

Intel® Math Kernel Library

User's Guide for Linux*

Copyright © 2006 Intel Corporation

All Rights Reserved

Document Number: 314774-001US

World Wide Web:
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm

http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The software described in this document may contain software defects which may cause the product to deviate from published
specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with
this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the express written consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer’s
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Chips, Core Inside, Dialogic, EtherExpress, ETOX, FlashFile, i386,
i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel
Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your
Command, Pentium Inside, skoool, Sound Mark, The Computer Inside., The Journey Inside, VTune, Xeon, Xeon Inside and
Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2006, Intel Corporation.

Verision Information

Version Version Information Date

-001 Original issue. 09-2006

2

Contents
1 Overview ...4

2 Before You Begin ..6

3 Linking Your Application with Intel® Math Kernel Library ..8
3.1 Intel MKL Library Structure..8
3.2 Selecting Between Static and Dynamic Linking ...12
3.3 Link Command Syntax ..13
3.4 Selecting Libraries to Link for Your Platform and Function Domain14
3.5 Linking Examples ...22
3.6 Using language-specific interfaces with Intel MKL......................................23
3.7 Building custom shared objects ..25

4 Managing Performance and Memory ..27
4.1 Performance ..27

4.1.1 Using Intel MKL parallelism...27
4.1.2 Multi-core performance ..30
4.1.3 Setting up data for better performance.......................................31

4.2 Using Intel MKL Memory Management ...32
5 Configuring Your Development Environment ...34

5.1 Customizing Intel MKL Using the Configuration File34
5.2 Redefining Names of Downloadable Dynamic Libraries35

6 Coding Intel® Math Kernel Library Calls ...37
6.1 Calling LAPACK, BLAS, and CBLAS Routines from C Language Environments .37
6.2 How to Call BLAS Functions That Return the Complex Values in C/C++ Code 38

Appendix A Intel® Math Kernel Library Language Support...41

Appendix B Contents of the doc Directory ...42

 Index ..43

Tables

Table 1 What you need to know before you get started..6
Table 2 High-Level directory structure...8
Table 3 Detailed Intel MKL directory structure ..10
Table 4 Link libraries for IA-32 applications by function domain ..16
Table 5 Link libraries for Intel® EM64T applications by function domain.............................18
Table 6 Link libraries for Itanium® 2-based applications by function domain20
Table 7 How to avoid conflicts in the computation environment for your threading model28
Table 8 Intel MKL language support ..41
Table 9 Contents of the doc directory..42

 3

Intel® Math Kernel Library User's Guide for Linux*

1 Overview

Intel® Math Kernel Library (Intel® MKL) offers highly optimized, thread-safe math
routines for science, engineering, and financial applications that require maximum
performance.

About This Document

To get Intel® MKL reference information, see Intel MKL Reference Manual, which
features routines functionality, parameters description, interfaces and calling syntax
as well as return values. However, a lot of questions not answered in the Reference
Manual arise when you try to call Intel MKL routines from your applications. For
example, you need to know how the library is organized, how to configure Intel MKL
for your particular platform and problems you are solving, how to compile and link
your applications with Intel MKL. You also need understanding of how to achieve best
performance, take advantage of Intel MKL threading and memory management. Other
questions may deal with specifics of routine calls, for example, passing parameters in
different programming languages or coding inter-language routine calls. You may be
interested in the ways of estimating and improving computation accuracy. These and
similar issues make up Intel MKL usage information.

Purpose

This document focuses on the usage information needed to call Intel MKL routines
from user’s applications running on Linux*. Linux usage of Intel MKL has its particular
features, which are described in this guide, along with those that do not depend upon
a particular OS.

This guide contains usage information for plain, non-cluster, Intel MKL routines and
functions, comprised in the function domains listed in Table 8 (in Appendix A). Usage
information inherent to functions and routines available only with Intel MKL Cluster
Edition will be included in the appropriate user’s guide to be developed.

Audience

The guide is intended for Linux programmers whose software development experience
may vary from beginner to advanced.

4

Overview

Notational Conventions

The document employs the following font conventions and symbols:

Italic
Italic is used for emphasis and also indicates document names in body text, for
example, see Intel MKL Reference Manual

Monospace
lowercase

Indicates filenames, directory names and pathnames, for example
 libmkl_ia32.a , /opt/intel/mkl/9.0 ;

Monospace
lowercase mixed
with uppercase

Indicates commands and command-line options, for example,
ifort myprog.f -L$MKLPATH -lmkl_blas95 ;
C/C++ code fragments, for example,
complex16 a[N], b[N], c;

UPPERCASE
MONOSPACE

System variables, for example, $MKLPATH

Monospace italic Indicates a parameter of a makefile or in other contexts, for example,
functions_list

When enclosed in angle brackets, indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value. Substitute one of these items for the
placeholder, for example,
<mkl directory>

[items] Square brackets indicate that the items enclosed in brackets are optional.

{ item | item } Braces indicate that only one of the items listed between braces should be selected.
A vertical bar (|) separates the items.

 5

Intel® Math Kernel Library User's Guide for Linux*

2 Before You Begin

Before you get started using the Intel® Math Kernel Library (Intel® MKL), sorting out
a few important basic concepts will greatly help you get off to a good start. The table
below summarizes some important things to think of before you start using Intel MKL.

Table 1 What you need to know before you get started

Target platform Identify the processor inside your target machine:

•

•

•

IA-32

Processor with Intel® EM64T

Intel® Itanium® processor family.

Reason. When linking your application with the Intel MKL libraries, the directory
corresponding to your particular architecture should be included in the link
command (see Selecting libraries to link for your platform and function domain).

Mathematical problem Identify all Intel MKL function domains that problems you are solving require:

•

•

•

•

•

•

•

•

•

•

BLAS

Sparse BLAS

LAPACK

Sparse Solver routines

Vector Mathematical Library functions

Vector Statistical Library functions

Fourier Transform functions

Interval Solver routines

Trigonometric Transform routines

Fast Poisson, Laplace, and Helmholz Solver routines.

Reason. The function domain you intend to use determines the MKL libraries that
your application must link with. For more information see Selecting libraries to link
for your platform and functional domain.

Programming language Though Intel MKL provides support for both Fortran and C/C++ programming,
not all the function domains support a particular language environment, for
example, C/C++ or Fortran90/95. Identify the languages that your function
domains support (see Appendix A: Intel MKL Language Support).

Reason. In case your function domain does not directly support the needed
environment, you can use mixed-language programming. See Calling LAPACK,
BLAS, and CBLAS routines from C language environments.
See also Using language-specific interfaces with Intel MKL for a list of language-

Before You Begin

specific interface libraries and modules and an example how to generate them.

Threading model Select among the following options how you are going to thread your application:

•

•

•

Your application is already threaded

You want to use MKL treading capability (the libguide library)

You do not want to thread your application

Reason. By default Intel MKL runs with a number of threads equal to one, except
for Direct Sparse Solver. To utilize multi-threading, you will need to set the
number of threads yourself. For more information, and especially, how to avoid
conflicts in the threaded execution environment, see Using Intel MKL parallelism.

Linking model Decide which linking model is appropriate for linking you application with Intel
MKL libraries:

•

•

Static

Dynamic

Reason. For information on the benefits of each linking model, link command
syntax and examples, link libraries as well as on other linking topics, like how to
save disk space by creating a custom dynamic library, see Linking Your
Application with Intel® Math Kernel Library.

 7

Intel® Math Kernel Library User's Guide for Linux*

3 Linking Your Application with Intel®
Math Kernel Library

This chapter features linking of your applications with Intel® Math Kernel Library
(Intel® MKL). The chapter discusses the library structure, as it determines much of
the linking procedure; compares static and dynamic linking models; describes the
general link line syntax to be used for linking with Intel MKL libraries and finally
provides comprehensive information in a tabular form on the libraries that should be
linked with your application for a particular platform and function domain. Generation
of language-specific interface libraries and modules as well as building of custom
dynamic libraries is also discussed.

3.1 Intel MKL Library Structure
The table below shows a high-level structure for Intel MKL after installation.

Table 2 High-Level directory structure

Directory Comment

<mkl directory> Main directory, for example,
“/opt/intel/mkl/9.0”

<mkl directory>/doc
Documentation directory

<mkl directory>/man/man3
Man pages for Intel MKL BLAS, Sparse BLAS, and
LAPACK (without auxiliary) functions

<mkl directory>/examples
Source and data for examples

<mkl directory>/include
Contains INCLUDE files for both library routines and
test and example programs

<mkl directory>/interfaces/blas95
Contains f95 wrappers for BLAS and makefile to build
the library

<mkl directory>/interfaces/lapack95
Contains f95 wrappers for LAPACK and makefile to
build the library

<mkl directory>/interfaces/fftw2xc
Contains wrappers for FFTW version 2.x (C interface)
to call Intel MKL DFTI

<mkl directory>/interfaces/fftw2xf
Contains wrappers for FFTW version 2.x (Fortran
interface) to call Intel MKL DFTI

<mkl directory>/interfaces/fftw3xc
Contains wrappers for FFTW version 3.x (C interface)
to call Intel MKL DFTI

8

Linking Your Application with Intel® Math Kernel Library

Directory Comment

<mkl directory>/interfaces/fftw3xf
Contains wrappers for FFTW version 3.x (Fortran
interface) to call Intel MKL DFTI

<mkl directory>/interfaces/fftc
Contains wrappers for FFT (C interface) to call Intel
MKL DFTI

<mkl directory>/interfaces/fftf
Contains wrappers for FFT (Fortran interface) to call
Intel MKL DFTI

<mkl directory>/tests
Source and data for tests

<mkl directory>/lib/32
Contains static libraries and shared objects for IA-32
applications

<mkl directory>/lib/em64t
Contains static libraries and shared objects for
applications running on processors with Intel®
EM64T

<mkl directory>/lib/64
Contains static libraries and shared objects for Intel®
Itanium®2 processor

<mkl directory>/tools/builder
Contains tools for creating custom dynamically
linkable libraries

<mkl directory>/tools/environment
Contains shell scripts to set environmental variables
in the user shell

<mkl directory>/tools/support
Contains a utility for reporting the package ID and
license key information to Intel® Premier Support

<mkl directory>/tools/plugins/
com.intel.mkl.help Contains an Eclipse plugin with Intel MKL Reference

Manual in WebHelp format.

Intel® MKL separates IA-32 library versions, Intel® EM64T versions, and versions for
Intel® Itanium® 2 processor:

• The IA-32 versions are located in the lib/32 directory.

• Intel® EM64T versions are located in the lib/em64t directory.

• Intel® Itanium® 2 processor versions are located in the lib/64 directory.

See detailed structure of these directories in Table 3.

Intel® MKL consists of two parts:

• high-level libraries (LAPACK, sparse solver)

• processor-specific kernels in libmkl_ia32.a, libmkl_em64t.a, and
libmkl_ipf.a.

 9

Intel® Math Kernel Library User's Guide for Linux*

High-level libraries

The high-level libraries are optimized without regard to the processor and can be used
effectively on processors from Intel® Pentium® processor through Intel® Core™ 2
Extreme processor family and Intel® Itanium® 2 processor.

Processor-specific kernels

Processor-specific kernels containing BLAS, Sparse BLAS, CBLAS, GMP, FFTs, DFTs,
VSL, VML, interval arithmetic, Trigonometric Transform and Poisson Library routines
are optimized for each specific processor.

Threading libraries

Threading software is supplied in two versions:

• separate library (libguide.a) for static linking (discouraged - please see Intel
MKL-specific linking recommendations)

• dynamic link library (libguide.so) for linking dynamically to Intel® MKL
(recommended - please see Intel MKL-specific linking recommendations).

Directory structure in detail

The information in the table below shows detailed structure of the architecture-specific
directories of the library. For the detailed structure of the doc directory, see Appendix

B.

Table 3 Detailed Intel® MKL directory structure

Directory/file Contents

lib/32 Contains all libraries for 32-bit applications
 libmkl_ia32.a Optimized kernels (BLAS, CBLAS, Sparse BLAS, GMP, FFTs, DFTs,

VML, VSL, interval arithmetic) for 32-bit applications
 libmkl_lapack.a LAPACK routines and drivers
 libmkl_solver.a Sparse solver routines
 libguide.a Threading library for static linking
 libmkl.so Library dispatcher for dynamic load of processor specific kernel
 libmkl_lapack32.so LAPACK routines and drivers, single precision data types
 libmkl_lapack64.so LAPACK routines and drivers, double precision data types
 libmkl_def.so Default kernel (Intel® Pentium®, Pentium® Pro, and Pentium® II

processors)

10

Linking Your Application with Intel® Math Kernel Library

 libmkl_p3.so Intel® Pentium® III processor kernel
 libmkl_p4.so Pentium® 4 processor kernel
 libmkl_p4p.so Kernel for Intel® Pentium® 4 processor with Streaming SIMD

Extensions 3 (SSE3)
 libmkl_p4m.so Kernel for processors based on the Intel® Core™ microarchitecture
 libvml.so Library dispatcher for dynamic load of processor specific VML

kernels
 libmkl_vml_def.so VML part of default kernel (Pentium®, Pentium® Pro, Pentium® II

processors)
 libmkl_vml_p3.so VML part of Pentium® III processor kernel
 libmkl_vml_p4.so VML part of Pentium® 4 processor kernel
 libmkl_vml_p4p.so VML for Pentium® 4 processor with Streaming SIMD Extensions 3

(SSE3)
 libmkl_vml_p4m.so VML for processors based on the Intel® Core™ microarchitecture
 libmkl_ias.so Interval arithmetic routines
 libguide.so Threading library for dynamic linking

lib/em64t Contains all libraries for Intel® EM64T applications
 libmkl_em64t.a Optimized kernels for Intel® EM64T
 libmkl_lapack.a LAPACK routines and drivers
 libmkl_solver.a Sparse solver routines
 libguide.a Threading library for static linking
 libmkl.so Library dispatcher for dynamic load of processor specific kernel
 libmkl_lapack32.so LAPACK routines and drivers, single precision data types
 libmkl_lapack64.so LAPACK routines and drivers, double precision data types
 libmkl_def.so Default kernel
 libmkl_p4n.so Kernel for Intel® Xeon® processor with Intel® EM64T
 libmkl_mc.so Kernel for processors based on the Intel® Core™ microarchitecture
 libvml.so Library dispatcher for dynamic load of processor specific VML

kernels
 libmkl_vml_def.so VML part of default kernel
 libmkl_vml_p4n.so VML for Intel® Xeon® processor with Intel® EM64T
 libmkl_vml_mc.so VML for processors based on the Intel® Core™ microarchitecture
 libmkl_ias.so Interval arithmetic routines
 libguide.so Threading library for dynamic linking

lib/64 Contains all libraries for Intel® Itanium® 2-based applications
 libmkl_ipf.a Processor kernels for Intel® Itanium® 2 processor

 11

Intel® Math Kernel Library User's Guide for Linux*

 libmkl_lapack.a LAPACK routines and drivers
 libmkl_solver.a Sparse solver routines
 libguide.a Threading library for static linking
 libmkl_lapack32.so LAPACK routines and drivers, single precision data types
 libmkl_lapack64.so LAPACK routines and drivers, double precision data types
 libguide.so Threading library for dynamic linking
 libmkl.so Library dispatcher for dynamic load of processor specific kernel
 libmkl_i2p.so Itanium® 2 processor kernel
 libmkl_vml_i2p.so Itanium® 2 processor VML kernel
 libmkl_ias.so Interval arithmetic routines
 libvml.so Library dispatcher for dynamic load of processor specific VML

kernel

Additionally, a number of interface libraries may be generated (see Using language-
specific interfaces with Intel MKL).

3.2 Selecting Between Static and Dynamic Linking
You can link your applications with Intel MKL libraries statically, using static library
versions, or dynamically, using shared libraries.

Static linking

During static linking, all links are resolved at link time. Therefore, the behavior of
statically built executables is absolutely predictable, as they do not depend upon a
particular version of the libraries available on the system where the executables run.
Such executables must behave exactly the same way as was observed during testing.
The main disadvantage of static linking is that upgrading statically linked applications
to higher library versions is troublesome and time-consuming, as you have to relink
the entire application. Besides, static linking produces large-size executables and uses
memory inefficiently, since if several executables are linked with the same library,
each of them loads it into memory independently. However, this is hardly an issue for
Intel MKL, used mainly for large-size problems. — It matters only on shared-memory
systems for executables having data size relatively small and comparable with the size
of the executable.

Dynamic linking

During dynamic linking, resolving of some undefined symbols is postponed until run
time. Dynamically built executables still contain undefined symbols along with lists of

12

Linking Your Application with Intel® Math Kernel Library

libraries that provide definitions of the symbols. When the executable is loaded, final
linking is done before the application starts running. If several dynamically built
executables use the same library, the library loads to memory only once and the
executables share it, thereby saving memory. Dynamic linking ensures consistency in
using and upgrading libraries, as all the dynamically built applications share the same
library. This way of linking enables you to separately update libraries and applications
that use the libraries, which facilitates keeping applications up-to-date. The
advantages of dynamic linking are achieved at the cost of run-time performance
losses, as a part of linking is done at run time and every unresolved symbol has to be
looked up in a dedicated table and resolved.

Making the choice

It is up to you to select whether to link in Intel MKL libraries dynamically or statically
when building your application.

In most cases, users choose dynamic linking due to its strong advantages.

However, if you are developing applications to be shipped to a third-party, to have
nothing else than your application shipped, you have to use static linking.

Intel MKL-specific linking recommendations

You are strongly encouraged to dynamically link in Intel MKL threading library
libguide. Linking to static OpenMP run-time libraries is not recommended, as it is

very easy with layered software to link in more than one copy of them. This causes
performance problems (too many threads) and may also cause correctness problems
if more than one copy is initialized (For more information, see Using Intel MKL
parallelism).

3.3 Link Command Syntax
To link libraries with names libxxx.a or libxxx.so with your application, two

options are available:

• Just list library names using relative or absolute paths, for example,

<ld> myprog.o /opt/intel/cmkl/9.0/lib/32/libmkl_scalapack.a
/opt/intel/cmkl/9.0/lib/32/libmkl_blacs.a
/opt/intel/cmkl/9.0/lib/32/libmkl_lapack.a
/opt/intel/cmkl/9.0/lib/32/libmkl_ia32.a
/opt/intel/cmkl/9.0/lib/32/libguide.so –lpthread
where <ld> is a linker, myprog.o is a user’s object file, then Intel MKL libraries are
listed followed by the system library libpthread

 13

Intel® Math Kernel Library User's Guide for Linux*

• In the link line, list library names (with absolute or relative paths, if needed,
preceded with -L <path>, which indicates where to search for binaries.
Discussion of linking with Intel MKL libraries employs this option.

To link with Intel MKL libraries, follow this general form of specifying the path and
libraries in the link line:

-L<MKL path>
[-lmkl_solver] [-lmkl_lapack95] [-lmkl_blas95]
{[-lmkl_lapack] -lmkl_{ia32, em64t, ipf},[-lmkl_lapack{32,64}]
-lmkl, -lvml}
-lguide –lpthread [-lm]

NOTE: It is necessary to follow the order of listing libraries in the link command because
Linux does not support multi-pass linking.

See Selecting libraries to link for your platform and functional domain for specific
recommendations on which libraries to link in depending on your Intel MKL usage
scenario.

3.4 Selecting Libraries to Link for Your Platform
and Function Domain
Using the link command (see Link command syntax and some examples), note that

•

•

•

libmkl_solver.a contains the sparse solver functions,

libmkl_lapack.a, or libmkl_lapack32.so and lib_mkl_lapack64.so have the
LAPACK functions.

libmkl_ia32.a, libmkl_em64t.a, and libmkl_ipf.a have the BLAS, Sparse
BLAS, GMP, FFT/DFT, VML, VSL, interval arithmetic, Trigonometric Transform and
Poisson Library functions for IA-32, Intel® EM64T, and Intel® Itanium®
processors respectively.
libmkl_lapack95.a and libmkl_blas95.a contain LAPACK95 and BLAS95
interfaces respectively. They are not included into the original distribution and
should be built before using the interface (see Fortran-95 interfaces and wrappers
to LAPACK and BLAS for details on building the libraries).
The libmkl.so file contains the dynamically loaded versions of these objects
except for VML/VSL, which are contained in libvml.so.
In all cases, appropriate libraries will be loaded at runtime.

• The –lguide option is used to link in the threading library libguide (see Intel MKL-
specific linking recommendations).

•

•

If you want to use FFT/DFT, you may link in the Linux mathematics library libm by
adding "-lm".

In products for Linux*, it is necessary to link to the pthreads library by adding
-lpthread. The pthread library is native to Linux* and Intel® MKL makes use of
this library to support multi-threading. Depending on what functions you call, you

14

Linking Your Application with Intel® Math Kernel Library

may have to include this at the end of your link line (link order is important)
regardless of whether you plan to use more than one thread.

Table 4, Table 5, and Table 6 illustrate the choice of libraries for dynamic and static
linking and different architectures. To link in a library libxxx, you should include “–
lxxx” into the link command.

 15

Intel® Math Kernel Library User's Guide for Linux*

Table 4 Link libraries for IA-32 applications by function domain

Intel MKL libraries in lib/em64t
directory

Linux libraries Function
domain/
Interface

Dynamic Dynamic Static

BLAS
libmkl.so
libguide.so

libmkl_ia32.a
libguide.a1

libpthread.so

libpthread.a

Sparse
BLAS libmkl.so

libguide.so
libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

BLAS95
Interface libmkl_blas95.a

libmkl.so
libguide.so

libmkl_blas95.a
libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

CBLAS
libmkl.so
libguide.so

libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

LAPACK
libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libguide.so

libmkl_lapack.a
libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

LAPACK95
Interface n/a2 libmkl_lapack95.a

libmkl_lapack.a
libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

Sparse
Solver n/a libmkl_solver.a

libmkl_lapack.a
libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

Vector
Math

Library
libvml.so
libguide.so

libmkl_ia32.a
libguide.a

libpthread.so
libm.so

libpthread.a
libm.a

16

Linking Your Application with Intel® Math Kernel Library

Intel MKL libraries in lib/em64t
directory

Linux libraries Function
domain/
Interface

Dynamic Dynamic Static

Vector
Statistical

Library
libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libvsl.so
libguide.so

libmkl_lapack.a
libmkl_ia32.a
libguide.a

libpthread.so
libm.so

libpthread.a
libm.a

Fourier
Transform
Functions

libmkl.so
libguide.so

libmkl_ia32.a
libguide.a

libpthread.so
libm.so

(optionally)

libpthread.a
libm.a

(optionally)

Interval
Arithmetic libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libguide.so

libmkl_lapack.a
libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

Trigonome
tric

Transform
Functions

libmkl.so
libvml.so
libguide.so

libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

Poisson
Library libmkl.so

libvml.so
libguide.so

libmkl_ia32.a
libguide.a

libpthread.so libpthread.a

1 Regardless of the function domain, when linking statically with libguide
(discouraged), sometimes, you may have to use the libguide version different
from the one in the indicated directory (see Notes below).
2 Not applicable

 17

Intel® Math Kernel Library User's Guide for Linux*

Table 5 Link libraries for Intel® EM64T applications by function domain

Intel MKL libraries in lib/em64t
directory

Linux libraries Function
domain/
Interface

Dynamic Static Dynamic Static

BLAS libmkl.so
libguide.so

libmkl_em64t.a
libguide.a1

libpthread.so

libpthread.a

Sparse
BLAS

libmkl.so
libguide.so

libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

BLAS95
Interface

libmkl_blas95.a
libmkl.so
libguide.so

libmkl_blas95.a
libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

CBLAS libmkl.so
libguide.so

libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

LAPACK
libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libguide.so

libmkl_lapack.a
libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

LAPACK95
Interface n/a2 libmkl_lapack95.a

libmkl_lapack.a
libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

Sparse
Solver n/a libmkl_solver.a

libmkl_lapack.a
libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

Vector
Math

Library
libvml.so
libguide.so

libmkl_em64t.a
libguide.a

libpthread.so
libm.so

libpthread.a
libm.a

Vector
Statistical

Library
libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libvsl.so
libguide.so

libmkl_lapack.a
libmkl_em64t.a
libguide.a

libpthread.so
libm.so

libpthread.a
libm.a

18

Linking Your Application with Intel® Math Kernel Library

Intel MKL libraries in lib/em64t
directory

Linux libraries Function
domain/
Interface

Dynamic Static Dynamic Static

Fourier
Transform
Functions

libmkl.so
libguide.so

libmkl_em64t.a
libguide.a

libpthread.so
libm.so

(optionally)

libpthread.a
libm.a

(optionally)

Interval
Arithmetic libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libguide.so

libmkl_lapack.a
libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

Trigonomet
ric

Transform
Functions

libmkl.so
libvml.so
libguide.so

libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

Poisson
Library libmkl.so

libvml.so
libguide.so

libmkl_em64t.a
libguide.a

libpthread.so libpthread.a

1 Regardless of the function domain, when linking statically with libguide
(discouraged), sometimes, you may have to use the libguide version different
from the one in the indicated directory (see Notes below).

2 Not applicable

 19

Intel® Math Kernel Library User's Guide for Linux*

Table 6 Link libraries for Itanium® 2-based applications by function domain

Intel MKL libraries in lib/64 directory Linux libraries Function
domain/
Interface Dynamic Static Dynamic Static

BLAS
libmkl.so
libguide.so

libmkl_ipf.a
libguide.a1

libpthread.so libpthread.a

Sparse
BLAS libmkl.so

libguide.so
libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

BLAS95
Interface libmkl_blas95.a

libmkl.so
libguide.so

libmkl_blas95.a
libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

CBLAS
libmkl.so
libguide.so

libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

LAPACK
libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libguide.so

libmkl_lapack.a
libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

LAPACK95
Interface n/a2 libmkl_lapack95.a

libmkl_lapack.a
libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

Sparse
Solver n/a libmkl_solver.a

libmkl_lapack.a
libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

Vector
Math

Library
libvml.so
libguide.so

libmkl_ipf.a
libguide.a

libpthread.so
libm.so

libpthread.a
libm.a

20

Linking Your Application with Intel® Math Kernel Library

Intel MKL libraries in lib/64 directory Linux libraries Function
domain/
Interface Dynamic Static Dynamic Static

Vector
Statistical

Library
libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libvsl.so
libguide.so

libmkl_lapack.a
libmkl_ipf.a
libguide.a

libpthread.so
libm.so

libpthread.a
libm.a

Fourier
Transform
Functions

libmkl.so
libguide.so

libmkl_ipf.a
libguide.a

libpthread.so
libm.so

(optionally)

libpthread.a
libm.a

(optionally)

Interval
Arithmetic libmkl_lapack32.so

and/or
libmkl_lapack64.so

libmkl.so
libguide.so

libmkl_lapack.a
libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

Trigonomet
ric

Transform
Functions

libmkl.so
libvml.so
libguide.so

libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

Poisson
Library libmkl.so

libvml.so
libguide.so

libmkl_ipf.a
libguide.a

libpthread.so libpthread.a

1 Regardless of the function domain, when linking statically with libguide
(discouraged), sometimes, you may have to use the libguide version different
from the one in the indicated directory (see Notes below).

2 Not applicable

 21

Intel® Math Kernel Library User's Guide for Linux*

3.5 Linking Examples
Below are some specific examples for linking on IA-32 systems with Intel® compilers:

ifort myprog.f -L$MKLPATH -lmkl_lapack -lmkl_ia32 -lguide -
lpthread
static linking of user code myprog.f, LAPACK, and kernels. Processor
dispatcher will call the appropriate kernel for the system at runtime.

ifort myprog.f -L$MKLPATH -lmkl_lapack95 -lmkl_lapack -lmkl_ia32
-lguide -lpthread
static linking of user code myprog.f, Fortran-95 LAPACK interface, and kernels.
Processor dispatcher will call the appropriate kernel for the system at runtime.

ifort myprog.f -L$MKLPATH -lmkl_blas95 -lmkl_lapack -lmkl_ia32 -
lguide -lpthread
static linking of user code myprog.f, Fortran-95 BLAS interface, and kernels.
Processor dispatcher will call the appropriate kernel for the system at runtime.

icc myprog.c -L$MKLPATH -lmkl_ia32 -lguide -lpthread -lm
static linking of user code myprog.c, BLAS, Sparse BLAS, GMP, VML/VSL,
interval arithmetic, and FFT/DFT. Processor dispatcher will call the appropriate
kernel for the system at runtime.

ifort myprog.f -L$MKLPATH -lmkl_solver -lmkl_lapack -lmkl_ia32 -
lguide -lpthread
static linking of user code myprog.f, the sparse solver, and possibly other
routines within Intel MKL (including the kernels needed to support the sparse
solver).

icc myprog.c -L$MKLPATH -lmkl -lguide -lpthread
dynamic linking of user code myprog.c, the BLAS or FFTs within Intel MKL.

Notes:

•

•

•

When using the Intel® MKL shared libraries, do not forget to update the shared
libraries environment path, i.e. a system variable LD_LIBRARY_PATH, to include
the libraries location. For example, if the Intel MKL libraries are in the
/opt/intel/mkl/8.0/lib/32 directory, then the following command line can be
used (assuming a bash shell):

export LD_LIBRARY_PATH=/opt/intel/mkl/9.0/lib/32:$LD_LIBRARY_PATH

If you link libguide statically (discouraged) and use the Intel compilers, then
link in the libguide version that comes with the compiler, that is, use -openmp
option.

If you link libguide statically but do not use the Intel compiler, then link in the
libguide version that comes with Intel MKL.

22

Linking Your Application with Intel® Math Kernel Library

• If you use dynamic linking (libguide.so) of Intel MKL (recommended), make
sure the LD_LIBRARY_PATH is defined so that exactly this version of libguide is
found and used at runtime.

For linking examples, see the Intel MKL support website at
http://www.intel.com/support/performancetools/libraries/mkl/.

3.6 Using language-specific interfaces with Intel
MKL
The following interface libraries and modules may be generated as a result of
operation of respective makefiles located in the interfaces folder:

File name Comment

libmkl_blas95.a Contains Fortran-95 wrappers for BLAS (BLAS95)

libmkl_lapack95.a Contains Fortran-95 wrappers for LAPACK
(LAPACK95)

Libfftw2xc_gnu.a Contains interfaces for FFTW version 2.x (C interface
for GNU compiler) to call Intel MKL DFTI

Libfftw2xc_intel.a Contains interfaces for FFTW version 2.x (C interface
for Intel® compiler) to call Intel MKL DFTI

Libfftw2xf_gnu.a Contains interfaces for FFTW version 2.x (Fortran
interface for GNU compiler) to call Intel MKL DFTI

Libfftw2xf_intel.a Contains interfaces for FFTW version 2.x (Fortran
interface for Intel compiler) to call Intel MKL DFTI

Libfftw3xc_gnu.a Contains interfaces for FFTW version 3.x (C interface
for GNU compiler) to call Intel MKL DFTI

Libfftw3xc_intel.a Contains interfaces for FFTW version 3.x (C interface
for Intel compiler) to call Intel MKL DFTI

Libfftw3xf_gnu.a Contains interfaces for FFTW version 3.x (Fortran
interface for GNU compiler) to call Intel MKL DFTI

Libfftw3xf_intel.a Contains interfaces for FFTW version 3.x (Fortran
interface for Intel compiler) to call Intel MKL DFTI

mkl95_blas.mod Contains Fortran-95 interface module for BLAS
(BLAS95)

mkl95_lapack.mod Contains Fortran-95 interface module for LAPACK
(LAPACK95)

mkl95_precision.mod Contains Fortran-95 definition of precision
parameters for BLAS95 and LAPACK95.

 23

http://www.intel.com/support/performancetools/libraries/mkl/

Intel® Math Kernel Library User's Guide for Linux*

Section "Fortran-95 interfaces and wrappers to LAPACK and BLAS" shows by example
how these libraries and modules are generated.

Fortran-95 interfaces and wrappers to LAPACK and BLAS

Fortran-95 interfaces and wrappers are delivered as sources. The simplest way to use
them is building corresponding libraries and linking them as user's libraries. To do
this, you must have administrator rights. Provided the product directory is open for
writing, the procedure is simple:

Go to the respective directory mkl/9.0_beta/interfaces/blas95 or
mkl/9.0_beta/interfaces/lapack95

and type one of the following commands:
make PLAT=lnx32 lib - for IA-32
make PLAT=lnx32e lib - for Intel® EM64T
make PLAT=lnx64 lib - for Intel® Itanium® 2 processor platform.

As a result, the required library and a respective .mod file will be built and installed in
the standard catalog of the release. The .mod files can also be obtained from files of
interfaces, using the compiler command
ifort -c mkl_lapack.f90 or ifort -c mkl_blas.f90.

These files are in the include directory.
If you do not have administrator rights, do the following:

1. copy the entire directory (mkl/9.0_beta/interfaces/blas95 or
mkl/9.0_beta/interfaces/lapack95) into a user-defined directory
<user_dir>

2. copy the corresponding file (mkl_blas.f90 or mkl_lapack.f90) from
mkl/9.0_beta/include into the user-defined directory <user_dir>/blas95
or <user_dir>/lapack95 respectively

3. run one of the above commands in <user_dir>/blas95 or
<user_dir>/lapack95 with an additional variable, for instance,
make PLAT=lnx32 INTERFACE=mkl_blas.f90 lib
make PLAT=lnx32 INTERFACE=mkl_lapack.f90 lib.

Now the required library and the .mod file will be built and installed in the
<user_dir>/blas95 or <user_dir>/lapack95 directory, respectively.

By default, the ifort compiler is assumed. You may change it with an additional
parameter of make: FC=<compiler>.
For instance,
make PLAT=lnx64 FC=<compiler> lib

There is also a way to use the interfaces without building the libraries.

24

Linking Your Application with Intel® Math Kernel Library

To delete library from the building directory, use the following commands:
make PLAT=lnx32 clean - for IA-32
make PLAT=lnx32e clean - for Intel® EM64T
make PLAT=lnx64 clean - for Intel® Itanium® 2 processor platform.

3.7 Building custom shared objects
Custom shared objects enable reducing the collection of functions available in Intel
MKL libraries to those required to solve your particular problems, which helps to save
disk space and build your own dynamic libraries for distribution.

Intel MKL custom shared object builder

Custom shared object builder is targeted for creation of a dynamic library (shared
object) with selected functions and located in tools/builder folder. The builder

contains a makefile and a definition file with the list of functions. The makefile has
three targets: "ia32", "ipf", and "em64t". ia32 target is used for IA-32, ipf is used for
Intel® Itanium® processor family and em64t is used for Intel® Xeon® processor with
Intel® EM64T.

Specifying makefile parameters

There are several macros (parameters) for the makefile:

export = functions_list

determines the name of the file that contains the list of entry point functions that
will be included into shared object. This file is used for definition file creation and
then for export table creation. Default name is functions_list.

name = mkl_custom

specifies the name of the created library. By default, the library mkl_custom.so
is built.

xerbla = user_xerbla.obj

specifies the name of object file that contains user’s error handler. This error
handler will be added to the library and then will be used instead of standard MKL
error handler xerbla. By default, that is, when this parameter is not specified,
standard MKL xerbla is used.

All parameters are not mandatory. For the simplest case, the command line could be
make ia32 and the values of the remaining parameters will be taken by default. As a

 25

Intel® Math Kernel Library User's Guide for Linux*

result, mkl_custom.so library for IA-32 will be created, the functions list will be
taken from functions_list file, and the standard MKL error handler xerbla will be

used.

Another example for a more complex case is as follows:
make ia32 export=my_func_list.txt name=mkl_small
xerbla=my_xerbla.o
In this case, mkl_small.so library for IA-32 will be created, the functions list will be
taken from my_func_list.txt file, user’s error handler my_xerbla.o will be used.

The process is similar for the Intel® Itanium® processor family applications and
Intel® EM64T applications.

Specifying list of functions

Entry points in functions_list file should be adjusted to interface. For example,
Fortran functions get an underscore character ”_” as a suffix when added to the

library:

dgemm_
ddot_
dgetrf_

If selected functions have several processor-specific versions, they all will be included
into the custom library and managed by dispatcher.

26

Managing Performance and Memory

4 Managing Performance and Memory

The chapter discusses ways to obtain best performance with Intel MKL as well as Intel
MKL memory management.

4.1 Performance
The section discusses Intel MKL parallelism and ways to avoid conflicts in the threaded
execution environment; shows how to set up the number of threads and change it
during run time; gives recommendations on multi-core performance. The section also
shows other ways to gain performance, for example, by proper data alignment.

4.1.1 Using Intel MKL parallelism

Intel® MKL is threaded in a number of places: direct sparse solver, LAPACK (*GETRF,
*POTRF, *GBTRF, *GEQRF, *ORMQR, *STEQR, *BDSQR routines), all Level 3

BLAS, Sparse BLAS matrix-vector and matrix-matrix multiply routines for the
compressed sparse row and diagonal formats, and all DFTs (except 1D
transformations when DFTI_NUMBER_OF_TRANSFORMS=1 and sizes are not power of

two).

There are situations in which conflicts can exist in the execution environment that
make the use of threads in Intel® MKL problematic. They are listed here with
recommendations for dealing with these. First, a brief discussion of why the problem
exists is appropriate.

If the user threads the program using OpenMP* directives and uses the Intel
compilers to compile the program, Intel® MKL and the user program will both use the
same threading library. Intel® MKL tries to determine if it is in a parallel region in the
program, and if it is, it does not spread its operations over multiple threads. But
Intel® MKL can be aware that it is in a parallel region only if the threaded program
and Intel® MKL are using the same threading library. If the user program is threaded
by some other means, Intel® MKL may operate in multithreaded mode and the
computations may be corrupted.

Here are several cases with recommendations depending on the threading model you
employ:

 27

Intel® Math Kernel Library User's Guide for Linux*

Table 7 How to avoid conflicts in the computation environment for your threading
model

Threading model Discussion

You thread the program using OS
threads (pthreads on Linux*).

If more than one thread calls the library, and the function being called
is threaded, it is important that you turn off Intel® MKL threading. Set
OMP_NUM_THREADS=1 in the environment. This is the default with
Intel® MKL except for the Direct Sparse Solver.

You thread the program using
OpenMP* directives and/or
pragmas and compiles the program
using a compiler other than a
compiler from Intel.

This is more problematic in that setting OMP_NUM_THREADS in the
environment affects both the compiler's threading library and the
threading library with Intel® MKL. At this time, a safer approach is to
set MKL_SERIAL=YES (or MKL_SERIAL=yes) which forces Intel®
MKL to serial mode regardless of OMP_NUM_THREADS value. You
can also obtain through your Intel® Premier Support account a
sequential version of MKL, containing no threading, which is the safest
approach for this case.

There are multiple programs
running on a multiple-cpu system,
as in the case of a parallelized
program running using MPI for
communication in which each
processor is treated as a node.

The threading software will see multiple processors on the system even
though each processor has a separate process running on it. In this
case OMP_NUM_THREADS should be set to 1. Again, however, the
default behavior of Intel MKL is to run with one thread.

Setting up the number of threads

The OpenMP* software responds to the environmental variable OMP_NUM_THREADS.

The number of threads can be set in the shell the program is running in. To change
the number of threads, in the command shell in which the program is going to run,
enter:

export OMP_NUM_THREADS=<number of threads to use>.

To force the library to serial mode, environment variable MKL_SERIAL should be set
to YES. It works regardless of OMP_NUM_THREADS value.

If the variable OMP_NUM_THREADS is not set, Intel® MKL software will run on the

number of threads equal to 1. It is recommended that you always set
OMP_NUM_THREADS to the number of processors you wish to use in your application.

NOTE: Currently the default number of threads for Sparse Solver is the number of processors
in the system.

Changing the number of processors for threading during run
time

It is not possible to change the number of processors during run time using the
environment variable OMP_NUM_THREADS. However, you can call OpenMP API functions

from your program to change the number of threads during runtime. The following

28

Managing Performance and Memory

sample code demonstrates changing the number of threads during runtime using the
omp_set_num_threads() routine:

#include "omp.h"
#include "mkl.h"
#include <stdio.h>

#define SIZE 1000

void main(int args, char *argv[]){

 double *a, *b, *c;
 a = new double [SIZE*SIZE];
 b = new double [SIZE*SIZE];
 c = new double [SIZE*SIZE];

 double alpha=1, beta=1;
 int m=SIZE, n=SIZE, k=SIZE, lda=SIZE, ldb=SIZE, ldc=SIZE, i=0,
j=0;
 char transa='n', transb='n';

 for(i=0; i<SIZE; i++){
 for(j=0; j<SIZE; j++){
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
 }
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");
 for (i=0;i<10;i++){
 printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);
 }

 omp_set_num_threads(1);

 for(i=0; i<SIZE; i++){
 for(j=0; j<SIZE; j++){
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
 }
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");
 for (i=0;i<10;i++){
 printf("%d:\t%f\t%f\n", i, a[i*SIZE],
c[i*SIZE]);
 }

 omp_set_num_threads(2);
 for(i=0; i<SIZE; i++){

 29

Intel® Math Kernel Library User's Guide for Linux*

 for(j=0; j<SIZE; j++){
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
 }
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");
 for (i=0;i<10;i++){
 printf("%d:\t%f\t%f\n", i, a[i*SIZE],
c[i*SIZE]);
 }

 delete [] a;
 delete [] b;
 delete [] c;

4.1.2 Multi-core performance

You may experience the issues that the application using Intel MKL runs faster when
threaded on the number of sockets rather than on the number of cores, and/or
parallel application performance is unstable on multi-core. Binding threads to the CPU
cores may improve or stabilize the performance. This is performed by setting an
affinity mask to threads. You can do it either with OpenMP facilities (which is
recommended if available, for instance, via KMP_AFFINITY environment variable

using Intel OpenMP), or with a system routine (see the example below).

Example of setting an affinity mask by operating system means
using Intel compiler

Suppose, the system has two sockets with two cores each, and 2 threads parallel
application, which calls Intel MKL DFT, happens to run faster than in 4 threads, but
the performance in 2 threads is very unstable. Put the fragment marked green into
your code before DFT call to bind the threads to the cores on different sockets.

// Set affinity mask
#include <sched.h>
#include <omp.h>
#pragma omp parallel default(shared) private(mask)
{
 unsigned long mask = (1 << omp_get_thread_num()) * 2;
 sched_setaffinity(0, sizeof(mask), &mask);
}
// Call MKL DFT routine
...

30

Managing Performance and Memory

Then build your application and run it in 2 threads:

env OMP_NUM_THREADS=2 ./a.out

4.1.3 Setting up data for better performance

To obtain best performance, you should properly align data arrays in your code. The
section lists general conditions as well as FFT domain-specific ones. Additionally, in
certain cases, the proper matrix format is recommended for LAPACK routines.

General recommendations on data alignment

To obtain the best performance with Intel® MKL, make sure the following conditions
are met:

• arrays are aligned on a 16-byte boundary

• leading dimension values (n*element_size) of two-dimensional arrays are
divisible by 16

• for two-dimensional arrays, leading dimension values divisible by 2048 are
avoided.

LAPACK packed routines performance

The routines with the names that contain the letters HP, OP, PP, SP, TP, UP in the
matrix type and storage position (the second and third letters respectively) operate on
the matrices in the packed format (see "LAPACK Routine Naming Conventions"
sections in the Intel MKL Reference Manual). Their functionality is strictly equivalent to
the functionality of the unpacked routines with the names containing the letters HE,
OR, PO, SY, TR, UN in the corresponding positions, but the performance is significantly
lower.
If the memory restriction is not too tight, use an unpacked routine for better
performance. Note that in such a case, you need to allocate N2/2 more memory than
the memory required by a respective packed routine, where N is the problem size (the
number of equations).

For example, solving a symmetric eigenproblem with an expert driver can be speeded
up through using an unpacked routine:
call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info),
where a is the dimension lda-by-n, which is at least N2 elements, instead of
call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m,

 31

Intel® Math Kernel Library User's Guide for Linux*

w, z, ldz, work, iwork, ifail, info),
where ap is the dimension N*(N+1)/2.

Data alignment for FFT functions

There are additional conditions for the FFT functions:

On IA-32 based applications the addresses of the first elements of arrays and the
leading dimension values, in bytes (n*element_size), of two-dimensional arrays

should be divisible by cache line size (32 bytes for Pentium® III processor, 64 bytes
for Pentium® 4 processor, and 128 bytes for Intel® EM64T processor).
On Itanium®-based applications the sufficient conditions are as follows:

•

•

for the C-style FFT, the distance L between arrays that represent real and
imaginary parts is not divisible by 64. The best case is when L=k*64 + 16

leading dimension values, in bytes (n*element_size), of two-dimensional arrays
are not power of two.

4.2 Using Intel MKL Memory Management
Intel® MKL has memory management software that controls memory buffers for use
by the library functions. When a call is made to certain library functions (such as those
in the Level 3 BLAS or DFTs), new buffers are allocated if there are no free ones
(marked as free) currently available. These buffers are not deallocated until the
program ends. If at some point your program needs to free memory, it may do so
with a call to MKL_FreeBuffers(). If another call is made to a library function that

needs a memory buffer, then the memory manager will again allocate the buffers and
they will again remain allocated until either the program ends or the program
deallocates the memory. The memory management software is turned on by default.

This behavior by design facilitates achieving better performance. However, some tools
might report this behavior as a memory leak. Should you wish, you can release
memory in your program through the use of a function made available in Intel MKL or
you can force memory releasing after each call by setting an environment variable.

To disable the memory management software using the environment variable, set
MKL_DISABLE_FAST_MM to any value, which will cause memory to be allocated and

freed from call to call. Disabling this feature will negatively impact performance of
routines such as the level 3 BLAS, especially for small problem sizes.

Using one of these methods to release memory will not necessarily stop programs
from reporting memory leaks, and, in fact, may increase the number of such reports
should you make multiple calls to the library thereby requiring new allocations with

32

Managing Performance and Memory

each call. Memory not released by one of the methods described will be released by
the system when the program ends.

Memory management has a restriction for the number of allocated buffers in each
thread. Currently this number is 32. The maximum number of supported threads is
514. To avoid the default restriction, disable memory management.

Replacing Memory Functions

Intel® MKL memory management uses standard C runtime memory functions to
allocate or free memory. Since MKL 9.0, you can replace these memory functions by
your own memory functions. The i_malloc.h header file contains all declarations

required for an application developer to replace the memory allocation functions. This
header file describes how memory allocation can be replaced in those Intel(R) libraries
that support this feature.

 33

Intel® Math Kernel Library User's Guide for Linux*

5 Configuring Your Development
Environment

This chapter explains how to configure your development environment for the use of
Intel MKL and especially what features may be customized using the Intel MKL
configuration file.

For information on how to set up the environment variables for threading, refer to
Setting up the number of threads.

After the installation of Intel MKL is complete, you can use files mklvars32.sh,
mklvarsem64t.sh, and mklvars64.sh in the tools/environment directory to set the
environment variables INCLUDE and LD_LIBRARY_PATH in the user shell.

5.1 Customizing Intel MKL Using the Configuration
File
Intel MKL configuration file will provide the possibilities to customize several features
of the Intel MKL, namely:

•

•

•

redefine names of downloadable dynamic libraries

turn on/off checking of the input parameters for possible errors

set Threaded/Non-Threaded operation mode.

The configuration file is mkl.cfg file by default. The file contains several variables

that can be changed. Below is the example of the configuration file containing all
possible variables with default values:

//
// Default values for mkl.cfg file
//
// SO names for IA-32
MKL_X87so = mkl_def.so
MKL_SSE1so = mkl_p3.so
MKL_SSE2so = mkl_p4.so

34

Configuring Your Development Environment

MKL_SSE3so = mkl_p4p.so
MKL_VML_X87so = mkl_vml_def.so
MKL_VML_SSE1so = mkl_vml_p3.so
MKL_VML_SSE2so = mkl_vml_p4.so
MKL_VML_SSE3so = mkl_vml_p4p.so
// SO names for Intel(R) 64
MKL_EM64TDEFso = mkl_def.so
MKL_EM64TSSE3so = mkl_p4n.so
MKL_VML_EM64TDEFso = mkl_vml_def.so
MKL_VML_EM64TSSE3so = mkl_vml_p4n.so
// SO names for IA-64
MKL_I2Pso = mkl_i2p.so
MKL_VML_I2Pso = mkl_vml_i2p.so
// DLL names for LAPACK libraries
MKL_LAPACK32so = mkl_lapack32.so
MKL_LAPACK64so = mkl_lapack64.so
// Serial or parallel mode
// YES – single threaded
// NO - multi threaded
// OMP – control by OMP_NUM_THREADS
MKL_SERIAL = YES
// Input parameters check
// ON – checkers are used (default)
// OFF – checkers are not used
MKL_INPUT_CHECK = ON

When any Intel® MKL function is first called, Intel MKL checks to see if the
configuration file exists, and if so, it operates with the specified variables. The path to
the configuration file is specified by environment variable MKL_CFG_FILE. If this

variable is not defined, then first the current directory is searched through, and then
the directories specified in the PATH environment variable. If the Intel MKL
configuration file does not exist, the library operates with default values of variables
(standard names of libraries, checkers on, non-threaded operation mode).
If the variable is not specified in the configuration file, or specified incorrectly, the
default value is used.

5.2 Redefining Names of Downloadable Dynamic
Libraries
Below is an example of the configuration file that only redefines the library names:

 35

Intel® Math Kernel Library User's Guide for Linux*

// SO redefinition
MKL_X87so = matlab_x87.so
MKL_SSE1so = matlab_sse1.so
MKL_SSE2so = matlab_sse2.so
MKL_SSE3so = matlab_sse2.so
MKL_ITPso = matlab_ipt.so
MKL_I2Pso = matlab_i2p.so

36

Coding Intel® Math Kernel Library Calls

6 Coding Intel® Math Kernel Library Calls

Though Intel® Math Kernel Library (Intel® MKL) provides support for Fortran and
C/C++ programming, not all function domains support both interfaces (see Table Intel
MKL Language Support). For example, LAPACK has no C interface.

To enable calling Intel MKL routines in your environment even if the function domain
does not support it, mixed-language programming may be used.

See also Using language-specific interfaces with Intel MKL.

6.1 Calling LAPACK, BLAS, and CBLAS Routines
from C Language Environments
The Intel MKL is provided in C and Fortran environments. Not all of the Intel MKL sub-
libraries support both environments. In order to use these sub-libraries in both
environments, you should observe some "rules".

LAPACK

When calling LAPACK routines from C-language programs, make sure that you follow
Fortran rules:

• Pass variables by 'address' as opposed to pass by 'value'.

• Be sure to store your data Fortran-style, i.e. data stored in column-major rather
than row-major order.

NOTE: In LAPACK, routine names are upper case only (Please see Example1 in section 6.2.)

BLAS

BLAS routines are Fortran-style routines. If you call BLAS routines from a C-language
program, you must follow the Fortran-style calling conventions:

•

•

Pass variables by address as opposed to passing by value.

Be sure to store data Fortran-style, i.e. data stored in column-major rather than
row-major order.

 37

Intel® Math Kernel Library User's Guide for Linux*

NOTE: In the BLAS, Intel MKL provides both upper case and lower case names to the routines
 (Please see Example1 in section 6.2.)

An alternative to calling BLAS routines from a C-language program is to use the
CBLAS interface.

CBLAS

CBLAS routines are provided as the C-style interface to the BLAS routines. Call CBLAS
routines using regular C-style calls. When using the CBLAS interface, the header file
mkl.h will simplify the program development as it specifies enumerated values as

well as prototypes of all the functions. The header determines if the program is being
compiled with a C++ compiler, and if it is, the included file will be correct for use with
C++ compilation.

6.2 How to Call BLAS Functions That Return the
Complex Values in C/C++ Code
When handling a call of a complex BLAS function that returns complex values from C,
you must be careful. The problem arises because these are Fortran functions and the
return values are handled quite differently for the two languages (C and Fortran) for
complex values. Because Fortran lets you call functions as though they were
subroutines, however, there is a mechanism for returning the complex value correctly
when the function is called from a C program. When a Fortran function is called as a
subroutine, the return value shows up as the first parameter in the calling sequence.
— This feature can be exploited by the C programmer.

The following example, for cdotc(), shows how this works. You call the function from
Fortran as follows: result = cdotc(n, x, 1, y, 1)

A call to this function as a subroutine, looks like this: call cdotc(result, n, x,
1, y, 1) .

From C, this would look in this way: cdotc(&result, &n, x, &one, y, &one)

where the hidden parameter is exposed.

NOTE: Intel® MKL has both upper-case and lower-case entry points in the BLAS, so all upper-
case or all lower-case names are acceptable.

Using this form, you can call from C, and thus, from C++, several level 1 BLAS
functions that return complex values. However, it is still easier to use the CBLAS
interface. For instance, you can call the same function using the CBLAS interface as
follows:

38

Coding Intel® Math Kernel Library Calls

cblas_cdotu(n, x, 1, y, 1, &result)

NOTE: The complex value comes back expressly in this case.

Example 1: Calling a Complex BLAS Level 1 Function from C

/* The following example illustrates a call from a C program to
the complex BLAS Level 1 function zdotc(). This function computes
the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the
structure c.
*/
#include "mkl.h"
#define N 5
void main()
{
int n, inca = 1, incb = 1, i;
typedef struct{ double re; double im; } complex16;
complex16 a[N], b[N], c;
void zdotc();
n = N;
for(i = 0; i < n; i++){
a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;
}
zdotc(&c, &n, a, &inca, b, &incb);
printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re,
c.im);
}

Example 2: Calling a Complex BLAS Level 1 Function from C++

#include "mkl.h"
typedef struct{ double re; double im; } complex16;
extern "C" void zdotc (complex16*, int *, complex16 *, int *,
complex16 *, int *);

#define N 5

void main()
{
int n, inca = 1, incb = 1, i;

complex16 a[N], b[N], c;

 39

Intel® Math Kernel Library User's Guide for Linux*

n = N;
for(i = 0; i < n; i++){
a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;
}
zdotc(&c, &n, a, &inca, b, &incb);
printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re,
c.im);
}

Example 3: Using the CBLAS Interface Instead of Calling BLAS Directly from C Programs

#include "mkl.h"
typedef struct{ double re; double im; } complex16;

extern "C" void cblas_zdotc_sub (const int , const complex16 *,
 const int , const complex16 *, const int, const complex16*);

#define N 5

void main()
{

int n, inca = 1, incb = 1, i;

complex16 a[N], b[N], c;
n = N;
for(i = 0; i < n; i++){
a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;
}
cblas_zdotc_sub(n, a, inca, b, incb,&c);
printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re,
c.im);
}

40

Coding Intel® Math Kernel Library Calls

Appendix A Intel® Math Kernel Library
Language Support

The following table lists function domains that Intel® Math Kernel Library comprises
as well as programming language support for these domains:

Table 8 Intel MKL language support

Function Domain Fortran-77 Fortran-90/95 C/C++

Basic Linear Algebra Subprograms (BLAS) + + via CBLAS

Sparse BLAS Level 1 + + via CBLAS

Sparse BLAS Level 2 and 3 + + +

LAPACK routines for solving systems of linear
equations

+ +

LAPACK routines for solving least-squares problems,
eigenvalue and singular value problems, and
Sylvester’s equations

+ +

Auxiliary and utility LAPACK routines +

PARDISO + +

Other Direct and Iterative Sparse Solver routines + + +

Vector Mathematical Library (VML) functions + +

Vector Statistical Library (VSL) functions + +

Fourier Transform functions (DFT) + +

Interval Solver routines +

Trigonometric Transform routines + +

Fast Poisson, Laplace, and Helmholz Solver (Poisson
Library) routines

 + +

 41

Intel® Math Kernel Library User's Guide for Linux*

Appendix B Contents of the doc Directory

The table below shows the contents of the doc directory.

Table 9 Contents of the doc directory

File name Comment

mklEULA.txt Intel MKL license

Doc_Index.htm Index of Intel MKL documentation

fftw2xmkl_notes.htm FFTW 2.x Interface Support Technical User Notes

fftw3xmkl_notes.htm FFTW 3.x Interface Support Technical User Notes

fft2dfti.pdf Intel FFT to DFTI Wrappers Technical User Notes

Getting_Started.htm Getting Started with Intel MKL (this document)

Install.txt Installation Guide

Readme.txt Initial User Information

redist.txt List of redistributable files

Release_Notes.htm Release Notes

Release_Notes.txt Release Notes (text format)

mklman.pdf Intel MKL Reference Manual

mklman80_j.pdf Intel MKL Reference Manual in Japanese

mklqref/index.htm MKL Quick Reference

mklsupport.txt Information on package number for customer support reference

mkluse.htm Technical User notes for Intel MKL

vmlnotes.htm General discussion of VML

vslnotes.pdf General discussion of VSL

userguide.pdf This document.

42

Index
A
audience ...4

B
BLAS

calling routines from C....................... 38
Fortran-95 interfaces to 24

building custom shared object................ 25

C
calling

BLAS functions in C 38
complex BLAS Level 1 function from C . 39
complex BLAS Level 1 function from C++

... 40
Fortran routines from C...................... 37

CBLAS .. 38
code example 40

coding .. 37
data alignment 31
mixed-language calls 37

cofiguration fle..................................... 34
configuring development environment 34
custom shared object............................ 25

specifying list of functions 26
specifying makefile parameters........... 25

D
data

setting up .. 31
development environment

configuring....................................... 34
directory structure

high-level...8
in-detail ... 10

downloadable dynamic lbrary
building ... 25
redefining names 36

F
FFT functions, data alignment 32

H
high-level library10

L
language support41

Fortran-95 interfaces23
language-specific interfaces23

LAPACK
calling routines from C37
Fortran-95 interfaces to23
packed routines performance31

library structure9
high-level library10
processor-specific kernel10
threading library10

link command14
examples ...21

link libraries...14
for IA-32 ..16
for Intel® EM64T18
for Itanium® 2-based applications.......20

linking...8
dynamic ...13
recommendations..............................13
static ...12

M
memory management32

replacing memory functions................33
mixed-language programming................37

N
notational conventions5
number of threads

changing at run time..........................29
setting up...28

P
parallelism...27
performance ..27

multi-core ..30
of FFT functions.................................32
of LAPACK packed routines31
setting up data for.............................31

processor-specific kernel10

 43

Intel® Math Kernel Library User's Guide for Linux*

T
threading .. 27

avoiding conflicts 28
setting upSee number of threads

threading library 10

U
usage information...................................4

44

	Intel® Math Kernel Library User's Guide for Linux*
	Legal Information
	Contents
	1. Overview
	About This Document
	Purpose
	Audience
	Notational Conventions

	2. Before You Begin
	3. Linking Your Application with Intel® Math Kernel Library
	Intel MKL Library Structure
	High-level libraries
	Processor-specific kernels
	Threading libraries
	Directory structure in detail

	Selecting Between Static and Dynamic Linking
	Static linking
	Dynamic linking
	Making the choice
	Intel MKL-specific linking recommendations

	Link Command Syntax
	Selecting Libraries to Link for Your Platform and Function D
	Linking Examples
	Using language-specific interfaces with Intel MKL
	Fortran-95 interfaces and wrappers to LAPACK and BLAS

	Building custom shared objects
	Intel MKL custom shared object builder
	Specifying makefile parameters
	Specifying list of functions

	4. Managing Performance and Memory
	Performance
	Using Intel MKL parallelism
	Setting up the number of threads
	Changing the number of processors for threading during run t

	Multi-core performance
	Example of setting an affinity mask by operating system mean

	Setting up data for better performance
	General recommendations on data alignment
	LAPACK packed routines performance
	Data alignment for FFT functions

	Using Intel MKL Memory Management
	Replacing Memory Functions

	5. Configuring Your Development Environment
	Customizing Intel MKL Using the Configuration File
	Redefining Names of Downloadable Dynamic Libraries

	6. Coding Intel® Math Kernel Library Calls
	Calling LAPACK, BLAS, and CBLAS Routines from C Language Env
	LAPACK
	BLAS
	CBLAS

	How to Call BLAS Functions That Return the Complex Values in

	A. Intel® Math Kernel Library Language Support
	B. Contents of the doc Directory
	Index
	A
	B
	C
	D
	F
	H
	L
	M
	N
	P
	T
	U

