAMPLE 3-1: INITIALIZING PORTB ;

BCF	STATUS,	RP0

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.


Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- Clear flag bit RBIF. b)

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 3-4: **BLOCK DIAGRAM OF RB7:RB4 PINS**

TABLE 3-3 PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

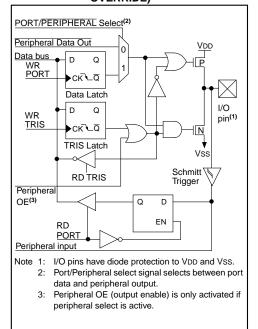
TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB I	Data Directio	n Regist	ər					1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, i.e., put the contents of the output latch on the selected pin.


PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 3-1: INITIALIZING PORTC

BCF	STATUS,	RP0	;	Select Bank 0
CLRF	PORTC		;	Initialize PORTC by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISC		;	Set RC<3:0> as inputs
			;	RC<5:4> as outputs
			;	RC<7:6> as inputs

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

TABLE 3-6 SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	Data Direct		1111 1111	1111 1111					

Legend: x = unknown, u = unchanged.

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- · Readable and writable
- · Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt on overflow from FFh to 00h

Figure 4-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Reference Manual, DS33023.

4.1 <u>Timer0 Operation</u>

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

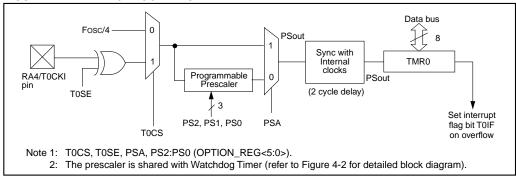
FIGURE 4-1: TIMER0 BLOCK DIAGRAM

Additional information on external clock requirements is available in the PICmicro™ Mid-Range MCU Reference Manual, DS33023.

4.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

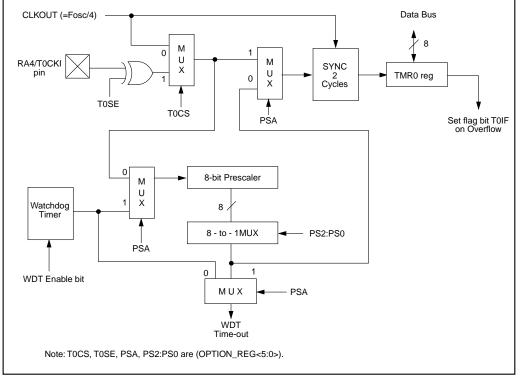
Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

4.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PICmicro™ Mid-Range MCU Reference Manual, DS3023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

4.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

TABLE 4-1 REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h,101h	TMR0	Timer0	module's r	xxxx xxxx	uuuu uuuu						
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	PORTA	11 1111	11 1111					

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter
- (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Reference Manual, DS33023.

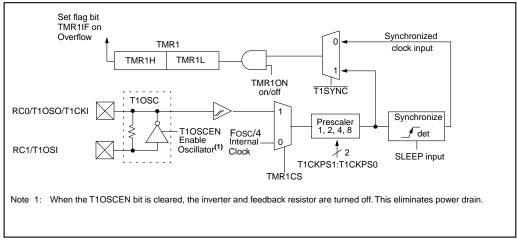
5.1 <u>Timer1 Operation</u>

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.


When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0									
bit7	T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON Bit0 Bit0 R = Readable bit W = Writable bit U = Unimplemented bit,									
	read as '0' - n = Value at POR reset									
bit 7-6:	Unimplemented: Read as '0'									
bit 5-4:	T1CKPS1:T1CKPS0 : Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value									
bit 3:	T1OSCEN : Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain									
bit 2:	T1SYNC: Timer1 External Clock Input Synchronization Control bit									
	<u>TMR1CS = 1</u> 1 = Do not synchronize external clock input 0 = Synchronize external clock input									
	$\underline{\text{TMR1CS}} = 0$ This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.									
bit 1:	TMR1CS : Timer1 Clock Source Select bit 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4)									
bit 0:	TMR10N: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1									

5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1 CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2						
LP	32 kHz	33 pF							
	100 kHz	15 pF	15 pF						
	200 kHz	200 kHz 15 pF							
These values are for design guidance only.									
Crystals Tested:									
32.768 kHz	Epson C-001R32.768K-A ± 20 PPM								
100 kHz	Epson C-2 100.00 KC-P ± 20 PPM								
200 kHz	STD XTL 200.000 kHz ± 20 PPM								
 200 kHz STD XTL 200.000 kHz ±20 PPM Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 									

5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The spe	cial e	event	trigg	ers from tl	he CC	P1
	module	will	not	set	interrupt	flag	bit
	TMR1IF	(PIR	1<0>).			

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	it 3 Bit 2 Bit 1 Bit 0 POR		2 Bit 1 Bit 0 Value on: Bit 0 POR, BOR		POR,		Bit 0 POR, BOR		e on other ets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0	00x	0000	000u		
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000		
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000		
0Eh	TMR1L	Holding	registe	r for the Lea	st Significan	t Byte of the	16-bit TMF	R1 register		xxxx x	xxx	uuuu	uuuu		
0Fh	TMR1H	Holding	Holding register for the Most Significant Byte of the 16-bit TMR1 register								xxx	uuuu	uuuu		
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0	000	uu	uuuu		

TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

NOTES:

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (Both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- · Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register, shown in Figure 6-2. Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 6-1 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Reference Manual, DS33023.

6.1 <u>Timer2 Operation</u>

Timer2 can be used as the PWM time-base for $\ensuremath{\mathsf{PWM}}$ mode of the CCP module.

The TMR2 register is readable and writable, and is cleared on any device reset.

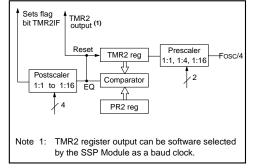
The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.


6.2 <u>Timer2 Interrupt</u>

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

6.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 6-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
bit7 bit 7:	Unimplem	ented: Rea	id as '0'				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 6-3:	TOUTPS3: 0000 = 1:1 0001 = 1:2 • • 1111 = 1:1	Postscale Postscale		tput Postsca	ale Select bi	ts		
bit 2:	TMR2ON : 1 1 = Timer2 0 = Timer2	is on	bit					
bit 1-0:	T2CKPS1: 00 = Presc 01 = Presc 1x = Presc	aler is 1 aler is 4	Timer2 Clo	ck Prescale	Select bits			

TABLE 6-1 REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Period Register							1111 1111	1111 1111	

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module. 2: These bits are unimplemented, read as '0'.

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h)

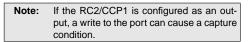
Additional information on the CCP module is available in the PICmicro™ Mid-Range MCU Reference Manual, DS33023.

TABLE 7-1 CCP MODE - TIMER RESOURCE

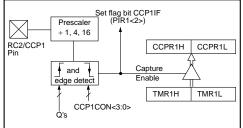
CCP Mode	Timer Resource
Capture Compare	Timer1 Timer1
PWM	Timer2

<u>U-0</u>	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	R = Readable bit		
bit7							bit0	W = Writable bit		
								U = Unimplemented bit,		
								read as '0'		
								- n =Value at POR reset		
bit 7-6:	Unim	plemente	d: Read a	s '0'						
bit 5-4:	CCP1	X:CCP1Y	: PWM Le	ast Signific	ant bits					
	Captu	re Mode:	Unused							
	Comp	oare Mode	: Unused							
	PWM	Mode: Th	ese bits ar	e the two L	Sbs of the F	PWM duty c	ycle. The eig	ht MSbs are found in CCPR1L.		
bit 3-0:	CCP1	M3:CCP1	MO: CCP	I Mode Sel	ect bits					
	0000	= Capture	/Compare	/PWM off (resets CCP	1 module)				
	0100	= Capture	mode, ev	ery falling e	edge					
	0101	= Capture	mode, ev	ery rising e	dge					
		•		ery 4th risir	0 0					
		•		ery 16th ris	0 0					
		•		•	n match (CC		,			
		•		•	on match (0		,			
								t is set, CCP1 pin is unaffected)		
	1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled))									
	11xx = PWM mode									

7.1 Capture Mode


In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

FIGURE 7-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

7.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

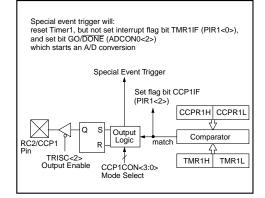
7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value


Compare Mode 7.2

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- · driven Low
- · remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-3: **COMPARE MODE OPERATION BLOCK** DIAGRAM

721 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

SOFTWARE INTERRUPT MODE 7.2.3

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

SPECIAL EVENT TRIGGER 7.2.4

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

The special event trigger from the CCP1 Note: module will not set interrupt flag bit TMR1IF (PIR1<0>).

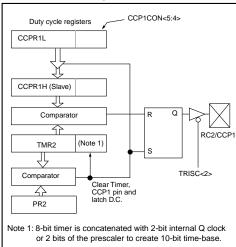
TABLE 7-2 **REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	all o	e on other sets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Da	ORTC Data Direction Register								1111	1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	6-bit TMR	1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/Co	ompare	/PWM regis	ster1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM register1 (MSB)							uuuu			
17h	CCP1CON	_	CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M000 000000 000								0000		
Legend:	Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.												

own, u = unchanged, - = unim

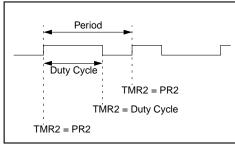
Note 1: These bits/registers are unimplemented, read as '0'.

7.3 <u>PWM Mode</u>


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 7-4 shows a simplified block diagram of the CCP module in PWM mode.


For a step by step procedure on how to set up the CCP module for PWM operation, see Section 7.3.3.

A PWM output (Figure 7-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 7-5: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

TMR2 is cleared

- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Mater	The Timer 2 restander (see Castion C 0) is
Note:	The Timer2 postscaler (see Section 6.0) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

7.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the PICmicro[™] Mid-Range MCU Reference Manual (DS33023).

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-4 REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on: DR, DR	all o	ie on other sets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC D	PORTC Data Direction Register									1111	1111
11h	TMR2	Timer2 mo	Timer2 module's register									0000	0000
92h	PR2	Timer2 mo	dule's perio	d register						1111	1111	1111	1111
12h	T2CON	—	TOUTPS 3	TOUTPS 2	TOUTPS 1	TOUTPS 0	TMR2O N	T2CKPS 1	T2CKPS 0	-000	0000	-000	0000
15h	CCPR1L	Capture/Co	ompare/PW	M register1	(LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)								xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—	- CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0								0000	00	0000
Logond									by DWM a				

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: These bits/registers are unimplemented, read as '0'.

NOTES:

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SSP module in I^2 C mode works the same in all PIC16C72 series devices that have an SSP module. However the SSP Module in SPI mode has differences between the PIC16C72 and the PIC16CR72 device.

The register definitions and operational description of SPI mode has been split into two sections because of the differences between the PIC16C72 and the PIC16CR72 device. The default reset values of both the SPI modules is the same regardless of the device:

8.2 SPI Mode for PIC16C72 40

8.3 SPI Mode for PIC16CR72 43

8.4 SSP I²C Operation 47

For an I²C Overview, refer to the PICmicroTM Mid-Range MCU Reference Manual (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode for PIC16C72

This section contains register definitions and operational characteristics of the SPI module on the PIC16C72 device only. Additional information on SPI operation may be found in the PICmicro™ Mid-Range MCU Reference Manual, DS33023.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
<u> </u>	_	D/A	P	S	R/₩	UA	BF	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7-6:	t 7-6: Unimplemented: Read as '0'											
bit 5:	 bit 5: D/Ā: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 											
bit 4:	 P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 											
bit 3:	 S: Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last 											
bit 2:	R/W : Read/Write bit information (I ² C mode only) This bit holds the R/W bit information following the last address match. This bit is valid from the address match to the next start bit, stop bit, or ACK bit. 1 = Read 0 = Write											
bit 1:	1 = Indi	cates that	the user	t I ² C mode needs to up to be upda	date the add	dress in the	SSPADD re	gister				
bit 0:	BF: Buf	fer Full St	atus bit									
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty											
	<u>Transmit</u> (I ² C mode only) 1 = Transmit in progress, SSPBUF is full 0 = Transmit complete, SSPBUF is empty											

FIGURE 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16C72)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7:	WCOL: W 1 = The SS (must be c 0 = No col	SPBUF reg	gister is wi		e it is still tr	ransmitting	g the previou	us word				
bit 6:	SSPOV: Receive Overflow Detect bit											
	flow, the d SSPBUF, (byte is rea ata in SSF even if only ice each n	PSR regist y transmitt	er is lost. (ing data, t	Overflow c	an only oc tting overf	cur in slave	previous data. In case of over- mode. The user must read the ter operation, the overflow bit is g to the SSPBUF register.				
		e is receive ansmit mod					lding the pr	evious byte. SSPOV is a "don't de.				
bit 5:	SSPEN: S	ynchronou	is Serial P	ort Enable	e bit							
	$\frac{\text{In SPI model}}{1 = \text{Enable}}$ $0 = \text{Disable}$	es serial po					is serial por t pins	t pins				
	0 = Disabl	es the seria es serial p	ort and co	nfigures th	nese pins a	as I/O port	t pins	ial port pins s input or output.				
bit 4:	CKP: Cloc	k Polarity	Select bit									
		ate for cloc	0				0 0 /	receive on rising edge. ceive on falling edge.				
	$\frac{\ln l^2 C \mod}{SCK \text{ relea}}$ $1 = \text{Enable}$ $0 = \text{Holds}$	se control e clock		tch) (Used	to ensure	edata setu	n time)					
bit 3-0:	SSPM3:S3 0000 = SF 0010 = SF 0010 = SF 0100 = SF 0101 = SF 0110 = I ² C 0111 = I ² C 1011 = I ² C 1110 = I ² C	SPM0: Syr PI master o PI master o PI master o PI master o PI slave mo C slave mo C slave mo C slave mo C slave mo	peration, peration, peration, peration, peration, de, clock de, clock de, 7-bit a de, 10-bit controlled de, 7-bit a	Serial Pol clock = Fo clock = Fo clock = Fo clock = TM = SCK pin ddress address master op ddress wit	rt Mode Se sc/4 sc/16 sc/64 IR2 output . SS pin co . SS pin co peration (s	elect bits :/2 ontrol enal ontrol disa :lave idle) d stop bit i	bled.					

8.2.1 OPERATION OF SSP MODULE IN SPI MODE - PIC16C72

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-3.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRIS register) appropriately programmed. That is:

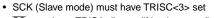
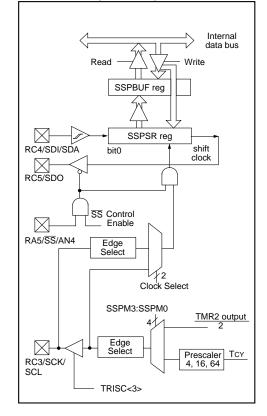

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared

TABLE 8-1 REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Da	ta Directio	on Registe	er					1111 1111	1111 1111
13h	SSPBUF	Synchrono	us Serial I	Port Recei	ive Buffer	/Transmit	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	_	PORTA [Data Dire	11 1111	11 1111				
94h	SSP- STAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000


Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode. Note 1: These bits are unimplemented, read as '0'.

© 1998 Microchip Technology Inc.

• SS must have TRISA<5> set (if implemented)

FIGURE 8-3: SSP BLOCK DIAGRAM (SPI MODE)

8.3 SPI Mode for PIC16CR72

This section contains register definitions and operational characteristics of the SPI module on the PIC16CR72 device only. Additional information on SPI operation may be found in the PICmicro™ Mid-Range MCU Reference Manual, DS33023.

R/W-0		R-0	R-0	R-0	R-0	R-0	R-0				
SMP bit7	CKE	D/Ā	Р	S	R/W	UA	BF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7:	bit 7: SMP: SPI data input sample phase SPI Master Operation 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave Mode SMP must be cleared when SPI is used in slave mode										
bit 6:	SMP must be cleared when SPT is used in slave mode CKE: SPI Clock Edge Select $CKP = 0$ 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK $CKP = 1$ 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK 0 = Data transmitted on rising edge of SCK										
bit 5:	 Data transmitted on fising edge of SCK D/Ā: Data/Āddress bit (l²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 										
bit 4:	 P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is detected last, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 										
bit 3:	detected 1 = India	l last, SS cates tha	SPEN is cle it a start bi	eared) t has been	cleared whe			disabled, or when the Stop bit is ET)			
bit 2:	0 = Start bit was not detected last R/W : Read/Write bit information (I ² C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or ACK bit. 1 = Read 0 = Write										
bit 1:	1 = Indic	cates tha	ress (10-b it the user s not neec	needs to u	pdate the ad	dress in the	e SSPADD r	egister			
bit 0:	•										
	1 = Tran	smit in p	ode only) rogress, S nplete, SSI								

FIGURE 8-5: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16CR72)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0 bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7:	WCOL : W 1 = The SS (must be c 0 = No col	SPBUF reg	gister is wr		e it is still tr	ansmitting	g the previo	us word			
bit 6:	SSPOV: R	eceive Ov	erflow Indi	cator bit							
	 SSPOV: Receive Overflow Indicator bit <u>In SPI mode</u> 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In master operation, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. 0 = No overflow 										
		e is receive ansmit mod					ding the pr	evious byte. SSPOV is a "don't de.			
bit 5:	SSPEN: S	ynchronou	is Serial P	ort Enable	e bit						
	 SSPEN: Synchronous Serial Port Enable bit <u>In SPI mode</u> 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins 0 = Disables serial port and configures these pins as I/O port pins 										
	0 = Disabl	es the seria es serial p	ort and co	nfigures th	nese pins a	as I/O port	t pins	ial port pins s input or output.			
bit 4:	In both modes, when enabled, these pins must be properly configured as input or output. CKP : Clock Polarity Select bit In SPI mode 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I ² C mode SCK release control 1 = Enable clock 0 = Holds clock (low (clock stratch) (l lood to onsure data soften time)										
bit 3-0:	 0 = Holds clock low (clock stretch) (Used to ensure data setup time) 0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 0000 = SPI master operation, clock = Fosc/4 0011 = SPI master operation, clock = Fosc/64 0011 = SPI master operation, clock = Fosc/64 0011 = SPI master operation, clock = TMR2 output/2 0100 = SPI slave mode, clock = SCK pin. SS pin control enabled. 0101 = SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin 0110 = I²C slave mode, 10-bit address 1011 = I²C slave mode, 7-bit address with start and stop bit interrupts enabled 1111 = I²C slave mode, 10-bit address with start and stop bit interrupts enabled 										

8.3.1 OPERATION OF SSP MODULE IN SPI MODE - PIC16CR72

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-6.

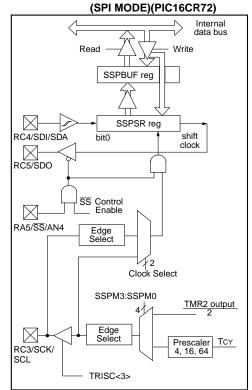
The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:


- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

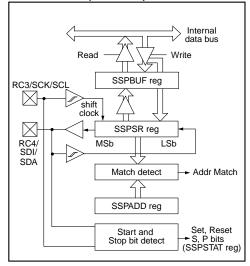
Note:	When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
Note:	If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-6: SSP BLOCK DIAGRAM

IABLE 8-	ABLE 8-2 REGISTERS ASSOCIATED WITH SPI OPERATION (PIC16CR72)											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets	
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
87h	TRISC	PORTC Dat	a Directio	n Register				•		1111 1111	1111 1111	
13h	SSPBUF	Synchronou	s Serial P	ort Receiv	e Buffer/	Transmit F	Register			XXXX XXXX	uuuu uuuu	
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000	
85h	TRISA	_	_	PORTA I	Data Dire	11 1111	11 1111					
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000	

TABLE 8-2 REGISTERS ASSOCIATED WITH SPI OPERATION (PIC16CR72)

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.Note 1: Always maintain these bits clear.


8.4 <u>SSP I²C Operation</u>

The SSP module in I^2C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 8-7: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled master operation, slave is idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

Additional information on SSP I²C operation may be found in the PICmicro[™] Mid-Range MCU Reference Manual, DS33023.

8.4.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this $\overline{\text{ACK}}$ pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 8-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

8.4.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR-7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An \overline{ACK} pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal

'1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 8-3	DATA TRANSFER RECEIVED BYTE ACTIONS	

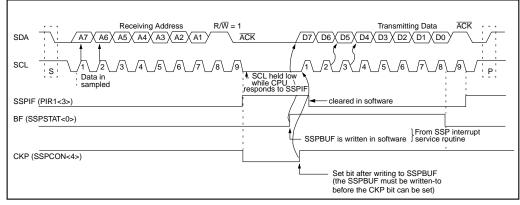
Status Bits as Data Transfer is Received				Set bit SSPIF		
BF	SSPOV	$\text{SSPSR} \rightarrow \text{SSPBUF}$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

8.4.1.2 RECEPTION

When the R/ \overline{W} bit of the address byte is clear and an address match occurs, the R/ \overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.


FIGURE 8-8: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W=0 Receiving Data ACK Receiving Data SDA /A7XA6XA5XA4XA3XA2XA1X ACV/D7XD6XD5XD4XD3XD2XD1XD0X /_D7XD6XD5XD4XD3XD2XD1XD0X /_D7XD6XD5XD4XD3XD2XD1XD0X SCL 1S_1'1/_2_3/4_5_6_7_8_9_7_7_8_9_7_7_2 3/4_5_6_7_6_7_6 7_8_9_7_7_2	
SSPIF (PIR1<3>) Cleared in software BF (SSPSTAT<0>)	Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u> Bit SSPOV is set because the SSPBUF register is still full. ACK is not sen	

8.4.1.3 TRANSMISSION

When the R/ \overline{W} bit of the incoming address byte is set and an address match occurs, the R/ \overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-9). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 8-9: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

8.4.2 MASTER OPERATION

Master operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit set (cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- · Data transfer byte transmitted/received

Master operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master operation and slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on master operation, see AN554 - Software Implementation of I^2C Bus Master.

8.4.3 MULTI-MASTER OPERATION

In multi-master operation, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the 1^2 C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

For more information on master operation, see AN578- Use of the SSP Module in the of I^2C Multi-Master Environment.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000	x 0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	0000 0000
13h	SSPBUF	Synchronou	is Serial F	Port Recei	ve Buffer	/Transmit	Register			XXXX XXX	ĸ uuuu uuuu
93h	SSPADD	Synchronou	is Serial F	Port (I ² C n	node) Ad	dress Reg	gister			0000 000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/Ā	Р	S	R/W	UA	BF	0000 000	0000 0000
87h	TRISC	PORTC Dat	a Directio	1111 111	1 1111 1111						

TABLE 8-4 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: These bits are unimplemented, read as '0'.

2: The SMP and CKE bits are implemented on the PIC16CR72 only. On the PIC16C72, these two bits are unimplemented, read as '0'.

NOTES:

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has five inputs for the PIC16C72/R72.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator. Additional information on the A/D module is available in the PICmicro[™] Mid-Range MCU Reference Manual, DS33023.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	R =Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7-6:	ADCS1:A	ADCS0: A	/D Conver	sion Clock	Select bits			
	00 = FOS							
	01 = Fos 10 = Fos							
			rived from	an interna	I RC oscillato	r)		
hit 5-3.	CHS2:CH	`				,		
bit 0 0.		annel 0, (F	0		10			
		annel 1, (F	,					
		annel 2, (F	,					
		annel 3, (F annel 4, (F	,					
bit 2:		<i>,</i> , ,	nversion \$	Statue hit				
511 2.	If ADON :			Jialus Dil				
			in progres	ss (settina	this bit starts	the A/D co	nversion)	
				· •			,	dware when the A/D conver-
	sion is co	mplete)						
bit 1:	Unimple	mented: F	Read as '0					
bit 0:	ADON: A	/D On bit						
			nodule is (
	0 = A/D c	onverter n	nodule is a	shutoff and	consumes n	o operating	current	

FIGURE 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

FIGURE 9-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	U-0	U-0	U-	0	R/W-0	R/W-0) R/V	V-0	
_		_	_			PCFG2	PCFG	-		R = Readable bit
	: Unimplen : PCFG2:P								bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
ſ	PCFG2:F	PCFG0	RA0	RA1	RA2	RA5	RA3	VREF]	
	000)	A	A	A	A	A	Vdd	1	
Ī	00	1	A	A	А	А	VREF	RA3		
	010	C	A	А	А	А	А	Vdd		
[01	1	A	А	А	А	VREF	RA3		
	100	C	A	А	D	D	А	Vdd		
	10	1	A	А	D	D	VREF	RA3		
	11:	ĸ	D	D	D	D	D	GND		
	A = Analog ir	nput								
I	D = Digital I/0	C								
	5									

DS39016A-page 54

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 9-3.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

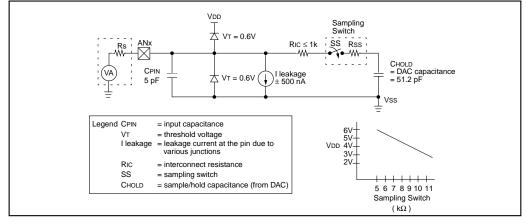
After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 9.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- CHS2:CHS0 100 RA5/AN4 VAIN 011 (Input voltage) RA3/AN3/VREF 010 RA2/AN2 A/D Converter 001 RA1/AN1 000 VDD RA0/AN0 000 **or** 010 or VREF 100 (Reference 0 001 or voltage) 011 or 101 PCFG2:PCFG0

FIGURE 9-3: A/D BLOCK DIAGRAM

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit

4.


- Set GIE bit
- 3. Wait the required acquisition time.
 - Start conversion: • Set GO/DONE bit (ADCON0)
- Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared OR
 - · Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

9.1 <u>A/D Acquisition Requirements</u>

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 9-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PICmicroTM Mid-Range MCU Reference Manual, DS33023. This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

FIGURE 9-4: ANALOG INPUT MODEL

9.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

9.3 Configuring Analog Port Pins

The ADCON1, TRISA, and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Note 1:	When reading the port register, all pins
	configured as analog input channels will
	read as cleared (a low level). Pins config-
	ured as digital inputs, will convert an ana-
	log input. Analog levels on a digitally
	configured input will not affect the conver-
	sion accuracy.

Note 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 9-1 TAD vs. DEVICE OPERATING FREQUENCIES

AD Cloc	k Source (TAD)	Device Frequency						
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz			
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs			
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾			
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾			
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾			

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

9.4 <u>A/D Conversions</u>

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

9.5 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

TABLE 9-2	REGISTERS/BITS ASSOCIATED WITH A/D
-----------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	sult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	—	_	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA	Data D	irection F	Register			11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

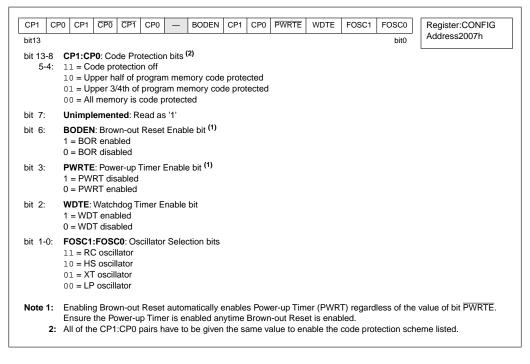
10.0 SPECIAL FEATURES OF THE CPU

The PIC16C72 series has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- · Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-Circuit Serial Programming[™]

The PIC16CXXX family has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.


Additional information on special features is available in the PICmicro[™] Mid-Range MCU Family Reference Manual, DS33023.

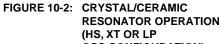
10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

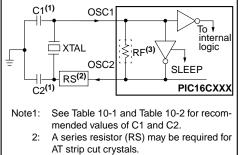
The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 10-1: CONFIGURATION WORD FOR PIC16C72/R72

10.2 Oscillator Configurations

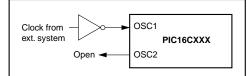

10.2.1 OSCILLATOR TYPES

The PIC16CXXX family can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:


- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX family oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 10-3).



OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

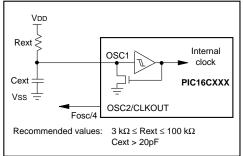
Ranges Tested: Mode Freq OSC1 OSC2 455 kHz 68 - 100 pF 68 - 100 pF XТ 2.0 MHz 15 - 68 pF 15 - 68 pF 4.0 MHz 15 - 68 pF 15 - 68 pF HS 8.0 MHz 10 - 68 pF 10 - 68 pF 16.0 MHz 10 - 22 pF 10 - 22 pF These values are for design guidance only. See notes at bottom of page. Resonators Used:

Resolitions used.								
455 kHz	Panasonic EFO-A455K04B	± 0.3%						
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%						
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%						
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%						
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%						
All reso	onators used did not have built-in	capacitors						

TABLE 10-2 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C2				
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	47-68 pF	47-68 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
	values are at bottom of	for design guida ı page.	n ce only. See			
	Crys	tals Used				
32 kHz	Epson C-00)1R32.768K-A	± 20 PPM			
200 kHz	STD XTL 2	00.000KHz	± 20 PPM			
1 MHz	ECS ECS-10-13-1 ± 50 PPM					
4 MHz	ECS ECS-40-20-1 ± 50 PPM					
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM			
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM			

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 10-1).


- Higher capacitance increases the stability of oscillator but also increases the start-up time.
- Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

DS39016A-page 60

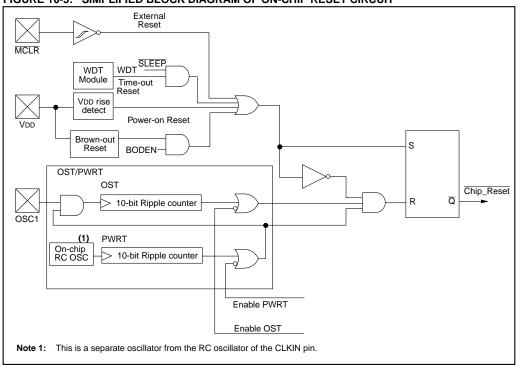
10.2.3 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX family.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 Reset

The PIC16CXXX family differentiates between various kinds of reset:

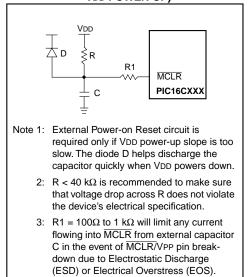

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC16C72/CR72 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.


FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details. For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Powerup Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

10.7 Brown-Out Reset (BOR)

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

10.8 <u>Time-out Sequence</u>

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 10-7, Figure 10-8, Figure 10-9 and Figure 10-10 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 10-9). This is useful for testing purposes or to synchronize more than one PIC16CXXX family device operating in parallel.

Table 10-5 shows the reset conditions for some special function registers, while Table 10-6 shows the reset conditions for all the registers.

TABLE 10-3 TIME-OUT IN VARIOUS SITUATIONS

10.9 <u>Power Control/Status Register</u> (PCON)

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oscillator Configura-	Powe	r-up	Brown out	Wake-up from
tion	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	—	72 ms	—

TABLE 10-4STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

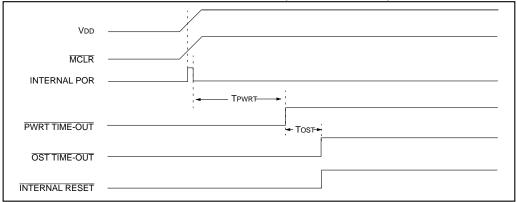
TABLE 10-5 RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register	
Power-on Reset	000h	0001 1xxx	0x	
MCLR Reset during normal operation	000h	000u uuuu	uu	
MCLR Reset during SLEEP	000h	0001 Ouuu	uu	
WDT Reset	000h	0000 luuu	uu	
WDT Wake-up	PC + 1	սսս0 Օսսս	uu	
Brown-out Reset	000h	0001 luuu	u0	
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu	

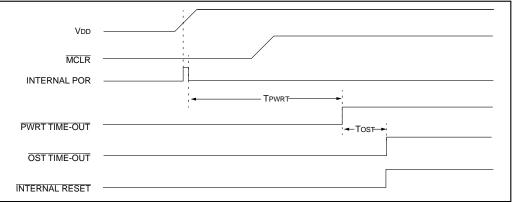
Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

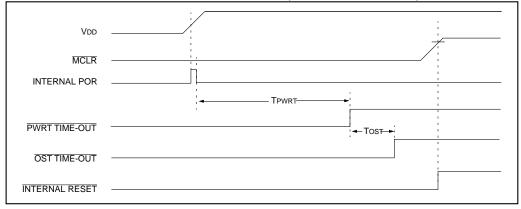
Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Inter- rupt		
W	XXXX XXXX	นนนน นนนน			
INDF	N/A	N/A	N/A		
TMR0	XXXX XXXX	นนนน นนนน	นนนน นนนน		
PCL	0000h	0000h	PC + 1(2)		
STATUS	0001 1xxx	000g quuu (3)	uuuq quuu ⁽³⁾		
FSR	XXXX XXXX	<u>uuuu</u> uuuu	นนนน นนนน		
PORTA	0x 0000	0u 0000	uu uuuu		
PORTB	XXXX XXXX	นนนน นนนน	นนนน นนนน		
PORTC	XXXX XXXX	<u>uuuu</u> uuuu	นนนน นนนน		
PCLATH	0 0000	0 0000	u uuuu		
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾		
PIR1	-0 0000	-0 0000	-u uuuu(1)		
TMR1L	XXXX XXXX	นนนน นนนน	<u>uuuu</u> uuuu		
TMR1H	XXXX XXXX	นนนน นนนน	นนนน นนนน		
T1CON	00 0000	uu uuuu	uu uuuu		
TMR2	0000 0000	0000 0000	นนนน นนนน		
T2CON	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	XXXX XXXX	นนนน นนนน	นนนน นนนน		
SSPCON	0000 0000	0000 0000	นนนน นนนน		
CCPR1L	XXXX XXXX	นนนน นนนน	<u>uuuu</u> uuuu		
CCPR1H	XXXX XXXX	นนนน นนนน	<u>uuuu</u> uuuu		
CCP1CON	00 0000	00 0000	uu uuuu		
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน		
ADCON0	0000 00-0	0000 00-0	uuuu uu-u		
OPTION	1111 1111	1111 1111	<u>uuuu</u> uuuu		
TRISA	11 1111	11 1111	uu uuuu		
TRISB	1111 1111	1111 1111	นนนน นนนน		
TRISC	1111 1111	1111 1111	นนนน นนนน		
PIE1	-0 0000	-0 0000	-u uuuu		
PCON	Ou	uu			
PR2	1111 1111	1111 1111	1111 1111		
SSPADD	0000 0000	0000 0000	<u>uuuu</u> uuuu		
SSPSTAT	00 0000	00 0000	uu uuuu		
ADCON1	000	000	uuu		


TABLE 10-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.


FIGURE 10-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

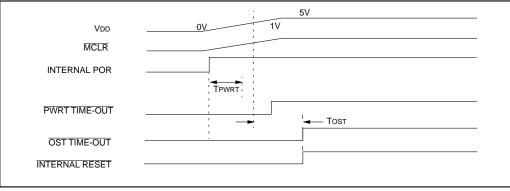

FIGURE 10-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 10-10: SLOW RISE TIME (MCLR TIED TO VDD)

 $\ensuremath{\textcircled{}^{\circ}}$ 1998 Microchip Technology Inc.

10.10 Interrupts

The PIC16C72/CR72 has 8 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

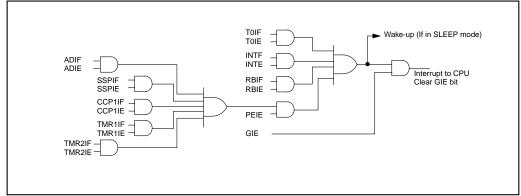
The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

10.10.1 INT INTERRUPT


External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.13 for details on SLEEP mode.

10.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0)

10.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

FIGURE 10-11: INTERRUPT LOGIC

DS39016A-page 68

10.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, i.e., W register and STATUS register. This will have to be implemented in software.

Example 10-1 stores and restores the W and STATUS registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

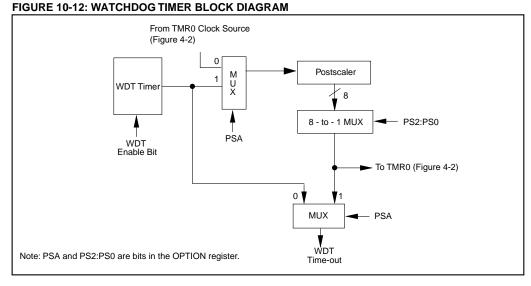
- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to W_TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
: Interrup	t Service Routine (ISR	R) - user defined
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

10.12 Watchdog Timer (WDT)

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 10.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 10-13: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 10-1 for operation of these bits.

10.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the $\overline{\text{PD}}$ bit (STATUS<3>) is cleared, the $\overline{\text{TO}}$ (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

10.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

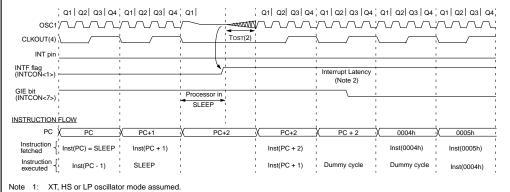
- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. A/D conversion (when A/D clock source is RC).
- 6. Special event trigger (Timer1 in asynchronous mode using an external clock).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the substruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:


- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

^{© 1998} Microchip Technology Inc.

FIGURE 10-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

1: 2:

TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode. 3:

CIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line. CLKOUT is not available in these osc modes, but shown here for timing reference. 4:

10.14 **Program Verification/Code Protection**

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

10.16 In-Circuit Serial Programming[™]

PIC16CXXX family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, DS30277.

11.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX family instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXXX family instruction set summary in Table 11-2 lists **byteoriented**, **bit-oriented**, and **literal and control** operations. Table 11-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

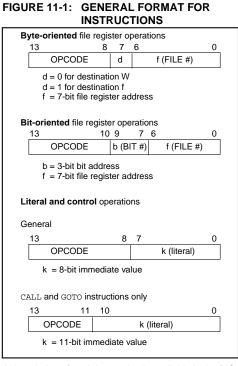
TABLE 11-1 OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 11-2 lists the instructions recognized by the MPASM assembler.


Figure 11-1 shows the general formats that the instructions can have.

Note:	To maintain upward compatibility with
	future PIC16CXXX products, do not use
	the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

A description of each instruction is available in the PICmicro[™] Mid-Range MCU Family Reference Manual, DS33023.

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Mnemo	,	Description	Cycles		14-Bit	Opcode	9	Status	Notes
Operan	Operands			MSb			LSb	Affected	
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIC	NS			•	
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPEF	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned

a this instruction is executed on the Twice register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timero Module.
 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

12.0 DEVELOPMENT SUPPORT

12.1 Development Tools

The PICmicro[™] microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER[®]/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC[™] Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB™ SIM Software Simulator
- MPLAB-C17 (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)

A description of each development tool is available in the Midrange Reference Manual, DS33023.

12.2 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

NOTES:

13.0 ELECTRICAL CHARACTERISTICS - PIC16C72 SERIES

Absolute Maximum Ratings †

Parameter	PIC16C72	PIC16CR72
Ambient temperature under bias	-55 to +125°C	-55 to +125°C
Storage temperature	-65°C to +150°C	-65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, $\overline{\text{MCLR}}$, and RA4)	-0.3V to (VDD + 0.3V)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3 to +7.5V	TBD
Voltage on MCLR with respect to Vss (Note 1)	-0.3 to +14V	TBD
Voltage on RA4 with respect to Vss	-0.3 to +14V	TBD
Total power dissipation (Note 2)	1.0W	1.0W
Maximum current out of Vss pin	300 mA	300 mA
Maximum current into VDD pin	250 mA	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	± 20 mA	± 20 mA
Output clamp current, IOK (Vo < 0 or Vo > VDD)	± 20 mA	± 20 mA
Maximum output current sunk by any I/O pin	25 mA	25 mA
Maximum output current sourced by any I/O pin	25 mA	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA	200 mA
Maximum current sunk by PORTC	200 mA	200 mA
Maximum current sourced by PORTC	200 mA	200 mA

 Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

2. Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 13-1 CROSS REFERENCE OF DEVICE SPECS (PIC16C72) FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16C72-04	PIC16C72-10	PIC16C72-20	PIC16LC72-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-2 CROSS REFERENCE OF DEVICE SPECS (PIC16CR72) FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16CR72-04	PIC16CR72-10	PIC16CR72-20	PIC16LCR72-04	JW Devices
RC	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 5.5V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 5.5V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 5.5V IDD: 52.5 µA typ. at 32 kHz, 4.0V IPD: 0.9 µA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 5.5V IDD: 48 µA max. at 32 kHz, 3.0V IPD: 5.0 µA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 5.5V IDD: 48 μA max.at 32 kHz, 3.0V IPD: 5.0 μA max.at 3.0V Freg: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.

It is recommended that the user select the device type that ensures the specifications required.

13.1 DC Characteristics: PIC16C72/CR72-04 (Commercial, Industrial, Extended) PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended)

RACTERISTICS					$\leq TA \leq -$ $\leq TA \leq -$	+125°C fo +85°C foi	or extend r industri	al and			
Characteristic	Svm	F	PIC16C7	2	PIC16CR72		PIC16CR72		PIC16CR72		Conditions
onaracteristic	- Oym	Min	Тур†	Max	Min	Typ†	Max	onits	Conditions		
Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	4.0 4.5	-	5.5 5.5	V V	XT, RC and LP osc HS osc		
RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	-	1.5	-	V			
VDD start voltage to ensure internal Power- on Reset Signal	VPOR	-	Vss	-	-	Vss	-	V	See section on Power- on Reset for details		
VDD rise rate to ensure internal Power-on Reset Signal	SVDD	0.05	-	-	0.05	-	-	V/ms	See section on Power- on Reset for details		
Brown-out Reset Volt- age	Bvdd	3.7	4.0	4.3	3.7	4.0	4.3	V	BODEN bit in configura- tion word enabled		
		3.7	4.0	4.4	3.7	4.0	4.4	V	Extended Only		
Supply Current (Note 2,5)	IDD	-	2.7	5.0	-	2.7	5.0	mA	XT, RC osc Fosc = 4 MHz, VDD = 5.5V (Note 4)		
		-	10	20	-	10	20	mA	HS osc Fosc = 20 MHz, VDD = 5.5V		
Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled, VDD = 5.0V		
Power-down Current (Note 3,5)	IPD	-	10.5	42	-	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
		-	1.5	16	-	1.5	16	μA	VDD = 4.0V, WDT dis- abled, -0°C to +70°C		
		-	1.5	19	-	1.5	19	μA	VDD = 4.0V, WDT dis- abled, -40°C to +85°C		
		-	2.5	19	-	2.5	19	μA	VDD = 4.0V, WDT dis- abled, -40°C to +125°C		
Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V		
	RAM Data Retention Voltage (Note 1) VDD start voltage to ensure internal Power- on Reset Signal VDD rise rate to ensure internal Power-on Reset Signal Brown-out Reset Volt- age Supply Current (Note 2,5) Brown-out Reset Current (Note 6) Power-down Current (Note 3,5) Brown-out Reset	Standard Operating Characteristic Sym Supply Voltage VDD RAM Data Retention Voltage (Note 1) VDR VDD start voltage to ensure internal Power-on Reset Signal VPOR VDD rise rate to ensure internal Power-on Reset Signal SVDD Brown-out Reset Voltage Bvdd Supply Current (Note 2,5) IDD Power-down Current (Note 6) IPD Power-down Current (Note 3,5) IPD Brown-out Reset Δlbor	Standard Operating temperating temperatext anditemperating temperatex and temperating temperating temp	Standard Operating Cond Operating temperatureCharacteristicSymPIC16C7MinTyptSupply VoltageVDD4.0RAM Data Retention Voltage (Note 1)VDR-1.5VDD start voltage to ensure internal Power- on Reset SignalVPOR-VDD start voltage to ensure internal Power- on Reset SignalSVDD0.05-Brown-out Reset Volt- ageBvdd3.74.0Supply Current (Note 2,5)IDD-10Brown-out Reset Current (Note 6)Δlbor-10.5Power-down Current (Note 3,5)IPD-1.5Brown-out Reset Current (Note 6)Δlbor-1.5Fown-out Reset (Note 3,5)Δlbor-1.5Forwn-out Reset Current (Note 6)Δlbor-1.5Forwn-out Reset (Note 3,5)Δlbor-1.5Forwn-out Reset (Note 3,5)Δlbor-1.5Forwn-out Reset (Note 3,5)-1.5-Forwn-out Reset (Note 3,5)-350-Forwn-out Reset (Note 3,5)Δlbor-350 <td>Standard Operating Conditions (u Operating temperature -40°C -40°C -40°C -40°C 0°CCharacteristicSym$IIC16C72$CharacteristicSym$IIC16C72$Supply VoltageVDD4.0 4.5-Supply VoltageVDD4.0 4.5-6.0 5.5RAM Data Retention Voltage (Note 1)VDR-1.5-VDD start voltage to ensure internal Power- on Reset SignalVPOR 0.05VDD start voltage to ensure internal Power-on Reset SignalSVDD0.05Brown-out Reset Volt- ageBvdd3.74.04.3Supply Current (Note 2,5)IDD-1020Brown-out Reset (Note 3,5)Libor-10.542Power-down Current (Note 3,5)IPD-1.516Fown-out Reset (Note 3,5)Libor-1.519Brown-out Reset (Note 3,5)Libor-2.519Brown-out Reset (Note 3,5)Libor-350425</td> <td>Standard Operating Conditions (unless off Operating temperature $-40^\circ C \le TA \le -40^\circ C \le -4$</td> <td>Standard Operating Conditions (unless otherwise s Operating temperature -40°C <math>\leq TA \leq +125°C fr-40°C<math>\leq TA \leq +85°C for0°C<math>\leq TA \leq +85°C for0°C<math display="inline">\leq TA \leq +85°C for<br <="" math=""/></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></td> <td>Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C$ \leq TA \leq +125$^{\circ}C$ for extens $-40^{\circ}C$ \leq TA \leq +85$^{\circ}C$ for industri $0^{\circ}C$ \leq TA \leq +85$^{\circ}C$ for commeCharacteristicSym$PIC16C72$ $4.5$$PIC16CR72$Supply VoltageVDD4.0 4.5- $5.5$6.0 $4.5$4.0 $-$- 5.5RAM Data Retention Voltage (Note 1)VDR VPR- $1.5$1.5 $-$- $-$1.5 $-$- $-$VDD start voltage to ensure internal Power-on Reset SignalVPOR $-$- $-$VSS $-$- $-$VSS $-$- $-$VSS $-$- $-$Brown-out Reset Volt- ageBvdd3.7 $-$4.04.4 $-$3.77 $-$4.0 $-$4.3 $-$Brown-out Reset (Note 2,5)$\Delta lbor$- $-$10 $-$20 $-$10.5 $-$42 $-$10.5 $-$42 $-$Brown-out Reset (Note 3,5)$\Delta lbor$- $-$1.5 $-$16 $-$1.5 $-$19 $-$1.5 $-$19 $-$Brown-out Reset (Note 3,5)Δ lbor- $-$350 $-$425 $-$350 $-$425 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$10.5 $-$</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>ACTERISTICS Operating temperature shares with the spectrum structure spectrum spectrum (Note 6) Operating temperature spectrum spectru</td>	Standard Operating Conditions (u Operating temperature -40°C -40°C -40°C -40°C 0°CCharacteristicSym $IIC16C72$ CharacteristicSym $IIC16C72$ Supply VoltageVDD4.0 4.5-Supply VoltageVDD4.0 4.5-6.0 5.5RAM Data Retention Voltage (Note 1)VDR-1.5-VDD start voltage to ensure internal Power- on Reset SignalVPOR 0.05VDD start voltage to ensure internal Power-on Reset SignalSVDD0.05Brown-out Reset Volt- ageBvdd3.74.04.3Supply Current (Note 2,5)IDD-1020Brown-out Reset (Note 3,5)Libor-10.542Power-down Current (Note 3,5)IPD-1.516Fown-out Reset (Note 3,5)Libor-1.519Brown-out Reset (Note 3,5)Libor-2.519Brown-out Reset (Note 3,5)Libor-350425	Standard Operating Conditions (unless off Operating temperature $-40^\circ C \le TA \le -40^\circ C \le -4$	Standard Operating Conditions (unless otherwise s Operating temperature -40°C $\leq TA \leq +125°C fr-40°C\leq TA \leq +85°C for0°C\leq TA \leq +85°C for$	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C$ \leq TA \leq +125 $^{\circ}C$ for extens $-40^{\circ}C$ \leq TA \leq +85 $^{\circ}C$ for industri $0^{\circ}C$ \leq TA \leq +85 $^{\circ}C$ for commeCharacteristicSym $PIC16C72$ 4.5 $PIC16CR72$ Supply VoltageVDD4.0 4.5 - 5.5 6.0 4.5 4.0 $-$ - 5.5 RAM Data Retention Voltage (Note 1)VDR VPR - 1.5 1.5 $-$ - $-$ 1.5 $-$ - $-$ VDD start voltage to ensure internal Power-on Reset SignalVPOR $-$ - $-$ VSS $-$ - $-$ VSS $-$ - $-$ VSS $-$ - $-$ Brown-out Reset Volt- ageBvdd3.7 $-$ 4.04.4 $-$ 3.77 $-$ 4.0 $-$ 4.3 $-$ Brown-out Reset (Note 2,5) $\Delta lbor$ - $-$ 10 $-$ 20 $-$ 10.5 $-$ 42 $-$ 10.5 $-$ 42 $-$ Brown-out Reset 	ACTERISTICS Operating temperature shares with the spectrum structure spectrum spectrum (Note 6) Operating temperature spectrum spectru		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSs.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Note 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Note 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

13.2 DC Characteristics: PIC16LC72/LCR72-04 (Commercial, Industrial)

DC CHA	RACTERISTICS	Standard Operatin			-40°C`	≤ TA ≤ +	nerwise s -85°C for -70°C for	industria		
Param	Characteristic	C 1/m	F	PIC16C7	2	Р	PIC16CR72		Units	Conditions
No.	Characteristic	Sym	Min	Typ†	Max	Min	Typ†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	2.5	-	5.5	V	LP, XT, RC (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	-	Vss	-	V	See section on Power- on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	0.05	-	-	V/ms	See section on Power- on Reset for details
D005	Brown-out Reset Volt- age	Bvdd	3.7	4.0	4.3	3.7	4.0	4.3	V	BODEN bit in configura- tion word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V
D020	Power-down Current (Note 3,5)	IPD	-	7.5	30	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021			-	0.9	5	-	0.9	5	μA	VDD = 3.0V, WDT dis- abled, 0°C to +70°C
D021A			-	0.9	5	-	0.9	5	μA	VDD = 3.0V, WDT dis- abled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}} = \text{VDD}; \text{WDT}$ enabled/disabled as specified.

Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Note 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Note 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

DC Characteristics: PIC16C72/CR72-04 (Commercial, Industrial, Extended) 13.3 PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended) PIC16LC72/LCR72-04 (Commercial, Industrial)

DC CHAF	ACTERISTICS	Operatii	ng temperat	ure -4 -4	0°C ≤ TA 0°C ≤ TA 0°C ≤ TA	≤ +125 ≤ +85°(≤ +70°(vise stated) °C for extended, C for industrial and C for commercial DC spec Section 13.1 and
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range
D030A			Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$
D040A			0.25VDD+ 0.8V	-	Vdd	V	For entire VDD range
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	١L	-	-	±1	μΑ	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq VPIN \leq VDD$
D063	OSC1		-	-	±5	μΑ	$Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration$
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

 Note 1:
 In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

 Note 2:
 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels repre

sent normal operating conditions. Higher leakage current may be measured at different input voltages.

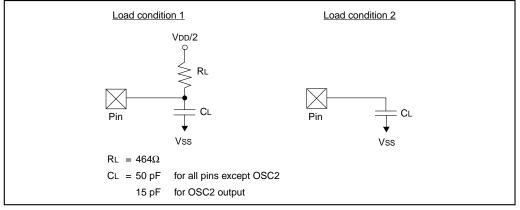
Note 3: Negative current is defined as current sourced by the pin.

DC CHAR	ACTERISTICS	Operatin	ig temperat	ure -4	O°C `≤TA O°C ≤TA O°C ≤TA	x ≤ +125 x ≤ +85°(x ≤ +70°(vise stated) °C for extended, C for industrial and C for commercial DC spec Section 13.1 and
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
	Output High Voltage						
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin, PIC16 C 72/ LC 72
			-	-	TBD	V	RA4 pin, PIC16CR72/LCR72
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	COSC2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.


Note 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Note 3: Negative current is defined as current sourced by the pin.

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

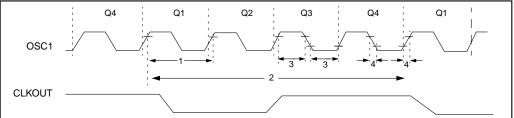

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	т	Time
Lowercase letters	(pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase letters	and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C speci	fications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-1: LOAD CONDITIONS

13.5 Timing Diagrams and Specifications

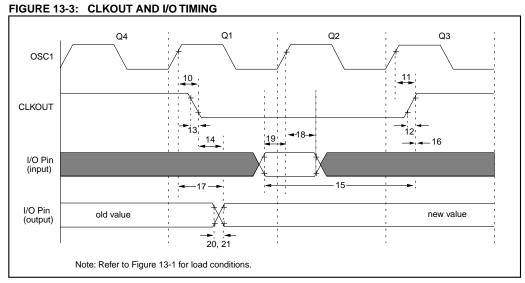


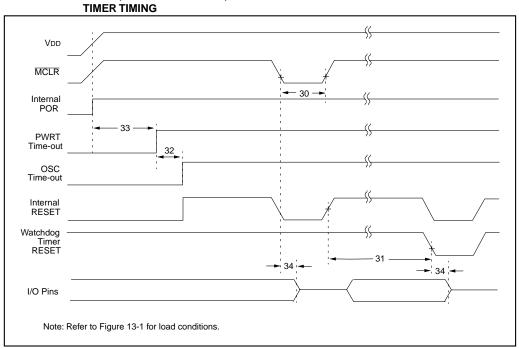
TABLE 13-3 EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4 5	_	20 200	MHz kHz	HS osc mode LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	_	—	ns	XT oscillator
	TosH	Low Time	2.5	_	—	μs	LP oscillator
			15		—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

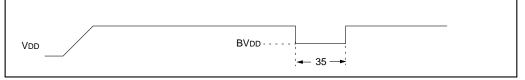
Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

TABLE 13-4 CLKOUT AND I/O TIMING REQUIREMENTS


Parameter No.	Sym	Characte	Characteristic		Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓	_	75	200	ns	Note 1	
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out val	CLKOUT ↓ to Port out valid			0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKO	Port in valid before CLKOUT 1		_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	Port in hold after CLKOUT ↑		_	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16C72/CR72	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16LC72/LCR72	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC1↑	(I/O in setup time)	0	—	_	ns	
20*	TioR	Port output rise time	PIC16C72/CR72	—	10	40	ns	
			PIC16LC72/LCR72	—	—	80	ns	
21*	TioF	Port output fall time	PIC16C72/CR72	—	10	40	ns	
			PIC16LC72/LCR72	—	—	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	—	_	ns	
23††*	Trbp	RB7:RB4 change INT hig	h or low time	Тсү	—	_	ns	

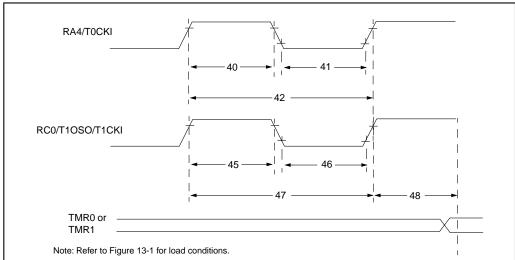
* These parameters are characterized but not tested.

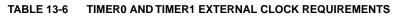
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.


These parameters are asynchronous events not related to any internal clock edges.

†† Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP


FIGURE 13-5: BROWN-OUT RESET TIMING


RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, **TABLE 13-5** AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic		Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_		Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	—	μs	$VDD \le BVDD$ (D005)

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

FIGURE 13-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Sym		Characterist	lic	Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5TCY + 20	_	_	ns	Must also meet
		-		With Prescaler	10	-	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	-	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
					N				
45*	Tt1H	T1CKI High Time	Synchronous, I	Prescaler = 1	0.5Tcy + 20	—	—	ns	Must also meet
			-, ,	PIC16C7X/CR72	15	—	—	ns	parameter 47
			Prescaler =	PIC16LC7X/LCR72	25	-	—	ns	
			2,4,8						
			Asynchronous	PIC16C7X/CR72	30	-	_	ns	
				PIC16LC7X/LCR72	50	-	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, I		0.5Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16C7X/CR72	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16LC7X/LCR72	25	-	-	ns	
			Asynchronous	PIC16C7X/CR72	30	-	—	ns	
				PIC16LC7X/LCR72	50	—	—	ns	
47*	Tt1P	T1CKI input	Synchronous	PIC16C7X/CR72	Greater of:	—	_	ns	N = prescale value
		period			30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16LC7X/LCR72	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	PIC16C7X/CR72	60	—	—	ns	
				PIC16LC7X/LCR72	100	-	—	ns	
	Ft1	Timer1 oscillator i			DC	—	200	kHz	
		(oscillator enabled							
48	TCKEZtmr	1 Delay from extern	al clock edge to	timer increment	2Tosc	—	7Tosc	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

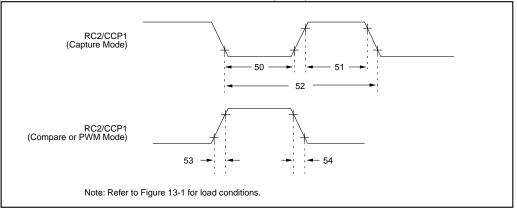


TABLE 13-7 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low time	No Prescaler		0.5Tcy + 20	—	_	ns	
			With Prescaler	PIC16C72/CR72	10	—	_	ns	
				PIC16LC72/LCR72	20	—	_	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5Tcy + 20	—	—	ns	
			With Prescaler	PIC16C72/CR72	10	—	_	ns	
				PIC16LC72/LCR72	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	-	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise time		PIC16C72/CR72	—	10	25	ns	
				PIC16LC72/LCR72	—	25	45	ns	
54*	TccF	CCP1 output fall time		PIC16C72/CR72	—	10	25	ns	
				PIC16LC72/LCR72	—	25	45	ns	

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

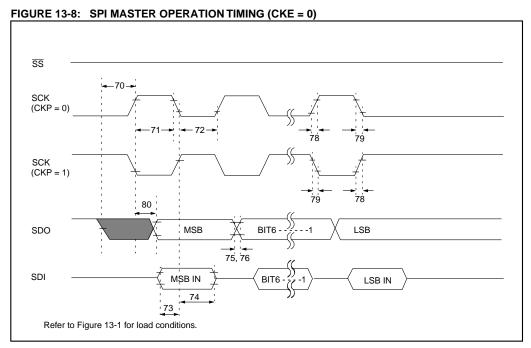
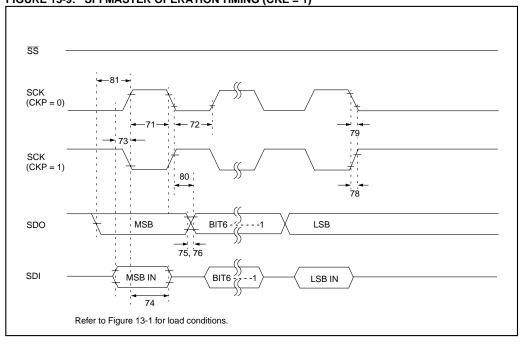
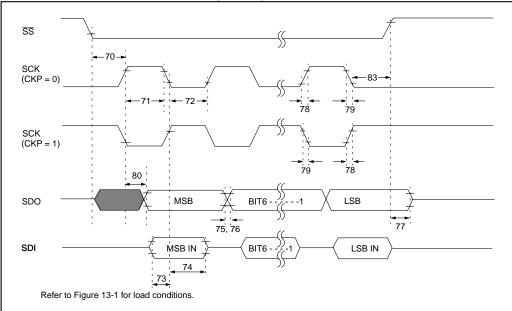




FIGURE 13-9: SPI MASTER OPERATION TIMING (CKE = 1)

FIGURE 13-10: SPI SLAVE MODE TIMING (CKE = 0)

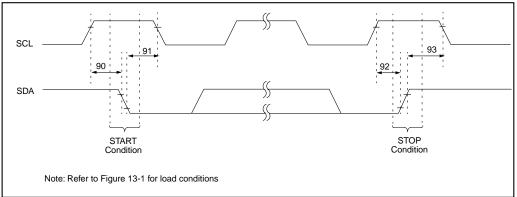
82 $\overline{\text{SS}}$ 70 SCK (CKP = 0) 83--72-SCK (CKP = 1) 80 MSB Ă BIT6 - -LSB SDO -1 75, 76 77 SDI LSB IN MSB IN BIT6 -74 Refer to Figure 13-1 for load conditions.

FIGURE 13-11: SPI SLAVE MODE TIMING (CKE = 1)

Param No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	-	-	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	-	-	ns	
72	TscL	SCK input low time (slave mode)	TCY + 20	-	-	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	-	-	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	-	-	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	-	50	ns	
78	TscR	SCK output rise time (master mode)	—	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	-	50	ns	

SPI SLAVE MODE REQUIREMENTS (CKE=0) - PIC16C72 **TABLE 13-8**

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


SPI MODE REQUIREMENTS - PIC16CR72 TABLE 13-9

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time	—	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	—	_	ns	

*

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

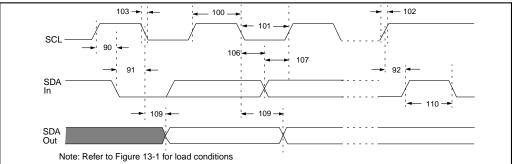

FIGURE 13-12: I²C BUS START/STOP BITS TIMING

TABLE 13-10 I ² C	BUS START/STOP BITS REQUIREMENTS
------------------------------	----------------------------------

Parameter No.	Sym	Charac	teristic	Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—			condition
91	THD:STA	START condition	100 kHz mode	4000	—		ns	After this period the first clock
		Hold time	400 kHz mode	600	—			pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	_	ns	
		Setup time	400 kHz mode	600	—	-		
93	THD:STO	STOP condition	100 kHz mode	4000	—	_	ns	
		Hold time	400 kHz mode	600	—			

FIGURE 13-13: I²C BUS DATA TIMING

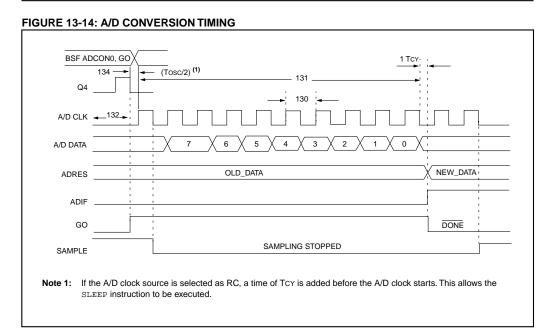
Parameter No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a min mum of 10 MHz
			SSP Module	1.5Tcy	—		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a min mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a min mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	_	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	-	3500	ns	Note 1
		clock	400 kHz mode	—		ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

Note 2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz)S I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 13-12 A/D CONVERTER CHARACTERISTICS:

PIC16C72/CR72-04 (Commercial, Industrial, Extended)
PIC16C72/CR72-10 (Commercial, Industrial, Extended)
PIC16C72/CR72-20 (Commercial, Industrial, Extended)
PIC16LC72/LCR72-04 (Commercial, Industrial)


Param No.	Sym	Char	acteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	-	8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A02	EABS	Total Absolute error		_	_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral linearity error		_	_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential linearity error		_	_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A05	EFS	Full scale error		_	_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset error		_	_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	—	Monotonicity		_	guaranteed	_	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltag	e	2.5V	_	VDD + 0.3	V	
A25	VAIN	Analog input volt	age	Vss - 0.3	_	Vref + 0.3	V	
A30	ZAIN	Recommended in analog voltage so		_	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC16C72/CR72	_	180	_	μΑ	Average current con-
		current (VDD)	PIC16LC72/LCR72	_	90	-	μA	sumption when A/D is on. (Note 1)
A50	IREF	VREF input curren	nt (Note 2)	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 9.1.
				_	—	10	μΑ	During A/D Conversion cycle

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

 Note 1:
 When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

 Note 2:
 VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

TABLE 13-13 A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16C72/LCR72	1.6	_	_	μs	Tosc based, VREF $\ge 2.5V$
			PIC16LC72/LCR72	2.0	_	_	μs	Tosc based, VREF full range
			PIC16C72/LCR72	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC72/LCR72	2.5	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H time) (Note 1)		-	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	—	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., $20.0 \text{ mV} @ 5.12 \text{V}$) from the last sampled voltage (as stated on CHOLD).
134	Tgo	Q4 to A/D clock s	start	_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from co	onvert \rightarrow sample time	1.5 §	-	_	TAD	

t

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.
 Note 1: ADRES register may be read on the following Tcy cycle.

Note 2: See Section 9.1 for min conditions.

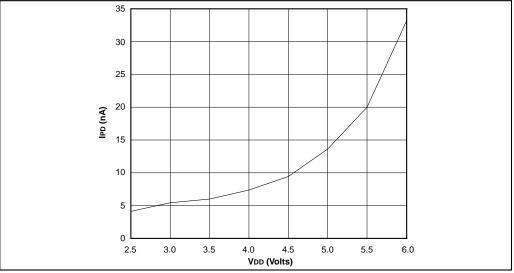
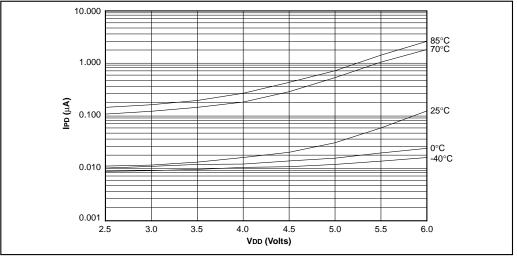
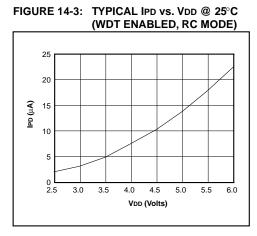
NOTES:

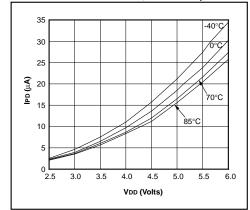
14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES - PIC16C72

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C, while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.


FIGURE 14-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

PIC16C72 Series PIC16C72

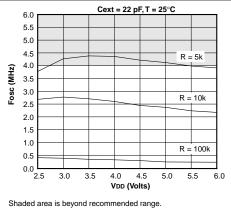
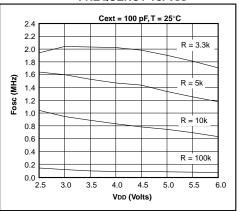
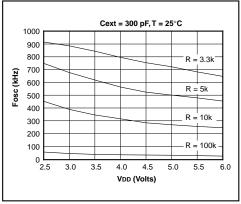
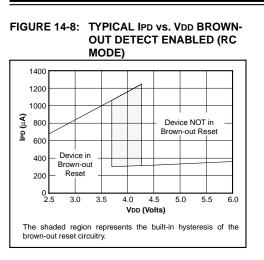
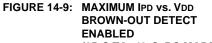
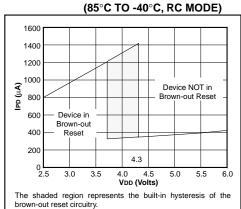
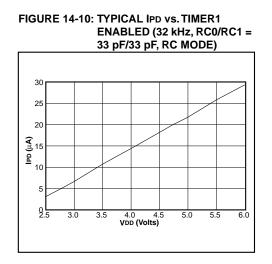


FIGURE 14-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

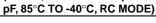




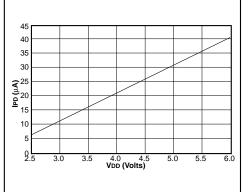

FIGURE 14-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD



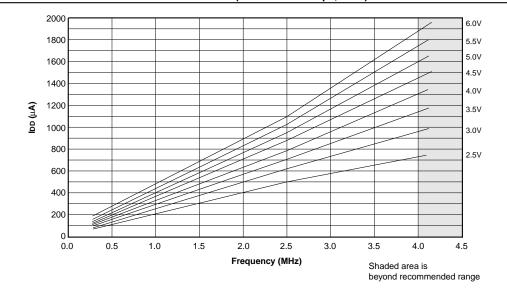

Data based on matrix samples. See first page of this section for details.

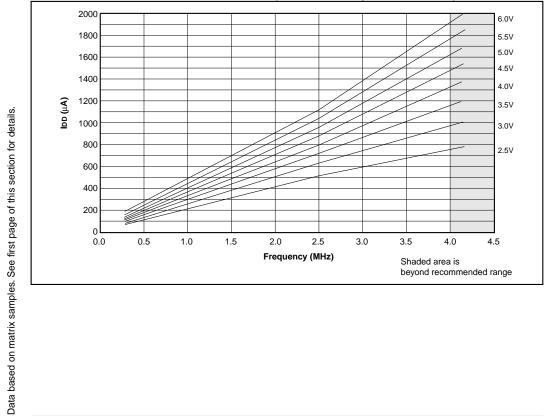
DS39016A-page 98



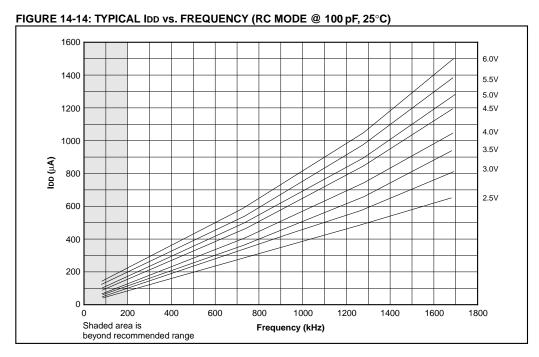


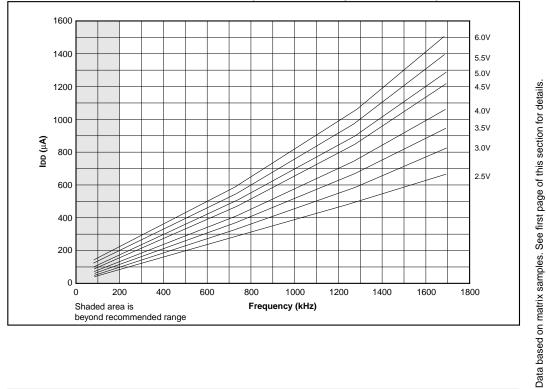
PIC16C72



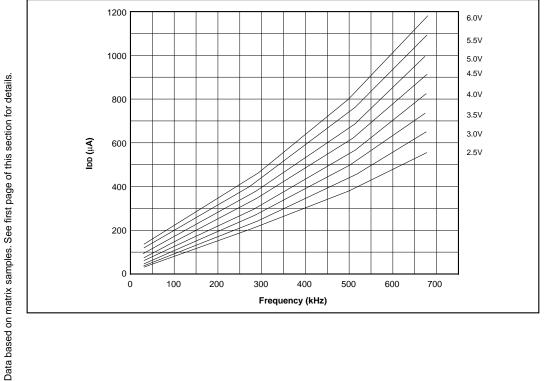

© 1998 Microchip Technology Inc.

PIC16C72 Series PIC16C72





DS39016A-page 100



PIC16C72 Series PIC16C72

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

DS39016A-page 102

PIC16C72 PIC16C72 Series

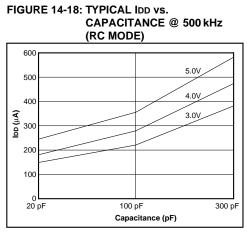


TABLE 14-1 RC OSCILLATOR FREQUENCIES

Cext	Rext	Average	
		Fosc @ 5V,	25°C
22 pF	5k	4.12 MHz	± 1.4%
	10k	2.35 MHz	± 1.4%
	100k	268 kHz	± 1.1%
100 pF	3.3k	1.80 MHz	± 1.0%
	5k	1.27 MHz	± 1.0%
	10k	688 kHz	± 1.2%
	100k	77.2 kHz	± 1.0%
300 pF	3.3k	707 kHz	± 1.4%
	5k	501 kHz	± 1.2%
	10k	269 kHz	± 1.6%
	100k	28.3 kHz	± 1.1%

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V. FIGURE 14-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

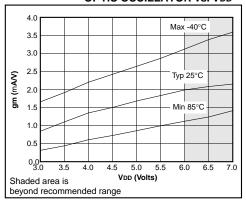


FIGURE 14-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

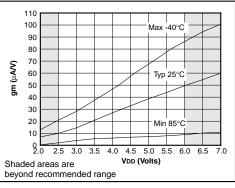
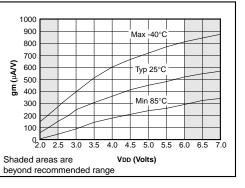



FIGURE 14-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

DS39016A-page 103

PIC16C72 Series PIC16C72

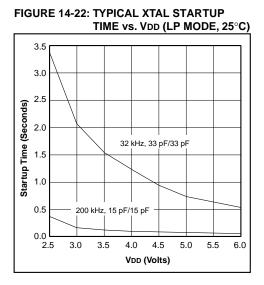
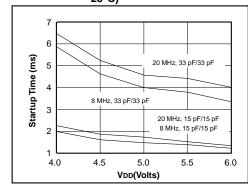
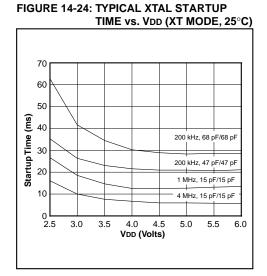
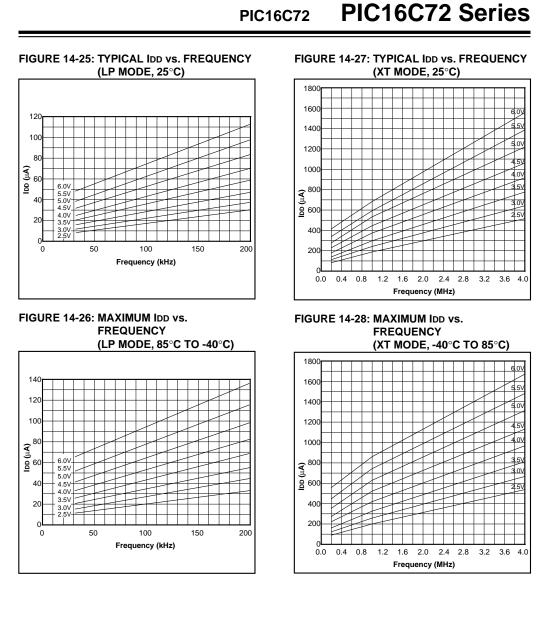



FIGURE 14-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

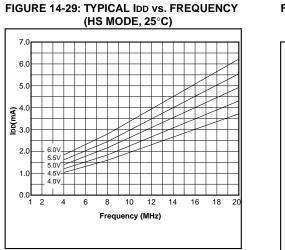


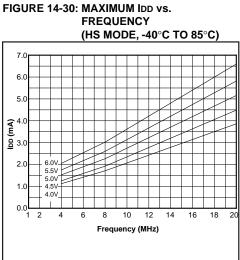

TABLE 14-2 CAP FOR OSC

CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
Crystals Used			
32 kHz	Epson C-001R32.768K-A		± 20 PPM
200 kHz	STD XTL 200.000KHz		± 20 PPM
1 MHz	ECS ECS-10-13-1		± 50 PPM
4 MHz	ECS ECS-4	± 50 PPM	
8 MHz	EPSON CA	± 30 PPM	
20 MHz	EPSON CA	± 30 PPM	

Data based on matrix samples. See first page of this section for details.


DS39016A-page 104



Data based on matrix samples. See first page of this section for details.

Preliminary

PIC16C72 Series PIC16C72

TABLE 14-3 TYPICAL EPROM ERASE TIME RECOMMENDATIONS

Process Technology	Wavelength (Angstroms)	Intensity (μW/ cm2)	Distance from UV lamp (inches)	Typical Time ⁽¹⁾ (minutes)
57K	2537	12,000	1	15 - 20
77K	2537	12,000	1	20
90K	2537	12,000	1	40
120K	2537	12,000	1	60

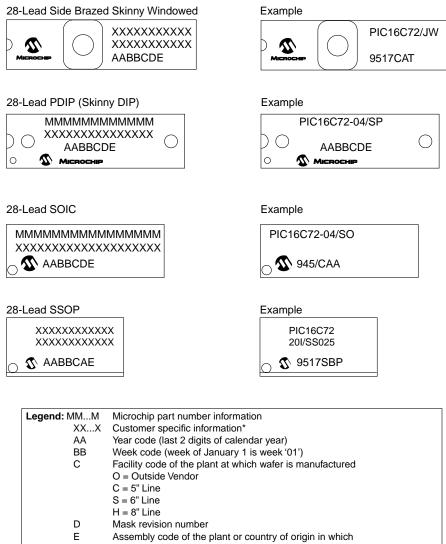
Note 1: If these criteria are not met, the erase times will be different.

Note: Fluorescent lights and sunlight both emit ultraviolet light at the erasure wavelength. Leaving a UV erasable device's window uncovered could cause, over time, the devices memory cells to become erased. The erasure time for a fluorescent light is about three years. While sunlight requires only about one week. To prevent the memory cells from losing data an opaque label should be placed over the erasure window.

Data based on matrix samples. See first page of this section for details.

DS39016A-page 106

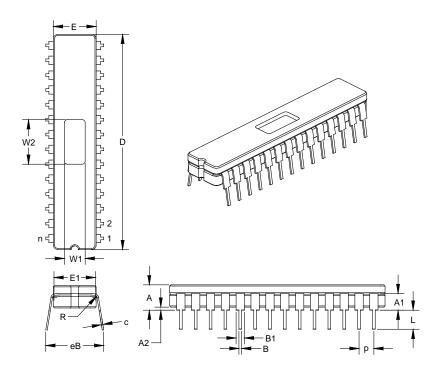
15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES - PIC16CR72


NO GRAPHS OR TABLES AVAILABLE AT THIS TIME

PIC16C72 Series PIC16CR72

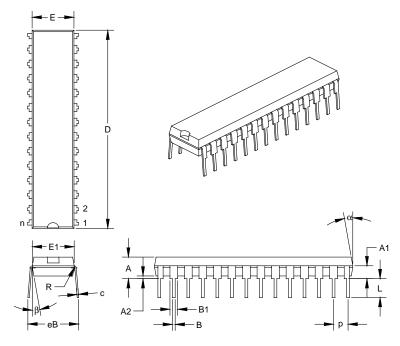
NOTES:

16.0 PACKAGING INFORMATION


16.1 Package Marking Information

 Note:
 In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

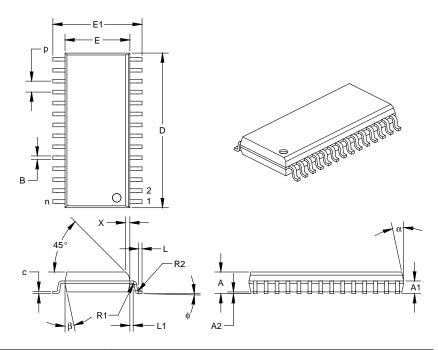
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.


16.2 <u>28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)</u>

Units			INCHES*		М	ILLIMETERS	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		28			28	
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59
Lower Lead Width	В	0.016	0.019	0.021	0.41	0.47	0.53
Upper Lead Width	B1	0.050	0.058	0.065	1.27	1.46	1.65
Shoulder Radius	R	0.010	0.013	0.015	0.25	0.32	0.38
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	A	0.170	0.183	0.195	4.32	4.64	4.95
Top of Lead to Seating Plane	A1	0.107	0.125	0.143	2.72	3.18	3.63
Base to Seating Plane	A2	0.015	0.023	0.030	0.00	0.57	0.76
Tip to Seating Plane	L	0.135	0.140	0.145	3.43	3.56	3.68
Package Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Package Width	E	0.285	0.290	0.295	7.24	7.37	7.49
Radius to Radius Width	E1	0.255	0.270	0.285	6.48	6.86	7.24
Overall Row Spacing	eB	0.345	0.385	0.425	8.76	9.78	10.80
Window Width	W1	0.130	0.140	0.150	0.13	0.14	0.15
Window Length	W2	0.290	0.300	0.310	0.29	0.3	0.31

* Controlling Parameter.

16.3 28-Lead Plastic Dual In-line (300 mil) (SP)

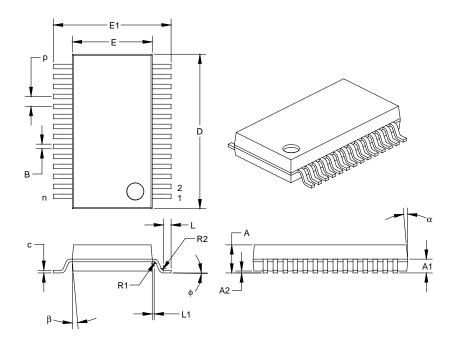

Units			INCHES*		М	ILLIMETERS	3
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		28			28	
Pitch	р		0.100			2.54	
Lower Lead Width	В	0.016	0.019	0.022	0.41	0.48	0.56
Upper Lead Width	B1 [†]	0.040	0.053	0.065	1.02	1.33	1.65
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	A	0.140	0.150	0.160	3.56	3.81	4.06
Top of Lead to Seating Plane	A1	0.070	0.090	0.110	1.78	2.29	2.79
Base to Seating Plane	A2	0.015	0.020	0.025	0.38	0.51	0.64
Tip to Seating Plane	L	0.125	0.130	0.135	3.18	3.30	3.43
Package Length	D‡	1.345	1.365	1.385	34.16	34.67	35.18
Molded Package Width	E‡	0.280	0.288	0.295	7.11	7.30	7.49
Radius to Radius Width	E1	0.270	0.283	0.295	6.86	7.18	7.49
Overall Row Spacing	eB	0.320	0.350	0.380	8.13	8.89	9.65
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter.

 Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

16.4 28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)


Units			INCHES*		М	ILLIMETERS	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		28			28	
Overall Pack. Height	A	0.093	0.099	0.104	2.36	2.50	2.64
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28
Molded Package Length	D [‡]	0.700	0.706	0.712	17.78	17.93	18.08
Molded Package Width	E‡	0.292	0.296	0.299	7.42	7.51	7.59
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64
Chamfer Distance	Х	0.010	0.020	0.029	0.25	0.50	0.74
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51
Lead Thickness	с	0.009	0.011	0.012	0.23	0.27	0.30
Lower Lead Width	B [†]	0.014	0.017	0.019	0.36	0.42	0.48
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

 Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

16.5 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

Units			INCHES		М	ILLIMETER	S*
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.026			0.65	
Number of Pins	n		28			28	
Overall Pack. Height	A	0.068	0.073	0.078	1.73	1.86	1.99
Shoulder Height	A1	0.026	0.036	0.046	0.66	0.91	1.17
Standoff	A2	0.002	0.005	0.008	0.05	0.13	0.21
Molded Package Length	D [‡]	0.396	0.402	0.407	10.07	10.20	10.33
Molded Package Width	E‡	0.205	0.208	0.212	5.20	5.29	5.38
Outside Dimension	E1	0.301	0.306	0.311	7.65	7.78	7.90
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.015	0.020	0.025	0.38	0.51	0.64
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.005	0.007	0.009	0.13	0.18	0.22
Lower Lead Width	B [†]	0.010	0.012	0.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

NOTES:

APPENDIX A: WHAT'S NEW IN THIS DATA SHEET

This is a new data sheet. However, information on the PIC16C72 device was previously found in the PIC16C7X Data Sheet, DS30390. Information on the PIC16CR72 device is new.

APPENDIX B: WHAT'S CHANGED IN THIS DATA SHEET

New data sheet.

APPENDIX C: DEVICE DIFFERENCES

A table of the differences between the devices described in this document is found below.

Difference	PIC16C72	PIC16CR72	
SSP module in SPI mode	Basic SSP	SSP	

NOTES:

INDEX

A A/D

-	ļ
ю	
	Į

6
BF
Block Diagrams
A/D55
Analog Input Model56
Capture
Compare
I ² C Mode
On-Chip Reset Circuit62
PIC16C72
PIC16CR72
PORTC
PWM
RA3:RA0 and RA5 Port Pins19
RA4/T0CKI Pin19
RB3:RB0 Port Pins21
RB7:RB4 Port Pins
SSP in I ² C Mode
SSP in SPI Mode
Timer0
Timer0/WDT Prescaler
Timer2
Watchdog Timer
BOR bit
Buffer Full Status bit, BF
C
C bit9
Capture/Compare/PWM
Capture
Block Diagram
CCP1CON Register
CCP1IF
CCPR1
CCPR1H:CCPR1L

Mode
Prescaler
Compare
Block Diagram
Mode
Software Interrupt Mode
Special Event Trigger
Special Trigger Output of CCP1 35
Special Trigger Output of CCP2
Section
Special Event Trigger and A/D Conversions
Capture/Compare/PWM (CCP)
PWM Block Diagram
PWM, Example Frequencies/Resolutions
CCP1IE bit
CCP1IF bit
CCPR1H Register
CCPR1L Register
CCPxM0 bit 33
CCPxM1 bit
CCPxM2 bit
CCPxM3 bit
CCPxX bit
CCPX1 bit
CKP
Clock Polarity Select bit, CKP 41, 44
Code Examples
Changing Between Capture Prescalers
Initializing PORTA 19
Initializing PORTB 21
Initializing PORTC 23
Code Protection
Code Protection 59, 72 Configuration Bits 59
Configuration Bits
Configuration Bits
Configuration Bits
Configuration Bits 59 D D/Ā 40, 43 Data/Address bit, D/Ā 40, 43 DC bit 9 DC Characteristics 9
Configuration Bits 59 D D/Ā 40, 43 Data/Address bit, D/Ā 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Development Tools 75
Configuration Bits 59 D //A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Development Tools 75
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Direct Addressing 17 E 17
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Direct Addressing 17 E 17
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F F
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PlC16C72 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PlC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F F
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC Characteristics 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E E Electrical Characteristics PIC16C72 PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (fuzzyTECH®-MP) 75 G G
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (fuzzy/TECH®-MP) 75 G 68
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC Characteristics 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E E Electrical Characteristics PIC16C72 PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (fuzzyTECH®-MP) 75 G G
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (fuzzy/TECH®-MP) 75 G 68
Configuration Bits 59 D D/A D/A 40, 43 Data/Address bit, D/A 40, 43 DC Characteristics 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (fuzzyTECH®-MP) 75 G GIE bit 68 I I/O Ports 90 PORTA 19
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (<i>fuzzy</i> TECH®-MP) 75 G GIE bit 68 I //O Ports 68 PORTA 19 PORTB 21
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Development Tools 75 Direct Addressing 17 E E Electrical Characteristics 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (<i>fuzzy</i> TECH®-MP) 75 G GIE bit 68 I //O Ports 68 PORTA 19 90RTB 21 PORTD 23 24
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 DC Characteristics 79 Development Support 75 Development Tools 75 Direct Addressing 17 E Electrical Characteristics PIC16C72 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (<i>fuzzy</i> TECH®-MP) 75 G GIE bit 68 I //O Ports 68 PORTA 19 90 PORTB 21 23 Section 19 23
Configuration Bits 59 D D/A 40, 43 Data/Address bit, D/A 40, 43 DC bit 9 DC Characteristics 9 PIC16C72 79 Development Support 75 Development Tools 75 Direct Addressing 17 E E Electrical Characteristics 77 External Power-on Reset Circuit 63 F FSR Register 7, 8, 17 Fuzzy Logic Dev. System (<i>fuzzy</i> TECH®-MP) 75 G GIE bit 68 I //O Ports 68 PORTA 19 90RTB 21 PORTD 23 24

© 1998 Microchip Technology Inc.

Block Diagram
Master Mode
Mode
Mode Selection47
Multi-Master Mode
Reception
SCL and SDA pins
Slave Mode
Transmission50
In-Circuit Serial Programming
INDF Register
Initialization Condition for all Register
Instruction Format
Instruction Set
Section
Summary Table
INT Interrupt
INTEDG bit
Internal Sampling Switch (Rss) Impedance
Interrupts59
PortB Change
RB7:RB4 Port Change21 Section
TMR0
IRP bit
L
Loading of PC15
M
MCLR
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16C72 5 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16CR72 6 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64
MCLR
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 7 PIC16C72 5 PIC16C72 5 Register File Maps 7 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 MPASM Assembler 75 MPSIM Software Simulator 75 O 0 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 XT 60, 64 Acc 60 AC 0 Scillator Configurations 60
MCLR
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16C72 5 Register File Maps 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 MPASM Assembler 75 O 0 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 C 60 XT 60, 64 RC 60 AT 60 Output of TMR2 31
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 91C16C72 PIC16C72 5 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 MPASM Assembler 75 MPSIM Software Simulator 75 O 0 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 RC 60 Qutput of TMR2 31 P 40, 43
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 POSM Assembler 75 MPSIM Software Simulator 75 O 0 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 LP 60, 64 RC 60 QUPUT of TMR2 31 P 40, 43 Packaging 40, 43
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16C72 5 PIC16C72 6 PIC16CR72 6 MPASM Assembler 75 O O OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 RC 60 AT 60, 64 Qutput of TMR2 31 P 40, 43 Packaging 40, 43 Packaging 28-Lead Ceramic w/Window
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16C72 5 Register File Maps 6 PIC16C72 6 PIC16C72 6 PIC16C72 6 MPASM Assembler 75 O 0 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 LP 60, 64 RC 60 AT 60, 64 P 31 P 40, 43 Packaging 28-Lead Ceramic w/Window 110 28-Lead PDIP 111
MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16C72 5 PIC16C72 6 PIC16CR72 6 MPASM Assembler 75 O O OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 60, 64 LP 60, 64 RC 60 AT 60, 64 Qutput of TMR2 31 P 40, 43 Packaging 40, 43 Packaging 28-Lead Ceramic w/Window

PCFG0 bit54
PCFG1 bit
PCFG2 bit54
PCL Register
PCLATH
PCLATH Register7, 8, 15
PCON Register 14, 64
PD bit
PICDEM-1 Low-Cost PIC16/17 Demo Board
PICDEM-2 Low-Cost PIC16CXX Demo Board
PICMASTER™ RT In-Circuit Emulator
PICSTART™ Low-Cost Development System
PIE1 Register
Pin Functions
MCLR/Vpp
OSC1/CLKIN
OSC2/CLKOUT
RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3/Vref
RA4/T0CKI
RA5/AN4/SS
RB0/INT
RB0/IN1
RB2
RB4
RB5
RB7
RC0/T1OSO/T1CKI
RC1/T10SI
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6
SCK
SDI
<u>SD0</u>
Vdd
Vuu
Pinout Descriptions
PIC16C72
PIC16CR72
PIR1 Register
POR
Oscillator Start-up Timer (OST)
Power Control Register (PCON)
Power-on Reset (POR)
Power-up Timer (PWRT)
Power-Up-Timer (PWRT)
Time-out Sequence
Time-out Sequence
POR bit
Port RB Interrupt
PORTA
PORTA Register
PORTB
PORTB Register
PORTC
PORTC Register
I OWEI-UUWII WOULE (OLEEF)

DS39016A-page 118

PR2 Register	
Prescaler, Switching Between Timer0 and WDT PRO MATE™ Universal Programmer	
Program Memory	
Paging	
Program Memory Maps	
PIC16C72	5
PIC16CR72	
Program Verification	72
PS0 bit	
PS1 bit	10
PS2 bit	10
PSA bit	10
R	
R/W	
R/W bit	
RBIF bit	,
RBPU bit	
RC Oscillator	61, 64
Read/Write bit Information, R/\overline{W}	40, 43
Receive Overflow Detect bit, SSPOV	
Receive Overflow Indicator bit, SSPOV	
Register File	6
Registers	
Initialization Conditions	65
Maps	
PIC16C72	6
PIC16CR72	6
Reset Conditions	64
SSPCON	
Diagram	41
SSPSTAT	43
Diagram	
Section	40
Reset	59, 61
Reset Conditions for Special Registers	
RP0 bit	
RP1 bit	9
S	
-	
S	-, -
SCK	
SCL	
SDI	
SDO	
Slave Mode	
SCL	
SDA	
SLEEP	, -
SMP	
Special Event Trigger	58
Special Features of the CPU	59
Special Function Registers	
PIC16C72	
PIC16CR72	7

Special Function Registers, Section7

SSPCON44

SPI Clock Edge Select I	bit, CKE	43
SPI Data Input Sample	Phase Select bit, SMP 4	43
	۷ ۷	
	4	42
SSP		~~
SSPIF bit	1	13
SSPM3:SSPM0		44
SSPOV		47
	1	
,		
		43
Synchronous Serial Por		
	1 Mode	
	t Enable bit, SSPEN 41, 4	44
Synchronous Serial Por	41, 4	
	t Module	
	t Status Register 4	
Synchronous Senar For		+3
Т		
T0CS bit		10
T1CKPS0 bit		27
T1CKPS1 bit		27
T1CON Register		27
T1OSCEN bit		27
T1SYNC bit		27
	5	57
Timer0		
	6	65
Timers		
Timer0	n	٦E
•	//	20
		26
		25
Prescaler Blo	z z ck Diagram	25 26
Prescaler Blo Section	ck Diagram	25 26 25
Prescaler Blo Section Switching Pre	ck Diagram	25 26 25 26
Prescaler Blo Section Switching Pre T0IF	ck Diagram	25 26 25 26 38
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1	ck Diagram	25 26 25 26 58 58
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1	ck Diagram	25 26 25 26 58 58
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1 Capacitor Sel	ck Diagram	25 26 25 26 68 68 68
Prescaler Blo Section Switching Pre T0IF TMRO Interru Timer1 Capacitor Sel Oscillator	ck Diagram	25 26 25 26 68 68 68 29 29
Prescaler Blo Section Switching Pre T0IF TMRO Interru Timer1 Capacitor Sel Oscillator Resetting Tim T1CON	ck Diagram	25 26 25 26 68 68 29 29 29
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1 Capacitor Sel Oscillator Resetting Tim T1CON Timer2	ck Diagram	25 26 25 26 68 68 29 29 29 29 29
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1 Capacitor Sel Oscillator Resetting Tim T1CON Timer2 Block Diagram	ck Diagram	25 26 25 26 88 86 29 29 29 27 31
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1 Capacitor Sel Oscillator Resetting Tim T1CON Timer2 Block Diagram Postscaler	ck Diagram	25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1 Capacitor Sel Oscillator Resetting Tim T1CON Timer2 Block Diagram Postscaler Prescaler	ck Diagram	25 26 25 26 26 26 26 26 26 26 26 26 26 27 29 29 27 31 31 31
Prescaler Blo Section Switching Pre TOIF TMR0 Interru Timer1 Capacitor Sel Oscillator Resetting Tim T1CON Timer2 Block Diagram Postscaler Prescaler	ck Diagram	25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 27 27 31 31 31

© 1998 Microchip Technology Inc.

SPI

Preliminary

Timing Diagrams
A/D Conversion
Brown-out Reset
Capture/Compare/PWM
CLKOUT and I/O85
External Clock Timing
I ² C Bus Data93
I ² C Bus Start/Stop bits
I ² C Reception (7-bit Address)
Power-up Timer
Reset
Start-up Timer
Timer0
Timer1
Wake-up from Sleep via Interrupt72
Watchdog Timer
TMR1CS bit
TMR1H Register
TMR1IE bit
TMR1IF bit
TMR1L Register
TMR1ON bit
TMR2 Register
TMR2IE bit
TMR2IE bit
TMR2IF bit
TO bit
TOUTPS0 bit
TOUTPS2 bit
TOUTPS3 bit
TRISA Register
TRISB Register
TRISC Register
U
UA
Update Address bit, UA
W
Wake-up from SLEEP71
Watchdog Timer (WDT)59, 61, 64, 70
WCOL
WDT64
Block Diagram70
Timeout65
Write Collision Detect bit, WCOL 41, 44
Z

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- · Links to other useful web sites related to
- Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

980106

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. PICmicro, *Flex*ROM, MPLAB and *fuzzy*-LAB are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578. Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent							
RE:	Reader Response								
From	m: Name								
	Company								
	Address								
	City / State / ZIP / Country								
Telephone:									
Application (optional): Would you like a reply? Y N									
Device: PIC16C72 Series Literature Number: DS39016A									
Questions:									
Que									
1. V	What are the best features of this document?								
-									
- 2 ⊾	How does this document meet your hardware	and software development needs?							
2. 1	now does this document meet your hardware	and software development needs:							
_									
3. E	Do you find the organization of this data sheet	easy to follow? If not, why?							
_									
_									
4. V	What additions to the data sheet do you think	would enhance the structure and subject?							
-									
5 \	What deletions from the data sheet could be m	ade without affecting the overall usefulness?							
0. 1									
_									
6. I	Is there any incorrect or misleading information	n (what and where)?							
-									
-									
7. H	How would you improve this document?								
-									
- 8 F	How would you improve our software, systems	and silicon products?							
U . 1		,							
-									
_									

DS39016A-page 122

PIC16C72 SERIES PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device Fi	- <u>XX</u> requency Range	X Temperature Range	/XX Package	XXX Pattern		Exa f)	PIC PDI patte	16C72 -04/P 301 = Commercial temp., P package, 4 MHz, normal VDD limits, QTP ern #301.	
Device	PIC16C72 ⁽¹⁾ , PIC16C72T ⁽²⁾ PIC16LC72 ⁽¹⁾ , PIC16LC72T ⁽²⁾ PIC16CR72 ⁽¹⁾ , PIC16CR72T ⁽²⁾ PIC16LCR72 ⁽¹⁾ , PIC16LCR72T ⁽²⁾					g) h)	package, 200 kHz, Extended VDD limits.		
Frequency Range	04 10	= 2 MHz = 4 MHz = 10 MHz = 20 MHz				Note		C= CMOS CR= CMOS ROM LC= Low Power CMOS LCR= ROM Version, Extended Vdd range T = in tape and reel - SOIC, SSOP pack- ages only.	
Temperature Range	ĩ	$= 0^{\circ}C \text{ to } 70^{\circ}$ = -40^{\circ}C \text{ to } +85^{\circ} = -40^{\circ}C \text{ to } +125^{\circ}	C (Industrial)			3:		
Package	SO SP	= Ceramic Dual In = Small Outline - 3 = Skinny PDIP = Shrink Samll Ou	800 mil						
Pattern	3-digit P	Pattern Code for QT	FP, ROM (blank	otherwise)					

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office (see last page)
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Development Tools

For the latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302. The latest version of Development Tools software can be downloaded from either our Bulletin Board or Worldwide Web Site. (Information on how to connect to our BBS or WWW site can be found in the On-Line Support section of this data sheet.)

WORLDWIDE SALES AND SERVICE

AMERICAS Corporate Office

Microchip Technology Inc.

2355 West Chandler Blvd.

Microchip Technology Inc.

Microchip Technology Inc.

5 Mount Royal Avenue Marlborough, MA 01752

Microchip Technology Inc.

Microchip Technology Inc.

14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809

Microchip Technology Inc. Two Prestige Place, Suite 150

Tel: 972-991-7177 Fax: 972-991-8588

Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Tel: 714-263-1888 Fax: 714-263-1338

333 Pierce Road, Suite 180

Atlanta

Boston

Chicago

Dallas

Dayton

Los Angeles

New York

San Jose

Toronto

San Jose, CA 95131

Microchip Technology Inc.

Microchip Technology Inc.

Microchip Technology Inc.

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 516-273-5305 Fax: 516-273-5335

Microchip Technology Inc. 2107 North First Street, Suite 590

Tel: 408-436-7950 Fax: 408-436-7955

5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

18201 Von Karman, Suite 1090 Irvine, CA 92612

Chandler, AZ 85224-6199 Tel: 602-786-7200 Fax: 602-786-7277

Technical Support: 602 786-7627 Web: http://www.microchip.com

500 Sugar Mill Road, Suite 200B

Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Tel: 508-480-9990 Fax: 508-480-8575

Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

ASIA/PACIFIC

Hong Kong

Microchip Asia Pacific RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 **India** Microchip Technology Inc. India Liaison Office

No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

Singapore

Microchip Technology Taiwan Singapore Branch 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850

ASIA/PACIFIC (CONTINUED)

Taiwan, R.O.C Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tei: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle

Winnersn mangie Wokingham Berkshire, England RG41 5TU Tel: 44-1189-21-5858 Fax: 44-1189-21-5835 France

Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises

91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Müchen, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-39-6899939 Fax: 39-39-6899883

1/13/98

Microchip received ISO 9001 Quality System certification for its worldwide headquarters, design, and wafer fabrication facilities in January, 1997. Our field-programmable PICmicro™ 8-bit MCUs, Serial EEPROMs, related specialty memory products and development systems conform to the stringent quality standards of the International Standard Organization (ISO).

All rights reserved. © 1998, Microchip Technology Incorporated, USA. 2/98 👷 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no indibility is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip S products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

