
Intel® Linker
User’s Manual

September 2003

Revision 2.0

Order Number: 278467-005

Intel® Linker User’s Manual

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2003

Portions copyright © 1982-1994 Kinetech, Inc. [or its assignee].

Intel and Intel XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contents
Contents
1 Introduction..7

1.1 About this Manual ...8
1.2 Related Documentation ..9
1.3 Requirements ...10
1.4 Conventions..11

2 General Usage ..13

2.1 Command Line Syntax ...14
2.1.1 Order of Arguments ...14
2.1.2 Option Arguments ..14

2.2 Input and Output Files ..16
2.3 Overview of Options ...17
2.4 The Process of Linking ...20
2.5 Linking Libraries..21
2.6 Allocation of Segments and Sections ...22

2.6.1 Predefined Sections...22
2.6.2 Default Allocation – Default Layout..23

3 Options ..25

3.1 Option Summary...26
3.2 @filename...29
3.3 -base...30
3.4 -buildfile ..31
3.5 -buildmacro ...35
3.6 -cdtorseg...37
3.7 -cplus ..38
3.8 -commalign ...40
3.9 -ctorpattern ...41
3.10 -ctortab..42
3.11 -debug...43
3.12 -dtorpattern ...44
3.13 -dtortab ...45
3.14 -dynamic ...46
3.15 -entry...47
3.16 -export...48
3.17 -forceblx ..49
3.18 -help..50
3.19 -import...52
3.20 -info...53
3.21 -init ..55
3.22 -keep...56
3.23 -listing ...57
3.24 -mapcomdat ..58
3.25 -noinfo...59
3.26 -normempty...60
3.27 -nosymbols ...61
Intel® Linker User’s Manual 3

Contents
3.28 -nowarnings .. 62
3.29 -output... 63
3.30 -remove... 64
3.31 -ropi... 65
3.32 -rwpi .. 66
3.33 -shared.. 67
3.34 -strict ... 68
3.35 -unref ..69
3.36 -verbose.. 70

4 The Build File... 73

4.1 Lexical Conventions.. 74
4.1.1 The Lexical Process .. 74
4.1.2 Keywords ... 74
4.1.3 Names ... 75
4.1.4 Numbers and Values ... 75
4.1.5 Expressions ... 76
4.1.6 Comments ... 77

4.2 Build File Syntax... 78
4.2.1 PARAMETER Block... 79

4.2.1.1 ALIGN SECTION ... 80
4.2.1.2 ALIGN SEGMENT ... 81
4.2.1.3 ALIGN COMMON .. 81
4.2.1.4 DEFAULT UNDEF ... 81
4.2.1.5 LABEL.. 82
4.2.1.6 Example for PARAMETER Block... 83

4.2.2 LAYOUT Block... 84
4.2.2.1 Base Address... 85
4.2.2.2 Attributes.. 86
4.2.2.3 Layout Body ... 88
4.2.2.4 Example for LAYOUT Block... 89

4.2.3 INPUT Block .. 91

5 Listing File ... 95

5.1 Creating a Listing File ...96
5.2 Contents of a Listing File .. 98

5.2.1 Header ... 99
5.2.2 Segment Summary .. 100
5.2.3 Segment-Section Summary... 101
5.2.4 Module Summary...102
5.2.5 Memory Usage .. 103
5.2.6 Listing of Module Symbols... 104
5.2.7 Listing of Segment Symbols .. 105
5.2.8 Symbol Table...106
5.2.9 C++ Definitions .. 108
5.2.10 Build File ..109

6 Diagnostic Messages .. 111

6.1 Message Format... 112

A Appendix – Reserved Words...113
4 Intel® Linker User’s Manual

Contents
Index ...115

Figures
1 Input Files and Output File..16
2 Default Allocation of Segments and Sections...23
3 Syntax for a Final Link ..78
4 PARAMETER Block..79
5 LAYOUT Block..84
6 INPUT Block ...91
7 Listing File...98

Tables
1 Option Overview ...17
2 Section Names and Associated Segment ..22
3 Lexical Conventions – Names ..75
4 Lexical Conventions – Prefix Strings ..75
5 Lexical Conventions – Suffix Strings ..76
6 Lexical Conventions – Operators..76
7 Listing File – Options and Filenames..96
8 Listing File – Header...99
9 Listing File – Segment Summary..100
10 Listing File – Segment-Section Summary...101
11 Listing File – Module Summary ..102
12 Listing File – Memory Usage ..103
13 Listing File – Listing of Module Symbols...104
14 Listing File – Listing of Segment Symbols ..105
15 Listing File – Symbol Table...107
16 IIntel XScale Microarchitecture Mapping Symbols ...107
17 Listing File – C++ Definitions ..108
18 Characterization of Diagnostic Messages ..112
19 Reserved Words ...113

Revision History

Date Revision Description

May 2001 1.0 Release for Intel® Linker version 0.01 and higher.

August 2002 1.1 Release for Intel® Linker version 0.02 and higher.

March 2003 1.2 Release for the Intel® Linker version 1.1 and higher.

July 2003 1.3 Release for the Intel® Linker version 1.1 and higher.

September 2003 2.0 Release for the Intel® Linker version 1.2 and higher.
Intel® Linker User’s Manual 5

Contents
This page intentionally left blank.
6 Intel® Linker User’s Manual

Introduction 1

The Intel® Linker is a tool combining linker and builder. It is designed to build C/C++ embedded
applications for the Intel XScale® Microarchitecture. The Intel® Linker processes relocatable input
files and creates a single executable file. The object format of these files is the ELF/DWARF object
format. The Intel® Linker works in final link mode, where the logical section fragments are bound
to physical segments at absolute addresses. All relocation is completed, and a single absolute
symbol table is written out. The Intel® Linker supplies the following features:

• ELF/DWARF object format support

• Public-external resolution

• Relocation processing

• Assignment of addresses

• Construction and destruction of static C++ objects

• Command line options to control the link process

• Creation of debug information

• Creation of a listing file

• Build file to apply specific settings to the output file

The Intel® Linker is part of the Intel® C++ Software Development Tool Suite consisting of the
following tools:

• Intel® C++ Compiler

• Intel® Assembler

• Intel® Linker

• Intel® Library Manager

• Intel® Object Converters
Intel® Linker User’s Manual 7

Introduction
1.1 About this Manual

This is a reference manual for the Intel® Linker on Windows* host platforms. The manual contains
the following chapters:

• Chapter 1, “Introduction” is this chapter. It also includes related documentation, overview of
requirements and the manual’s conventions.

• Chapter 2, “General Usage” describes the general usage of the Intel® Linker. This includes
command line syntax, input and output files, overview of options, linking process, linking
libraries, and the allocation of segments and sections.

• Chapter 3, “Options” provides a summary of options, together with their default settings.
The remaining sections describe the options in detail, which are sorted alphabetically.

• Chapter 4, “The Build File” describes directives that are available to create a build file. Such a
build file can be used to specify options in addition to those on the linker command line. These
options are used within the linking process. The build file can contain, for example, specific
settings for alignment of segments and sections, or the layout of your linker output.

• Chapter 5, “Listing File” describes the listing file that may be created during the link process.
The chapter explains the creation of a listing file as well as its contents.

• Chapter 6, “Diagnostic Messages” describes the format of diagnostic messages.

• Chapter , “Appendix – Reserved Words” contains the list of reserved words. These words must
be preceded by an escaped character if they are used inside build files.
8 Intel® Linker User’s Manual

Introduction
1.2 Related Documentation

This section provides an overview of documentation which supplements this manual. These are:

• The Intel® C++ Compiler User’s Manual. For Intel XScale® Microarchitecture, order number
278496

• The Intel® Assembler Reference Manual, order number 278586

• The Intel® Library Manager User’s Manual, order number 278468

Furthermore, Release Notes may be provided. Release Notes contain features or changes of the
product that are not documented in the corresponding manual. Release Notes are included in the
documentation set of your installation.

There are a few other documents which provide related information. These are:

• TIS Committee, 1995, Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification, Version 1.2

• TIS Committee, 1995, DWARF Debugging Information Format Specification, Version 2.0

• ARM* Limited, 2001, ARM ELF

• ARM* Limited, 2000, The ARM-THUMB Procedure Call Standard
Intel® Linker User’s Manual 9

Introduction
1.3 Requirements

To use the Intel® Linker, the following environment is required:

• Microsoft* Windows* 2000 Professional or Windows* XP Professional as host platform
10 Intel® Linker User’s Manual

Introduction
1.4 Conventions

This manual uses several notational and typographical conventions to visually differentiate text,
these are explained in the table below.

Convention Description

Italics Italics identify variables and introduce new terminology. Titles of manuals are in
italic font. Italics are used for emphasis.

Bold Used to specify something important.

Plain Courier Used to specify written code.

Italic Courier Used to specify parameters.

GUI-elements Elements of the graphical user interface are written in this style.

<> Filenames and function names to be defined are delimited by <>.

| Used to specify an alternative between several items.

,... Used to specify an item which may be repeated.

[] Used to specify optional items.

{ } Used to specify an optional item which may be repeated.

"[" "]" "{" "}" "|" Writing a metacharacter in quotation marks negates the syntactical meaning
stated above; the character is taken as a literal. For example, the line
"[" X "]" [Y]
denotes the letter X enclosed in brackets, optionally followed by the letter Y.
Intel® Linker User’s Manual 11

Introduction
This page intentionally left blank.
12 Intel® Linker User’s Manual

General Usage 2

This chapter provides general information on the usage of the Intel® Linker. The chapter contains
the following topics:

• Section 2.1, “Command Line Syntax” on page 14 describes how the Intel® Linker is started on
a command line.

• Section 2.2, “Input and Output Files” on page 16 describes the input and output files the Intel®
Linker requires to work with.

• Section 2.3, “Overview of Options” on page 17 provides an overview of all available
command line options, including a brief description of each.

• Section 2.4, “The Process of Linking” on page 20 explains the different passes the linker
processes to create a linked output file.

• Section 2.5, “Linking Libraries” on page 21 explains how libraries can be linked.

• Section 2.6, “Allocation of Segments and Sections” on page 22 describes the default allocation
of segments and sections. An example shows how the default allocation may be changed.
Intel® Linker User’s Manual 13

General Usage
2.1 Command Line Syntax

The Intel® Linker is started using the following call:

ldxsc [options] {objectfiles}

where:

Example 1. Simple Way of Linking

ldxsc a.o b.o

The command line above links the two objects a.o and b.o to the output file a.x.

Note: By default, the name of the output file is the name of the first module to be linked.

2.1.1 Order of Arguments

The order of arguments, options, and files is of no consequence; it is even possible to specify object
files before the options or between two options.

2.1.2 Option Arguments

Option arguments options must each begin with a minus sign ‘-’ or a slash ‘/’. They modify the
default actions of the Intel® Linker. The available options are described in Section 2.3, “Overview
of Options” on page 17 and Chapter 3, “Options”.

It is also possible to use option files which contain more option arguments. These option files must
start with an “@” character to be treated as files which contain options. Option files and command
line options may be used together.

The file format of an option file is rather free. The options may be written as on the command line,
but it is possible to set a “line feed” at any place where a space is permitted in the command line. It
is recommended to write each option together with its argument(s) onto a separate line, together
with comments describing their actions.

ldxsc ldxsc is the executable file of the Intel® Linker.

options Specifies command line options. If several options are used, they must be separated by
spaces. For an overview of command line options see Section 2.3, “Overview of Options” on
page 17. For a detailed descriptions of command line options seeChapter 3, “Options”.

objectfiles Specifies ELF/DWARF relocatable object files and/or library files that are linked. You must
specify one object file on the command line at least. The object file can also include a path
name, e.g. ./test/myobject.o.
14 Intel® Linker User’s Manual

General Usage
Example 2. Option File

The following command lines have the same effect:

ldxsc -buildfile=link.bld -verbose -cplus a.o b.o

and

ldxsc -buildfile=link.bld @linker.opt a.o b.o

where the last command line uses the option file linker.opt, which has the following contents:

-verbose ; print messages about linker passes
-cplus ; output C++ definitions
Intel® Linker User’s Manual 15

General Usage
2.2 Input and Output Files

The Intel® Linker accepts the following input files:

• ELF/DWARF relocatable files. The default extension of these files is .o.

• ELF/DWARF library files. The default extension of these files is .a or .lib.

The Intel® Linker produces an ELF/DWARF executable file. The default extension of this file is .x.

An ELF/DWARF relocatable file is an object file which contains code and data for linking. The
object format of this file is the ELF (Executable and Linking Format). If the object file contains
debug information, one or more sections are added to the ELF object file containing the DWARF
debugging information format.

An ELF/DWARF library file may contain modules with common characteristics (i.e. modules that
perform similar functions or are required for a particular system). For example, a library might
contain modules that perform mathematical functions and another might contain modules that
perform I/O routines. The object format of these modules is the ELF.

Figure 1. Input Files and Output File

Intel
Linker

ELF/DWARF
relocatable

files

ELF/DWARF
library
files

ELF/DWARF
executable

file

output file

input files
16 Intel® Linker User’s Manual

General Usage
2.3 Overview of Options

This section provides a table giving an overview of available command line options in alphabetical
order. For an overview in usage order and a detailed description of each of the options refer to
Chapter 3, “Options”.

Table 1. Option Overview

Option Abbreviation Description

@filename Specifies an option file. See
Section 2.1.2, “Option Arguments” on
page 14

-base arg -b arg Sets the base address to the absolute
value arg. arg can be a hexadecimal,
decimal, or octal absolute value.
Default base address is 0x8000.

-buildfile -bf Processes the default build file. The
default build file name is the base name
of the output file with the extension .bld.

-buildfile=name -bf=name Processes the specified build file
name.

-buildmacro macroname[=text] -bm macroname[=text] Enables usage of macros inside the
build file.

-cdtorseg arg -cds arg Changes the default allocation of
constructor and destructor tables. This
option is only valid if -cplus is set.

-cplus -cp Creates tables for constructors and
destructors of static C++ objects.

-commalign=number -ca=number Selects the global alignment for
common data.

-ctorpattern arg -ctp arg Specifies the pattern for constructor
callers. This option is only valid if
-cplus is set.

-ctortab arg -ctt arg Specifies the symbol name of the
constructor table. This option is only
valid if the option -cplus is set.

-debug -db Links debug information to the output
file.

-dtorpattern arg -dtp arg Specifies the pattern for destructor
callers. This option is only valid if
-cplus is set.

-dtortab arg -dtt arg Specifies the symbol name of the
destructor table. This option is only
valid if the option -cplus is set.

-dynamic -dyn Causes any shared object file to be
generated in the Linux* format.

-dynamic=arg -dyn=arg Causes any shared object file to be
generated in the format specified by
arg, where arg can be Linux or ARM.

-entry arg -e arg Defines the entry point. arg can be a
symbol name or an address.
Intel® Linker User’s Manual 17

General Usage
-export arg{,arg} -ex [arg],... Specifies global symbols that are to be
written to the final symbol tables. These
symbols may be exported to other
modules.

-forceblx -fblx Changes BL instructions to BLX to
avoid generation of veneer code.

-help -? Prints a help list on the screen.

-import arg{,arg} -im arg{,arg} Specifies global symbols that are to be
written to the final symbol tables. These
are symbols which require to be
imported from other modules.

-info=arg{,arg} -i=arg{,arg} Specifies parameters for the listing file.
Available values for arg are: errors,
segments, sections, modules,
memory, symbols, map, and
buildfile.

-init arg{,arg} -in arg{,arg} Initializes the specified segments.

-keep

-listing -l Creates a listing file.

-listing=name -l=name Creates a listing file with name name.

-mapcomdat -mcd Maps global common data to the first
input module that is referring to it.

-noinfo -ni Suppresses the output of information
messages.

-normempty -nre Suppresses the removal of empty
sections.

-nosymbols -ns Suppresses the generation of the
symbol table.

-nowarnings -nw Suppresses warning messages.

-output name -o name Specifies the output filename.

-remove[=arg{,arg}] -rm[=arg{,arg}] Removes all non-referenced input
sections, of types specified, or all types
if none specified.

-ropi Generates relocation information for
position-independent read-only
segments.

-rwpi Generates relocation information for
position-independent read-write
segments.

-shared -sh Generates a shared object file.

-strict -sc Forces strict consistency checking of
the linked modules.

Table 1. Option Overview

Option Abbreviation Description
18 Intel® Linker User’s Manual

General Usage
-unref -ur Displays warning messages for
unreferenced symbols.

-verbose -v Prints additional information on the link
process on the screen. This option is
the same as -verbose=0.

-verbose=num -v=num Prints additional information on the link
process on the screen. Additionally, you
can specify by num which information is
to be displayed. Possible values for
num are 0, 1, 2, 3, and 4.

Table 1. Option Overview

Option Abbreviation Description
Intel® Linker User’s Manual 19

General Usage
2.4 The Process of Linking

The Intel® Linker performs its tasks in 4 passes. To make them visible, the -verbose command
line option needs to be specified. These passes are as follows:

LDXSC: PASS 0 : scan input ...
LDXSC: PASS 1 : layout ...
LDXSC: PASS 2 : load and relocate ...
LDXSC: PASS 3 : write output ...

The first pass (PASS 0) scans the linker commands, which are checked syntactically and
semantically. Input files are opened and checked for correct formatting. If the processed file is an
object file, the header information of the section size is read in and the symbol table is added to the
Intel® Linker’s internal symbol table. If the file is an object library, it is searched for symbols,
satisfying currently undefined references. Such modules are added in the manner mentioned above.
The Intel® Linker reclaims undefined symbols and exits at the end of this pass.

The second pass (PASS 1) performs the following actions according to the linker commands
which are used in the command file:

• The base addresses and sizes of included modules are calculated.

• In the case of a final link the physical layout of the executable file is calculated.

• Quota and overlap checks are calculated.

The third pass (PASS 2) collects the section fragments, relocates references, and constructs the
symbol table.

The last pass (PASS 3) writes all that has been carried out in PASS 2 to the output file in the
corresponding format.

Further Information:
Section 3.36, “-verbose” on page 70
Section 3.36, “-verbose” on page 70
20 Intel® Linker User’s Manual

General Usage
2.5 Linking Libraries

The library is searched for an index section at the first position. This section is an index of external
symbols defined within the relocatable objects which are contained in the library.

The Intel® Linker scans this index, looking for any undefined symbols in its symbol table. If such a
symbol is found, the object module defining it is extracted from the library and linked into the
program. This is the same process as when any other object module is linked. When the module has
been linked successfully, the search continues until all symbols currently marked as undefined
references have been resolved.

Note that when a module is linked, several undefined references may be satisfied at once and
additional undefined references may be added. This implies that library functions may refer to
symbols defined within other library functions. When the module containing the first function is
added, the undefined symbols of this module are appended as undefined references to the internal
symbol table of the linker. This may cause the linker to add the modules containing these symbols
in the same manner.

The search process terminates when the internal symbol table of the linker contains no more
undefined references or when the search through the library index is finished and no additional
objects have been included.

Note that the Intel® Linker cannot deal with libraries containing object modules with global
symbols but no library index. This also applies to libraries containing only modules without any
global symbols.
Intel® Linker User’s Manual 21

General Usage
2.6 Allocation of Segments and Sections

The linked file consists of a set of segments within which are sections.

For embedded developing it is sometimes necessary to allocate a section within a specific segment,
or to allocate the segments at a specific piece of memory. Therefore, you need to know which
sections and segments are supplied by the compiler and where these are allocated by default. The
default allocation can globally be changed inside the PARAMETER block in the build file or
individually inside the LAYOUT block.

Further Information:
Section 4.2.1, “PARAMETER Block” on page 79
Section 4.2.2, “LAYOUT Block” on page 84

2.6.1 Predefined Sections

The Intel® C++ Compiler provides a set of sections with different attributes, as shown in the
following table. The third column “Segment” shows the name of the segment the section belongs
to.

Table 2. Section Names and Associated Segment

Name Description Segment Access

.text Application code, string constants. CODE execute

.rodata Constant data. CODE read

.data Initialized data. DATA read/write

.bss Uninitialized data. BSS read/write
22 Intel® Linker User’s Manual

General Usage
2.6.2 Default Allocation – Default Layout

The compiler and the linker provide a default allocation of segments and sections, as shown below:

The segments are aligned contiguously within the memory starting at the default base address
0x8000, with the sections also being aligned contiguously within the segment. The sections .text
and .rodata are aligned in the CODE segment by default. The sections .rwtext and .data
are aligned in the DATA segment. The .bss section is aligned in the BSS segment. The default
alignment of sections within a segment is 4 bytes. You can change the alignment with the linker
command LOAD described in Section 4.2.2.3, “Layout Body” on page 88.

Example 3. Changing the Alignment of Sections

The code below is the fragment of a build file:

...

...
LAYOUT
 SEGMENT CODE BASE 0x14000
 LOAD SECTION .text
 SECTION .rodata

 SEGMENT DATA BASE 0x30000
 LOAD SECTION .rwtext
 SECTION .data
 SECTION .bss

Figure 2. Default Allocation of Segments and Sections

.text

0x8000

.rodata

.rwtext

.data

.bss

CODE

DATA

BSS
Intel® Linker User’s Manual 23

General Usage
The layout of the output file defines two segments. Segment CODE starts at a base address of
0x14000. Segment DATA starts at a base address of 0x30000. Segment CODE contains the
sections .text and .rodata. Section .text starts at 0x14000 followed by section .rodata.
Segment DATA contains the sections .rwtext, .data, and .bss. Section .rwtext starts at
the base address of segment DATA followed by the remaining sections.

.text

0x14000

.rodata

.rwtext

0x30000

.data

.bss

segment CODE, read-only

segment DATA, read-write
24 Intel® Linker User’s Manual

Options 3

This chapter describes all command line options of the Intel® Linker, including their syntax and
examples.

The chapter contains the following sections:

• Section 3.1, “Option Summary” on page 26 covers a summary of all command line options.
The options are sorted according to their effect.

• Section 3.2 - Section 3.36 provide a detailed description of every option, which are sorted in
alphabetical order.
Intel® Linker User’s Manual 25

Options
3.1 Option Summary

This section provides a summary of available options, sorted according to their effects. An
alphabetical overview is provided in Section 2.3, “Overview of Options” on page 17. A detailed
description of each option follows in the remaining sections.

Input File

Option Description

-buildfile Processes the default build file. The default build file
name is the base name of the output file with the
extension .bld.

-buildfile=name Processes the specified build file name.

-buildmacro macroname[=text] Enables usage of macros inside the build file.

-keep arg{,arg} Specifies which sections are not to be removed by
the -remove option.
This option selectively overrides the -remove option.

-remove[=arg{,arg}] Removes all non-referenced input sections, of types
specified, or all types if none specified.

Listing File

Option Description

-listing Creates a listing file.

-listing=name Creates a listing file with name name.

-info=arg{,arg} Specifies parameters for the listing file.
Available values for arg are: errors, segments,
sections, modules, memory, symbols, map, and
buildfile.

Command Line

Option Description

@filename Specifies an option file. See Section 2.1.2, “Option
Arguments” on page 14

-help Prints a help list on the screen.
26 Intel® Linker User’s Manual

Options
C++

Option Description

-cdtorseg Changes the default allocation of constructor and
destructor tables.
This option is only valid if -cplus is set.

-cplus Creates tables for constructors and destructors of
static C++ objects.

-ctorpattern Specifies the pattern for constructor callers. This
option is only valid if -cplus is set.

-ctortab Specifies the symbol name of the constructor table.
This option is only valid if the option -cplus is set.

-dtorpattern Specifies the pattern for destructor callers. This
option is only valid if -cplus is set.

-dtortab Specifies the symbol name of the destructor table.
This option is only valid if the option -cplus is set.

Output

Option Description

-output name Specifies the output filename.

-entry arg Defines the entry point. arg can be a symbol name
or an address.

-base arg Sets the base address to the absolute value arg.
arg can be a hexadecimal, decimal, or octal
absolute value. Default base address is 0x8000.

-commalign=number Selects the global alignment for common data.

-init arg{,arg} Initializes the specified segments.

-export arg{,arg} Specifies global symbols that are to be written to the
final symbol tables. These symbols may be exported
to other modules.

-import arg{,arg} Specifies global symbols that are to be written to the
final symbol tables. These are symbols which require
to be imported from other modules.

-mapcomdat Maps global common data to the first input module
that is referring to it.

-nosymbols Suppresses the generation of the symbol table.

-normempty Suppresses the removal of empty sections.

-ropi Generates relocation information for
position-independent read-only segments.

-rwpi Generates relocation information for
position-independent read-write segments.

-shared Generates a shared object file.

-dynamic Causes any shared object file to be generated in the
Linux* format.

-dynamic Causes any shared object file to be generated in the
format specified by type, where type can be Linux
or ARM.
Intel® Linker User’s Manual 27

Options
Note: The option names start with a minus sign ’-’, but this can be replaced with a forward slash ’/’ .

-forceblx Changes BL instructions to BLX to avoid generation
of veneer code.

Debug Information

Option Description

-debug Links debug information to the output file.

Information on Link Process

Option Description

-nowarnings Suppresses warning messages.

-unref Displays warning messages for unreferenced
symbols.

-strict Forces strict consistency checking of the linked
modules.

-verbose Prints additional information on the link process on
the screen. This option is the same as -verbose=0.

-verbose=num Prints additional information on the link process on
the screen. Additionally, you can specify by num
which information is to be displayed. Possible values
for num are 0, 1, 2, 3, and 4.
28 Intel® Linker User’s Manual

Options
3.2 @filename

Syntax: @filename

Description:
When @filename is set, the Intel® Linker opens the file filename to read additional command
line options.

Further Information:
Section 2.1.2, “Option Arguments” on page 14
Intel® Linker User’s Manual 29

Options
3.3 -base

Syntax: -base arg

Abbreviation: -b arg

Description:
The option -base sets the base address arg of the default layout, to ensure that the first segment
starts at the specified base address. All other segments are loaded contiguously. arg is an absolute
value and can be specified as an octal, hexadecimal, or decimal number. The base address is set to
default value 0x8000 when the option -base is not set. Note that this option is overwritten by the
base address set in the LAYOUT block inside a build file. The option -base cannot be used if the
option -buildfile is set.

Example 4. Option -base

ldxsc -l b.o

The command line above allocates the first segment in memory at the default base address 0x8000
as shown in the corresponding listing file.

Memory Usage:

Start End Section Segment Ovrly Type Attr

0x00008000 0x00008008 (ROCODE) CODE Code RO
0x00008008 0x0000802c (RODATA) CODE Code RO
0x0000802c 0x00008030 (RWDATA) DATA Code RW

ldxsc -l -base 0x30000 b.o

This command line allocates the first segment at the base address 0x30000 in memory. The listing
file displays the changed base address.

Memory Usage:

Start End Section Segment Ovrly Type Attr

0x00030000 0x00030008 (ROCODE) CODE Code RO
0x00030008 0x0003002c (RODATA) CODE Code RO
0x0003002c 0x00030030 (RWDATA) DATA Code RW

Further Information:
Section 3.4, “-buildfile” on page 31
Section 4.2.2.1, “Base Address” on page 85
30 Intel® Linker User’s Manual

Options
3.4 -buildfile

Syntax: -buildfile[=name]

Abbreviation: -bf[=name]

Description:
The option -buildfile=name specifies the build file name that is processed by the linker. If no
extension is specified for name, the linker assumes the default extension .bld. The argument =name
is optional and can be ignored, such as in -buildfile. In which case the build file name is
assumed to be the base name of the first input object with the extension .bld. The build file must be
located in the current directory, which is the directory in which the link process is being executed.

Input files can be specified on the command line or in a build file using the directive _INPUT_.
The following rule applies:

• Where the buildfile does not contain the _INPUT_ directive, those object files specified on
the command line are passed to the linker first. Then object files specified inside the build file
are passed to the linker. This order of events occurs even if the buildfile is specified first on the
command line.

• If the build file contains the directive _INPUT_ inside the build file, then the object files are
passed to the linker in the order as specified in the build file, until this directive is reached. The
directive _INPUT_ has the effect of causing those object files specified specifically on the
command line to be passed to the linker. After which any remaining object files specified in
the buildfile after the directive _INPUT_ are passed to the linker.

Note: Where the optional argument =name is used there must be no spaces before and after the “=” sign.
Intel® Linker User’s Manual 31

Options
Examples 5. Option -buildfile

Assuming the build file is named b.bld, the following command line processes this build file:

ldxsc -bf b.o a.o

Assuming the contents of the build file b.bld is as follows:

INPUT
 x.o
 y.o
 z.o

Then the following command line:

ldxsc -bf b.o a.o

processes the object files for linking in the following order:

1. b.o

2. a.o

3. x.o

4. y.o

5. z.o

Assuming the contents of the build file is as follows:

INPUT
 x.o
 INPUT
 y.o
 z.o

Then the following command line:

ldxsc -bf b.o a.o

processes the object files for linking in the following order:

1. x.o

2. b.o

3. a.o

4. y.o

5. z.o
32 Intel® Linker User’s Manual

Options
Example 6. Option -buildfile=name

The command line shown below:

ldxsc -buildfile=testbuild a.o

links the object file a.o and processes the build file testbuild.bld.

The command line shown below:

ldxsc -buildfile=testbuild.bf a.o

processes the contents of the build file testbuild.bf and then links with the object file a.o.

Assuming the contents of the build file testbuild.bld is as follows:

INPUT
 x.o
 y.o
 z.o

Then the command line shown below:

ldxsc -bf=testbuild b.o a.o

processes the object files for linking in the following order:

1. b.o

2. a.o

3. x.o

4. y.o

5. z.o
Intel® Linker User’s Manual 33

Options
Example 7. Option -bf=name

Assuming the contents of the build file is as follows:

INPUT
 x.o
 INPUT
 y.o
 z.o

Then the command line shown below:

ldxsc -bf=testbuild b.o a.o

processes the object files for linking in the following order:

1. x.o

2. b.o

3. a.o

4. y.o

5. z.o

Further Information:
Section 3.4, “-buildfile” on page 31
Section 4.2.3, “INPUT Block” on page 91
34 Intel® Linker User’s Manual

Options
3.5 -buildmacro

Syntax: -buildmacro macroname[=text]

Abbreviation: -bm macroname[=text]

Note: There must be no spaces before and after the “=”.

Description:
The option -buildmacro enables the use of macros inside a build file, where macroname is the
name of the macro inside the build file. The macro is called using the construction @macroname.
The optional parameter text is used to assign the specified macro a value.

Examples 8. Option -buildmacro

Assuming the following build file test.bld that contains the macro @p1:

layout
 segment CODE
 base 0x8000
 load
 label global __code_start__
 section _ro_
 label global __code_end__
 segment DATA
 base align 0x1000
 load
 label global __data_start__
 section _rw_
 label global __data_end__
 segment BSS
 base align 0x1000
 load
 label global __bss_start__
 section _bss_
 label global @p1

Command line:

ldxsc -l -o test a.o b.o -bf -bm p1=__bss_end__

This sets the macro p1 to the value __bss_end__. This means that the global label
“__bss_end__” is set in the BSS segment.
Intel® Linker User’s Manual 35

Options
Assuming the following build file test.bld that contains the macro @object1 and @object2:

input

 @object1
 @object2

Command line:

ldxsc -l -o test -bf -bm object1=a.o -bm object2=b.o

This sets the macro object1 to the file a.o and macro object2 to the file b.o. Both files are
linked to the object file.

Further Information:
Section 3.4, “-buildfile” on page 31
36 Intel® Linker User’s Manual

Options
3.6 -cdtorseg

Syntax: -cdtorseg arg

Abbreviation: -cds arg

Note: This option requires the further option -cplus to be set, and is valid for the default layout only.

Description:
The option -cdtorseg changes the default allocation of constructor and destructor tables. By
default, they are allocated in the section .rodata inside the CODE segment. The argument arg
specifies the segment the tables will be stored.

Example 9. Option -cdtorseg

ldxsc -l -cplus a.o

The command line above links the input file a.o and creates tables for constructors and destructors.
By default, the tables are stored in the CODE segment as shown in the listing file (fragment) below.

C++ constructor

 Section Base Size Align Segment
 .rodata 0x0000802c 0x00000004 4 CODE

C++ destructor

 Section Base Size Align Segment
 .rodata 0x00008030 0x00000004 4 CODE

ldxdc -l -cplus -cds DATA a.o

The allocation of the tables can be changed when using the option -cds DATA for example. These
tables are now stored in the DATA segment as shown in the example below.

C++ constructor

 Section Base Size Align Segment
 .rodata 0x00008030 0x00000004 4 DATA

C++ destructor

 Section Base Size Align Segment
 .rodata 0x00008034 0x00000004 4 DATA

Further Information:
Section 2.6, “Allocation of Segments and Sections” on page 22
Section 3.7, “-cplus” on page 38
Intel® Linker User’s Manual 37

Options
3.7 -cplus

Syntax: -cplus

Abbreviation: -cp

Description:
The option -cplus enables the generation of constructor and destructor tables of static C++
objects. By default, the following values are set:

If this option is specified, the options -cdtorseg, -ctorpattern, -ctortab,
-dtorpattern, and -dtortab can also be passed to the linker to modify the defaults.
Additionally, the listing file contains the section “C++ Definitions” displaying information on C++.

Example 10. Option -cplus

-ldxsc -listing -cplus a.o

The command line above creates the constructor and destructor tables. When a listing file is also
generated, the location of the tables within the segment is displayed.

C++ constructor

 Section Base Size Align Segment
 .rodata 0x0000802c 0x00000004 4 CODE

C++ destructor

 Section Base Size Align Segment
 .rodata 0x00008030 0x00000004 4 CODE
...
...
C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030
...

Symbol Default Value

pattern of constructor callers __sti__*

pattern of destructor callers __std__*

symbol of constructor table __ctors

symbol of destructor table __dtors
38 Intel® Linker User’s Manual

Options
Further Information:
Section 3.6, “-cdtorseg” on page 37
Section 3.9, “-ctorpattern” on page 41
Section 3.10, “-ctortab” on page 42
Section 3.12, “-dtorpattern” on page 44
Section 3.13, “-dtortab” on page 45
Section 5.2.9, “C++ Definitions” on page 108
Intel® Linker User’s Manual 39

Options
3.8 -commalign

Syntax: -commalign=number

Abbreviation: -ca=number

Description:
With the option -commalign the global alignment for common data is selected. Possible values
for number are 4, 8, 16, 32, … and the special value natural. If natural is selected, the
alignment is determined by the common data item with the largest size. The alignment in this case
would be computed to be smallest two's complement greater or equal that size.

Example 11. Option -commalign

-commalign=8
-ca=natural
40 Intel® Linker User’s Manual

Options
3.9 -ctorpattern

Syntax: -ctorpattern arg

Abbreviation: -ctp arg

Note: This option requires option -cplus

Description:
The option -ctorpattern specifies the pattern for functions which are assumed to be constructor
callers of static C++ objects. The default pattern for these functions is __sti__*.

Example 12. Option -ctorpattern

ldxsc -l -cplus a.o

The command line above creates the default pattern for constructor callers of static C++ objects as
shown in the listing file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030

ldxsc -l -cplus -ctorpattern pattern a.o

This command line creates the pattern “pattern” for constructor callers as shown in the listing
file.

C++ Definitions:

 Constructor Symbols: pattern* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030

Further Information:
Section 3.7, “-cplus” on page 38
Intel® Linker User’s Manual 41

Options
3.10 -ctortab

Syntax: -ctortab arg

Abbreviation: -ctt arg

Note: This option requires option -cplus

Description:
The option -ctortab specifies the name of the public symbol which is defined at the start of the
constructor table. The default symbol name is __ctors.

Example 13. Option -ctortab

ldxsc -l -cplus a.o

The command line above creates the default symbol name for the constructor table as shown in the
listing file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030

ldxsc -l -cplus -ctortab newname a.o

This command line creates the symbol name newname for the constructor table as shown in the
listing file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : newname at 0x0000802c

 Destructor Table : __dtors at 0x00008030

Further Information:
Section 3.7, “-cplus” on page 38
42 Intel® Linker User’s Manual

Options
3.11 -debug

Syntax: -debug

Abbreviation: -db

Description:
The option -debug links debug information to the object file. By default, if this option is not set,
debug information is not generated.

To debug the output file of the linker, the Intel® XDB Debugger needs a boundfile, which needs to
be generated using the Intel® DWARF2BD Object Converter.

Further Information:
Intel® Object Converters Manual
Intel® XDB Debugger Reference Manual
Intel® Linker User’s Manual 43

Options
3.12 -dtorpattern

Syntax: -dtorpattern arg

Abbreviation: -dtp arg

Note: This option requires option -cplus

Description:
The option -dtorpattern specifies the pattern for functions which are assumed to be destructor
callers of static C++ objects. The default pattern for these functions is __std__*.

Example 14. Option -dtorpattern

ldxsc -l -cplus a.o

The command line above creates the default pattern for destructor callers of static C++ objects as
shown in the listing file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030

ldxsc -l -cplus -dtorpattern pattern a.o

This command line creates the pattern “pattern” for destructor callers as shown in the listing
file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: pattern* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030

Further Information:
Section 3.7, “-cplus” on page 38
44 Intel® Linker User’s Manual

Options
3.13 -dtortab

Syntax: -dtortab arg

Abbreviation: -dtt arg

Note: This option requires option -cplus

Description:
The option -dtortab specifies the name of the public symbol which is defined at the start of the
destructor table. The default symbol name is __dtors.

Example 15. Option -dtortab

ldxsc -l -cplus a.o

The command line above creates the default symbol name for the destructor table as shown in the
listing file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : __dtors at 0x00008030

ldxsc -l -cplus -dtortab newname a.o

This command line creates the symbol name newname for the destructor table as shown in the
listing file.

C++ Definitions:

 Constructor Symbols: __sti__* (count=0)

 Destructor Symbols: __std__* (count=0)

 Constructor Table : __ctors at 0x0000802c

 Destructor Table : newname at 0x00008030

Further Information:
Section 3.7, “-cplus” on page 38
Intel® Linker User’s Manual 45

Options
3.14 -dynamic

Syntax: -dynamic[=type]

Abbreviation: -dyn[=type]

Description:
When the option -dynamic is set, the linker generates extra sections in the resulting executable to
hold dynamic data. Setting this option as -dynamic=Linux is analogous to setting the option as
-dynamic (without any argument). The option -dynamic=Linux causes the linker to generate
a dynamic file in Linux Elf format. Setting the option as -dynamic=ARM causes the linker to
generate a dynamic file in ARM Elf format. When the additional option -shared is set the linker
generates a file of the Elf format type ET_DYN (dynamic library form). Without the option
-shared being set the linker generates a file of the Elf format type ET_EXEC (executable with
dynamic information form).

The argument type is optional and is used to specify whether ARM* or Linux* type formatting is
used in the dynamic executable. If omitted as in -dynamic, the default Linux* type formatting is
assumed.

Note: Where the optional argument =type is used there must be no spaces before and after the “=” sign.

Further Information:
Section 3.16, “-export” on page 48
Section 3.19, “-import” on page 52
Section 3.33, “-shared” on page 67

type Description

ARM Produces dynamic executable using ARM* format.

Linux Produces dynamic executable using Linux* format, (default).
46 Intel® Linker User’s Manual

Options
3.15 -entry

Syntax: -entry arg

Abbreviation: -e arg

Description:
The option -entry defines the entry point of the application. The address of the entry point is
specified by arg. arg is either defined by a symbol name or directly by an address value. The
default value of the entry point is 0x8000. This option is useful if the entry point is not defined in an
input module.

Example 16. Option -entry

ldxsc -l a.o

The command line above links the object file a.o. Since no entry point is defined in the input
module a.o, the default value 0x8000 is assumed. The listing file displays the information.

Symbol Table:

Entry Point: No entry point, 0x8000 defaulted

ldxsc -l -entry 0xFFF0 a.o

This command line sets the entry point of the application to the value 0xFFF0 as shown in the
listing file below.

Symbol Table:

Entry Point: 0x0000fff0
Intel® Linker User’s Manual 47

Options
3.16 -export

Syntax: -export arg{,arg}

Abbreviation: -ex arg{,arg}

Description:
The option -export has two different meanings depending on whether -dynamic=ARM is used
or not. This option -export enables the selection of one or more symbols, specified in the comma
separated list arg, arg,..., to be written to the conventional static symbol table or any existing
dynamic symbol table. These symbols then become available, that is they can be exported, to other
modules. A dynamic symbol table is only generated when the -dynamic=ARM option is used.

By default, all global symbols are held in the static symbol table, making them all available for use
by other modules. The option -export * has the same effect. All global symbols held in the static
symbol table are also placed in the dynamic symbol table.

To stop all global symbols from being written to the symbol tables this option can be used with a
nonexistent symbol name, such as for example -export _none_.

This command is useful for hiding global symbols for other tools, such as the debugger or the linker
if this file is used as a symbol file in another link process.

Note: -export does not affect the symbol table inside the listing file, but only the symbol tables of the
output file.

Examples 17. Option -export

ldxsc -l a.o b.o -ex caller

The command line above exports only the symbol caller to the symbol table in the output file.

ldxsc -l a.o b.o -ex caller,foo

This command line exports the symbols caller and foo to the symbol table in the output file.

Further Information:
Section 3.14, “-dynamic” on page 46
Section 3.19, “-import” on page 52
Section 3.33, “-shared” on page 67
48 Intel® Linker User’s Manual

Options
3.17 -forceblx

Syntax: -forceblx

Abbreviation: -fblx

Description:
The option -forceblx forces the Intel® Linker to check for branches that would change the
processor mode from ARM* to Thumb* or vice versa. In such a case, the linker patches the branch
instruction to BLX to avoid the generation of veneer code.

Setting this option can increase the performance of the application.
Intel® Linker User’s Manual 49

Options
3.18 -help

Syntax: -help

Abbreviation: -?

Description:
When -help is set, a summary of all available options is printed on the screen. The summary
contains a short description of each option.

Example 18. Option -help

ldxsc -help

prints the following output:

Intel(R) Linker for Intel(R) XScale(TM) Microarchitecture, Version 1.1.12
Copyright (C) 2001-2003 Intel Corporation.
Portions copyright (c) 1982-1994 Kinetech, Inc. [or its assignee].
All rights reserved.

Usage: ldxsc [<options>] {objects}
[-(output|o) <arg>] specify the output file name (default: l.x)
[-(buildfile|bf)] process build file
[-(buildfile=|bf=)<arg>] process build file named <arg>
[-(base|b) <arg>] define the base address when using default layout
 (<arg> must be an absolute value)
[-(listing|l)] generate listing file
[-(listing=|l=)<arg>] generate listing file named <arg>
[-(info=|i=)<arg,...>] set listing options
 [all] print all available info
 [buildfile] print contents of build file
 [errors] print diagnostic messages
 [map] print the symbol table
 [memory] print the memory usage
 [modules] print the module summary
 [sections] print the section summary
 [segments] print the segment summary
 [symbols] print module and segment symbols
[-(debug|db)] create debug information
[-(nosymbols|ns)] don't generate symbol table
[-(nowarnings|nw)] suppress warning messages
{-(buildmacro|bm) <arg>} specify a build file macro (<arg>: macname[=text])
[-(entry|e) <arg>] define the entry point (<arg> can be a symbol name
 or an absolute value)
[-(unref|ur)] display warning messages for unreferenced symbols
[-(export|ex) <arg,...>] specify symbols of symbol table, <arg> is '*' or a
 comma-separated list of symbols
[-ropi] generate relocation info for position independent RO
 segments
[-rwpi] generate relocation info for position independent RW
 segments
[-(init|in) <arg,...>] initializes one or more segments, <arg> is comma
 separated list of segment names
50 Intel® Linker User’s Manual

Options
[-(cplus|cp)] generate tables for con/destructors of static C++
 objects
[-(cdtorseg|cds) <arg>] name of the segment where the con/destructor tables
 are stored (only valid, if '-cplus' is set and
 default layout is used)
[-(ctorpattern|ctp) <arg>] pattern for constructor initializer
[-(dtorpattern|dtp) <arg>] pattern for destructor initializer
[-(ctortab|ctt) <arg>] symbol name of the constructor table (only valid, if
 '-cplus' is set)
[-(dtortab|dtt) <arg>] symbol name of the destructor table (only valid, if
 '-cplus' is set)
[-(forceblx|fblx)] patch BL to BLX instructions to avoid veneer
 generation
[-(strict|sc)] force strict checking of processed input modules
[-(normempty|nre)] don't remove empty sections
[-(commalign=|ca=)<num>] set alignment for common symbols (<num> =
 4,8,16,...,natural)
[-(mapcomdat|mcd)] map common data allocation to input modules
[-(shared|sh)] create a shared library
[-(remove|rm)] remove unused sections
[-(verbose|v)] provide verbose messages (default level: 0)
[-(verbose=|v=)<num>] set verbose level (0 <= level <= 4)
[-(help|?)] display this usage
Intel® Linker User’s Manual 51

Options
3.19 -import

Syntax: -import arg{,arg}

Abbreviation: -im arg{,arg}

Description:
The option -import enables one or more global symbols, specified in the comma separated list
arg, arg,..., to be selected for import from another module. These symbols are placed within the
dynamic symbol table, and are resolved from other external modules at load and run time. They are
imported from external modules even if they could be resolved internally within the module being
linked. This allows a module segment to be optionally replaced with a similarly named segment
from another module.

A dynamic symbol table is only generated if the -dynamic=ARM option is used, otherwise the
-import option is ignored.

To stop all of the global symbols from being imported and written to the dynamic symbol table, this
option can be used with a nonexistent symbol name, such as for example -import _none_.

Note: Any unresolved symbols residing in a segment marked as DYNAMIC in the buildfile and having
relocation types R_ARM_ABS12 and R_ARM_THM_ABS5 are automatically placed within the
dynamic relocation table.

Examples 19. Option -import

ldxsc -l a.o b.o -im caller,shout,hail

The command line above places the symbols caller, shout and hail into the dynamic symbol
table for import from other modules at load time.

Further Information:
Section 3.14, “-dynamic” on page 46
Section 3.16, “-export” on page 48
Section 3.33, “-shared” on page 67
52 Intel® Linker User’s Manual

Options
3.20 -info

Syntax: -info=arg{,arg}

Abbreviation: -i=arg{,arg}

Note: This option requires option -listing or -listing=name. Otherwise it has no effect.

Description:
The option -info specifies parameters for the listing file. By default, the listing file contains all
supported sections. The parameter arg specifies which section is written to the listing file. At least
one parameter must be specified; if more than one parameter is specified, they must be separated by
commas. The header section of the listing file is always created. The parameter arg may have the
following values:

Example 20. Option -info

ldxsc -listing a.o

The command file above generates a listing file a.map that contains all sections: header, segment,
section, and module summary, memory usage, listing of module and segment symbols, symbol
table, and contents of build file.

ldxsc -listing -info=modules,symbols,map a.o

This command file prints the module summary, the module and segment symbols, and the symbol
table in the listing file.

arg Description

all Is identical to setting all parameters mentioned in this table.

buildfile Prints the contents of the build file in the listing file. See also Section 5.2.10, “Build File” on
page 109.

errors Prints diagnostic messages inside the header in the listing file. See also Section 5.2.1,
“Header” on page 99.

map Prints the symbol table in the listing file. See also Section 5.2.8, “Symbol Table” on page 106.

memory Prints the memory usage in the listing file. See also Section 5.2.5, “Memory Usage” on
page 103.

modules Prints the module summary in the listing file. See also Section 5.2.4, “Module Summary” on
page 102.

sections Prints the segment-section summary in the listing file. See also Section 5.2.3,
“Segment-Section Summary” on page 101.

segments Prints the segment summary in the listing file. See also Section 5.2.2, “Segment Summary” on
page 100.

symbols Prints the listing of module symbols and segment symbols in the listing file. See also
Section 5.2.6, “Listing of Module Symbols” on page 104 and Section 5.2.7, “Listing of Segment
Symbols” on page 105.
Intel® Linker User’s Manual 53

Options
Further Information:
Section 3.7, “-cplus” on page 38
Section 3.23, “-listing” on page 57
Chapter 5, “Listing File”
54 Intel® Linker User’s Manual

Options
3.21 -init

Syntax: -init arg{,arg}

Abbreviation: -in arg{,arg}

Description:
The option -init forces the initialization of the specified segments during the set-up of the
run-time environment. The names of the sections are listed in a comma separated list arg,arg,...
The contents of all specified segments are stored to a section named ‘init_data’, which again is
linked by default to the CODE segment. After loading this segment to target memory, the contents
of the initialized segments are copied to the locations to which they were linked to. This enables
dynamic initialization of a program that, for example, resides in ROM memory.

Further Information:
Section 3.31, “-ropi” on page 65
Section 3.32, “-rwpi” on page 66
Intel® Linker User’s Manual 55

Options
3.22 -keep

Syntax: -keep arg{,arg}

Description:
The option -keep partially overrides the -remove option by specifying sections not to be
removed. The names of the sections are listed in a comma separated list arg,arg,...
This option can only be used in conjunction with the -remove option, otherwise it will be ignored.

If the option -remove is set, the linker removes all non-referenced input sections. Using the
-keep option forces those sections listed to be kept within the final image even if they are
non-referenced input sections. Such sections may, for example, be used for test purposes.

Further Information:
Section 3.30, “-remove” on page 64
56 Intel® Linker User’s Manual

Options
3.23 -listing

Syntax: -listing[=name]

Abbreviation: -l[=name]

Description:
The option -listing creates a listing file named name. If no extension is specified, the default
extension of the listing file is .map. The argument name is optional and may be omitted, as in
-listing, in which case a default listing file name is assumed as follows. Should the option
-output be used without specifying an output file name, then the name of the listing file consists
of the base name of the first input object and the extension .map. If the option -output also
specifies an output file name, then the name of the listing file is the base name of the output file with
extension .map. The created listing file contains all sections as described in Section 5.2, “Contents
of a Listing File” on page 98.

Note: Where the optional argument =name is used there must be no spaces before and after the “=” sign.

Description:

Examples 21. Option -listing

ldxsc -listing a.o b.o

The generated listing file is a.map.

ldxsc -listing -o test a.o

The generated listing file is test.map.

Examples 22. Option -listing=name

ldxsc -listing=list a.o

The generated listing file is list.map.

ldxsc -listing=list.lst a.o

The generated listing file is list.lst.

Further Information:
Section 3.7, “-cplus” on page 38
Section 3.23, “-listing” on page 57
Section 3.20, “-info” on page 53
Chapter 5, “Listing File”
Intel® Linker User’s Manual 57

Options
3.24 -mapcomdat

Syntax: -mapcomdat

Abbreviation: -mcd

Description:
The option -mapcomdat maps global common data to the first input module that is referring to it.
The data will be allocated in a section named “comdat” which is added to the section list of this
module. Using this option together with the linker command LOAD SECTION comdata OF
module enables you to split the allocation of common data over several output segments.

Further Information:
Section 4.2.2.3, “Layout Body” on page 88
58 Intel® Linker User’s Manual

Options
3.25 -noinfo

Syntax: -noinfo

Abbreviation: -ni

Description:
Setting this option suppresses the generation of information messages. By default, this option is not
set, and information messages are being generated.

Note: The option -noinfo is independent of the options -info and -verbose.

Further Information:
Section 3.20, “-info” on page 53
Section 3.36, “-verbose” on page 70
Intel® Linker User’s Manual 59

Options
3.26 -normempty

Syntax: -normempty

Abbreviation: -nre

Description:
The option -normempty causes the Intel® Linker not to remove empty sections; they are linked
to the output instead. Should empty sections be used to define global symbols, this option is useful
to keep them. By default, the Intel® Linker removes empty sections.

Note: Setting the option -remove implicitly sets the option -normempty. That is, with the activated
-remove option the linker removes empty segments only when they are not referenced.

Further Information:
Section 3.30, “-remove” on page 64
60 Intel® Linker User’s Manual

Options
3.27 -nosymbols

Syntax: -nosymbols

Abbreviation: -ns

Description:
The option -nosymbols suppresses the generation of the symbol table in the object file and listing
file. This is useful to save disk space.

Example 23. Option -nosymbols

ldxsc -l -nosymbols a.o b.o

When the command line above is invoked, the symbol table is omitted in the object file as well as
in the listing file. The “Mapping Symbols” and “Global Symbols” section is empty.

Symbol Table:

Entry Point: No entry point, 0x8000 defaulted

--

Mapping Symbols:

Segment Address Symbol

--

Global Symbols:

Segment Section Address Size Type Symbol
Intel® Linker User’s Manual 61

Options
3.28 -nowarnings

Syntax: -nowarnings

Abbreviation: -nw

Description:
The option -nowarnings turns off the printing of warning messages to the screen, and also to the
listing file if one is being generated.

Example 24. Option -nowarnings

ldxsc a.o

Using the command line above produces the following output on the screen:

LDXSC-W-WARNING:666: following symbols are undefined:
LDXSC-W-WARNING:667: a.o : symbol mylib: weak

ldxsc -nowarnings a.o

This command line suppresses the display of warning messages on the screen.
62 Intel® Linker User’s Manual

Options
3.29 -output

Syntax: -output name

Abbreviation: -o name

Description:
The option -output specifies the name name of the output file. If the option -output is not
used, the output filename is the base name of the first input file, with the extension changed to .x.

Examples 25. Option -output

ldxsc a.o b.o

The command line above generates the linker output filename a.x.

ldxsc -o test a.o b.o

This command line generates the linker output filename test.x.

ldxsc -o test.out a.o b.o

This command line generates the linker output filename test.out.
Intel® Linker User’s Manual 63

Options
3.30 -remove

Syntax: -remove[=arg,{arg}]

Abbreviation: -rm[=arg,{arg}]

Note: If the optional comma separated type list is used, there must be no spaces before or after the = sign.

Description:
If the option -remove is set, the linker removes all non-referenced input sections of the types
having attributes specified in the optional type list. The types in the list can be:

If no optional type list is given, all sections, of all types, are considered for removal.

Input sections of the specified types stay in the final image only if they contain an entry-point, or if
they are referred to, directly or indirectly, by a non-weak reference from an input section that
contains an entry-point. If neither an input section contains an entry-point, nor an entry-point is
specified with the related command line option, this option will be ignored.

The -keep option can be used to exclude specific sections for consideration of removal by this
option. Using the -keep option allows non-referenced sections to be kept in the final image
which, for example, can be used for testing purposes.

Note: Setting the option -remove implicitly sets the option -normempty. That is, with the activated
-remove option the linker removes empty segments only when they are not referenced.

Examples 26. Option -remove

ldxsc -rm=RO a.o b.o

The command line above generates the linker output filename a.x. with all non-referenced input
sections of the type read-only removed.

Further Information:
Section 3.22, “-keep” on page 56
Section 3.26, “-normempty” on page 60

Type Description

RW Remove all read write sections which are not referenced.

RO Remove all read-only sections which are not referenced.

Zl Remove all Zero Initialization sections which are not referenced
(the .bss sections).
64 Intel® Linker User’s Manual

Options
3.31 -ropi

Syntax: -ropi

Abbreviation: (none)

Description:
If the option -ropi is set, all segments with read-only attribute (usually containing code and
read-only data) are made position-independent. This means that these segments can be relocated to
any valid address on the target hardware, regardless to which addresses they are allocated by the
Intel® Linker.

Further Information:
Section 3.21, “-init” on page 55
Section 3.32, “-rwpi” on page 66
Intel® Linker User’s Manual 65

Options
3.32 -rwpi

Syntax: -rwpi

Abbreviation: (none)

Description:
If the option -rwpi is set, all segments with read-write attribute (usually containing initialized and
uninitialized data) are made position-independent. This means that these segments can be relocated
to any valid address on the target hardware, regardless to which addresses they are allocated by the
Intel® Linker.

Further Information:
Section 3.21, “-init” on page 55
Section 3.31, “-ropi” on page 65
66 Intel® Linker User’s Manual

Options
3.33 -shared

Syntax: -shared

Abbreviation: -sh

Description:
The option -shared is used to specify the type of dynamic executable, and is used in conjunction
with the option -dynamic. This option is ignored if the option -dynamic is not set. When
-shared is set the linker generates an executable file of the Elf format type ET_DYN (dynamic
library). Without -shared being set the linker generates a file of the Elf format type ET_EXEC
(executable with dynamic information).

Further Information:
Section 3.14, “-dynamic” on page 46
Section 3.16, “-export” on page 48
Section 3.19, “-import” on page 52
Intel® Linker User’s Manual 67

Options
3.34 -strict

Syntax: -strict

Abbreviation: -sc

Description:
The option -strict forces strict checking of the consistency of the linked modules. If
inconsistencies (like duplicate symbol definitions in different modules or undefined symbols) are
found, the Intel® Linker generates an appropriate error message.

Further Information:
Chapter 6, “Diagnostic Messages”
68 Intel® Linker User’s Manual

Options
3.35 -unref

Syntax: -unref

Abbreviation: -ur

Description:
The option -unref causes the Intel® Linker to issue a warning message to identify unused symbols
if a symbol is defined but never referenced.

Example 27. Option -unref

ldxsc -ur -l -o test a.o b.o

The command line above issues the following warning messages because the object files contain
unreferenced symbols:

LDXSC-W-WARNING[665]:caller.o:symbol caller: unreferenced
LDXSC-W-WARNING[665]:caller.o:common symbol myArray: unreferenced
LDXSC-W-WARNING[665]:foo.o:symbol myUnref: unreferenced
Intel® Linker User’s Manual 69

Options
3.36 -verbose

Syntax: -verbose[=num]

Abbreviation: -v[=num]

Description:
The option -verbose prints messages about linker actions to the screen. The optional argument
num controls the amount of output, and may have one of the following values:

If the optional argument num is not used, as in -verbose, then the default value of num=0 is
assumed.

Note: Where the optional argument num is used there must be no spaces before and after the “=” sign.

Value Description

0 This is the default value. If it is specified, names of passes are printed to the screen. This has the
same effect as the option -verbose.

1 Prints names of passes and filenames to the screen.

2 Prints names of passes, filenames, and names of sub-passes to the screen.

3 This setting, in additionally to those activities where the value is 2, prints module names in which
common sections are checked. It also displays information on constructor and destructor scanning.

4 Additionally to -verbose=3, it prints information on handling of common symbols.
70 Intel® Linker User’s Manual

Options
Example 28. Option -verbose

ldxdc -v a.o b.o

The command line above invokes the linker as follows:

LDXSC: PASS 1 : layout ...
LDXSC: PASS 2 : load and relocate ...
LDXSC: PASS 3 : write output ...

Example 29. Option -verbose=num

ldxsc -verbose=1

The command line above generates the following additional output to the screen:

LDXSC: : a.o
LDXSC: : b.o
LDXSC: PASS 1 : layout ...
LDXSC: PASS 2 : load and relocate ...
LDXSC: : a.o
LDXSC: : b.o
LDXSC: : ZISection$$Table
LDXSC: PASS 3 : write output ...

Further Information:
Section 3.23, “-listing” on page 57

Intel® Linker User’s Manual 71

Options
This page intentionally left blank.
72 Intel® Linker User’s Manual

The Build File 4

This chapter describes the use of a build file, which can be used to define specific settings for
alignments of segments and sections, the layout of your linker output file, or to pass additional
object files to the linker. See Section 2.6, “Allocation of Segments and Sections” on page 22

A buildfile is only processed by the linker if the option -buildfile is specified on the command
line.

The chapter contains the following sections:

• Section 4.1, “Lexical Conventions” on page 74 describes the lexical conventions that apply to
build files.

• Section 4.2, “Build File Syntax” on page 78 describes the syntax of a build file, which consists
of a maximum of 3 optional blocks.
Intel® Linker User’s Manual 73

The Build File
4.1 Lexical Conventions

This section describes the Lexical processes and conventions used by the linker.

4.1.1 The Lexical Process

The first pass of the Intel® Linker scans the lines of the linker input, carrying out syntax and
semantic checks. The syntax check performs a lexical analysis, converting the input file into a
string of tokens. The semantic check tests the grammar of the input as well as the specified
conditions.

4.1.2 Keywords

Keywords are directives such as ABSOLUTE, SECTION, ALIGN, SEGMENT. The following rules
apply to keywords:

• Keywords are not case-sensitive, i.e. they may be written in upper case or lower case.

• Keyword abbreviations may be used, and are obtained by omitting characters from the end as
long as the abbreviations are unambiguous. For example sec, sect, and secti are valid
instances of the keyword section.

If an abbreviation is ambiguous, the Intel® Linker issues the following syntax error message:

LDXSC-E-ERROR[387]:b.bld:syntax error near ^NPUT^

• Names e.g. of variables can be the same as a keyword providing it is ’escaped’. That is by
preceding them with the “^”-character. For keywords the Intel® Linker recognizes the leading
“^”-character and skips it, accepting the remaining string as the variable name. Where the “^”
character is used before a none keyword it becomes part of the symbol name.

Example 30. Escaping Variables

^DEFAULT

The “^” is skipped and the DEFAULT is read as a name and not as keyword.
74 Intel® Linker User’s Manual

The Build File
4.1.3 Names

Names are strings of the following characters:

White space characters such as blank, tab, or newline in any order and number are used to separate
the input words from each other. In some cases, special characters are required to isolate members
of option lists.

4.1.4 Numbers and Values

Numbers and values are digit strings with a prefix for defining the base and a suffix for defining a
factor. All numbers are treated as unsigned values.

Table 3. Lexical Conventions – Names

Character Comment

a-z Lower case alphabetical.

A-Z Upper case alphabetical.

0-9 Not in first position.

/ Forward slash.

\ Backslash.

. Dot (period).

 _ Underscore.

: Colon.

; Semicolon.

$ Dollar sign.

+ Plus sign.

- Minus sign.

[Left bracket.

] Right bracket.

Table 4. Lexical Conventions – Prefix Strings

Prefix String Base Permitted Numerals

0x Hexadecimal value. 0-9, a-f, A-F

0 Octal value. 0-7

<none> Decimal value. 0-9
Intel® Linker User’s Manual 75

The Build File
4.1.5 Expressions

The Intel® Linker supports arithmetic expressions for defining values. An expression must be
enclosed in “{” and “}” characters.

Expressions may contain symbol names, constant values, as well as binary and unary operators.
The standard C operator precedence rules are applied for evaluation, and parentheses are permitted
to change the order of evaluation.

If a symbol value is used, the symbol must be defined by a suitable directive beforehand or in any
of the input modules. All computations are performed with unsigned 32-bit values.

The following table lists the available operators, with higher precedence operators first:

Operands are identifiers defined in either the assembly, the C/C++ program, or in the linker
directive.

Table 5. Lexical Conventions – Suffix Strings

Suffix String Stands for Factor

K kilo Value multiplied by 1024.

P page Value multiplied by PAGE size.

<none> No multiplication.

Table 6. Lexical Conventions – Operators

Operator Description

unary - Negate.

unary ` Bitwise invert.

unary ! Logical not.

unary + Ignored.

*, /, % Multiply, divide, modulo.

+, - Add, subtract.

<<, >> Shift left, shift right.

==, != Equal, not equal.

<=, <, >=, > Less than or equal to, less than, greater than or equal to, greater than.

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

?: Conditional operator.
76 Intel® Linker User’s Manual

The Build File
Examples 31. Lexical Conventions – Operators

{(_base_ & 0xFFF) + 0x400000 }
{(_end_ - _start_) * 4 }

4.1.6 Comments

Comments can be introduced with the “#” character at any position along the line. All following
characters until the end-of-line character are then considered to be comments and are ignored by
the linker.

Example 32. Lexical Conventions – Comments

This is a linker build file
Header block
Intel® Linker User’s Manual 77

The Build File
4.2 Build File Syntax

The command line option -buildfile enables the use of a build file, which contains additional
instructions to the Intel® Linker. A build file contains a sequence of additional commands to the
linker in a specific syntax which is detailed below.

A linker build file is built up of several optional blocks, each containing a set of directives. The
order of the blocks is fixed and cannot be changed, and are as shown in the following diagram for a
final link:

The syntax of each block is described in the following sections.

Figure 3. Syntax for a Final Link

[LAYOUT-block]

[INPUT-block]

Final Link

[PARAMETER-block]
78 Intel® Linker User’s Manual

The Build File
4.2.1 PARAMETER Block

PARAMETER-block ::=

 [parameter-option],...

where:

parameter-option ::=

| ALIGN SECTION (value | PAGE)

| ALIGN SEGMENT PAGE value

| ALIGN COMMON value

| DEFAULT UNDEF (name |
 value)

| LABEL (DEFAULT SYMBOLS |
 SECTION SYMBOLS |
 MODULES SYMBOLS |
 SEGMENT SYMBOLS)

Description:
The PARAMETER block defines global settings for final link mode, e.g. the allocation of all
sections and segments. The PARAMETER block may contain one or several parameter options, for
example ALIGN SECTION, ALIGN SEGMENT, may be specified. They are optional and can be
used in any order. These parameters are described in the following sections.

Figure 4. PARAMETER Block

[LAYOUT-block]

[INPUT-block]

Final Link

[PARAMETER-block]
Intel® Linker User’s Manual 79

The Build File
4.2.1.1 ALIGN SECTION

ALIGN SECTION (value | PAGE)

Description:
The ALIGN SECTION command specifies the general alignment of all sections, which by default
is 4 bytes. Each section may be aligned to a specific edge within the segment. The alignment can be
performed as follows:

Example 33. PARAMETER Block – ALIGN SECTION

The following code fragment is used as an example:

 ALIGN SECTION 0x100

The left side of the diagram above shows an example for the default alignment if ALIGN
SECTION is not used. The right side of the diagram shows the alignment if the above example
code is used to align the sections. Since a value of 0x100 is used, a gap appears between section A
and B as well as between Section B and C. For data sections the gaps are filled with numeric zeros.
For code sections the gaps are filled with NOP instructions.

Option Description

value Aligns the start address of sections to the specified value value. The second section is aligned at
the start address of the first section plus value. If the size of the first section is greater than
value, the second section is aligned at the next possible address which is a multiple of value.

PAGE Aligns the start address of sections to a multiple of 512 bytes which is the value of PAGE. If the size
of the first section is greater than PAGE, the next multiple of PAGE is used as start address of the
subsequent section.

Segment <name>: default alignment

0x10000

0x100f0

0x102D0

ALIGN SECTION 0x100

Section A

Section B

Section C

0xf0

0x1E0

0x2D0

0x10000

0x100f0

Section A

Section B

Section C

0xf0

0x1E0

0x2D0

0x10100

0x102E0

gap

Segment <name>: modified alignment

gap
0x10300
80 Intel® Linker User’s Manual

The Build File
4.2.1.2 ALIGN SEGMENT

ALIGN SEGMENT (value | PAGE)

Description:
The ALIGN SEGMENT command specifies the general alignment of all segments, the default
alignment setting of which si 4 bytes.

4.2.1.3 ALIGN COMMON

ALIGN COMMON value

Description:
When the ALIGN COMMON command is specified, the Intel® Linker aligns the sizes of all common
symbols to the specified value value. The default alignment of common symbols is 4 bytes.

4.2.1.4 DEFAULT UNDEF

DEFAULT UNDEF (name | value)

Description:
The DEFAULT UNDEF directive specifies the allocation of undefined symbols in the output file. The
undefined symbol is specified by name. This feature enables linking of programs with undefined
symbols. You can assign a special address to them to control the behavior of your application, if such
a symbol is referenced.

The allocation can be performed as follows:

Option Description

value Aligns the start address of segments to the specified value value. The second segment is aligned
at the start address of the first segment plus value. If the size of the first segment is greater than
value, the second segment is aligned at the next possible address which is a multiple of value.

PAGE Aligns the start address of segments to a multiple of 512 bytes which is the value of PAGE. If the
size of the first segment is greater than PAGE, the next multiple of PAGE is used as start address of
the subsequent segment.

Option Description

name The undefined symbols are located at the address of the symbol name. If the mentioned
symbol is also undefined, an error message is issued.

value The undefined symbols are located at the absolute address of value.
Intel® Linker User’s Manual 81

The Build File
4.2.1.5 LABEL

LABEL (SECTION |
 SEGMENT |
 MODULES |
 DEFAULT) SYMBOLS

Description:
The LABEL directive creates global labels, which may be created as follows:

Option Description Generated Labels

SECTION SYMBOLS Creates global labels with an address which is
the start and end address of the sections.

_sec_secname_beg_
_sec_secname_end_

for every section; secname is the
section name.

SEGMENT SYMBOLS Creates global labels with an address which is
the start and end address of the segments.

_seg_segname_beg_
_seg_segname_end_

for every segment; segname is the
segment name.

MODULES SYMBOLS Creates global labels with an address which is
the start and end address of the sections of
input modules.

_modname_sec_secname_beg_
_modname_sec_secname_end_

modname is the module name and
secname the section name.

DEFAULT SYMBOLS Creates global labels with an address which is
the start and end address of the segments,
sections, and input modules (all of above).
82 Intel® Linker User’s Manual

The Build File
4.2.1.6 Example for PARAMETER Block

The PARAMETER block of a build file can have the following contents:

ALIGN SECTION 0x10
ALIGN SEGMENT 0x10
ALIGN COMMON 0x100
DEFAULT UNDEF ERRORHANDLER
LABEL MODULES

All sections are aligned to the value 0x10 or a multiple of 0x10 inside the segment. All segments
are aligned to the value 0x10 or a multiple of 0x10. All common symbols are aligned to the value
0x100. The symbol ERRORHANDLER is inserted into the symbol table as undefined. Global labels
with an address which is the start and end address of the sections of input modules are created.
Intel® Linker User’s Manual 83

The Build File
4.2.2 LAYOUT Block

[LAYOUT-block] ::=

 LAYOUT segment-spec [segment-spec],...

where:

segment-spec ::=

SEGMENT name base-addr
 attr-spec
 layout-body

Description:
The LAYOUT block LAYOUT-block defines a specific layout of the object file in physical memory.
For each segment, specified by name, a layout can be defined. The layout for each segment is
defined by a base address base-addr, attributes attr-spec, and a layout body
layout-body. If the LAYOUT block is not used in the build file, the default layout is assumed.
For a description of the default layout, refer to Section 2.6, “Allocation of Segments and Sections”
on page 22.

The Intel® Linker accepts segment overlays. Take the example where segment A starts at address
0x1000 and has a size of 0x10000. Then segment B is permitted to start at 0x1100 even though it
would be starting within the segment A. In case of an overlay, the Intel® Linker produces a
warning message. When a listing file is generated, the “ovlry” column in the memory usage section
displays an asterisk for the segment that overlays another segment.

Further Information:
Section 2.6, “Allocation of Segments and Sections” on page 22
Section 3.3, “-base” on page 30

Figure 5. LAYOUT Block

[LAYOUT-block]

[INPUT-block]

Final Link

[PARAMETER-block]
84 Intel® Linker User’s Manual

The Build File
4.2.2.1 Base Address

base-addr ::=

 BASE name OF file

| BASE value

| BASE "{" expression "}"

| BASE ALIGN (value |
 PAGE)

Description:
The base address base-addr defines the start address of the segment. The base address may be
specified as follows:

Base Address Description

BASE name OF file The base address of the segment is the value of the symbol name name
defined by the object file file.

BASE value Sets the base address to the address value. value is a hexadecimal,
decimal, or octal number. No alignments are performed. Odd values cause a
warning message.

BASE "{" expression "}" The base address of the segment is set to the value of expression.

BASE ALIGN (value |
 PAGE)

This directive is only useful if more than one segment is loaded. BASE
ALIGN may have one of the following options:

Option Description

value Aligns the start address of segments to the specified value value. The second segment is aligned
at the start address of the first segment plus value. If the size of the first segment is greater than
value, the second segment is aligned at the next possible address which is a multiple of value.

PAGE Aligns the start address of segments to a multiple of 512 bytes which is the value of PAGE. If the
size of the first segment is greater than PAGE, the next multiple of PAGE is used as start address of
the subsequent segment.
Intel® Linker User’s Manual 85

The Build File
4.2.2.2 Attributes

attr-spec ::=

| QUOTA value

| LOCATION value

| LOCATION "{" expression "}"

| DYNAMIC

Description:
The layout of a segment may be defined by using additional attributes as follows:

Option Description

QUOTA value A maximum segment size of value bytes is defined. An error
message is issued if a segment exceeds this value. If no quota is
defined, the largest unsigned 32-bit value (0xFFFFFFFF) is assumed.

LOCATION value Sets the segment load address to value. The base address for
re-location is not affected. Therefore, a segment can be relocated to
another address during loading. If any absolute section lies inside this
segment, a warning is issued. Furthermore, it is useful if segments are
stored in ROM at an address which is different to the base address and
are copied to the base address after the system start-up.

The LOCATION directive can handle global labels as parameter. If the
label name was defined by a LABEL GLOBAL name directive, it can be
used in a subsequent directive.
See also Section 4.2.1.5, “LABEL” on page 82.

LOCATION "{" expression "}" This option has the same affect as option LOCATION value except
that the segment load address is set to the address of the specified
expression expression.

DYNAMIC Sets the segment as being dynamic, that is it may require the shared
resources of other modules or libraries in order to run.
See Section 4.2.2.2.1, “Dynamic Segments” on page 87
86 Intel® Linker User’s Manual

The Build File
4.2.2.2.1 Dynamic Segments

The Intel® Linker supports both static and dynamic linking models. In the static model the given
object files, system libraries and library archives are statically bound. All global symbol references
are resolved and an executable file is created which is completely self contained. While in the
dynamic model some of the global symbols are not resolved within the module being linked. The
linker converts these into dynamic relocations which will be resolved at load time. The resultant
executable is not self contained and at load time other shared resources and dynamic libraries must
be made available within the system for the program to run.

The attribute DYNAMIC is used to mark a segment as being dynamic. That is, any unresolved
global symbols within such a segment are placed within the special dynamic relocation section of
the executable file. Upon loading this executable the loader attempts to resolve all entries within
the dynamic relocation section by dynamically linked library modules and other shared resources.

The options -export and -import are used to control the contents of the dynamic relocation
section. Global symbols resolved in this module can be placed into the dynamic relocation table by
using the -export option. This then makes such global symbols available to be used by other
modules, where the symbol is unresolved. The option -import may be used to place global
symbols into the dynamic relocation section which cannot be resolved within the current module
being linked and must therefore be resolved externally. That is, they must be imported from
another module, this is carried out at load time.

Another important use of the -import option is to force global symbols to be resolved externally,
even if they can be resolved internally within other segments of the module being linked. Placing a
global symbol into the dynamic relocation section by using the -import option, forces the loader
to resolve these global symbols externally from the module, and not to use the internally available
resolution.

The Intel® Linker supports dynamic linking in both the ARM* and Linux* formats, depending on
the option -dynamic, which can be set as either -dynamic=ARM or -dynamic=Linux. The
option can also be used without an argument such as -dynamic by itself, by default this is taken
as being equivalent to -dynamic=Linux.

Example 34. Dynamic segment

LAYOUT
 SEGMENT .text base 0x0 DYNAMIC # this is a relocatable DYNAMIC segment
 LOAD SECTION _RO_

 SEGMENT .data base 0x80000000 # this is an absolute static segment
 LOAD SECTION _RW_
Intel® Linker User’s Manual 87

The Build File
4.2.2.3 Layout Body

layout-body ::=

| NOLOAD

 LOAD command ["," command],...

where:

command ::=

 SECTION section-name

| SECTION section-name OF module ["," module],...

| SECTION section-type

| LABEL (GLOBAL | LOCAL) name

| DESTRUCTOR

| CONSTRUCTOR

Description:
The layout of a segment is defined in detail by the NOLOAD or LOAD command. The NOLOAD
command allocates an empty segment. The LOAD command is used to define the allocation of
sections within the segment and to apply specific features to the segment.

command may have the following values:

Command Description

SECTION section-name For every module, the contents of the specified section
section-name are placed contiguously at the current address
counter of this segment. This global assignment of a section is
used for every module if there is no module-specific local
assignment.

SECTION section-name OF module
["," module],...

For all modules listed in the command, the contents of the
specified section section-name are placed at the current
segment address counter by overriding any global assignment of
this section. All specified modules module must be specified in the
INPUT block. See also Section 4.2.3, “INPUT Block” on page 91.

SECTION section-type A section type can be specified. The section type defines attributes
for sections. Available values for section-type are explained in
the table below.

LABEL GLOBAL name A global label name name is defined in the absolute section, and
the value of the current address counter is assigned to it. If the
label is defined already, an error message is issued.
88 Intel® Linker User’s Manual

The Build File
4.2.2.4 Example for LAYOUT Block

The code fragment below is part of a build file:

...

...
LAYOUT
 SEGMENT CODE BASE 0x14000
 QUOTA 0x38000
 LOAD SECTION .text
 SECTION .rodata
 SECTION _RO_
 DESTRUCTOR
 CONSTRUCTOR

 SEGMENT DATA BASE 0x30000
 LOAD SECTION .rwtext
 LABEL GLOBAL mylabel
 SECTION .data
 SECTION .bss
 SECTION _RW_
...

LABEL LOCAL name A local label name name is defined in the absolute section, and the
value of the current segment address counter is assigned. It is
similar to LABEL GLOBAL name, except the label is not written to
the final symbol table. If the label is defined already, an error
message is issued.

DESTRUCTOR Loads the destructor table to the specified section within the
loaded segment. Only available when option -cplus is set.

CONSTRUCTOR Loads the constructor table to the specified section within the
loaded segment. Only available when option -cplus is set.

Section Type Description

RO All read-only sections are allocated.

RW All read write sections are allocated.

CODE All sections containing executable code are allocated.

DATA All sections containing data are allocated.

ROCODE All sections that are read-only and contain executable code are allocated.

RWCODE All sections that are writable and contain executable code are allocated.

RODATA All sections that are read-only and contain data are allocated.

RWDATA All sections that are writable and contain data are allocated.

BSS All sections that contain uninitialized data are allocated.

Command Description
Intel® Linker User’s Manual 89

The Build File
...

The layout of the output file defines two segments. Segment CODE starts at a base address of
0x14000. The maximum segment size of CODE is set to 0x38000. Segment DATA starts at a base
address of 0x30000. Segment CODE contains the sections .text, .rodata, and read-only
sections. The destructor and constructor tables are allocated after all read-only sections inside the
segment CODE. Segment DATA contains the sections .rwtext, .data, .bss and read-write
sections. Section .rwtext starts at the base address of segment DATA followed by the remaining
sections. After sections .rwtext the global label mylabel is defined.

Further Information:
Section 2.6, “Allocation of Segments and Sections” on page 22

.text

0x14000

.rodata

destructor table

0x30000

constructor table

.rwtext

segment CODE

segment DATA

read-only sections

.data

.bss

read-write sections
90 Intel® Linker User’s Manual

The Build File
4.2.3 INPUT Block

INPUT-block ::=

INPUT input-command ["," input-command],...

where:

input-command ::=

 module-or-library-name

| library-name "(" module [module],... ")"

| library-name "(" "*" ")"

| _INPUT_

| LABEL (GLOBAL | LOCAL) SECTION section-name name

| LABEL (GLOBAL | LOCAL) "{" expression "}" name

| LABEL (GLOBAL | LOCAL) value name

| LABEL (GLOBAL | LOCAL) name alias

| UNDEF name

Figure 6. INPUT Block

[LAYOUT-block]

[INPUT-block]

Final Link

[PARAMETER-block]
Intel® Linker User’s Manual 91

The Build File
Description:
The INPUT block INPUT-block defines additional input modules and libraries for the Intel®
Linker. It is also possible to define re-locatable absolute labels or to create an undefined reference
here. The order of commands is important because the commands are processed sequentially.

As input file(s) input-command modules and/or libraries may be specified. The file is opened,
and its type is checked to determine the appropriate actions. If it is a re-locatable object file, the
internal symbol table of the Intel® Linker is updated with the module-specific symbol table. The
section sizes are added to the layout description, and the module is inserted into the module chain
for further use. If the file is an object library, the library symbol table generated by the Intel®
Library Manager is searched for currently undefined symbols. If such a symbol is found, the
related module is extracted from the library and added as an ordinary module. The library is
searched as long as modules are found. Note, that a library may be searched multiple times.

Option Description

module-or-library-name Specifies a module or a library as input file.

library-name "(" module [module],... ")" Specifies a library followed by a list of modules.
Modules are separated by whitespaces. The
specified modules are always extracted from the
library, even if they do not define any undefined
symbols.

library-name "(" "*" ")" Specifies a library and all modules in the library; thus,
the library is read in completely.

INPUT Input files can be specified on the command line or in
a build file using the directive _INPUT_. The
following rule applies:

• Objects files specified on the command line are
passed to the linker first. Then object files
specified inside the build file are passed to the
linker.

• If the build file contains the directive _INPUT_
inside the build file, the object files are passed to
the linker as specified in the build file. Object
files specified on the command line are passed
to the linker where the directive _INPUT_ is
used.

LABEL (GLOBAL | LOCAL) SECTION
section-name name

A label named name is created at section
section-name. If GLOBAL is specified, a label is
placed in the final symbol table in the output file. If
LOCAL is selected, the label is available during the
link process only.

LABEL (GLOBAL | LOCAL)
 "{" expression "}" name

A label named name is created at the address of
expression. If GLOBAL is specified, a label is
placed in the final symbol table in the output file. If
LOCAL is selected, the label is available during the
link process only.
92 Intel® Linker User’s Manual

The Build File
Example 35. INPUT Block

The code below is the fragment of a build file:

INPUT
 LABEL GLOBAL root _baseadr_
 entry.o
 main.o
 LABEL GLOBAL SECTION alpha appbeg
 switchtab.o
 lib.lib (calldef.o, userdef.o)
 userlib.lib
 LABEL GLOBAL SECTION beta append
 UNDEF _anchor_
 param.lib
 end.o

The build file defines the following:

• The global label _baseadr_ is created at the same address as root. The object modules
entry.o and main.o are read in.

• The global label appbeg is created at the address of section alpha.

• The module switchtab.o is read in.

• The modules calldef.o and userdef.o are extracted from the library lib.lib.

• The library userlib.lib is searched for any undefined symbols.

• The global label append is created at the address of section beta.

• The symbol _anchor_ is inserted into the symbol table as undefined.

• The library param.lib is processed followed by the module end.o.

LABEL (GLOBAL | LOCAL) value name A label named name is created at the address
specified by value. value is a hexadecimal,
decimal, or octal value. If GLOBAL is specified, a
label is placed in the final symbol table in the output
file. If LOCAL is selected, the label is available during
the link process only.

LABEL (GLOBAL | LOCAL) name alias An alias alias is created for label named name. If
GLOBAL is specified, a label is placed in the final
symbol table in the output file. If LOCAL is selected,
the label is available during the link process only.

UNDEF name An undefined label name name is created. This is
sometimes useful for forcing the extraction of
modules from object libraries. If the symbol is already
defined, this command has no effect.

Option Description
Intel® Linker User’s Manual 93

The Build File
Example 36. INPUT Block – Reading Objects

Assuming the contents of the build file is as follows:

INPUT
 x.o
 INPUT
 y.o
 z.o

ldxsc -bf b.o a.o

The command line above processes the object files in the following order:

1. x.o

2. b.o

3. a.o

4. y.o

5. z.o

Further Information:
Section 3.4, “-buildfile” on page 31
94 Intel® Linker User’s Manual

Listing File 5

This chapter describes the listing file that may be created during the link process. Such a listing file
contains helpful information that can be used to detect errors of the link process.

The chapter contains the following sections:

• Section 5.1, “Creating a Listing File” on page 96 provides an overview how you can create a
listing file using specific command line options.

• Section 5.2, “Contents of a Listing File” on page 98 provides an overview of the contents of a
listing file and describes the listing file in detail.
Intel® Linker User’s Manual 95

Listing File
5.1 Creating a Listing File

A listing file provides helpful information of the entire link process. It is created using either the
option -listing or -listing=name. Both options create a listing file containing all
information as described in Section 5.2. When the option -info is specified in addition to
-listing or -listing=name, a listing file is created containing specific information. The
filename of the listing file depends on the used options. See Table 7.

Table 7. Listing File – Options and Filenames

Option Description Filename and File Extension

-listing Creates a listing file. The name of the listing file
consists of the base name of
the first input object and the
extension .map. If an output
file is specified with the option
-output, the name of the
listing file is the base name of
the output file with extension
.map.

-listing=name Creates a listing file with name name. If no extension is specified, the
default extension of the listing
file is “map”.

-listing
-info=arg{,arg}

or

-listing=name
-info=arg{,arg}

Specifies parameters for the listing file. Available
values for arg are:

Depends upon -listing or
-listing=name being used.
See above.

buildfile Prints the contents of the build file in
the listing file. See also
Section 5.2.10, “Build File” on
page 109.

errors Prints diagnostic messages inside
the header in the listing file. See also
Section 5.2.1, “Header” on page 99.

map Prints the symbol table in the listing
file. See also Section 5.2.8, “Symbol
Table” on page 106.

memory Prints the memory usage in the
listing file. See also Section 5.2.5,
“Memory Usage” on page 103.

modules Prints the module summary in the
listing file. See also Section 5.2.4,
“Module Summary” on page 102.

sections Prints the segment-section summary
in the listing file. See also
Section 5.2.3, “Segment-Section
Summary” on page 101.

segments Prints the segment summary in the
listing file. See also Section 5.2.2,
“Segment Summary” on page 100.

symbols Prints the listing of module symbols
and segment symbols in the listing
file. See also Section 5.2.6, “Listing
of Module Symbols” on page 104
and Section 5.2.7, “Listing of
Segment Symbols” on page 105.
96 Intel® Linker User’s Manual

Listing File
Examples 37. Listing File – File Extension

ldxsc -listing -info=errors a.o b.o

The generated listing file is a.map.

ldxsc -listing -info=errors -o test a.o

The generated listing file is test.map.

ldxsc -listing=list a.o

The generated listing file is list.map.

ldxsc -listing=list.lst a.o

The generated listing file is list.lst.

Further Information:
Section 3.20, “-info” on page 53
Section 3.23, “-listing” on page 57
Section 5.2, “Contents of a Listing File” on page 98
Intel® Linker User’s Manual 97

Listing File
5.2 Contents of a Listing File

The listing file is a simple ASCII file that contains helpful information on the link process,
symbols, modules, C++ definitions, and the used build file. Figure 7 shows the contents of a listing
file. Information is placed subsequently, separated by a line “= = = = = =”. The listing file starts
with a header, followed by a summary of diagnostic messages, summaries of segments, sections,
and modules. Then the memory usage, listing of module and segment symbols and the symbol
table are displayed. Following this, provided the option -cplus is set, is a list of C++ definitions.
Finally the list file ends with the contents of any used build file.

The end address of sections, segments, and memory blocks is calculated as follows:

endaddress - startaddress = size

Figure 7. Listing File

Header

Segment Summary

Segment-Section Summary

Module Summary

Memory Usage

Listing of Module Symbols

Listing of Segment Symbols

Symbol Table

C++ Definitions

Build File
98 Intel® Linker User’s Manual

Listing File
5.2.1 Header

The header of a listing file provides general information on the tool and its version, the link time,
the used command line, and diagnostic messages. The header is printed in every listing file by
default.

The diagnostic messages are placed in the listing file by default unless the option -info is
specified. In which case they are only listed if the option is specified as -info=errors. Setting
the option -nowarnings suppresses the warning messages in the listing.

If the option -verbose is set, the additional verbose output is also written to the listing file.

Example 38. Listing File – Header

Intel(R) Linker for Intel(R) XScale(TM) Microarchitecture, Version: version

Link Time: Tue Apr 17 14:51:03 2001

Command Line:

ldxsc -listing -o out b.o

LDXSC-W-WARNING[666]:following symbols are undefined:
LDXSC-W-WARNING[667]:b.o:symbol : __code_start__ weak
LDXSC-W-WARNING[667]:caller.o:symbol foo: weak

 3 warnings

Table 8. Listing File – Header

Item Description

first line Displays the tool name and its version.

Link Time Displays the time and date of the link process.

Command Line Displays the command line, including executable,
build file, and command line options.
Intel® Linker User’s Manual 99

Listing File
5.2.2 Segment Summary

The segment summary provides information on every segment used in the entire application. The
listing file contains base and end address, size, type, and attributes of all segments. This segment
summary is listed by default in the listing file unless the option -info is specified. In which case
no segment summary will be listed unless the option is specified as -info=segments.

Example 39. Listing File – Segment Summary

Segment Summary:

Base Addr Total End Addr Type Attr Segment

0x00008000 0x00002060 0x0000a060 Code RO CODE
0x00000000 0x0000a16c 0x0000a16c Zero RW BSS

Table 9. Listing File – Segment Summary

Item Description

Base Addr Displays the base address of the segment as
hexadecimal value.

Total Displays the size of the segment as hexadecimal
value.

End Addr Displays the end address of the segment as
hexadecimal value.

Type Displays the segment type. This is either Code, Data,
or Zero.

Attr Displays the attribute of the segment. The segment is
either read-only (RO) or read-write (RW).

Segment Displays the segment name.
100 Intel® Linker User’s Manual

Listing File
5.2.3 Segment-Section Summary

The segment-section summary of a listing file lists information on every section contained in a
segment. The information is displayed for each segment, separated by a line “--------”. This
segment-section summary is listed by default unless the option -info is specified. In which case
no segment-section summary will be listed unless the option is specified as -info=sections.

Example 40. Listing File – Segment-Section Summary

Segment - Section Summary:

Segment: CODE
Base Addr Total End Addr Type Attr Section
0x00008000 0x00001efc 0x00009efc Code RO *
0x00009efc 0x00000144 0x0000a040 Data RO *
0x0000a040 0x00000004 0x0000a044 Data RO
0x0000a044 0x0000001c 0x0000a060 Data RO
--
Segment: BSS
Base Addr Total End Addr Type Attr Section
0x0000a060 0x0000010c 0x0000a16c Zero RW *
--

Table 10. Listing File – Segment-Section Summary

Item Description

Segment Displays the segment name.

Base Addr Displays the base address of the section.

Total Displays the size of the section.

End Addr Displays the end address of the section.

Type Displays the section type. This is either Code, Data, or Zero.

Attr Displays the attribute of the section. The section is either
read-only (RO) or read-write (RW).

Section Displays the section name. An asterisk “*” means that the
section has any name. If no name is specified, the section
was generated by the linker.
Intel® Linker User’s Manual 101

Listing File
5.2.4 Module Summary

The module summary displays information on every module contained within the application or in
a library. If a module belongs to a library, the library name is displayed in parentheses “()”. This
module summary is listed by default unless the option -info is specified. In which case no
module summary will be listed unless the option is specified as -info=modules.

Example 41. Listing File – Module Summary

Module Summary:

Module(Library)

main.o

 Section Base Size Align Segment
 .text 0x000080a8 0x00000048 4 CODE
 .text$Veneer 0x000080f0 0x00000010 4 CODE

sub.o

 Section Base Size Align Segment
 .text 0x00008100 0x0000002c 4 CODE

printf.o(x0__ac00.a)

 Section Base Size Align Segment
 .text 0x00008130 0x00000038 4 CODE
...
...
...

Table 11. Listing File – Module Summary

Item Description

Section Displays the section name.

Base Displays the base address of the module.

Size Displays the size of the module.

Align Displays the alignment of sections in bytes.

Segment Displays the segment the module belongs to.
102 Intel® Linker User’s Manual

Listing File
5.2.5 Memory Usage

The memory usage of a listing file provides detailed information on each segment. It lists the
location of segments parts within the memory in detail, including, start and end address,
corresponding section, type and attribute of the segment. This memory usage summary is listed by
default unless the option -info is specified. In which case no memory usage summary will be
listed unless the option is specified as -info=memory.

Example 42. Listing File – Memory Usage

Memory Usage:

Start End Section Segment Ovrly Type Attr

0x00008000 0x00009efc ROCODE CODE Code RO
0x00009000 0x0000a040 RODATA CODE * Code RO
0x0000a040 0x0000a044 __constructor_se CODE Code RO
0x0000a044 0x0000a060 __destructor_sec CODE Code RO
0x0000a060 0x0000a16c BSS BSS Zero RW

Table 12. Listing File – Memory Usage

Item Description

Start Displays the start address of the segment.

End Displays the end address of the segment.

Section Displays the section name.

Segment Displays the segment name.

Ovrly Displays an asterisk in case of a segment overlay. In
the example above, section RODATA of segment
CODE overlays section ROCODE of segment CODE.
Therefore an asterisk appears for section RODATA of
segment CODE.

Type Displays the type of the segment. This is either Code,
Data, or Zero.

Attr Displays the attribute of the segment. The segment is
either read-only (RO) or read-write (RW).
Intel® Linker User’s Manual 103

Listing File
5.2.6 Listing of Module Symbols

The listing of module symbols displays all symbols contained in your application or libraries. If a
symbol belongs to a library, the library name is displayed in parentheses “()”. The module
symbols are listed by default unless the option -info is specified. In which case no symbols will
be listed unless the option is specified as -info=symbols.

Example 43. Listing File – Listing of Module Symbols

Listing of Module Symbols:

Section Address Size Type Symbol

main.o

<ref> Lib$$Request$$lib
<ref> 0x00008000 0x00000098 __main
<ref> 0x0000812e 0x00000002 _main
<ref> 0x00008130 0x0000002c _printf
.text 0x000080a8 0x00000048 Code main
<ref> 0x00008100 0x0000000a function

sub.o

<ref> Lib$$Request$$lib
<ref> 0x00008130 0x0000002c _printf
.text 0x00008100 0x0000000a Code function

printf.o(x0__ac00.a)

<ref> Lib$$Request$$lib
<ref> 0x0000a0e4 0x00000044 __stdout
<ref> 0x00008bf4 0x000005be __vfprintf
.text 0x00008130 0x0000002c Code _printf
<ref> 0x00008168 0x00000008 ferror
<ref> 0x00008170 0x00000024 fputc
...

Table 13. Listing File – Listing of Module Symbols

Item Description

Section Displays the section name the module symbol belongs
to. If a section name <ref> is displayed, the symbol is
referenced within the section only. If a section name is
specified, the symbol is defined within this section.

Address Displays the start address the symbol is placed within
the module.

Size Displays the size of the symbol.

Type Displays the type of the section. This is either Code,
Data, or Zero.

Symbol Displays the symbol name.
104 Intel® Linker User’s Manual

Listing File
5.2.7 Listing of Segment Symbols

The listing of segment symbols lists symbols that are defined in the build file or on the command
line by the user. These segment symbols are listed by default unless the option -info is specified.
In which case no segment symbols will be listed unless the option is specified as
-info=symbols.

Example 44. Listing File – Listing of Segment Symbols

Listing of Segment Symbols:

Address Scope Symbol

Segment CODE:

0x00008000 Global __code_start__
0x0000804c Global __code_end__
Segment DATA:

0x00009000 Global __data_start__
0x00009004 Global __data_end__
Segment BSS:

0x0000a000 Global __bss_start__
0x0000a028 Global __bss_end__

Table 14. Listing File – Listing of Segment Symbols

Item Description

Address Displays the absolute address of the symbol in the memory.

Scope Displays the scope of the symbol. This is either global or
local. See also Section 4.2.1.5, “LABEL” on page 82 and
Section 4.2.2.3, “Layout Body” on page 88.

Symbol Displays the symbol name.
Intel® Linker User’s Manual 105

Listing File
5.2.8 Symbol Table

The symbol table lists the entry point of the symbol table as hexadecimal value, displays mapping
symbols and global symbols. The symbol table is listed by default unless the option -info is
specified. In which case symbol table is listed unless the option is specified as -info=map.

Example 45. Listing File – Symbol Table

Symbol Table:

Entry Point: 0x00008000

--

Mapping Symbols:

Segment Address Symbol

CODE 0x00008000 $a
CODE 0x00008098 $d
CODE 0x000080a8 $a
CODE 0x000080c8 $d
CODE 0x00008100 $t
CODE 0x00008104 $b
CODE 0x0000810a $d
CODE 0x0000812c $t
CODE 0x00008160 $f
CODE 0x00008168 $t

--

Global Symbols:

Segment Section Address Size Type Symbol

ABSOLUTE <abs> 0x00000000 Image$$RW$$Limit
CODE <abs> 0x00009a10 _rtudiv10_sec_.text_beg_
CODE .text 0x00009a14 Code __rt_udiv10
CODE <abs> 0x00009a40 _rtudiv10_sec_.text_end_
CODE <abs> 0x00009a40 _setvbuf_sec_.text_beg_
CODE .text 0x00009a40 0x00000056 Code setvbuf
CODE .text 0x00009a96 0x0000001a Code setbuf
CODE <abs> 0x00009ab4 _setvbuf_sec_.text_end_
CODE <abs> 0x00009ab4 _strlen_sec_.text_beg_
CODE .text 0x00009ab4 0x00000046 Code strlen
106 Intel® Linker User’s Manual

Listing File
Table 15. Listing File – Symbol Table

Item Description

Entry Point Displays the entry point of the symbol table.

Mapping Symbols

Segment Displays the segment name the symbol belongs to.

Address Displays the address the symbol is placed within the
segment.

Symbol Displays the name of the Intel XScale
microarchitecture mapping symbol. These symbols,
which are generated by the compiler or assembler,
indicate changes between opcode modes. See also
Table 16.

Global Symbols

Segment Displays the segment name the symbol belongs to. An
ABSOLUTE segment indicates that the symbol is
generated by the linker and does not belong to any
segment.

Section Displays the section name the symbol belongs to.

Address Displays the absolute address where the symbol is
placed.

Size Displays the size of the symbol. If no size is specified, it
is not known by the linker.

Type Displays the type of the section. This is either Code,
Data, or Zero.

Symbol Displays the symbol name.

Table 16. IIntel XScale Microarchitecture Mapping Symbols

Symbol Description

$a Indicates the change from Thumb* code to ARM* code.

$b Indicates Thumb* BL instruction.

$d Indicates data.

$f Points to a function pointer.

$t Indicates the change from ARM* code to Thumb* code.
Intel® Linker User’s Manual 107

Listing File
5.2.9 C++ Definitions

The C++ definition part of a listing file displays information on C++-specific symbols and table
names. This part of the listing file is displayed only if the option -cplus is set.

C++ DEFINITIONS:

 CONSTRUCTOR SYMBOLS: __sti* (count=0)

 DESTRUCTOR SYMBOLS: __std* (count=6)

Section Address Size Type Symbol

.text 0x0000a128 0x00000044 __stderr

.text 0x00009f04 0x00000004 __stderr_name

.text 0x0000a0a0 0x00000044 __stdin

.text 0x00009efc 0x00000004 __stdin_name

.text 0x0000a0e4 0x00000044 __stdout

.text 0x00009f00 0x00000004 __stdout_name
--

 CONSTRUCTOR TABLE : __ctors at 0x0000a040

 DESTRUCTOR TABLE : __dtors at 0x0000a044

Table 17. Listing File – C++ Definitions

Item Description

CONSTRUCTOR SYMBOLS Displays the name of the constructor symbol.

DESTRUCTOR SYMBOLS Displays the name of the destructor symbol.

Section Displays the section name the symbol belongs to. If the section name <ref> is
specified, the symbol is referenced in the section only.

Address Displays the absolute address of the symbol.

Size Displays the size of the symbol.

Type Displays the type of the section. This is either Code, Data, or Zero.

Symbol Displays the symbol name.

CONSTRUCTOR TABLE Displays the address where the constructor table is placed in memory.

DESTRUCTOR TABLE Displays the address where the destructor table is placed in memory.
108 Intel® Linker User’s Manual

Listing File
5.2.10 Build File

The build file part of a listing file displays the entire contents of the build file that is used for the
link process. The build file is listed in the listing file only if the option -info=buildfile is set.

Build File

! Input: buildfile.bld

layout
 default base 0x8000
input
 main.o
 sub.o
 label global 0 Image$$RW$$Limit
 label global 0 Region$$Table$$Base
 label global 0 Region$$Table$$Limit
Intel® Linker User’s Manual 109

Listing File
This page intentionally left blank.
110 Intel® Linker User’s Manual

Diagnostic Messages 6

When problems are encountered the Intel® Linker generates suitable messages. These include
errors, warnings and diagnostic messages which are generated in differing formats.This chapter
describes these message formats.
Intel® Linker User’s Manual 111

Diagnostic Messages
6.1 Message Format

The diagnostic message format is as follows:

LDXSCqualifier:[messagenumber]:file:message

where:

The following table lists the qualifiers with a short description:

qualifier Specifies the type of diagnostic message:
 empty
-W-WARNING
-E-ERROR
-E-FATAL

messagenumber Specifies the message number.

file Specifies the filename the message relates to.

message Is a short description of the problem.

Table 18. Characterization of Diagnostic Messages

Qualifier Description

 empty Specifies an information message. It informs about details in the ongoing process
that are neither problems nor errors.

-W-WARNING Specifies a warning message. This message informs the user about a problem
within the application.

-E-ERROR Specifies a non-fatal error message. An error during the execution of the Intel®
Linker has been reported. This problem must be solved.

-E-FATAL Specifies a fatal error message. The reported error is more significant and has
prevented the Intel® Linker from continuing its work. This problem must be solved
before anything else can be done using the Intel® Linker.
112 Intel® Linker User’s Manual

Appendix – Reserved Words A

Table 19 contains all reserved words. If you use one of these words as a symbol, for example a
variable name, inside a build file, it must be ’escaped’ by preceeding it with the ^ character, as
described in Section 4.1.2, “Keywords” on page 74.

Table 19. Reserved Words

BSS CONSTRUCTOR MODULE

CODE DEFAULT NOLOAD

DATA DESTRUCTOR OF

INPUT DYNAMIC PAGE

RO END QUOTA

ROCODE GLOBAL REGISTER

RODATA INPUT RELOCATABLE

RW LABEL SECTION

RWCODE LABFILE SEGMENT

RWDATA LAYOUT SELECTOR

ALIGN LOAD SPACE

BASE LOCAL SYMBOLS

COMMON LOCATION UNDEFINED
Intel® Linker User’s Manual 113

Appendix – Reserved Words
This page intentionally left blank.
114 Intel® Linker User’s Manual

Index

Symbols
-?, option 50
@filename, option 29
INPUT, directive 91
-b, option 30
-base, option 30
-bf=name, option 31
-bm, option 35
-buildfile=name, option 31
-buildmacro, option 35
-ca, option 40
-cds, option 37
-cdtorseg, option 37
-commalign, option 40
-cp, option 38
-cplus, option 38
-ctorpattern, option 41
-ctortab, option 42
-ctp, option 41
-ctt, option 42
-db, option 43
-debug, option 43
-dtorpattern, option 44
-dtortab, option 45
-dtp, option 44
-dtt, option 45
-e, option 47
-entry, option 47
-ex, option 48
-export, option 48
-im, option 52
-import, option 52
-fblx, option 49
-forceblx, option 49
-help, option 50
-i, option 53
-in, option 55
-info, option 53
-init, option 55
-l=name, option 57
-listing=name, option 57
-mapcomdat, option 58
-mcd, option 58
-ni, option 59
-noinfo, option 59
-normempty, option 60
-nosymbols, option 61
-nowarnings, option 62
-nre, option 60
-ns, option 61
-nw, option 62
-o, option 63
-output, option 63

-remove, option 64
-rm, option 64
-ropi, option 65
-rwpi, option 66
-dyn=, option 46
-dynamic=, option 46
-sc, option 68
-sh, option 67
-shared, option 67
-strict, option 68
-unref, option 69
-ur, option 69
-v=num, option 70
-verbose=num, option 70

A
ALIGN COMMON, directive 81
ALIGN SECTION, directive 80
ALIGN SEGMENT, directive 81
alignment

of common data 40
of common symbols 81
of sections 80
of segments 81

allocation
changing destructor and constructor 37
default allocation 23
of sections 88
of segments and sections 22
of undefined symbols 81

application
setting entry point 47

arguments, command line
order 14

B
base address 85

of segment 85
setting to a specific value 30

BASE, directive 85
block, build file 78
build file 73–94

definition 78
blocks 78
defining input modules 92
defining libraries 92
INPUT block 91–94
LAYOUT block 84–90
lexical conventions 74

comments 77
escaping variables 74
Intel® Linker User’s Manual 115

expressions 76
keywords 74
names 75
numbers and values 75

listing in listing file 109
PARAMETER block 79–83
syntax 78–94
using for link process 31
using macros 35

C
C++ definition, listing file 108
changing

constructor and destructor 37
command line

option arguments 14
options 14, 25–71
syntax 14

comments, build file 77
common symbols, alignment 81
constructor

changing default allocation 37
generating constructor table 38

constructor caller
setting pattern 41

constructor table
locating in segment 89
setting start address 42

CONSTRUCTOR, directive 88
conventions

of this manual 11
creating

global labels 82
labels 92
listing file 57, 96

D
data

alignment of common data 40
mapping common data to input module 58

debug information
linking to object 43

DEFAULT UNDEF, directive 81
defining

base address of segment 85
global settings 79
layout of segment 88
specific layout 84

destructor
changing default allocation 37
generating destructor table 38

destructor caller
setting pattern 44

destructor table
locating in segment 89
setting start address 45

DESTRUCTOR, directive 88

diagnostic messages
message format 112

directives 74
INPUT 91
ALIGN COMMON 81
ALIGN SECTION 80
ALIGN SEGMENT 81
BASE 85
CONSTRUCTOR 88
DEFAULT UNDEF 81
DESTRUCTOR 88
DYNAMIC 86
INPUT 91
LABEL 82, 88, 91
LAYOUT 84
LOAD 88
LOCATION 86
NOLOAD 88
QUOTA 86
SECTION 88
SEGMENT 84
UNDEF 91

displaying
unreferenced symbols 69

documentation, related 9
DYNAMIC, directive 86

E
ELF/DWARF

library file 16
re-locatable file 16

entry point, setting 47
escaping variables, build file 74
expressions, build file 76

F
files

build file 31, 73–94
definition 78
blocks 78
INPUT block 91–94
LAYOUT block 84–90
lexical conventions

comments 77
escaping variables 74
expressions 76
keywords 74
names 75
numbers and values 75

listing in listing file 109
PARAMETER block 79–83
syntax 78–94
using macros 35

ELF/DWARF library file 16
ELF/DWARF re-locatable file 16
input and output files 16
input file 31
116 Intel® Linker User’s Manual

listing file 95–109
contents 98
creating 96
build file 109
C++ definition 108
creating 57
header 99
memory usage 103
module summary 102
module symbols 104
segment summary 100
segment symbols 105
segment-section summary 101
setting parameters 53
symbol table 106

object file without symbol table 61
object files

generating shared 46, 67
option file 14, 29
output file 63

final link mode 7
first pass 20
fourth pass 20

G
general usage

Linker 13–24
allocation of segments and sections 22
command line syntax 14
linking libraries 21
overview of options 17
process of linking 20

generating
constructor and destructor tables 38
shared object files 46, 67

global, creating global labels 82

H
header, listing file 99
help list 50

I
information messages

suppressing 59
input

mapping common data to module 58
INPUT block, build file 91–94
input file 31
input files

removing unreferenced input sections 64
input module

defining in build file 92
INPUT, directive 91
introduction to Linker 7

K
-keep, option 56
keywords, build file 74

L
LABEL, directive 82, 88, 91
labels

creating 92
creating global labels 82
creating undefined label 93
inside segments 88

layout
default layout 23
definition 84
of segments 88

LAYOUT block, build file 84–90
LAYOUT, directive 84
lexical conventions 74

comments 77
escaping variables 74
expressions 76
keywords 74
names 75
numbers and values 75

libraries, linking 21
library

defining in build file 92
link mode

defining global settings 79
final 7

link process
printing information 70
using build file 31

Linker
command line syntax 14
general usage 13–24
input and output files 16
requirements 10

linking
debug information 43
libraries 21
objects 14
process 20

listing
build file 109
C++ definitions in listing file 108
information on memory 103
information on modules 102
modules 104
segment information 100
segment-section summary 101
user-defined symbols 105

listing file 95–109
contents 98
creating 96
build file 109
C++ definition 108
creating 57
Intel® Linker User’s Manual 117

header 99
memory usage 103
module summary 102
module symbols 104
segment summary 100
segment symbols 105
segment-section summary 101
setting parameters 53
symbol table 106

LOAD, directive 88
LOCATION, directive 86

M
macros

using inside build files 35
mapping

common data to input module 58
memory

listing information in listing file 103
memory usage, listing file 103
message format 112
messages

turning off warnings 62
module summary, listing file 102
module symbols, listing file 104
modules

listing in listing file 104
listing summary in listing file 102

N
names of sections 22
names, build file 75
NOLOAD, directive 88
numbers, build file 75

O
object file

suppressing symbol table 61
object files

generating shared 46, 67
option arguments, command line 14
option file 29
option files 14
options 25–71

command line 14
overview 17
summary 26
@filename 29
-? 50
-b 30
-base 30
-bf=name 31
-bm 35
-buildfile=name 31
-buildmacro 35
-ca 40

-cds 37
-cdtorseg 37
-commalign 40
-cp 38
-cplus 38
-ctorpattern 41
-ctortab 42
-ctp 41
-ctt 42
-db 43
-debug 43
-dtorpattern 44
-dtortab 45
-dtp 44
-dtt 45
-dyn= 46
-dynamic= 46
-e 47
-entry 47
-ex 48
-export 48
-fblx 49
-forceblx 49
-help 50
-i 53
-im 52
-import 52
-in 55
-info 53
-init 55
-keep 56
-l=name 57
-listing=name 57
-mapcomdat 58
-mcd 58
-ni 59
-noinfo 59
-normempty 60
-nosymbols 61
-nowarnings 62
-nre 60
-ns 61
-nw 62
-o 63
-output 63
-remove 64
-rm 64
-ropi 65
-rwpi 66
-sc 68
-sh 67
-shared 67
-strict 68
-unref 69
-ur 69
-v=num 70
-verbose=num 70

order of arguments on command line 14
output file 63
overlay of segments 84
118 Intel® Linker User’s Manual

P
PARAMETER block, build file 79–83
pass

first 20
fourth 20
second 20
third 20

pattern
setting for constructor caller 41
setting for destructor caller 44

position-independent segments 65, 66
predefined sections 22
printing

help list 50
information on link process 70

process of linking 20

Q
QUOTA, directive 86

R
related documentation 9
removing

unreferenced input sections 64
requirements 10
reserved words 113

S
second pass 20
section names 22
SECTION, directive 88
sections

alignment 80
allocation 22
allocation inside segments 88
assigning a type 89
default allocation 23
listing summary in listing file 101
predefined section 22
removing unreferenced input sections 64

segment summary, listing file 100
segment symbols, listing file 105
SEGMENT, directive 84
segments

alignment 81
allocation 22
default allocation 23
defining base address 85
defining layout 88
labels 88
listing information in listing file 100
listing user-defined symbols 105
locating constructor table 89
locating destructor table 89
overlays 84

setting as dynamic 86
setting attributes 86
setting load address 86
setting size 86

segment-section summary, listing file 101
setting

a segment as dynamic 86
attributes of segments 86
base address 30
entry point 47
load address of segments 86
size of segments 86
specific output file 63
start address of constructor table 42
start address of destructor table 45

start address
of constructor table 42
of destructor table 45

starting
linker 14

suppressing
information messages 59

switching off
warning messages 62

symbol table
suppressing in object file 61
writing symbols to 48, 52

symbols
alignment of common symbols 81
allocation of undefined symbols 81
show unreferenced symbols 69
suppressing symbol table in object file 61
writing to symbol table 48, 52

syntax, build file 78–94

T
third pass 20
turning off

warning messages 62

U
UNDEF, directive 91
undefined symbols, allocation 81
using build file 31

V
values, build file 75

W
warning messages

turning off 62
unreferenced symbols 69

words, reserved 113
Intel® Linker User’s Manual 119

This page intentionally left blank.
120 Intel® Linker User’s Manual

	Intel® Linker
	Contents
	Introduction 1
	1.1 About this Manual
	1.2 Related Documentation
	1.3 Requirements
	1.4 Conventions

	General Usage 2
	2.1 Command Line Syntax
	2.1.1 Order of Arguments
	2.1.2 Option Arguments

	2.2 Input and Output Files
	2.3 Overview of Options
	2.4 The Process of Linking
	2.5 Linking Libraries
	2.6 Allocation of Segments and Sections
	2.6.1 Predefined Sections
	2.6.2 Default Allocation – Default Layout

	Options 3
	3.1 Option Summary
	3.2 @filename
	3.3 -base
	3.4 -buildfile
	3.5 -buildmacro
	3.6 -cdtorseg
	3.7 -cplus
	3.8 -commalign
	3.9 -ctorpattern
	3.10 -ctortab
	3.11 -debug
	3.12 -dtorpattern
	3.13 -dtortab
	3.14 -dynamic
	3.15 -entry
	3.16 -export
	3.17 -forceblx
	3.18 -help
	3.19 -import
	3.20 -info
	3.21 -init
	3.22 -keep
	3.23 -listing
	3.24 -mapcomdat
	3.25 -noinfo
	3.26 -normempty
	3.27 -nosymbols
	3.28 -nowarnings
	3.29 -output
	3.30 -remove
	3.31 -ropi
	3.32 -rwpi
	3.33 -shared
	3.34 -strict
	3.35 -unref
	3.36 -verbose

	The Build File 4
	4.1 Lexical Conventions
	4.1.1 The Lexical Process
	4.1.2 Keywords
	4.1.3 Names
	4.1.4 Numbers and Values
	4.1.5 Expressions
	4.1.6 Comments

	4.2 Build File Syntax
	4.2.1 PARAMETER Block
	4.2.1.1 ALIGN SECTION
	4.2.1.2 ALIGN SEGMENT
	4.2.1.3 ALIGN COMMON
	4.2.1.4 DEFAULT UNDEF
	4.2.1.5 LABEL
	4.2.1.6 Example for PARAMETER Block

	4.2.2 LAYOUT Block
	4.2.2.1 Base Address
	4.2.2.2 Attributes
	4.2.2.2.1 Dynamic Segments

	4.2.2.3 Layout Body
	4.2.2.4 Example for LAYOUT Block

	4.2.3 INPUT Block

	Listing File 5
	5.1 Creating a Listing File
	5.2 Contents of a Listing File
	5.2.1 Header
	5.2.2 Segment Summary
	5.2.3 Segment-Section Summary
	5.2.4 Module Summary
	5.2.5 Memory Usage
	5.2.6 Listing of Module Symbols
	5.2.7 Listing of Segment Symbols
	5.2.8 Symbol Table
	5.2.9 C++ Definitions
	5.2.10 Build File

	Diagnostic Messages 6
	6.1 Message Format

	Appendix – Reserved Words A
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

