
Data sheet, BGA612, Nov. 2003

BGA612

Silicon Germanium Broadband MMIC Amplifier

Secure Mobile Solutions Silicon Discretes

Never stop thinking.

Edition 2003-11-04

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München

© Infineon Technologies AG 2003.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

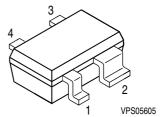
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

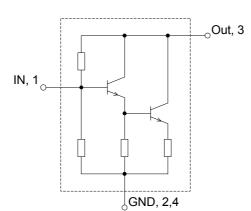
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA612 Data sheet Revision F	-	2003-11-04			
Previous V	ersion:	2002-05-27			
Page	Subjects (major changes since last revision)				
-	y status removed				


For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

Silicon Germanium **Broadband MMIC Amplifier**

BGA612


Features

- Cascadable 50Ω -gain block
- 3 dB-bandwidth: DC to 2.8 GHz with 17.0 dB typical gain at 1.0 GHz
- Compression point P $_{-1dB}$ = 7 dBm at 2.0 GHz Noise figure F $_{50\Omega}$ = 2.35 dB at 2.0 GHz
- Absolute stable
- 70 GHz f_T Silicon Germanium technology

Applications

- Driver amplifier for GSM/PCS/CDMA/UMTS
- Broadband amplifier for SAT-TV & LNBs
- · Broadband amplifier for CATV

Description

The BGA612 is a broadband matched, general purpose MMIC amplifier in a Darlington configuration. It is optimized for a typical supply current of 20mA.

The BGA612 is based on Infineon Technologies' B7HF Silicon Germanium technology.

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Package	Marking	Chip
BGA612	SOT343	BNs	T0545

2003-11-04 Data sheet

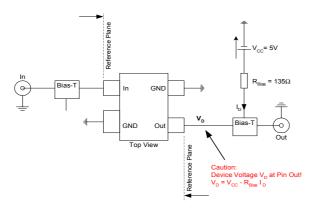
Maximum Ratings

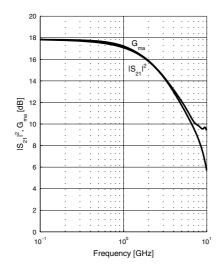
Parameter	Symbol	Value	Unit
Device voltage	V_{D}	2.8	V
Device current	I _D	80	mA
Current into pin In	I _{In}	0.7	mA
Input power 1)	P _{In}	10	dBm
Total power dissipation, T _S < 105°C ²⁾	P _{tot}	225	mW
Junction temperature	T _j	150	°C
Ambient temperature range	T _A	-65 +150	°C
Storage temperature range	T _{STG}	-65 +150	°C
Thermal resistance: junction-soldering point	R _{th JS}	200	K/W

Electrical Characteristics at T_A =25°C (measured in test circuit specified in fig. 1) $\text{V}_{\text{CC}}\text{=}5\text{V},\,\text{R}_{\text{Bias}}\text{=}135\Omega,\,\text{Frequency=}2\text{GHz},\,\text{unless otherwise specified}$

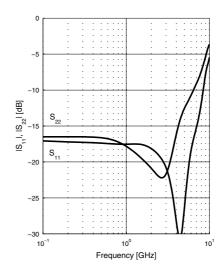
Parameter	Symbol	min.	typ.	max.	Unit
Insertion power gain	$ S_{21} ^2$				dB
f = 0.1GHz		-	17.5	-	
f = 1.0GHz		-	17.0	-	
f = 2.0GHz		-	15.8	-	
Noise Figure ($Z_S=50\Omega$)	$F_{50\Omega}$				dB
f = 0.1GHz		-	1.95	-	
f = 1.0GHz		-	2.25	-	
f = 2.0GHz		-	2.35	-	
Output Power at 1dB Gain Compression	P _{-1dB}	-	7	-	dBm
Output Third Order Intercept Point	OIP ₃	-	17	-	dBm
Input Return Loss	RL_{ln}	-	18	-	dB
Output Return Loss	RL _{Out}	-	21	-	dB
Total Device Current	I _D	-	20	-	mA

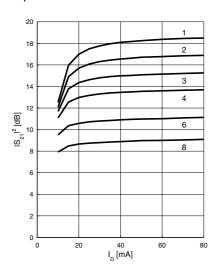
All Voltages refer to GND-Node $^{1)}$ Valid for Z_S=Z_L=50 Ω , V_{CC}=5V, R_{Bias}=135 Ω $^{2)}$ T_S is measured on the ground lead at the soldering point



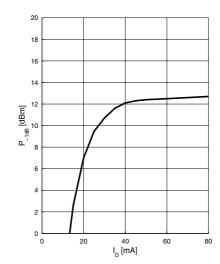

Fig.1: Test Circuit for Electrical Characteristics and S-Parameters

S-Parameter V_{CC} =5V, R_{Bias} =135 Ω (see Electrical Characteristics for conditions)

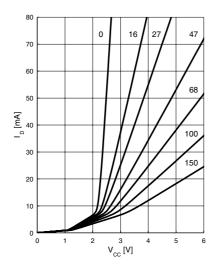

Frequency		S11	S21	S21	S12	S12	S22	S22
[GHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
0.1	0.1803	5.5	7.6542	177.5	0.0960	0.0	0.1497	-1.2
0.2	0.1146	7.3	7.7188	173.3	0.0964	1.2	0.1499	-4.6
0.4	0.1345	7.4	7.6068	166.6	0.0956	1.8	0.1503	-11.3
0.6	0.1307	4.4	7.5301	159.7	0.0965	2.8	0.1457	-18.2
0.8	0.1310	5.5	7.3697	153.2	0.0961	4.0	0.1384	-25.5
1.0	0.1341	3.3	7.1755	146.6	0.0969	5.1	0.1292	-33.0
1.2	0.1337	3.8	6.9799	140.8	0.0978	6.4	0.1198	-40.2
1.4	0.1311	3.8	6.7873	134.4	0.0986	6.7	0.1111	-48.5
1.6	0.1302	3.8	6.5728	129.2	0.1002	8.1	0.1033	-57.4
1.8	0.1257	-1.7	6.3555	123.6	0.1018	8.8	0.0958	-67.5
2.0	0.1258	-3.5	6.1539	118.4	0.1044	9.6	0.0891	-78.0
3.0	0.0878	-9.4	5.2390	94.7	0.1172	12.1	0.0823	-146.8
4.0	0.0409	5.2	4.4689	74.0	0.1346	11.6	0.1550	170.5
5.0	0.0517	119.1	3.8775	54.8	0.1544	8.7	0.2362	148.3
6.0	0.1209	131.0	3.3943	36.2	0.1737	3.3	0.2929	129.2
7.0	0.1796	114.7	2.9678	20.2	0.1929	-2.4	0.3527	115.2
8.0	0.2594	104.3	2.6995	2.8	0.2132	-10.7	0.4330	104.6


Power Gain
$$|S_{21}|^2$$
, $G_{ma} = f(f)$
 $V_{CC} = 5V$, $R_{Bias} = 135\Omega$, $I_{C} = 20mA$

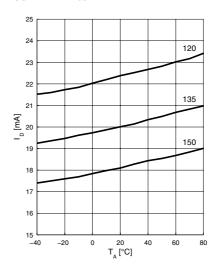
 $\begin{aligned} & \textbf{Matching} \text{ IS}_{11}\text{I, IS}_{22}\text{I} = \text{f(f)} \\ & \text{V}_{CC} = \text{5V, R}_{Bias} = 135\Omega, \text{ I}_{C} = 20\text{mA} \end{aligned}$

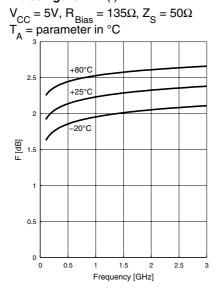


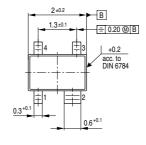
Power Gain $|S_{21}| = f(I_D)$ f = parameter in GHz

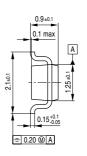

Output Compression Point

$$\boldsymbol{P}_{-1dB} = \boldsymbol{f}(\boldsymbol{I}_{D}), \, \boldsymbol{f} = 2\boldsymbol{GHz}$$




$\begin{array}{l} \textbf{Device Current I}_{D} = \textbf{f(V}_{CC}) \\ \textbf{R}_{Bias} = \text{parameter in } \Omega \end{array}$


$$\begin{aligned} &\textbf{Device Current I}_{D} = \textbf{f}(\textbf{T}_{\textbf{A}}) \\ &\textbf{V}_{CC} = \textbf{5V}, \ \textbf{R}_{Bias} = \textbf{parameter in } \Omega \end{aligned}$$



Noise figure F = f(f)

Package Outline

