

General Description

The MAX4108 evaluation kit (EV kit) simplifies evaluation of the MAX4108 high-speed amplifier. The EV kit circuit demonstrates the MAX4108 in the noninverting, unity-gain configuration.

The EV kit comes with the MAX4108 installed. To evaluate the MAX4109, simply order a free sample (MAX4109ESA), replace the MAX4108 with the MAX4109 on the EV board, and change the gain-setting resistors for the desired gain. The minimum closed-loop gain for the MAX4109 is +2V/V.

Features

- **♦ 400MHz Unity-Gain Bandwidth**
- ♦ Optional Adjustable Gain
- **♦ Fully Assembled and Tested**

Ordering Information

PART	TEMP. RANGE	BOARD TYPE
MAX4108EVKIT-SO	+25°C	Surface Mount

Note: To evaluate the MAX4109, request a MAX4109ESA free sample.

Component List

DESIGNATION	QTY	DESCRIPTION
U1	1	MAX4108ESA
C3, C6	2	10μF, 10V 20% tantalum capacitors AVX TAJB106M010 Sprague 293D106X0010B
C1, C2, C4, C5	4	0.1µF, 10% ceramic capacitors Vitramon VJ1206Y104KXX
R1, R2	2	49.9Ω, 1% resistors
RF	1	24Ω, 5% resistor
IN, OUT	2	SMA connectors
None	1	MAX4108 PC board
None	1	MAX4108/MAX4109 data sheet

Quick Start

The MAX4108 EV kit is fully assembled and tested. Follow these steps to verify board operation. **Do not** turn on the power supply until all connections are completed.

- 1) The circuit requires supply voltages of ±5V. Connect ±5V supplies to the corresponding pads marked VCC and VEE. Connect the power-supply ground to the pad marked GND.
- 2) Apply a signal between +2.5V and -3.1V to the SMA connector marked IN.
- 3) Connect the output marked OUT to an oscilloscope through a terminated 50Ω cable.
- 4) Turn on the power supply and verify the output signal on the oscilloscope.

Component Suppliers

SUPPLIER	PHONE	FAX
AVX	(803) 946-0690	(803) 626-3123
Sprague	(603) 224-1961	(603) 224-1430
Vishay/Vitramon	(203) 268-6261	(203) 452-5670

Detailed Description

Voltage-Gain Adjustment

The MAX4108 gain can be adjusted with the following minor modifications to the EV board.

- 1) Referring to Table 1, select the feedback (RF) and gain-setting (R_G) resistors for the desired gain.
- 2) Install RF and RG.

MIXIM

MAX4108 Evaluation Kit

Table 1. Gain-Set Resistors

SMALL-SIGNAL RF Rg **GAIN BANDWIDTH DEVICE** (Ω) (Ω) (MHz) 1 24 Open 400 MAX4108 2 270 270 225 MAX4109 5 270 68 50 MAX4109 10 270 30 25 MAX4109

Layout Considerations

The MAX4108 EV kit layout has been optimized for high-speed signals and low distortion, with careful attention to grounding, power-supply bypassing, and signal-path layout. The small, surface-mount, ceramic bypass capacitors (C1, C2, C4, and C5) have been placed as close to the four MAX4108 supply pins as possible. Bypass capacitors for pins 5 and 8 must connect to a low-impedance ground. Individual power-supply traces are used to separate the MAX4108 input and output stage currents to reduce distortion. Unused pin 1 is grounded to prevent unwanted noise from coupling into the circuit.

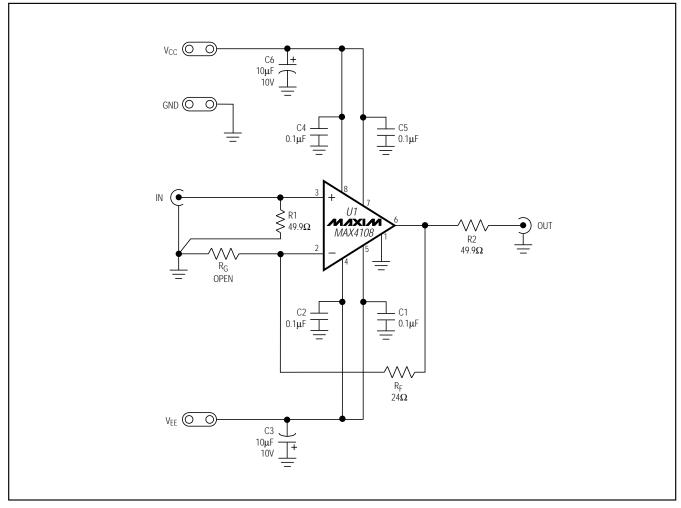


Figure 1. MAX4108 EV Kit Schematic

MAX4108 Evaluation Kit

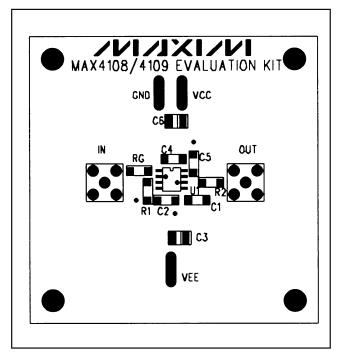


Figure 2. MAX4108 EV Kit Component Placement Guide—Component Side

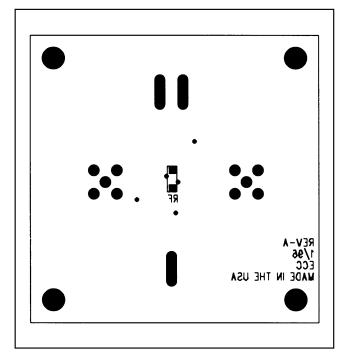


Figure 3. MAX4108 EV Kit Component Placement Guide—Solder Side

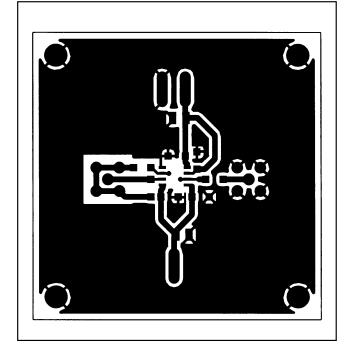


Figure 4. MAX4108 EV Kit PC Board Layout—Component Side

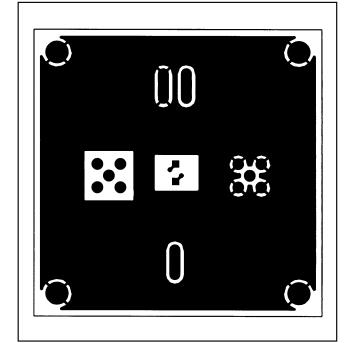


Figure 5. MAX4108 EV Kit PC Board Layout—Solder Side

MAX4108 Evaluation Kit

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

4 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600