

HiPerFAST[™] IGBT

IXGH 24N60A

G = Gate, E = Emitter,

C = Collector,TAB = Collector

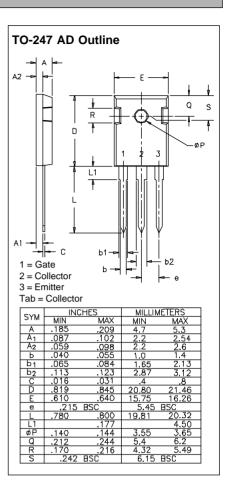
Features

- International standard package JEDEC TO-247 AD
- High frequency IGBT
- 2nd generation HDMOS[™] process
- High current handling capability
- MOS Gate turn-on
 - drive simplicity

Applications

- · AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages


- Easy to mount with 1 screw (isolated mounting screw hole)
- Switching speed for high frequency applications
- · High power density

Symbol	Test Conditions	Maximum	Ratings
V _{ces}	T _J = 25°C to 150°C	600	V
V _{cgr}	$T_{_J}$ = 25°C to 150°C; $R_{_{GE}}$ = 1 M Ω	600	V
V _{ges}	Continuous	±20	V
V _{gem}	Transient	±30	V
I _{C25}	$T_c = 25^{\circ}C$	48	А
I _{C90}	$T_c = 90^{\circ}C$	24	А
I _{см}	$T_c = 25^{\circ}C$, 1 ms	96	А
SSOA (RBSOA)	V_{GE} = 15 V, T _{VJ} = 125°C, R _G = 22 Ω Clamped inductive load, L = 100 µH	I _{CM} = 48 @ 0.8 V _{CES}	A
P _c	$T_c = 25^{\circ}C$	150	W
T,		-55 +150	°C
Т _{јм}		150	°C
T _{stg}		-55 +150	°C
M _d	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	g
	ad temperature for soldering 62 in.) from case for 10 s	300	°C

Symbol	Test Conditions	Characteristic ($T_J = 25^{\circ}C$, unless of min.	 ristic Va se speci max.	
BV _{CES}	I_{c} = 250 µA, V_{ge} = 0 V	600		V
$V_{_{GE(th)}}$	$I_{_{\rm C}}$ = 250 µA, $V_{_{\rm CE}}$ = $V_{_{\rm GE}}$	2.5	5	V
I _{CES}	$V_{ce} = 0.8 \bullet V_{ces}$ $V_{ge} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	200 1	μA mA
I _{ges}	$V_{ce} = 0 \text{ V}, \text{ V}_{ge} = \pm 20 \text{ V}$		±100	nA
V _{CE(sat)}	$I_{c} = I_{c90}, V_{GE} = 15 V$		2.7	V

IXGH 24N60A

Symbol	Test Conditions $Ch_{1} = 25^{\circ}C$, unless Ch_{2}		cteristic Values erwise specified)	
	min.	typ.	max.	
9 _{fs}	$ I_{_{\rm C}} = I_{_{\rm C90}}; V_{_{\rm CE}} = 10 \ \text{V}, \qquad 9 \\ $	13	S	
C _{ies})	1500	pF	
C _{oes}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$	135	pF	
C _{res}	}	40	pF	
Qg)	90	120 nC	
Q _{ge}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 \text{ V}_{CES}$	11	15 nC	
Q _{gc}	<u>}</u>	30	40 nC	
d(on)	Inductive load T = 25%C	25	ns	
ri	Inductive load, $T_{J} = 25^{\circ}C$	15	ns	
on	$\begin{pmatrix} I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}, \\ V_{CE} = 0.8 V_{CES}, R_{G} = R_{off} = 10 \Omega \end{pmatrix}$	0.6	m	
d(off)	Remarks: Switching times may increase	150	200 ns	
fi	for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_{J} or	110	270 ns	
E _{off}) increased R _g	1.5	m	
d(on)	\int Inductive lead T = 125%	25	ns	
, ri	Inductive load, $T_J = 125^{\circ}C$	15	ns	
on	$I_{c} = I_{C90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}$	0.8	mJ	
d(off)	$V_{CE} = 0.8 V_{CES}, R_{G} = R_{off} = 10 \Omega$	250	ns	
	Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T _J or	400	ns	
E _{off}) increased R_{g}	2.3	m	
R _{thJC}			0.83 K/W	
R _{thCK}		0.25	K/W	

IXGH 24N60A characteristic curves are located on the IXGH 24N60AU1 data sheet.

IXYS reserves the right to change limits, test conditions, and dimensions.