
IBM WebSphere Business Integration Adapters

Adapter for SWIFT User Guide
Version 1.6.x

���

IBM WebSphere Business Integration Adapters

Adapter for SWIFT User Guide
Version 1.6.x

���

Note!
Before using this information and the product it supports, read the information in Appendix E, “Notices”, on page 181.

18April2003

This edition of this document applies to IBM WebSphere InterChange Server, version 4.2,WebSphere Business
Integration Adapters, version 2.2.0, and to all subsequent releases and modification until otherwise indicated in new
editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Integration broker compatibility

Supported on IBM WebSphere Business Integration Adapter Framework version
2.2.0, IBM CrossWorlds Infrastructure version 4.1.1 and 4.2 (if the environment uses
ISO Latin-1 data only), WebSphere MQ Integrator version 2.1.0, and WebSphere
MQ Integrator Broker, version 2.1.0. See Release Notes for any exceptions.

© Copyright IBM Corp. 2002, 2003 iii

iv Adapter for SWIFT User Guide

Contents

Integration broker compatibility . iii

About this document . vii
Audience . vii
Prerequisites for this document. vii
Related documents . vii
Typographic conventions . viii

New in this release. ix
New in release 1.6.x. ix
New in release 1.5.x. ix
New in release 1.4.x . x
New in release 1.3.x . x
New in release 1.2.x . x
New in release 1.1.x. xi

Chapter 1. Overview . 1
Connector architecture . 2
Application-connector communication method . 4
Event handling . 6
Guaranteed event delivery. 9
Business object requests . 10
Business object mapping . 10
Message processing. 10
Error handling . 14
Tracing . 15

Chapter 2. Configuring the connector . 17
Prerequisites . 17
Installing the connector . 18
Connector configuration . 19
Enabling guaranteed event delivery . 24
Queue Uniform Resource Identifiers (URI) . 28
Meta-object attributes configuration . 29
Startup file configuration . 42
Startup . 42

Chapter 3. Business objects . 43
Connector business object requirements . 43
Overview of SWIFT message structure . 47
Overview of business objects for SWIFT . 48
SWIFT message and business object data mapping . 49

Chapter 4. ISO 7775 to ISO 15022 mapping . 81
Production instruction meta-objects (PIMOs) . 81
Creating PIMOs . 88
Modifying PIMOs: Map summary . 96

Chapter 5. SWIFT Data Handler. 123
Configuring the SWIFT Data Handler . 123
Business Object Requirements . 124
Converting Business Objects to SWIFT Messages . 124
Converting SWIFT Messages to Business Objects . 125

© Copyright IBM Corp. 2002, 2003 v

Chapter 6. Troubleshooting . 127
Startup problems . 127
Event processing . 127

Appendix A. Standard configuration properties for connectors 129
New and deleted properties . 129
Configuring standard connector properties for WebSphere InterChange Server 130
Configuring standard connector properties for WebSphere MQ Integrator 142

Appendix B. Connector Configurator . 151
Using Connector Configurator in an internationalized environment 151
Starting Connector Configurator . 152
Choosing your broker . 153
Using a connector-specific property template . 154
Using Connector Configurator with ICS as the broker . 157
Setting the configuration file properties (ICS) . 159
Setting the configuration file properties (WebSphere MQ Integrator Broker) 164
Using standard and connector-specific properties with Connector Configurator 167
Completing the configuration . 168

Appendix C. Connector feature list . 169
Business object request handling features . 169
Event notification features . 169
General features . 170

Appendix D. SWIFT message structure . 173
SWIFT message types . 173
SWIFT field structure. 173
SWIFT message block structure . 175

Appendix E. Notices . 181
Programming interface information . 182
Trademarks and service marks . 182

vi Adapter for SWIFT User Guide

About this document

IBM(R) WebSphere(R) Business Integration Adapters supply integration
connectivity for leading e-business technologies and enterprise applications.

This document describes the installation, configuration, and business object
development for the adapter for SWIFT.

Audience
This document is for consultants, developers, and system administrators who
support and manage the WebSphere business integration system at customer sites.

Prerequisites for this document
Users of this document should be familiar with
v the WebSphere business integration system (if you are using InterChange Server

as your integration broker)
v the WebSphere MQ Integrator Broker (if you are using WebSphere MQ

Integrator Broker as your integration broker)
v business object development
v the WebSphere MQ application
v the SWIFT product suite and protocol

Related documents
The WebSphere business integration system documentation describes the features
and components common to all installations, and includes reference material on
specific collaborations and connectors.

This document contains many references to two other documents: the System
Installation Guide for Windows or for UNIX and the System Implementation Guide for
WebSphere InterChange Server. If you choose to print this document, you may want
to print these documents as well.

The complete set of documentation available with this product describes the
features and components common to all WebSphere adapter installations, and
includes reference material on specific components.

To access the documentation, go to the directory where you installed the product
and open the documentation subdirectory. If a welcome.html file is present, open it
for hyperlinked access to all documentation. If no documentation is present, you
can install it or read it directly online at one of the following sites:
v If you are using WebSphere MQ Integrator Broker as your integration broker:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
v If you are using InterChange Server as your integration broker:

http://www.ibm.com/websphere/integration/wicserver/infocenter

The documentation set consists primarily of Portable Document Format (PDF) files,
with some additional files in HTML format. To read it, you need an HTML
browser such as Netscape Navigator or Internet Explorer, and Adobe Acrobat

© Copyright IBM Corp. 2002, 2003 vii

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter

Reader 4.0.5 or higher. For the latest version of Adobe Acrobat Reader for your
platform, go to the Adobe website (www.adobe.com).

Typographic conventions
This document uses the following conventions:

courier font Indicates a literal value, such as a command name, filename,
information that you type, or information that the system
prints on the screen.

bold Indicates a new term the first time that it appears.
italic, italic Indicates a variable name or a cross-reference.
blue text Blue text, which is visible only when you view the manual

online, indicates a cross-reference hyperlink. Click any blue
text to jump to the object of the reference.

ProductDir Product family is WBIA: Represents the directory where the
IBM WebSphere Business Integration Adapters product is
installed. The CROSSWORLDS environment variable
contains the ProductDir directory path, which is
IBM\WebSphereAdapters by default.

{ } In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

[] In a syntax line, square brackets surround an optional
parameter.

... In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention
for directory paths. For UNIX installations, substitute slashes
(/) for backslashes. All product pathnames are relative to the
directory where the product is installed on your system.

%text% and $text Text within percent (%) signs indicates the value of the
Windows text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.

viii Adapter for SWIFT User Guide

New in this release

New in release 1.6.x
Updated in March, 2003. The ″CrossWorlds″ name is no longer used to describe an
entire system or to modify the names of components or tools, which are otherwise
mostly the same as before. For example ″CrossWorlds System Manager″ is now
″System Manager,″ and ″CrossWorlds InterChange Server″ is now ″WebSphere
InterChange Server.″

The guaranteed event delivery feature has been enhanced. For further information,
see “Enabling guaranteed event delivery” on page 24.

You can now associate a data handler with an input queue. For further
information, see “Mapping data handlers to InputQueues” on page 31.

The connector supports SWIFTAlliance Access 5.0, but only if you deploy MQSA
version 2.2 on WebSphere MQ 5.2 on and run the connector on one of the
following operating systems:
v AIX 5.1
v SunOS 5.8 or Solaris 8
v Windows 2000 SP2

New in release 1.5.x
Updated in March, 2003. The ″CrossWorlds″ name is no longer used to describe an
entire system or to modify the names of components or tools, which are otherwise
mostly the same as before. For example ″CrossWorlds System Manager″ is now
″System Manager,″ and ″CrossWorlds InterChange Server″ is now ″WebSphere
InterChange Server.″

This release extends support for subfield parsing on the following message types:
v Category 1MT100, MT101, MT102, MT103, MT104, MT105, MT106, MT107,

MT110, MT111, MT112, MT190, MT191, MT198, MT199
v Category 2MT200, MT201, MT202, MT203, MT204, MT205, MT206, MT207,

MT210, MT256, MT290, MT291, MT293, MT298, MT299
v Category 3MT300, MT303, MT304, MT305, MT306, MT320, MT330, MT340,

MT341, MT350, MT360, MT361, MT362, MT364, MT365, MT390, MT391, MT398,
MT399

v Category 4MT400, MT405, MT410, MT412, MT416, MT420, MT422, MT430,
MT450, MT455, MT456, MT490, MT491, MT498, MT499

v Category 5MT502, MT503, MT504, MT505, MT506, MT507, MT508, MT509,
MT512, MT513, MT514, MT515, MT516, MT517, MT518, MT520, MT521, MT522,
MT523, MT524, MT526, MT527, MT528, MT529, MT530, MT531, MT532, MT533,
MT534, MT535, MT536, MT537, MT538, MT539, MT540, MT541, MT542, MT543,
MT544, MT545, MT546, MT547, MT548, MT549, MT550, MT551, MT552, MT553,
MT554, MT555, MT556, MT557, MT558, MT559, MT560, MT561, MT562, MT563,
MT564, MT565, MT566, MT567, MT568, MT569, MT570, MT571, MT572, MT573,
MT575, MT576, MT577, MT578, MT579, MT580, MT581, MT582, MT583, MT584,
MT586, MT587, MT588, MT589, MT590, MT591, MT598, MT599

© Copyright IBM Corp. 2002, 2003 ix

v Category 6MT600, MT601, MT604, MT605, MT606, MT607, MT608, MT609,
MT643, MT644, MT645, MT646, MT649, MT690, MT691, MT698, MT699

v Category 7MT700, MT701, MT705, MT707, MT710, MT711, MT720, MT721,
MT730, MT732, MT734, MT740, MT742, MT747, MT750, MT752, MT754, MT756,
MT760, MT767, MT768, MT769, MT790, MT791, MT798, MT799

v Category 8MT800, MT801, MT802, MT810, MT812, MT813, MT820, MT821,
MT822, MT823, MT824, MT890, MT891, MT898, MT899

v Category 9MT900, MT910, MT920, MT935, MT940, MT941, MT942, MT950,
MT960, MT961, MT962, MT963, MT964, MT965, MT966, MT967, MT970, MT971,
MT972, MT973, MT985, MT986, MT990, MT991, MT998, MT999

The InProgress queue is no longer required and may be disabled. For more
information, see “InProgressQueue” on page 23.

The connector supports interoperability with applications via MQSeries 5.1, 5.2,
and 5.3. For more information, see “Prerequisites” on page 17

The connector now has a UseDefaults property for business object processing. For
more information, see “UseDefaults” on page 24.

The connector can now apply a default verb when the data handler does not
explicitly assign one to a business object. For more information, see “DefaultVerb”
on page 21.

The ReplyToQueue can now be dictated via the dynamic child meta-object rather
than by the ReplyToQueue connector property. For more information see “JMS
headers, SWIFT message properties, and dynamic child meta-object attributes” on
page 37.

You can use a message selector to identify, filter and otherwise control how the
adapter identifies the response message for a given request. This JMS capability
applies to synchronous request processing only. For more information, see
“Synchronous acknowledgment” on page 11.

New in release 1.4.x
If you are using the guaranteed event delivery feature and ICS as your integration
broker, you must install release 4.1.1.2 of ICS.

New in release 1.3.x
The IBM WebSphere Business Adapter for SWIFT can dynamically transform a
business object representing an ISO 7775 SWIFT message into a business object
representing the corresponding ISO 15022 SWIFT message and vice versa. The
adapter supports business object ISO 7775-15022 mapping for SWIFT Category 5,
Securities Markets, but only with the expanded business object definitions available
with this release and described in this document, and only on the Solaris platform.

New in release 1.2.x
The IBM WebSphere Business Integration Adapter for SWIFT includes the
connector for SWIFT. This adapter operates with both the InterChange Server (ICS)
and WebSphere MQ Integrator integration brokers. An integration broker, which is
an application that performs integration of heterogeneous sets of applications,
provides services that include data routing. The adapter includes:

x Adapter for SWIFT User Guide

v An application component specific to SWIFT
v Sample business objects
v IBM WebSphere Adapter Framework, which consists of:

– Connector Framework
– Development tools (including Business Object Designer and Connector

Configurator))
– APIs (including CDK)

This manual provides information about using this adapter with both integration
brokers: ICS and WebSphere MQ Integrator.

Important: Because the connector has not been internationalized, do not run it
against ICS version 4.1.1 if you cannot guarantee that only ISO Latin-1
data will be processed.

New in release 1.1.x
The following new features are described in this guide:
v The connector for SWIFT is now enabled for AIX 4.3.3 Patch Level 9

New in this release xi

xii Adapter for SWIFT User Guide

Chapter 1. Overview
v “Connector architecture” on page 2
v “Application-connector communication method” on page 4
v “Event handling” on page 6
v “Guaranteed event delivery” on page 9
v “Business object requests” on page 10
v “Business object mapping” on page 10
v “Message processing” on page 10
v “Error handling” on page 14
v “Tracing” on page 15

The connector for SWIFT is a runtime component of the WebSphere Business
Integration Adapter for SWIFT. The connector allows the WebSphere integration
broker to exchange business objects with SWIFT-enabled business processes.

Note: Throughout this document, SWIFT messages denote SWIFT FIN messages
unless otherwise explicitly noted.

Connectors consist of an application-specific component and the connector
framework. The application-specific component contains code tailored to a
particular application. The connector framework, whose code is common to all
connectors, acts as an intermediary between the integration broker and the
application-specific component. The connector framework provides the following
services between the integration broker and the application-specific component:
v Receives and sends business objects
v Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and
connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the
connector, see the IBM WebSphere InterChange Server System Administration Guide, or
the IBM WebSphere Business Integration Adapters Implementation Guide for WebSphere
MQ Integrator Broker.

All WebSphere business integration adapters operate with an integration broker.
The connector for SWIFT operates with both the WebSphere InterChange Server
(ICS) and WebSphere MQ Integrator Broker integration brokers.

The connector for SWIFT allows the ICS or WebSphere MQ Integrator Broker to
exchange business objects with applications that send or receive data in the form of
SWIFT messages.

Important: The connector supports SWIFT message transformation from ISO 7775
to corresponding ISO 15022 formats and vice versa, but only with the
expanded business object definitions and ISO mapping described in
this document. For further information, see Chapter 3, “Business
objects”, on page 43, and Chapter 4, “ISO 7775 to ISO 15022 mapping”,
on page 81.

© Copyright IBM Corp. 2002, 2003 1

Connector architecture
The connector allows WebSphere business processes to asynchronously exchange
business objects with applications that issue or receive SWIFT messages when
changes to data occur. (The connector also supports synchronous
acknowledgment.)

SWIFT stands for Society for Worldwide Interbank Financial Telecommunications.
It is a United Nations-sanctioned International Standards Organization (ISO) for
the creation and maintenance of financial messaging standards.

As shown in Figure 1, the connector interacts with several components (WebSphere
components are shown in bold) whose collective purpose is to bridge the world of
WebSphere business objects with that of SWIFT messages.

The SWIFT environment is made up of various components that are described
below.

Connector for SWIFT
The connector for SWIFT is meta-data-driven. Message routing and format
conversion are initiated by an event polling technique. The connector retrieves
WebSphere MQ messages from queues, calls the SWIFT data handler to convert
messages to their corresponding business objects, and then delivers the objects to

SWIFT
data handler

IBM WebSphere
Integrator Broker

(Processes)

Connector

MQSeries output queue MQSeries input queue

MQSA

SWIFT alliance access gateway

incoming
messages

outgoing
messages

for SWIFT

Mapping
engine

Figure 1. Connector for SWIFT architecture

2 Adapter for SWIFT User Guide

the corresponding business processes. In the opposite direction, the connector
receives business objects from the integration broker, converts them into SWIFT
messages using the same data handler, and then delivers the messages to an
WebSphere MQ queue.

The type of business object and verb used in processing a message are based on
the meta-data in the Format field of the WebSphere MQ message header. You
construct a meta-object to store the business object name and verb to associate with
the WebSphere MQ message header Format field text.

You can optionally construct a dynamic meta-object that is added as a child to the
business object passed to the connector. The child meta-object values override
those specified in the static meta-object that is specified for the connector as a
whole. If the child meta-object is not defined or does not define a required
conversion property, the connector, by default, examines the static meta-object for
the value. You can specify one or more dynamic child meta-objects instead of, or to
supplement, a single static connector meta-object.

The connector can poll multiple input queues, polling each in a round-robin
manner and retrieving a configurable number of messages from each queue. For
each message retrieved during polling, the connector adds a dynamic child
meta-object (if specified in the business object). The child meta-object values can
direct the connector to populate attributes with the format of the message as well
as with the name of the input queue from which the message was retrieved.

When a message is retrieved from the input queue, the connector looks up the
business object name associated with the FORMAT text field. The message, along
with the business object name, is then passed to the data handler. If a business
object is successfully populated with message content, the connector checks to see
if it a collaboration subscribes to it, and then delivers it to the integration broker
using the gotApplEvents() method.

SWIFT data handler and mapping engine
The connector calls the SWIFT data handler to convert business objects into SWIFT
messages and vice versa. The data handler is coupled with a mapping engine,
which uses a map to perform transformations between business objects
representing ISO 7775 and ISO 15022 SWIFT message formats. For more on the
SWIFT data handler, see Chapter 5, “SWIFT Data Handler”, on page 123. For more
on mapping, see Chapter 4, “ISO 7775 to ISO 15022 mapping”, on page 81.

WebSphere MQ
The connector for SWIFT uses an MQ implementation of the JavaTM Message
Service (JMS), an API for accessing enterprise-messaging systems. This makes
possible interaction with incoming and outgoing WebSphere MQ event queues.

MQSA
The WebSphere MQ event queues exchange messages with the WebSphere MQ
Interface for SWIFTAlliance (MQSA). The MQSA software integrates WebSphere
MQ messaging capabilities with SWIFT message types, performing delivery,
acknowledgement, queue management, timestamping, and other functions.

SWIFTAlliance Access
The SWIFTAlliance Access gateway is a window through which SWIFT messages
flow to and from remote financial applications over IP or WebSphere MQ. The

Chapter 1. Overview 3

connector supports SWIFTAlliance Access 5.0, but only if you deploy MQSA
version 2.2 on WebSphere MQ 5.2 on and run the connector on one of the
following operating systems:
v AIX 5.1
v SunOS 5.8 or Solaris 8
v Windows 2000 SP2

Application-connector communication method
The connector makes use of IBM’s WebSphere MQ implementation of the Java
Message Service (JMS). The JMS is an open-standard API for accessing
enterprise-messaging systems. It is designed to allow business applications to
asynchronously send and receive business data and events.

Message request
Figure 2 illustrates a message request communication.
1. The connector framework receives a business object representing an ISO 7775

SWIFT message from an integration broker.
2. The connector passes the business object to the data handler.
3. If specified in the map subscription meta-object, the data handler passes the

ISO 7775 object to the mapping engine.
4. Using a production instruction meta-object (PIMO), the mapping engine

transforms the ISO 7775 object into an ISO 15022 business object and passes it
to the data handler.

5. The data handler converts the ISO 15022 business object into an ISO
15022-compliant SWIFT message.

6. The connector dispatches the ISO 15022 SWIFT message to the WebSphere MQ
output queue.

7. The JMS layer makes the appropriate calls to open a queue session and routes
the message to the MQSA, which issues the message to the SWIFT Alliance
Gateway.

4 Adapter for SWIFT User Guide

Event delivery
Figure 3 illustrates the message return communication.
1. The polling method retrieves the next applicable ISO 15022 SWIFT message

from the WebSphere MQ input queue.
2. The message is staged in the in-progress queue, where it remains until

processing is complete.
3. The data handler converts the message into an ISO 15022 business object.
4. Using the map subscription meta-object, the connector determines whether the

message type is supported and, if supported, requires transformation into an
ISO 7775 business object. If so, the data handler passes the ISO 15022 business
object to the mapping engine.

5. Using a PIMO, the mapping engine processes the sub-fields of business object
data, creating an ISO 7775-compliant business object, which is passed to the
data handler.

6. The SWIFT data handler receives the ISO 7775 business object and sets the verb
in it to the default verb specified in the data handler-specific meta-object.

7. The connector then determines whether the business object is subscribed to by
the integration broker. If so, the connector framework delivers the business
object to the integration broker, and the message is removed from the
in-progress queue.

Integration
broker

ISO 7775
business

object

Connector MQSeries output
queue

SWIFT
data handler

MQSA

SWIFT alliance access gateway

Gray box indicates
non-WebSphere

components

ISO 15022
SWIFT message

Mapping
engine

1

2

3

4

6 7

5

Figure 2. Application-connector communication method: Message request

Chapter 1. Overview 5

Event handling
For event notification, the connector detects an event written to a queue by an
application rather than by a database trigger. An event occurs when SWIFTAlliance
generates SWIFT messages and stores them on the WebSphere MQ queue.

Retrieval
The connector uses a polling method to poll the WebSphere MQ input queue at
regular intervals for messages. When the connector finds a message, it retrieves it
from the WebSphere MQ input queue and examines it to determine its format. If
the format has been defined in the connector’s static or child meta-objects, the
connector uses the data handler to generate an appropriate business object with a
verb.

In-progress queue
The connector processes messages by first opening a transactional session to the
WebSphere MQ queue. This transactional approach allows for a small chance that a
business object could be delivered to a business process twice due to the connector
successfully submitting the business object but failing to commit the transaction in
the queue. To avoid this problem, the connector moves all messages to an
in-progress queue. There, the message is held until processing is complete. If the
connector shuts down unexpectedly during processing, the message remains in the
in-progress queue instead of being reinstated to the original WebSphere MQ queue.

Note: Transactional sessions with a JMS service provider require that every
requested action on a queue be performed and committed before events are
removed from the queue. Accordingly, when the connector retrieves a
message from the queue, it does not commit to the retrieval until: 1) The

Integration
broker

Connector

MQSeries input
queue

SWIFT data
handler

MQSA

SWIFT alliance access gateway

Gray box Indicates
non-WebSphere

components

In-progress
queue

ISO 7775
business

object

SWIFT message
ISO 15022

1

2

3

4

6

7

Mapping
engine

5

Figure 3. Application-connector communication method: Event delivery

6 Adapter for SWIFT User Guide

message has been converted to a business object; 2) the business object is
delivered to the integration broker, and 3) a return value is received.

Synchronous acknowledgment
To support applications that require feedback on the requests they issue, the
connector for SWIFT can issue report messages to the applications detailing the
outcome of their requests once they have been processed.

To achieve this, the connector posts the business data for such requests
synchronously to the integration broker. If the business object is successfully
processed, the connector sends a report back to the requesting application
including the return code from the integration broker and any business object
changes. If the connector or the integration broker fails to process the business
object, the connector sends a report containing the appropriate error code and error
message.

In either case, an application that sends a request to the connector for SWIFT is
notified of its outcome.

If the connector for SWIFT receives any messages requesting positive or negative
acknowledgment reports (PAN or NAN), it posts the content of the message
synchronously to the integration broker and then incorporates the return code and
modified business data in to a report message that is sent back to the requesting
application.

Table 1 shows the required structure of messages sent to the connector to be
processed synchronously.

Table 1. Required structure of synchronous WebSphere MQ messages

MQMD Field
(message
descriptor)

Description Supported values (multiple values should be
OR’d)

MessageType Message type DATAGRAM
Report Options for report

message requested
You can specify one or both of the following:

v MQRO_PAN The connector sends a report
message if the business object can be
successfully processed.

v MQRO_NANThe connector sends a report
message if an error occurred while processing
the business object.

You can specify one of the following to control
how the correlation ID of the report message is
to be set:

v MQRO_COPY_MSG_ID_TO_CORREL_IDThe connector
copies the message ID of the request message
to the correlation ID of the report. This is the
default action.

v MQRO_PASS_CORREL_IDThe connector copies the
correlation ID of the request message to the
correlation ID of the report.

ReplyToQueue Name of reply
queue

The name of the queue to which the report
message should be sent.

ReplyToQueueManager Name of queue
manager

The name of the queue manager to which the
report message should be sent.

Chapter 1. Overview 7

Table 1. Required structure of synchronous WebSphere MQ messages (continued)

MQMD Field
(message
descriptor)

Description Supported values (multiple values should be
OR’d)

Message Body A serialized business object in a format
compatible with the data handler configured for
the connector.

Upon receipt of a message as described in Table 1, the connector:
1. Reconstructs the business object in the message body using the configured data

handler.
2. Looks up the business process specified for the business object and verb in the

static meta-data object.
3. Posts the business object synchronously to the specified process.
4. Generates a report encapsulating the result of the processing and any business

object changes or error messages.
5. Sends the report to the queue specified in the replyToQueue and

replyToQueueManager fields of the request.

Table 2 shows the structure of the report that is sent to the requesting application
from the connector.

Table 2. Structure of the report returned to the requesting application

MQMD field Description Supported values (multiple values should
be OR’d)

MessageType Message type REPORT
feedback Type of report One of the following:

v MQRO_PAN If the business object is
successfully processed.

v MQRO_NANIf the connector or the
integration broker encountered an error
while processing the request.

Message Body If the business object is successfully
processed, the connector populates the
message body with the business object
returned by the integration broker. This
default behavior can be overridden by
setting the DoNotReportBusObj property to
true in the static meta-data object.

If the request could not be processed, the
connector populates the message body
with the error message generated by the
connector or the integration broker.

Recovery
Upon initialization, the connector checks the in-progress queue for messages that
have not been completely processed, presumably due to a connector shutdown.
The connector configuration property InDoubtEvents allows you to specify one of
four options for handling recovery of such messages: fail on startup, reprocess,
ignore, or log error.

8 Adapter for SWIFT User Guide

Fail on startup
With the fail on startup option, if the connector finds messages in the in-progress
queue during initialization, it logs an error and immediately shuts down. It is the
responsibility of the user or system administrator to examine the message and take
appropriate action, either to delete these messages entirely or move them to a
different queue.

Reprocess
With the reprocessing option, if the connector finds any messages in the
in-progress queue during initialization, it processes these messages first during
subsequent polls. When all messages in the in-progress queue have been
processed, the connector begins processing messages from the input queue.

Ignore
With the ignore option, if the connector finds any messages in the in-progress
queue during initialization, the connector ignores them but does not shut down.

Log error
With the log error option, if the connector finds any messages in the in-progress
queue during initialization, it logs an error but does not shut down.

Archiving
If the connector property ArchiveQueue is specified and identifies a valid queue,
the connector places copies of all successfully processed messages in the archive
queue. If ArchiveQueue is undefined, messages are discarded after processing.

Guaranteed event delivery
The guaranteed-event-delivery feature enables the connector framework to ensure
that events are never lost and never sent twice between the connector’s event
store, the JMS event store, and the destination’s JMS queue. To become
JMS-enabled, you must configure the connectorDeliveryTransport standard
property to JMS. Thus configured, the connector uses the JMS transport and all
subsequent communication between the connector and the integration broker
occurs through this transport. The JMS transport ensures that the messages are
eventually delivered to their destination. Its role is to ensure that once a
transactional queue session starts, the messages are cached there until a commit is
issued; if a failure occurs or a rollback is issued, the messages are discarded.

Note: Without use of the guaranteed-event-delivery feature, a small window of
possible failure exists between the time that the connector publishes an
event (when the connector calls the gotApplEvent() method within its
pollForEvents() method) and the time it updates the event store by deleting
the event record (or perhaps updating it with an “event posted” status). If a
failure occurs in this window, the event has been sent but its event record
remains in the event store with an “in progress” status. When the connector
restarts, it finds this event record still in the event store and sends it,
resulting in the event being sent twice.

You can configure the guaranteed-event-delivery feature for a JMS-enabled
connector with, or without, a JMS event store. To configure the connector for
guaranteed event delivery, see “Enabling guaranteed event delivery” on page 24.

If connector framework cannot deliver the business object to the ICS integration
broker, then the object is placed on a FaultQueue (instead of UnsubscribedQueue

Chapter 1. Overview 9

and ErrorQueue) and generates a status indicator and a description of the problem.
FaultQueue messages are written in MQRFH2 format.

Business object requests
Business object requests are processed when the integration broker issues a
business object. Using the SWIFT data handler and mapping engine, and
depending on the requirements specified in the subscription meta-object, the
connector can transform an ISO 7775 object to an ISO 15022 object before
converting the business object to a SWIFT message and issuing it.

Business object mapping
The map subscription meta-object determines whether mapping between ISO 7775
and ISO 15022 business objects occurs. For example, a child map subscription
meta-object (MO_Swift_MapSubscriptions_In) with an attribute
Map_Swift_MT523_to_MT543 indicates that the business object definition
corresponding to SWIFT message type 523 must be mapped to a business object
definition representing SWIFT message type 543. For more information on the map
subscription meta-object, see “Production instruction meta-objects (PIMOs)” on
page 81.

The transformation of business object definitions from those representing ISO 7775
messages to those representing ISO 15022 and vice versa takes place in the
mapping engine. There, a production instruction meta-object (PIMO) governs the
mapping process. The PIMO is a meta-object, but one designed to handle mapping
only. Each PIMO specifies attribute-by-attribute processing instructions for a
specific transformation, for example, from SWIFT message type 523 to message
type 543. You can modify PIMOs using Business Object Designer. For more
information on mapping and PIMOs, see Chapter 4, “ISO 7775 to ISO 15022
mapping”, on page 81.

Message processing
The connector processes business objects passed to it by an integration broker
based on the verb for each business object. The connector uses business object
handlers to process the business objects that the connector supports.The business
object handlers contain methods that interact with an application and that
transform business object requests into application operations.

The connector supports the following business object verbs:
v Create
v Retrieve

Create
Processing of business objects with create depends on whether the objects are
issued asynchronously or synchronously.

Asynchronous delivery
This is the default delivery mode for business objects with Create verbs. A message
is created from the business object using a data handler and then written to the
output queue. If the message is delivered, the connector returns BON_SUCCESS,
else BON_FAIL.

10 Adapter for SWIFT User Guide

Note: The connector has no way of verifying whether the message is received or if
action has been taken.

Synchronous acknowledgment
If a replyToQueue has been defined in the connector properties and a
responseTimeout exists in the conversion properties for the business object, the
connector issues a request in synchronous mode. The connector then waits for a
response to verify that appropriate action was taken by the receiving application.

For WebSphere MQ, the connector initially issues a message with a header as
shown in Table 3.

Table 3. Request Message Descriptor Header (MQMD)

Field Description Value

Format Format name Output format as defined in the conversion properties and
truncated to 8 characters to meet IBM requirements (example:
MQSTR).

MessageType Message type MQMT_DATAGRAMa

Report Options for report message
requested.

When a response message is expected, this field is populated as
follows:

MQRO_PANa to indicate that a positive-action report is required if
processing is successful.

MQRO_NANa to indicate that a negative-action report is required if
processing fails.

MQRO_COPY_MSG_ID_TO_CORREL_IDa to indicate that the correlation
ID of the report generated should equal the message ID of the
request originally issued.

ReplyToQueue Name of reply queue When a response message is expected, this field is populated
with the value of connector property ReplyToQueue.

Persistence Message persistence MQPER_PERSISTENTa

Expiry Message lifetime MQEI_UNLIMITEDa

a Indicates constant defined by IBM.

The message header described in Table 3 is followed by the message body. The
message body is a business object that has been serialized using the data handler.

The Report field is set to indicate that both positive and negative action reports are
expected from the receiving application. The thread that issued the message waits
for a response message that indicates whether the receiving application was able to
process the request.

When an application receives a synchronous request from the connector, it
processes the business object and issues a report message as described in Table 4,
Table 5, and Table 6.

Table 4. Response Message Descriptor Header (MQMD)

Field Description Value

Format Format name Input format of busObj as defined in the conversion properties.
MessageType Message type MQMT_REPORTa

a Indicates constant defined by IBM.

Chapter 1. Overview 11

Table 5. Population of response message

Verb Feedback field Message body

Create SUCCESS VALCHANGE (Optional) A serialized business object reflecting
changes.

VALDUPES FAIL (Optional) An error message.

Table 6. Feedback codes and response values

WebSphere MQ feedback code Equivalent WebSphere business integration system
responsea

MQFB_PAN or MQFB_APPL_FIRST SUCCESS
MQFB_NAN or MQFB_APPL_FIRST + 1 FAIL
MQFB_APPL_FIRST + 2 VALCHANGE
MQFB_APPL_FIRST + 3 VALDUPES
MQFB_APPL_FIRST + 4 MULTIPLE_HITS
MQFB_APPL_FIRST + 5 Not applicable
MQFB_APPL_FIRST + 6 Not applicable
MQFB_APPL_FIRST + 7 UNABLE_TO_LOGIN
MQFB_APPL_FIRST + 8 APP_RESPONSE_TIMEOUT (results in immediate

termination of connector)
MQFB_NONE What the connector receives if no feedback code is

specified in the response message
a See the connector development guide for details.

If the business object can be processed, the application creates a report message
with the feedback field set to MQFB_PAN (or a specific WebSphere business
integration system value). Optionally the application populates the message body
with a serialized business object containing any changes. If the business object
cannot be processed, the application creates a report message with the feedback
field set to MQFB_NAN (or a specific WebSphere business integration system value)
and then optionally includes an error message in the message body. In either case,
the application sets the correlationID field of the message to the messageID of the
connector message and issues it to the queue specified by the ReplyTo field.

Upon retrieval of a response message, the connector by default matches the
correlationID of the response to the messageID of a request message. The
connector then notifies the thread that issued the request. Depending on the
feedback field of the response, the connector either expects a business object or an
error message in the message body. If a business object was expected but the
message body is not populated, the connector simply returns the same business
object that was originally issued by the integration broker for the Request
operation. If an error message was expected but the message body is not
populated, a generic error message is returned to the integration broker along with
the response code. However, you can also use a message selector to identify, filter
and otherwise control how the adapter identifies the response message for a given
request. This message selector capability is a JMS feature. It applies to synchronous
request processing only and is described below.

Filtering response messages using a message selector: Upon receiving a business
object for synchronous request processing, the connector checks for the presence of
a response_selector string in the application-specific information of the verb. If
the response_selector is undefined, the connector identifies response messages
using the correlation ID as described above.

12 Adapter for SWIFT User Guide

If response_selector is defined, the connector expects a name-value pair with the
following syntax:

response_selector=JMSCorrelationID LIKE ’selectorstring’

The message selectorstring must uniquely identify a response and its values be
enclosed in single quotes as shown in the example below:

response_selector=JMSCorrelationID LIKE ’Oshkosh’

In the above example, after issuing the request message, the adapter would
monitor the ReplyToQueue for a response message with a correlationID equal to
″Oshkosh.″ The adapter would retrieve the first message that matches this message
selector and then dispatch it as the response.

Optionally, the adapter performs run-time substitutions enabling you to generate
unique message selectors for each request. Instead of a message selector, you
specify a placeholder in the form of an integer surrounded by curly braces, for
example: ’{1}’. You then follow with a colon and a list of comma-separated
attributes to use for the substitution. The integer in the placeholder acts as an
index to the attribute to use for the substitution. For example, the following
message selector:

response_selector=JMSCorrelationID LIKE ’{1}’: MyDynamicMO.CorrelationID

would inform the adapter to replace {1} with the value of the first attribute
following the selector (in this case the attribute named CorrelationId of the
child-object named MyDynamicMO. If attribute CorrelationID had a value of 123ABC,
the adapter would generate and use a message selector created with the following
criteria:

JMSCorrelation LIKE ’123ABC’

to identify the response message.

You can also specify multiple substitutions such as the following:

response_selector=PrimaryId LIKE ’{1}’ AND AddressId LIKE ’{2}’ :
PrimaryId, Address[4].AddressId

In this example, the adapter would substitute {1} with the value of attribute
PrimaryId from the top-level business object and {2} with the value of AddressId
from the 5th position of child container object Address. With this approach, you
can reference any attribute in the business object and meta-object in the response
message selector. For more information on how deep retrieval is performed using
Address[4].AddressId, see JCDK API manual (getAttribute method)

An error is reported at run-time when any of the following occurs:
v If you specify a non-integer value between the ’{}’ symbols
v If you specify an index for which no attribute is defined
v If the attribute specified does not exist in the business or meta-object
v If the syntax of the attribute path is incorrect

For example, if you include the literal value ’{’ or ’}’ in the message selector, you
can use ’{{’ or ″{}″ respectively. You can also place these characters in the attribute

Chapter 1. Overview 13

value, in which case the first ″{″ is not needed. Consider the following example
using the escape character: response_selector=JMSCorrelation LIKE ’{1}’ and
CompanyName=’A{{P’: MyDynamicMO.CorrelationID

The connector would resolve this message selector as follows:

JMSCorrelationID LIKE ’123ABC’ and CompanyName=’A{P’

When the connector encounters special characters such as ’{’, ’}’, ’:’ or ’;’ in
attribute values, they are inserted directly into the query string. This allows you to
include special characters in a query string that also serve as application-specific
information delimiters.

The next example illustrates how a literal string substitution is extracted from the
attribute value:

response_selector=JMSCorrelation LIKE ’{1}’ and CompanyName=’A{{P’:
MyDynamicMO.CorrelationID

If MyDynamicMO.CorrelationID contained the value {A:B}C;D, the connector would
resolve the message selector as follows: JMSCorrelationID LIKE ’{A:B}C;D’ and
CompanyName=’A{P’

For more information on the response selector code, see JMS 1.0.1 specifications.

Creating custom feedback codes: You can extend the WebSphere MQ feedback
codes to override default interpretations shown in Table 6 by specifying the
connector property FeedbackCodeMappingMO. This property allows you to create
a meta-object in which all WebSphere business integration system-specific return
status values are mapped to the WebSphere MQ feedback codes. The return status
assigned (using the meta-object) to a feedback code is passed to the integration
broker. For more information, see “FeedbackCodeMappingMO” on page 22.

Retrieve
Business objects with the Retrieve verb support synchronous delivery only. The
connector processes business objects with this verb as it does for the synchronous
delivery defined for create. However, when using a Retrieve verb, the
responseTimeout and replyToQueue are required. Furthermore, the message body
must be populated with a serialized business object to complete the transaction.

Table 7 shows the response messages for these verbs.

Table 7. Population of response message

Verb Feedback field Message body

Retrieve FAIL
FAIL_RETRIEVE_BY_CONTENT

(Optional) An error message.

MULTIPLE_HITS SUCCESS A serialized business object.

Error handling
All error messages generated by the connector are stored in a message file named
SWIFTConnector.txt. (The name of the file is determined by the LogFileName
standard connector configuration property.) Each error has an error number
followed by the error message:

14 Adapter for SWIFT User Guide

Message number

Message text

The connector handles specific errors as described in the following sections.

Application timeout
The error message ABON_APPRESPONSETIMEOUT is returned when:
v The connector cannot establish a connection to the JMS service provider during

message retrieval.
v The connector successfully converts a business object to a message but cannot

deliver it to the outgoing queue due to connection loss.
v The connector issues a message but times out waiting for a response from a

business object whose conversion property TimeoutFatal is equal to True.
v The connector receives a response message with a return code equal to

APP_RESPONSE_TIMEOUT or UNABLE_TO_LOGIN.

Unsubscribed business object
The connector delivers a message to the queue specified by the UnsubscribedQueue
property if:
v The connector retrieves a message that is associated with an unsubscribed

business object.
v The connector retrieves a message but cannot associate the text in the Format

field with a business object name.

Note: If the UnsubscribedQueue is not defined, unsubscribed messages are
discarded.

Data handler conversion
If the data handler fails to convert a message to a business object, or if a
processing error occurs that is specific to the business object (as opposed to the
JMS provider), the message is delivered to the queue specified by ErrorQueue. If
ErrorQueue is not defined, messages that cannot be processed due to errors are
discarded.

If the data handler fails to convert a business object to a message, BON_FAIL is
returned.

Tracing
Tracing is an optional debugging feature you can turn on to closely follow
connector behavior. Trace messages, by default, are written to STDOUT. See the
connector configuration properties in Chapter 2, “Configuring the connector”, on
page 17, for more on configuring trace messages. For more information on tracing,
including how to enable and set it, see the Connector Development Guide.

What follows is recommended content for connector trace messages.

Level 0 This level is used for trace messages that identify the connector
version.

Level 1 Use this level for trace messages that provide key information on
each business object processed or record each time a polling thread
detects a new message in an input queue.

Chapter 1. Overview 15

Level 2 Use this level for trace messages that log each time a business
object is posted to the integration broker, either from
gotApplEvent() or executeCollaboration().

Level 3 Use this level for trace messages that provide information
regarding message-to-business-object and business-object-to-
message conversions or provide information about the delivery of
the message to the output queue.

Level 4 Use this level for trace messages that identify when the connector
enters or exits a function.

Level 5 Use this level for trace messages that indicate connector
initialization, represent statements executed in the application,
indicate whenever a message is taken off of or put onto a queue,
or record business object dumps.

16 Adapter for SWIFT User Guide

Chapter 2. Configuring the connector
v “Prerequisites”
v “Installing the connector” on page 18
v “Connector configuration” on page 19
v “Enabling guaranteed event delivery” on page 24
v “Queue Uniform Resource Identifiers (URI)” on page 28
v “Meta-object attributes configuration” on page 29
v “Startup file configuration” on page 42
v “Startup” on page 42

This chapter describes how to install and configure the connector and how to
configure the message queues to work with the connector.

Prerequisites

Prerequisite software
The following software must be installed before you install and configure the
connector for SWIFT:
v WebSphere business integration system software version 4.2.x or later or

WebSphere Business Integration Adapter Framework version 2.1.0
v The connector supports interoperability with applications via WebSphere MQ,

WebSphere MQ 5.1, 5.2,1 and 5.3. Accordingly, you must have one of these
software releases installed.

Note: The adapter does not support Secure Socket Layers (SSL) in WebSphere
MQ 5.3. For the WebSphere MQ software version appropriate to adapter
framework-integration broker communication, see the Installation Guide
for your platform (Windows/Unix).

v IBM WebSphere MQ Java client libraries

Note: It’s advisable to download the latest MA88 libraries from IBM.
v For Windows systems: Microsoft Windows NT 4.0 Service Pack 6A or Windows

2000
v For Unix systems: Solaris 7 or AIX 4.3.3 Patch Level 7
v MQSA WebSphere MQ Interface for SWIFTAlliance 1.3

Note: The SWIFTAlliance Access gateway is a window through which SWIFT
messages flow to and from remote financial applications over IP or
WebSphere MQ. The connector supports SWIFTAlliance Access 5.0, but
only if you deploy MQSA version 2.2 on WebSphere MQ 5.2 on and run
the connector on one of the following operating systems:
– AIX 5.1
– SunOS 5.8 or Solaris 8

1. If your environment implements the convert-on-the-get methodology for character-set conversions you must download the latest
MA88 (JMS classes) from IBM. The patch level should be at least 5.2.2 (for MQ Series version 5.2). Doing so may avoid
unsupported encoding errors.

© Copyright IBM Corp. 2002, 2003 17

– Windows 2000 SP2

For client setup with an NT server, see the description in the IBM publication
WebSphere MQ Quick Beginnings for NT.

Installing the connector
The following subsections describe how to install the connector on a UNIX or
Windows system.

Installing on a UNIX system
To install the connector on a UNIX system, run the Installer for IBM WebSphere
Business Integration Adapter and select the WebSphere Business Integration
Adapter for SWIFT. Installer installs all UNIX-supported connectors.

Note: If you are installing a Web release of this connector, see the Release Notes
for installation instructions.

Table 8 describes the UNIX file structure used by the connector.

Table 8. Installed UNIX file structure for the connector

Subdirectory of ProductDir Description

connectors/SWIFT/CWSwift.jar Connector jar files
connectors/SWIFT/CWJMSCommon.jar
connectors/SWIFT/start_SWIFT.sh The startup script for the connector. The script is called

from the generic connector manager script. When you
click Install from Connector Configurator (WebSphere
MQ Integrator Broker as the integration broker) or the
Connector Configuration screen of System Manager (ICS
as the integration broker), the installer creates a
customized wrapper for this connector manager script.
When the connector works with ICS, use this
customized wrapper only to start and stop the
connector. When the connector works with WebSphere
MQ Integrator Broker, use this customized wrapper only
to start the connector; use mqsiremotestopadapter to
stop the connector.

connectors/messages/SWIFTConnector.txt Connector message file
repository/SWIFT/CN_SWIFT.txt Connector definition
DataHandlers/CwDataHandler.jar The SWIFT data handler
repository/DataHandlers/MO_DataHandler_SWIFT.txt Meta-object for SWIFT data handler
repository/DataHandlers/MO_DataHandler_Default.txt Data handler default object
connectors/SWIFT/samples/Sample_SWIFT_MO_Config.txt Sample configuration object

/lib Contains the WBIA. jar file.

/bin Contains the CWConnEnv.sh file.

For more information on installing the connector component, refer to one of the
following guides, depending on the integration broker you are using:
v System Installation Guide for UNIX (when ICS is used as integration broker)
v Implementation Guide for WebSphere MQ Integrator Broker (when MQ Integrator

Broker is used as integration broker)

18 Adapter for SWIFT User Guide

Installing on a Windows system
To install the connector on a Windows system, run the Installer for IBM WebSphere
Business Integration Adapter and select the WebSphere Business Integration
Adapter for SWIFT. Installer installs standard files associated with the connector.
Table 9 describes the Windows file structure used by the connector.

Note: If you are installing a Web release of this connector, see the Release Notes
for installation instructions.

Table 9. Installed Windows file structure for the connector

Subdirectory of ProductDir Description

connectors\SWIFT\CWSwift.jar Connector jar files
connectors\SWIFT\CWJMSCommon.jar
connectors\SWIFT\start_SWIFT.bat The startup file for the connector.
connectors\messages\SWIFTConnector.txt Connector message file
repository\SWIFT\CN_SWIFT.txt Connector definition
DataHandlers\CwDataHandler.jar The SWIFT data handler
repository\DataHandlers\MO_DataHandler_SWIFT.txt Meta-object for SWIFT data handler
repository\DataHandlers\MO_DataHandler_Default.txt Data handler default object
connectors\SWIFT\samples\Sample_SWIFT_MO_Config.txt Sample configuration object

\lib Contains the WBIA. jar file.

\bin Contains the CWConnEnv.bat file.

For more information on installing the connector component, refer to one of the
following guides, depending on the integration broker you are using:
v IBM WebSphere InterChange Server System Installation Guide for Windows (when ICS

is used as integration broker)
v IBM WebSphere Business Integration Adapters Implementation Guide for WebSphre

MQ Integrator Broker (when MQ Integrator Broker is used as integration broker)

Connector configuration
Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. You must set the values
of these properties before running the connector. Use one of the following tools to
set a connector’s configuration properties:
v Connector Configurator (if ICS is the integration broker)—Access to this tool is

from the System Manager.
v Connector Configurator (if WebSphere MQ Integrator Broker is the integration

broker)—Access this tool from the WebSphere Business Integration Adapter
program folder. For more information see Appendix B, “Connector Configurator”
, on page 151

Standard connector properties
Standard configuration properties provide information that all connectors use. See
Appendix A, “Standard configuration properties for connectors”, on page 129 for
documentation of these properties.

Important: Because this connector supports both the ICS and WebSphere MQ
Integrator Broker, configuration properties for both brokers relevant to
the connector.

Chapter 2. Configuring the connector 19

Connector-specific properties
Connector-specific configuration properties provide information needed by the
connector at runtime. Connector-specific properties also provide a way of changing
static information or logic within the connector without having to recode and
rebuild the agent.

Note: Always check the values WebSphere MQ provides because they may be
incorrect or unknown. If the provided values are incorrect, specify them
explicitly.

Table 10 lists the connector-specific configuration properties for the connector for
SWIFT. See the sections that follow for explanations of the properties.

Table 10. Connector-specific configuration properties

Name Possible values Default value Required

“ApplicationPassword” on
page 21

Login password No

“ApplicationUserID” on page 21 Login user ID No
“ArchiveQueue” on page 21 Queue to which copies of

successfully processed messages are
sent

queue://CrossWorlds.
QueueManager/MQCONN.ARCHIVE

No

“Channel” on page 21 MQ server connector channel Yes
“ConfigurationMetaObject” on
page 21

Name of configuration meta-object Yes

“DataHandlerClassName” on
page 21

Data handler class name com.crossworlds.
DataHandlers.swift.
SwiftDataHandler

No

“DataHandlerConfigMO” on
page 21

Data handler meta-object MO_DataHandler_Default Yes

“DataHandlerMimeType” on
page 21

MIME type of file swift No

“DefaultVerb” on page 21 Any verb supported by the
connector.

Create

“ErrorQueue” on page 22 Queue for unprocessed messages queue://crossworlds.
Queue.manager/ MQCONN.ERROR

No

“FeedbackCodeMappingMO” on
page 22

Feedback code meta-object No

“HostName” on page 22 WebSphere MQ server No
“InDoubtEvents” on page 22 FailOnStartup Reprocess Ignore

LogError
Reprocess No

“InputQueue” on page 23 Poll queues queue://CrossWorlds.
QueueManager/MQCONN.IN

Yes

“InProgressQueue” on page 23 In-progress event queue queue://CrossWorlds.
QueueManager/
MQCONN.IN_PROGRESS

No

“PollQuantity” on page 23 Number of messages to retrieve from
each queue specified in the
InputQueue property

1 No

“Port” on page 24 Port established for the WebSphere
MQ listener

No

“ReplyToQueue” on page 24 Queue to which response messages
are delivered when the connector
issues requests

queue://CrossWorlds.
QueueManager/MQCONN.REPLYTO

No

“UnsubscribedQueue” on
page 24

Queue to which unsubscribed
messages are sent

queue://CrossWorlds.
QueueManager/MQCONN.UNSUBSCRIBE

No

“UseDefaults” on page 24 true or false false

20 Adapter for SWIFT User Guide

ApplicationPassword
Password used with the ApplicationUserID to log in to WebSphere MQ.

Default = None.

If the ApplicationPassword is left blank or removed, the connector uses the default
password provided by WebSphere MQ.

ApplicationUserID
User ID used with the ApplicationPassword to log in to WebSphere MQ.

Default=None.

If the ApplicationUserID is left blank or removed, the connector uses the default
user ID provided by WebSphere MQ.

ArchiveQueue
Queue to which copies of successfully processed messages are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.ARCHIVE

Channel
MQ server connector channel through which the connector communicates with
WebSphere MQ.

Default=None.

If the value of Channel is left blank or the property is removed, the connector uses
the default server channel provided by WebSphere MQ.

ConfigurationMetaObject
Name of static meta-object containing configuration information for the connector.

Default = none.

DataHandlerClassName
Data handler class to use when converting messages to and from business objects.

Default = com.crossworlds.DataHandlers.swift.SwiftDataHandler

DataHandlerConfigMO
Meta-object passed to data handler to provide configuration information.

Default = MO_DataHandler_Default

DataHandlerMimeType
Allows you to request a data handler based on a particular MIME type.

Default = swift

DefaultVerb
Specifies the verb to be set within an incoming business object, if it has not been
set by the data handler during polling.

Default= Create

Chapter 2. Configuring the connector 21

ErrorQueue
Queue to which messages that could not be processed are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.ERROR

FeedbackCodeMappingMO
Allows you to override and reassign the default feedback codes used to
synchronously acknowledge receipt of messages to the integration broker. This
property enables you to specify a meta-object in which each attribute name is
understood to represent a feedback code. The corresponding value of the feedback
code is the return status that is passed to the integration broker. For a listing of the
default feedback codes, see “Synchronous acknowledgment” on page 7. The
connector accepts the following attribute values representing WebSphere
MQ-specific feedback codes:
v MQFB_APPL_FIRST
v MQFB_APPL_FIRST_OFFSET_N where N is an integer (interpreted as the value of

MQFB_APPL_FIRST + N)

The connector accepts the following WebSphere business integration
system-specific status codes as attribute values in the meta-object:
v SUCCESS
v FAIL
v APP_RESPONSE_TIMEOUT
v MULTIPLE_HITS
v UNABLE_TO_LOGIN
v VALCHANGE
v VALDUPES

Table 11 shows a sample meta-object.

Table 11. Sample feedback code meta-object attributes

Attribute Name Default Value

MQFB_APPL_FIRST SUCCESS

MQFB_APPL_FIRST + 1 FAIL

MQFB_APPL_FIRST + 2 UNABLE_TO_LOGIN

Default = none.

HostName
The name of the server hosting WebSphere MQ.

Default=None.

If the HostName is left blank or removed, the connector allows WebSphere MQ to
determine the host.

InDoubtEvents
Specifies how to handle in-progress events that are not fully processed due to
unexpected connector shutdown. Choose one of four actions to take if events are
found in the in-progress queue during initialization:
v FailOnStartup. Log an error and immediately shut down.

22 Adapter for SWIFT User Guide

v Reprocess. Process the remaining events first, then process messages in the
input queue.

v Ignore. Disregard any messages in the in-progress queue.
v LogError. Log an error but do not shut down.

Default = Reprocess.

InputQueue
Specifies the message queues that the connector polls for new messages. See the
MQSA documentation to configure the WebSphere MQ queues for routing to
SWIFTAlliance gateways.

The connector accepts multiple semicolon-delimited queue names. For example, to
poll the queues MyQueueA, MyQueueB, and MyQueueC, the value for connector
configuration property InputQueue is: MyQueueA;MyQueueB;MyQueueC.

The connector polls the queues in a round-robin manner and retrieves up to
pollQuantity number of messages from each queue. For example, pollQuantity
equals 2, and MyQueueA contains 2 messages, MyQueueB contains 1 message and
MyQueueC contains 5 messages.

With pollQuanity set to 2, the connector retrieves at most 2 messages from each
queue per call to pollForEvents. For the first cycle (1 of 2), the connector retrieves
the first message from each of MyQueueA, MyQueueB, and MyQueueC. That completes
the first round of polling. The connector starts a second round of polling (2 of 2)
and retrieves one message each from MyQueueA and MyQueueC—it skips MqQueueB
because that queue is now empty. After polling all queues twice, the call to the
method pollForEvents is complete. The sequence of message retrieval is:
1. 1 message from MyQueueA

2. 1 message from MyQueueB

3. 1 message from MyQueueC

4. 1 message from MyQueueA

5. Skip MyQueueB because it is empty
6. 1 message from MyQueueC

Default = queue://crossworlds.Queue.manager/MQCONN.IN

InProgressQueue
Message queue where messages are held during processing. You can configure the
connector to operate without this queue by using System Manager to remove the
default InProgressQueue name from the connector-specific properties. Doing so
prompts a warning at startup that event delivery may be compromised if the
connector is shut down while are events pending.

Default= queue://crossworlds.Queue.manager/MQCONN.IN_PROGRESS

PollQuantity
Number of messages to retrieve from each queue specified in the InputQueue
property during a pollForEvents scan.

Default =1

Chapter 2. Configuring the connector 23

Port
Port established for the WebSphere MQ listener.

Default=None.

If the value of Port is left blank or the property is removed, the connector allows
WebSphere MQ to determine the correct port.

ReplyToQueue
Queue to which response messages are delivered when the connector issues
requests.

Default = queue://crossworlds.Queue.manager/MQCONN.REPLYTO

UnsubscribedQueue
Queue to which messages about business objects that are not subscribed to are
sent.

Default = queue://crossworlds.Queue.manager/MQCONN.UNSUBSCRIBED

UseDefaults
On a Create operation, if UseDefaults is set to true, the connector checks whether
a valid value or a default value is provided for each isRequired business object
attribute. If a value is provided, the Create operation succeeds. If the parameter is
set to false, the connector checks only for a valid value and causes the Create
operation to fail if it is not provided. The default is false.

Enabling guaranteed event delivery
You can configure the guaranteed-event-delivery feature for a JMS-enabled
connector in one of the following ways:
v If the connector uses a JMS event store (implemented as a JMS source queue),

the connector framework can manage the JMS event store. For more information,
see “Guaranteed event delivery for connectors with JMS event stores”.

v If the connector uses a non-JMS event store (for example, implemented as a
JDBC table, Email mailbox, or flat files), the connector framework can use a JMS
monitor queue to ensure that no duplicate events occur. For more information,
see “Guaranteed event delivery for connectors with non-JMS event stores” on
page 26.

Guaranteed event delivery for connectors with JMS event
stores

If the JMS-enabled connector uses JMS queues to implement its event store, the
connector framework can act as a ″container″ and manage the JMS event store (the
JMS source queue). In a single JMS transaction, the connector can remove a
message from a source queue and place it on the destination queue. This section
provides the following information about use of the guaranteed-event-delivery
feature for a JMS-enabled connector that has a JMS event store:
v “Enabling the feature for connectors with JMS event stores”
v “Effect on event polling” on page 26

Enabling the feature for connectors with JMS event stores
To enable the guaranteed-event-delivery feature for a JMS-enabled connector that
has a JMS event store, set the connector configuration properties to values shown
in Table 12.

24 Adapter for SWIFT User Guide

Table 12. Guaranteed-event-delivery connector properties for a connector with a JMS event
store

Connector property Value

DeliveryTransport JMS

ContainerManagedEvents JMS

PollQuantity The number of events to processing in a
single poll of the event store

SourceQueue Name of the JMS source queue (event store)
which the connector framework polls and
from which it retrieves events for processing
Note: The source queue and other JMS
queues should be part of the same queue
manager. If the connector’s application
generates events that are stored in a
different queue manager, you must define a
remote queue definition on the remote
queue manager. WebSphere MQ can then
transfer the events from the remote queue to
the queue manager that the JMS-enabled
connector uses for transmission to the
integration broker. For information on how
to configure a remote queue definition, see
your IBM WebSphere MQ documentation.

In addition to configuring the connector, you must also configure the data handler
that converts between the event in the JMS store and a business object. This
data-handler information consists of the connector configuration properties that
Table 13 summarizes.

Table 13. Data-handler properties for guaranteed event delivery

Data-handler property Value Required?

MimeType The MIME type that the data handler
handles. This MIME type identifies which
data handler to call.

Yes

DHClass The full name of the Java class that
implements the data handler

Yes

DataHandlerConfigMOName The name of the top-level meta-object that
associates MIME types and their data
handlers

Optional

Note: The data-handler configuration properties reside in the connector
configuration file with the other connector configuration properties.

If you configure a connector that has a JMS event store to use guaranteed event
delivery, you must set the connector properties as described in Table 12 and
Table 13. To set these connector configuration properties, use the Connector
Configurator tool. Connector Configurator displays the connector properties in
Table 12 on its Standard Properties tab. It displays the connector properties in
Table 13 on its Data Handler tab.

Note: Connector Configurator activates the fields on its Data Handler tab only
when the DeliveryTransport connector configuration property is set to JMS
and ContainerManagedEvents is set to JMS.

Chapter 2. Configuring the connector 25

For information on Connector Configurator, see Appendix B, “Connector
Configurator”, on page 151.

Effect on event polling
If a connector uses guaranteed event delivery by setting ContainedManagedEvents
to JMS, it behaves slightly differently from a connector that does not use this
feature. To provide container-managed events, the connector framework takes the
following steps to poll the event store:
1. Start a JMS transaction.
2. Read a JMS message from the event store.

The event store is implemented as a JMS source queue. The JMS message
contains an event record. The name of the JMS source queue is obtained from
the SourceQueue connector configuration property.

3. Call the data handler to convert the event to a business object.
The connector framework calls the data handler that has been configured with
the properties in Table 13 on page 25.

4. When WebSphere MQ Integrator Broker is the integration broker, convert the
business object to a message based on the configured wire format (XML).

5. Send the resulting message to the JMS destination queue. If you are using the
WebSphere ICS integration broker, the message sent to the JMS destination
queue is the business object. If you are using WebSphere MQ Integrator broker,
the message sent to the JMS destination queue is an XML message (which the
data handler generated).

6. Commit the JMS transaction.
When the JMS transaction commits, the message is written to the JMS
destination queue and removed from the JMS source queue in the same
transaction.

7. Repeat step 1 through 6 in a loop. The PollQuantity connector property
determines the number of repetitions in this loop.

Important: A connector that sets the ContainerManagedEvents property is set to JMS
does not call the pollForEvents() method to perform event polling. If
the connector’s base class includes a pollForEvents() method, this
method is not invoked.

Guaranteed event delivery for connectors with non-JMS event
stores
If the JMS-enabled connector uses a non-JMS solution to implement its event store
(such as a JDBC event table, Email mailbox, or flat files), the connector framework
can use duplicate event elimination to ensure that duplicate events do not occur.
This section provides the following information about use of the
guaranteed-event-delivery feature with a JMS-enabled connector that has a
non-JMS event store:
v “Enabling the feature for connectors with non-JMS event stores”
v “Effect on event polling”

Enabling the feature for connectors with non-JMS event stores: To enable the
guaranteed-event-delivery feature for a JMS-enabled connector that has a non-JMS
event store, you must set the connector configuration properties to values shown
in Table 14.

26 Adapter for SWIFT User Guide

Table 14. Guaranteed-event-delivery connector properties for a connector with a non-JMS
event store

Connector property Value

DeliveryTransport JMS

DuplicateEventElimination true

MonitorQueue Name of the JMS monitor queue, in which
the connector framework stores the
ObjectEventId of processed business objects

If you configure a connector to use guaranteed event delivery, you must set the
connector properties as described in Table 14. To set these connector configuration
properties, use the Connector Configurator tool. It displays these connector
properties on its Standard Properties tab. For information on Connector
Configurator, see Appendix B, “Connector Configurator”, on page 151.

Effect on event polling: If a connector uses guaranteed event delivery by setting
DuplicateEventElimination to true, it behaves slightly differently from a connector
that does not use this feature. To provide the duplicate event elimination, the
connector framework uses a JMS monitor queue to track a business object. The
name of the JMS monitor queue is obtained from the MonitorQueue connector
configuration property.

After the connector framework receives the business object from the
application-specific component (through a call to gotApplEvent() in the
pollForEvents() method), it must determine if the current business object
(received from gotApplEvents()) represents a duplicate event. To make this
determination, the connector framework retrieves the business object from the JMS
monitor queue and compares its ObjectEventId with the ObjectEventId of the
current business object:
v If these two ObjectEventIds are the same, the current business object represents a

duplicate event. In this case, the connector framework ignores the event that the
current business object represents; it does not send this event to the integration
broker.

v If these ObjectEventIds are not the same, the business object does not represent a
duplicate event. In this case, the connector framework copies the current
business object to the JMS monitor queue and then delivers it to the JMS
delivery queue, all as part of the same JMS transaction. The name of the JMS
delivery queue is obtained from the DeliveryQueue connector configuration
property. Control returns to the connector’s pollForEvents() method, after the
call to the gotApplEvent() method.

For a JMS-enabled connector to support duplicate event elimination, you must
make sure that the connector’s pollForEvents() method includes the following
steps:
v When you create a business object from an event record retrieved from the

non-JMS event store, save the event record’s unique event identifier as the
business object’s ObjectEventId attribute.
The application generates this event identifier to uniquely identify the event
record in the event store. If the connector goes down after the event has been
sent to the integration broker but before this event record’s status can be
changed, this event record remains in the event store with an In-Progress status.
When the connector comes back up, it should recover any In-Progress events.
When the connector resumes polling, it generates a business object for the event

Chapter 2. Configuring the connector 27

record that still remains in the event store. However, because both the business
object that was already sent and the new one have the same event record as
their ObjectEventIds, the connector framework can recognize the new business
object as a duplicate and not send it to the integration broker.

v During connector recovery, make sure that you process In-Progress events before
the connector begins polling for new events.
Unless the connector changes any In-Progress events to Ready-for-Poll status
when it starts up, the polling method does not pick up the event record for
reprocessing.

Queue Uniform Resource Identifiers (URI)
A URI uniquely identifies a queue. A URI for a queue begins with the sequence
queue:// followed by:
v The name of the queue manager on which the queue resides
v A forward slash (/)
v The name of the queue
v Optionally, a list of name-value pairs to set the remaining queue properties.

For example, the following URI connects to queue IN on queue manager
crossworlds.queue.manager and causes all messages to be sent as SWIFT messages
with priority 5.
queue://crossworlds.Queue.manager/MQCONN.IN?targetClient=1&priority=5

Table 15 shows property names for queue URIs.

Table 15. SWIFT-specific connector property names for queue URIs

Property name Description Values

expiry Lifetime of the message in milliseconds. 0 = unlimited.

positive integers = timeout (in ms).
priority Priority of the message. 0-9, where 1 is the highest priority. A value of

-1 means that the property is determined by
the configuration of the queue. A value of -2
means that the connector can use its own
default value.

persistence Whether the message should be retained in
persistent memory.

1 = non-persistent

2 = persistent

A value of -1 means that the property is
determined by the configuration of the queue.
A value of -2 means that the connector uses its
own default value.

CCSID1 on page 29 Character set of the destination. Integers - valid values listed in base WebSphere
MQ documentation.

targetClient Whether the receiving application is JMS
compliant or not.

1 = MQ (MQMD header only) This value must
be set to 1 for SWIFTAlliance.

encoding How to represent numeric fields. An integer value as described in the base
WebSphere MQ documentation.

28 Adapter for SWIFT User Guide

Table 15. SWIFT-specific connector property names for queue URIs (continued)

Property name Description Values

Notes:

1. The connector has no control over the character set (CCSID) or encoding attributes of data in MQMessages. For
the connector to work properly, WebSphere MQ queues require an ASCII character set, and must be configured
accordingly in MQSA. Because data conversion is applied as the data is retrieved from or delivered to the
message buffer, the connector relies on the IBM WebSphere MQ implementation of JMS to convert data (see the
IBM WebSphere MQ Java client library documentation). Accordingly, these conversions should be bi-directionally
equivalent to those performed by the native WebSphere MQ API using option MQGMO_CONVERT. The connector has
no control over differences or failures in the conversion process. It can retrieve message data of any CCSID or
encoding supported by WebSphere MQ without additional modifications (such as those imposed by MQSA). To
deliver a message of a specific CCSID or encoding, the output queue must be a fully qualified URI and specify
values for CCSID and encoding. The connector passes this information to WebSphere MQ, which (via the JMS API)
uses the information when encoding data for MQMessage delivery. Often, lack of support for CCSID and
encoding can be resolved by downloading the most recent version of the IBM WebSphere MQ Java client library
from the IBM website. For further information on MQSA requirements, see MQSA documentation. If problems
specific to CCSID and encoding persist, contact IBM Technical Support to discuss the possibility of using another
Java Virtual Machine to run the connector.

Meta-object attributes configuration
The connector for SWIFT can recognize and read two kinds of meta-objects:
v Static connector meta-object
v Dynamic child meta-object

The attribute values of the dynamic child meta-object duplicate and override those
of the static meta-object.

Static meta-object
The static meta-object consists of a list of conversion properties defined for
different business objects. To define the conversion properties for a business object,
first create a string attribute and name it using the syntax busObj_verb. For
example, to define the conversion properties for a Customer object with the verb
Create, create an attribute named Swift_MT502_Create. In the application-specific
text of the attribute, you specify the actual conversion properties.

Additionally, a reserved attribute named Default can be defined in the meta-object.
When this attribute is present, its properties act as default values for all business
object conversion properties.

Note: If a static meta-object is not specified, the connector cannot map a given
message format to a specific business object type during polling. When this
is the case, the connector passes the message text to the configured data
handler without specifying a business object. If the data handler cannot
create a business object based on the text alone, the connector reports an
error indicating that this message format is unrecognized.

Chapter 2. Configuring the connector 29

Table 16 describes the meta-object properties.

Table 16. Static meta-object properties

Property name Description

CollaborationName The collaboration name must be specified in the
application-specific text of the attribute for the business
object/verb combination. For example, if you expect to
handle synchronous requests for the business object
Customer with the Create verb, the static meta-data object
must contain an attribute named Swift_MTnnn_Verb, where
nnn is the Swift message type, for example,
Swift_MT502_Create. The Swift_MT502_Create attribute must
contain application-specific text that includes a name-value
pair. For example,
CollaborationName=MyCustomerProcessingCollab. See the
“Application-specific information” on page 31 section for
syntax details. Failure to do this results in runtime errors
when the connector attempts to synchronously process a
request involving the Customer business object.
Note: This property is available only for synchronous
requests.

DoNotReportBusObj Optionally, you can include the DoNotReportBusObj property.
By setting this property to true, all PAN report messages
issued have a blank message body. This is recommended
when you want to confirm that a request has been
successfully processed but does not need notification of
changes to the business object. This does not affect NAN
reports. If this property is not found in the static meta-object,
the connector defaults to false and populates the message
report with the business object.
Note: This property is available only for synchronous
requests.

InputFormat The input format is the message format to associate with the
given business object. When a message is retrieved and is in
this format, it is converted to the given business object if
possible. If this format is not specified for a business object,
the connector does not handle subscription deliveries for the
given business object.

OutputFormat The output format is set on messages created from the given
business object. If a value for the OutputFormat property is
not specified, the input format is used, if available. An
OutputFormat property value defined in a dynamic child
meta-object overrides the value defined in the static
meta-object.

InputQueue The input queue that the connector polls to detect new
messages. You can use connector-specific properties to
configure multiple InputQueues and optionally map
different data handlers to each queue.

OutputQueue The output queue is the queue to which messages derived
from the given business object are delivered. An
OutputQueue property value defined in a dynamic child
meta-object overrides the value defined in the static
meta-object.

30 Adapter for SWIFT User Guide

Table 16. Static meta-object properties (continued)

Property name Description

ResponseTimeout The length of time in milliseconds to wait for a response
before timing out. The connector returns SUCCESS
immediately without waiting for a response if this property
is undefined or has a value less than zero. A
ResponseTimeout property value defined in a dynamic child
meta-object overrides the value defined in the static
meta-object.

TimeoutFatal If this property is defined and has a value of true, the
connector returns APP_RESPONSE_TIMEOUT when a response is
not received within the time specified by ResponseTimeout.
All other threads waiting for response messages immediately
return APP_RESPONSE_TIMEOUT to the integration broker. This
causes the integration broker to terminate the connection to
the connector. A TimeoutFatal property defined in a
dynamic child meta-object overrides the value defined in the
static meta-object.

Application-specific information
The application-specific information is structured in name-value pair format,
separated by semicolons. For example:

InputFormat=ORDER_IN;OutputFormat=ORDER_OUT

You can use application-specific information to map a data handler to an input
queue.

Mapping data handlers to InputQueues
You can use the InputQueue property in the application-specific information of the
static meta-object to associate a data handler with an input queue. This feature is
useful when dealing with multiple trading partners who have different formats
and conversion requirements. To do so you must:
1. Use connector-specific properties (see “InputQueue” on page 23) to configure

one or more input queues.
2. For each input queue, specify the queue manager and input queue name as

well as data handler class name and mime type in the application-specific
information.

For example, the following attribute in a static meta-object associates a data
handler with an InputQueue named CompReceipts:
[Attribute]
Name = Swift_MT502_Create
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = InputQueue=//queue.manager/CompReceipts;

DataHandlerClassName=com.crossworlds.
DataHandlers.swift.disposition_notification;

DataHandlerMimeType=message/
disposition_notification
IsRequiredServerBound = false
[End]

Chapter 2. Configuring the connector 31

Overloading input formats
When retrieving a message, the connector normally matches the input format to
one specific business object and verb combination. The connector then passes the
business object name and the contents of the message to the data handler. This
allows the data handler to verify that the message contents correspond to the
business object that the user expects.

If, however, the same input format is defined for more than one business object,
the connector cannot determine which business object the data represents before
passing it to the data handler. In such cases, the connector passes the message
contents only to the data handler and then looks up conversion properties based
on the business object that is generated. Accordingly, the data handler must
determine the business object based on the message content alone.

If the verb on the generated business object is not set, the connector searches for
conversion properties defined for this business object with any verb. If only one set
of conversion properties is found, the connector assigns the specified verb. If more
properties are found, the connector fails the message because it is unable to
distinguish among the verbs.

A sample static meta-object
The static meta-object shown below configures the connector to convert
SWIFT_MT502 business objects using verbs Create and Retrieve. Note that attribute
Default is defined in the meta-object. The connector uses the conversion properties
of this attribute:
OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true

as default values for all other conversion properties. Thus, unless specified
otherwise by an attribute or overridden by a dynamic child meta-object value, the
connector issues all business objects to queue CustomerQueue1 and then waits for a
response message. If a response does not arrive within 5000 milliseconds, the
connector terminates immediately.

Business object with verb create: Attribute Swift_MT502_Create indicates to the
connector that any messages of format NEW should be converted to a business
object with the verb Create. Because an output format is not defined, the connector
sends messages representing this object-verb combination using the format defined
for input (in this case NEW).

Business object with verb retrieve: Attribute Swift_MT502_Retrieve specifies that
business objects with verb Retrieve should be sent as messages with format
RETRIEVE. Note that the default response time has been overridden so that the
connector can wait up 10000 milliseconds before timing out (it still terminates if a
response is not received).
[ReposCopy]
Version = 3.1.0
Repositories = 1cHyILNuPTc=
[End]
[BusinessObjectDefinition]
Name = Sample_MO
Version = 1.0.0

[Attribute]
Name = Default
Type = String
Cardinality = 1
MaxLength = 1
IsKey = true

32 Adapter for SWIFT User Guide

IsForeignKey = false
IsRequired = false
AppSpecificInfo = OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT502_Create
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = InputFormat=NEW
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT502_Retrieve
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = OutputFormat=RETRIEVE;ResponseTimeout=10000
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]

Dynamic child meta-object
If it is difficult or unfeasible to specify the necessary meta-data through a static
meta-object, the connector can optionally accept meta-data specified at runtime for
each business object instance.

The connector recognizes and reads conversion properties from a dynamic
meta-object that is added as a child to the top-level business object passed to the
connector. The attribute values of the dynamic child meta-object duplicate the
conversion properties that you can specify via the static meta-object that is used to
configure the connector.

Because dynamic child meta object properties override those found in static
meta-objects, if you specify a dynamic child meta-object, you need not include a
connector property that specifies the static meta-object. Accordingly, you can use
either a dynamic child meta-object or a static meta-object, or both.

Chapter 2. Configuring the connector 33

Table 17 shows sample static meta-object properties for business object
Swift_MT502_Create. Note that the application-specific text consists of
semicolon-delimited name-value pairs

Table 17. Static meta-object structure for Swift_MT502_Create

Attribute name Application-specific text

Swift_MT502_Create InputFormat=ORDER_IN;OutputFormat=ORDER_OUT;OutputQueue=QueueA;Response

Table 18 shows a sample dynamic child meta-object for business object
Swift_MT_Create.

Table 18. Dynamic child meta-object Structure for Swift_MT502_Create

Property name Value

OutputFormat ORDER_OUT
OutputQueue QueueA
ResponseTimeout 10000
TimeoutFatal False

The connector checks the application-specific text of the top-level business object
received to determine whether tag cw_mo_conn specifies a child meta-object. If so,
the dynamic child meta-object values override those specified in the static
meta-object.

Population of the dynamic child meta-object during polling
In order to provide the integration broker with more information regarding
messages retrieved during polling, the connector populates specific attributes of
the dynamic meta-object, if already defined for the business object created.

Table Table 19 shows how a dynamic child meta-object might be structured for
polling.

Table 19. JMS dynamic child meta-object structure for polling

Property name Sample value

InputFormat ORDER_IN
InputQueue MYInputQueue
OutputFormat CxIgnore
OutputQueue CxIgnore
ResponseTimeout CxIgnore
TimeoutFatal CxIgnore

As shown in Table 19, you can define an additional property, InputQueue, in a
dynamic child meta-object. This property contains the name of the queue from
which a given message has been retrieved. If this property is not defined in the
child meta-object, it will not be populated.

Example scenario:
v The connector retrieves a message with the format ORDER_IN from the queue

WebSphere MQ queue.
v The connector converts this message to an order business object and checks the

application-specific text to determine if a meta-object is defined.

34 Adapter for SWIFT User Guide

v If so, the connector creates an instance of this meta-object and populates the
InputQueue and InputFormat properties accordingly, then publishes the business
object to available processes.

Sample dynamic child meta-object
[BusinessObjectDefinition]
Name = MO_Sample_Config
Version = 1.0.0

[Attribute]
Name = OutputFormat
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
DefaultValue = ORDER
IsRequiredServerBound = false
[End]
[Attribute]
Name = OutputQueue
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = OUT
IsRequiredServerBound = false
[End]
[Attribute]
Name = ResponseTimeout
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = -1
IsRequiredServerBound = false
[End]
[Attribute]
Name = TimeoutFatal
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = InputFormat
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = InputQueue
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false

Chapter 2. Configuring the connector 35

[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]
[BusinessObjectDefinition]
Name = Swift_MT502
Version = 1.0.0
AppSpecificInfo = cw_mo_conn=MyConfig

[Attribute]
Name = FirstName
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = LastName
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = Telephone
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = MyConfig
Type = MO_Sample_Config
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId

36 Adapter for SWIFT User Guide

Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]

JMS headers, SWIFT message properties, and dynamic child
meta-object attributes
You can add attributes to a dynamic meta-object to gain more information about,
and more control over, the message transport. Adding such attributes allows you
to modify JMS properties, to control the ReplyToQueue on a per-request basis
(rather than using the default ReplyToQueue specified in the adapter properties),
and to re-target a message CorrelationID. This section describes these attributes
and how they affect event notification and request processing in both synchronous
and asynchronous modes.

The following attributes, which reflect JMS and SWIFT header properties, are
recognized in the dynamic meta-object.

Table 20. Dynamic meta-object header attributes

Header attribute name Mode Corresponding JMS header

CorrelationID Read/Write JMSCorrelationID

ReplyToQueue Read/Write JMSReplyTo

DeliveryMode Read JMSDeliveryMode

Priority Read JMSPriority

Destination Read JMSDestination

Expiration Read JMSExpiration

MessageID Read JMSMessageID

Redelivered Read JMSRedelivered

TimeStamp Read JMSTimeStamp

Type Read JMSType

UserID Read JMSXUserID

AppID Read JMSXAppID

DeliveryCount Read JMSXDeliveryCount

GroupID Read JMSXGroupID

GroupSeq Read JMSXGroupSeq

JMSProperties Read/Write

Chapter 2. Configuring the connector 37

Read-only attributes are read from a message header during event notification and
written to the dynamic meta-object. These properties also populate the dynamic
MO when a response message is issued during request processing. Read/write
attributes are set on message headers created during request processing. During
event notification, read/write attributes are read from message headers to populate
the dynamic meta-object.

The interpretation and use of these attributes are described in the sections below.

Note: None of the above attributes are required. You may add any attributes to the
dynamic meta-object that relate to your business process.

JMS Properties: Unlike other attributes in the dynamic meta-object,
JMSProperties must define a single-cardinality child object. Every attribute in this
child object must define a single property to be read/written in the variable
portion of the JMS message header as follows:
1. The name of the attribute has no semantic value.
2. The type of the attribute should always be String regardless of the JMS

property type.
3. The application-specific information of the attribute must contain two

name-value pairs defining the name and format of the JMS message property to
which the attribute maps.

The table below shows application-specific information properties that you must
define for attributes in the JMSProperties object.

Table 21. Application-specific information for JMS property attributes

Name Possible values Comments

Name Any valid JMS property
name

This is the name of the JMS
property. Some vendors
reserve certain properties to
provide extended
functionality. In general,
users should not define
custom properties that begin
with JMS unless they are
seeking access to these
vendor-specific features.

Type String, Int, Boolean, Float,
Double, Long, Short

This is the type of the JMS
property. The JMS API
provides a number of
methods for setting values in
the JMS Message:
setIntProperty,
setLongProperty,
setStringProperty, etc. The
type of the JMS property
specified here dictates which
of these methods is used for
setting the property value in
the message.

The figure below shows attribute JMSProperties in the dynamic meta-object and
definitions for four properties in the JMS message header: ID, GID, RESPONSE
and RESPONSE_PERSIST. The application-specific information of the attributes

38 Adapter for SWIFT User Guide

defines the name and type of each. For example, attribute ID maps to JMS
property ID of type String).

Asynchronous event notification: If a dynamic meta-object with header attributes
is present in the event business object, the connector performs the following steps
(in addition to populating the meta-object with transport-related data):
1. Populates the CorrelationId attribute of the meta-object with the value

specified in the JMSCorrelationID header field of the message.
2. Populates the ReplyToQueue attribute of the meta-object with the queue

specified in the JMSReplyTo header field of the message. Since this header field
is represented by a Java object in the message, the attribute is populated with
the name of the queue (often a URI).

3. Populates the DeliveryMode attribute of the meta-object with the value
specified in the JMSDeliveryMode header field of the message.

4. Populates the Priority attribute of the meta-object with the JMSPriority
header field of the message.

5. Populates the Destination attribute of the meta-object with the name of the
JMSDestination header field of the message. Since the Destination is
represented by an object, the attribute is populated with the name of the
Destination object.

6. Populates the Expiration attribute of the meta-object with the value of the
JMSExpiration header field of the message.

7. Populates the MessageID attribute of the meta-object with the value of the
JMSMessageID header field of the message.

8. Populates the Redelivered attribute of the meta-object with the value of the
JMSRedelivered header field of the message.

9. Populates the TimeStamp attribute of the meta-object with the value of the
JMSTimeStamp header field of the message.

10. Populates the Type attribute of the meta-object with the value of the JMSType
header field of the message.

11. Populates the UserID attribute of the meta-object with the value of the
JMSXUserID property field of the message.

12. Populates the AppID attribute of the meta-object with the value of the
JMSXAppID property field of the message.

13. Populates the DeliveryCount attribute of the meta-object with the value of the
JMSXDeliveryCount property field of the message.

14. Populates the GroupID attribute of the meta-object with the value of the
JMSXGroupID property field of the message.

15. Populates the GroupSeq attribute of the meta-object with the value of the
JMSXGroupSeq property field of the message.

Figure 4. JMS properties attribute in a dynamic meta-object

Chapter 2. Configuring the connector 39

16. Examines the object defined for the JMSProperties attribute of the meta-object.
The adapter populates each attribute of this object with the value of the
corresponding property in the message. If a specific property is undefined in
the message, the adapter sets the value of the attribute to CxBlank.

Synchronous event notification: For synchronous event processing, the adapter
posts an event and waits for a response from the integration broker before sending
a response message back to the application. Any changes to the business data are
reflected in the response message returned. Before posting the event, the adapter
populates the dynamic meta-object just as described for asynchronous event
notification. The values set in the dynamic meta-object are reflected in the
response-issued header as described below (all other read-only header attributes in
the dynamic meta-object are ignored.):
v CorrelationID If the dynamic meta-object includes the attribute CorrelationId,

you must set it to the value expected by the originating application. The
application uses the CorrelationID to match a message returned from the
connector to the original request. Unexpected or invalid values for a
CorrelationID will cause problems. It is helpful to determine how the
application handles correlating request and response messages before using this
attribute. You have four options for populating the CorrelationID in a
synchronous request.
1. Leave the value unchanged. The CorrelationID of the response message will

be the same as the CorrelationID of the request message. This is equivalent
to the WebSphere MQ option MQRO_PASS_CORREL_ID.

2. Change the value to CxIgnore. The connector by default copies the message
ID of the request to the CorrelationID of the response. This is equivalent to
the WebSphere MQ option MQRO_COPY_MSG_ID_TO_CORREL_ID.

3. Change the value to CxBlank. The connector will not set the CorrelationID
on the response message.

4. Change the value to a custom value. This requires that the application
processing the response recognize the custom value.

If you do not define attribute CorrelationID in the meta-object, the connector
handles the CorrelationID automatically.

v ReplyToQueue If you update the dynamic meta-object by specifying a different
queue for attribute ReplyToQueue, the connector sends the response message to
the queue you specify. This is not recommended. Having the connector send
response messages to different queues may interfere with communication
because an application that sets a specific reply queue in a request message is
assumed to be waiting for a response on that queue.

v JMS properties The values set for the JMS Properties attribute in the dynamic
meta-object when the updated business object is returned to the connector are
set in the response message.

Asynchronous request processing: The connector uses the dynamic meta-object,
if present, to populate the request message prior to issuing it. The connector
performs the following steps before sending a request message:
1. If attribute CorrelationID is present in the dynamic meta-object, the connector

sets the CorrelationID of the outbound request message to this value.
2. If attribute ReplyToQueue is specified in the dynamic meta-object, the connector

passes this queue via the request message and waits on this queue for a
response. This allows you to override the ReplyToQueuevalue specified in the
connector configuration properties. If you additionally specify a negative

40 Adapter for SWIFT User Guide

ResponseTimeout (meaning that the connector should not wait for a response),
theReplyToQueue is set in the response message, even though the connector
does not actually wait for a response.

3. If attribute JMSProperties is specified in the dynamic meta-object, the
corresponding JMS properties specified in the child dynamic meta-object are set
in the outbound message sent by the connector.

Note: If header attributes in the dynamic meta-object are undefined or specify
CxIgnore, the connector follows its default settings.

Synchronous request processing: The connector uses the dynamic meta-object, if
present, to populate the request message prior to issuing it. If the dynamic
meta-object contains header attributes, the connector populates it with
corresponding new values found in the response message. The connector performs
the following steps (in addition to populating the meta-object with
transport-related data) after receiving a response message:
1. If attribute CorrelationID is present in the dynamic meta-object, the adapter

updates this attribute with the JMSCorrelationID specified in the response
message.

2. If attribute ReplyToQueue is defined in the dynamic meta-object, the adapter
updates this attribute with the name of the JMSReplyTo specified in the
response message.

3. If attribute DeliveryMode is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSDeliveryMode header field of
the message.

4. If attribute Priority is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSPriority header field of the
message.

5. If attribute Destination is defined in the dynamic meta-object, the adapter
updates this attribute with the name of the JMSDestination specified in the
response message.

6. If attribute Expiration is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSExpiration header field of the
message.

7. If attribute MessageID is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSMessageID header field of the
message.

8. If attribute Redelivered is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSRedelivered header field of the
message.

9. If attribute TimeStamp is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSTimeStamp header field of the
message.

10. If attribute Type is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSType header field of the message.

11. If attribute UserID is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSXUserID header field of the message.

12. If attribute AppID is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSXAppID property field of the message.

13. If attribute DeliveryCount is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSXDeliveryCount header field of
the message.

Chapter 2. Configuring the connector 41

14. If attribute GroupID is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSXGroupID header field of the message.

15. If attribute GroupSeq is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSXGroupSeq header field of the
message.

16. If attribute JMSProperties is defined in the dynamic meta-object, the adapter
updates any properties defined in the child object with the values found in
the response message. If a property defined in the child object does not exist
in the message, the value is set to CxBlank.

Note: Using the dynamic meta-object to change the CorrelationID set in the
request message does not affect the way the adapter identifies the response
message—the adapter by default expects that the CorrelationID of any
response message equals the message ID of the request sent by the adapter.

Error handling: If a JMS property cannot be read from or written to a message,
the connector logs an error and the request or event fails. If a user-specified
ReplyToQueue does not exist or cannot be accessed, the connector logs an error and
the request fails. If a CorrelationID is invalid or cannot be set, the connector logs
an error and the request fails. In all cases, the message logged is from the
connector message file.

Startup file configuration
Before you start the connector for SWIFT, you must configure the startup file. The
sections below describe how to do this for Windows and UNIX systems.

Windows
To complete the configuration of the connector for Windows platforms, you must
modify the start_SWIFT.bat file:
1. Open the start_SWIFT.bat file.
2. Scroll to the section beginning with “Set the directory containing your MQ

Java client libraries,” and specify the location of your MQ Java client
libraries.

UNIX
To complete the configuration of the connector for UNIX platforms, you must
modify the start_SWIFT.sh file:
1. Open the start_SWIFT.sh file.
2. Scroll to the section beginning with “Set the directory containing your

WebSphere MQ Java client libraries,” and specify the location of your
WebSphere MQ Java client libraries.

Startup
For information on starting a connector, stopping a connector, and the connector’s
temporary startup log file, see thestartup chapter in the System Installation Guide for
your platform.

42 Adapter for SWIFT User Guide

Chapter 3. Business objects
v “Connector business object requirements”
v “Overview of SWIFT message structure” on page 47
v “Overview of business objects for SWIFT” on page 48
v “SWIFT message and business object data mapping” on page 49

The connector for SWIFT is a meta-data-driven connector. In WebSphere business
objects, meta-data is data about the application’s data, which is stored in a
business object definition and which helps the connector interact with an
application. A meta-data-driven connector handles each business object that it
supports based on meta-data encoded in the business object definition rather than
on instructions hard-coded in the connector.

Business object meta-data includes the structure of a business object, the settings of
its attribute properties, and the content of its application-specific text. Because the
connector is meta-data-driven, it can handle new or modified business objects
without requiring modifications to the connector code. However, the connector’s
configured data handler makes assumptions about the structure of its business
objects, object cardinality, the format of the application-specific text, and the
database representation of the business object. Therefore, when you create or
modify a business object for SWIFT, your modifications must conform to the rules
the connector is designed to follow, or the connector cannot process new or
modified business objects correctly.

Important: The connector supports business object mapping between the ISO
7775-15022 message formats for SWIFT Category 5, Securities Markets,
but only with the expanded business object definitions available with
release 1.3 (and later) of this connector. To install the object definition
files, see Chapter 2, “Configuring the connector”, on page 17. If you use
business object definitions from release 1.2 or earlier, the connector cannot
perform ISO 7775-15022 business object transformations.

This chapter describes how the connector processes business objects and describes
the assumptions the connector makes. You can use this information as a guide to
implementing new business objects.

Connector business object requirements
The business object requirements for the connector reflect the way the SWIFT data
handler converts:
v a SWIFT message into a WebSphere business object, and vice versa
v a business object representing a SWIFT ISO 7775 message into a business object

representing the corresponding SWIFT ISO 15022 message, and vice versa.

The sections below discuss the requirements for WebSphere business objects as
well as the SWIFT message structure. For a step-by-step description of how the
SWIFT data handler interacts with WebSphere business objects and SWIFT
messages, see Chapter 5, “SWIFT Data Handler”, on page 123.

A review of the following WebSphere documents is strongly recommended:

© Copyright IBM Corp. 2002, 2003 43

v IBM WebSphere InterChange Server Technical Introduction to IBM WebSphere
InterChange Server (when ICS is the integration broker)

v IBM WebSphere Business Integration Adapters Implementation Guide for WebSphere
MQ Integrator Broker (when MQ Integrator Broker is the integration broker)

v Business Object Development Guide

Business object hierarchy
WebSphere business objects can be flat or hierarchical. All the attributes of a flat
business object are simple (that is, each attribute represents a single value, such as
a String or Integer or Date).

In addition to containing simple attributes, a hierarchical business object has
attributes that represent a child business object, an array of child business objects,
or a combination of both. In turn, each child business object can contain a child
business object or an array of business objects, and so on.

Important: A business object array can contain data whose type is a business
object. It cannot contain data of any other type, such as String or
Integer.

There are two types of relationships between parent and child business objects:
v Single-cardinality—When an attribute in a parent business object represents a

single child business object. The attribute is of the same type as the child
business object.

v Multiple-cardinality—When an attribute in the parent business object represents
an array of child business objects. The attribute is an array of the same type as
the child business objects.

WebSphere uses the following terms when describing business objects:
v hierarchical—Refers to a complete business object, including the top-level

business object and its the child business objects at any level.
v parent—Refers to a business object that contains at least one child business

object. A top-level business object is also a parent.
v individual—Refers to a single business object, independent of any child business

objects it might contain or that contain it.
v top-level—Refers to the individual business object at the top of the hierarchy,

which does not itself have a parent business object.
v wrapper—Refers to a top-level business object that contains information used to

process its child business objects. For example, the XML connector requires the
wrapper business object to contain information that determines the format of its
child data business objects and routes the children.

Business object attribute properties
Business object architecture defines various properties that apply to attributes. This
section describes how the connector interprets several of these properties. For
further information on these properties, see Business Object Attributes and
Attribute Properties in Chapter 2 of the Business Object Development Guide.

Name property
Each business object attribute must have a unique name within the business object.
The name should describe the data that the attribute contains.

44 Adapter for SWIFT User Guide

For an application-specific business object, check the connector or data handler
guide for specific naming requirements.

The name can be up to 80 alphanumeric characters and underscores. It cannot
contain spaces, punctuation, or special characters.

Type property
The Type property defines the data type of the attribute:
v For a simple attribute, the supported types are Boolean, Integer, Float, Double,

String, Date, and LongText.
v If the attribute represents a child business object, specify the type as the name of

the child business object definition (for example, Type = MT502A) and specify the
cardinality as 1.

v If the attribute represents an array of child business objects, specify the type as
the name of the child business object definition and specify the cardinality as n.

Note: All attributes that represent child business objects also have a
ContainedObjectVersion property (which specifies the child’s version
number) and a Relationship property (which specifies the value
Containment).

Cardinality property
Each simple attribute has cardinality 1. Each business object attribute that
represents a child or array of child business objects has cardinality 1 or n,
respectively.

Note: When specified for a required attribute, cardinality 1 indicates a child
business object must exist, and cardinality n indicates zero to many instances
of a child business object.

Key property
At least one attribute in each business object must be specified as the key. To
define an attribute as a key, set this property to true.

When you specify as key an attribute that represents a child business object, the
key is the concatenation of the keys in the child business object. When you specify
as key an attribute that represents an array of child business objects, the key is the
concatenation of the keys in the child business object at location 0 in the array.

Note: Key information is not available in the collaboration mapping process
(relevant only when ICS is the integration broker).

Foreign key property
The Foreign Key property is typically used in application-specific business objects
to specify that the value of an attribute holds the primary key of another business
object, serving as a means of linking the two business objects. The attribute that
holds the primary key of another business object is called a foreign key. Define the
Foreign Key property as true for each attribute that represents a foreign key.

You can also use the Foreign Key property for other processing instructions. For
example, this property can be used to specify what kind of foreign key lookup the
connector performs. In this case, you might set Foreign Key to true to indicate that
the connector checks for the existence of the entity in the database and creates the
relationship only if the record for the entity exists.

Chapter 3. Business objects 45

Required property
The Required property specifies whether an attribute must contain a value. If a
particular attribute in the business object that you are creating must contain a
value, set the Required property for the attribute to true.

For information on enforcing the Required property for attributes, see the section
on initAndValidateAttributes() in Connector Reference: C++ Class Library and
Connector Reference: Java Class Library.

AppSpecificInfo
The AppSpecificInfo property is a String no longer than 255 characters that is
specified primarily for an application-specific business object.

Note: Application-specific text is not available in the collaboration mapping
process (relevant only when ICS is the integration broker).

Max length property
The Max Length property is set to the number of bytes that a String-type attribute
can contain. Although this value is not enforced by the WebSphere system, specific
connectors or data handlers may use this value. Check the guide for the connector
or data handler that will process the business object to determine minimum and
maximum allowed lengths.

Note: The Max Length property is very important when you use a fixed width
data handler. Attribute length is not available in the collaboration mapping
process (relevant only when ICS is the integration broker).

Default value property
The Default Value property can specify a default value for an attribute.

If this property is specified for an application-specific business object, and the
UseDefaults connector configuration property is set to true, the connector can use
the default values specified in the business object definition to provide values for
attributes that have no values at runtime.

For more information on how the Default Value property is used, see the section
on initAndValidateAttributes() in Connector Reference: C++ Class Library and
Connector Reference: Java Class Library.

Comments property
The Comments property allows you to specify a human-readable comment for an
attribute. Unlike the AppSpecificInfo property, which is used to process a business
object, the Comments property provides only documentation information.

Special attribute value
Simple attributes in business object can have the special value, CxIgnore. When it
receives a business object from an integration broker, the connector ignores all
attributes with a value of CxIgnore. It is as if those attributes were invisible to the
connector.

If no value is required, the connector sets the value of that attribute to CxIgnore by
default.

Application-specific text at the attribute level

Note: Business object level application-specific text is not used by the connector.

46 Adapter for SWIFT User Guide

For business object attributes, the application-specific text format consists of
name-value parameters. Each name-value parameter includes the parameter name
and its value. The format of attribute application-specific text is as follows:

name=value[:name_n=value_n][...]

Each parameter set is separated from the next by a colon (:) delimiter.

Table 22 describes the name-value parameters for attribute application-specific text.

Table 22. Name-value parameters in AppSpecificText for attributes

Parameter Required Description

block Yes for top-level object
only

The number of the block in the SWIFT message. Values
range from 0-5. For information on the SWIFT message
blocks, see “Overview of SWIFT message structure” on
page 47.

parse Yes for attributes of
the top-level object
only

Describes whether, and how, to parse the SWIFT
message block. Values are: fixlen—parse as fixed
length delim—parse as delimited text field—Block 4
only no—Do not parse; treat as a single string.

tag Yes for attributes of
type tag business
object

The tag number of the field. For more on SWIFT
message tags, see Appendix D, “SWIFT message
structure”, on page 173. For further information on
sequence and field business objects, see “Block 4
business object structure” on page 61.

letter=a Yes for each attribute
that points to a tag
business object

One or more supported letters appended to the tag in
the SWIFT message format. For example 20A or
[A|B|NULL] (A or B or null). Note that NULL must be
specified for tags where no letter is a possibility, or for
tags that do not have a letter option at all. For example,
tag 59.

content No The qualifier in the SWIFT message format. For
example, in a SWIFT message MT502, tag20C, the
qualifier = SEME.

Note: The application-specific information for production instruction meta-objects
(PIMOs) contains name-value pairs that indicate compute instructions. For
more information, see Chapter 4, “ISO 7775 to ISO 15022 mapping”, on
page 81.

Overview of SWIFT message structure
SWIFT messages consist of five blocks of data. In addition, the MQSA component
adds two blocks that are used for queue management. The high-level structure of a
SWIFT message is as follows:

MQSA UUID
SWIFT 1:Basic Header Block
SWIFT 2: Application Header Block
SWIFT 3:User Header Block
SWIFT 4: Text Block
SWIFT 5: Trailer

MQSA S Block

Chapter 3. Business objects 47

Note: The MQSA component adds the UUID (User Unique Message Identifier) and
S blocks. Neither are parsed by the SWIFT data handler. The S block has the
same structure as SWIFT block 5, except that field tags consist of three char
strings. For example, {S:{COP:P}}.

For further information on SWIFT message structure, see Appendix D, “SWIFT
message structure”, on page 173, and All Things SWIFT: the SWIFT User Handbook.

Overview of business objects for SWIFT
As shown in Figure 5 there are five kinds of business objects for SWIFT:

v Message business object (Msg BO) This is the top-level business object whose
attributes correspond to the blocks in a SWIFT message. For further information,
see “Top-level business object structure” on page 49.

v Message block business object (MsgBlk BO) A child object of the Msg BO that
can represent blocks 1, 2, 3, or 5 in a SWIFT message. For further information,
see “Block 1 business object structure” on page 53.

v Message data business object (MsgData BO) A child object of the Msg BO that
represents block 4 of the SWIFT message. For further information, see “Block 4
business object structure” on page 61.

v Message sequence business object (MsgSeq BO) A child object of a MsgData
BO or of another MsgSeq BO. A MsgSeq BO represents a sequence of fields
occurring in block 4 of the SWIFT message. For further information, see
“Sequence business object structure” on page 66.

Msg BO

MsgBlk BO

MsgData BO

MsgSeq BO

MsgField BO

= SWIFT message

= SWIFT message blocks 1, 2, or 3

= SWIFT data block 4

= Block 4 data sequence

= Block 4 data field

MsgBlk BO = SWIFT Message Block 5

Figure 5. Business objects map to SWIFT message components

48 Adapter for SWIFT User Guide

v Message field business object (MsgField BO) A child object of the MsgData BO
or of a MsgSeq BO that contains the content of a field. Fields correspond to tags
in SWIFT messages. For further information, see “Field business object
definitions” on page 69.

Each of these business objects consist of the following:
v Name The name of the business object consists of a SWIFT Message name, a

SWIFT message sequence name, or a SWIFT field name. More detailed naming
conventions, if any, are provided in the sections for each kind of business object
listed below. For example:
– Swift_MT502 is the name of the Msg BO. For further information, see

“Top-level business object structure” on page 49.
– Swift_ApplicationHeader is the name of a MsgBlk BO. For further

information, see “Block 1 business object structure” on page 53, “Block 2
business object structure” on page 55, and “Block 3 business object structure”
on page 59.

– Swift_MT502Data is the name of a MsgData BO. For further information, see
“Block 4 business object structure” on page 61.

– Swift_MT502_B1 is the name of a MsgSeq BO. For further information, see
“Sequence business object structure” on page 66.

– Swift_Tag_22 is the name of a MsgField BO. For further information, see
“Field business object definitions” on page 69.

v Version The version of the business object is set to 1.1.0. For example:
Version = 1.1.0

v Attributes Each business object contains one or more attributes. For more
information see “Business object attribute properties” on page 44 and the
sections below on each kind of business object.

v Verbs Each business object supports the following standard verbs:
– Create
– Retrieve

SWIFT message and business object data mapping
The IBM WebSphere Business Integration Adapter for SWIFT supports two kinds
of mapping:
v SWIFT-message-to-WebSphere-business-object The sections below describe the

data mapping that occurs between SWIFT messages and WebSphere business
objects.

v Business-object-to-business-object The mapping used to transform a business
object that represents an ISO 7775 SWIFT message into a business object that
represents the corresponding ISO 15022 SWIFT message, and vice versa. For
further information, see Chapter 4, “ISO 7775 to ISO 15022 mapping”, on
page 81.

Top-level business object structure
The structure of the top-level business object for a SWIFT message, or Msg BO,
reflects that of the SWIFT message. WebSphere requires a business object for each
SWIFT block. As shown in Table 23, the top-level business object must have at least
5 attributes, one for each SWIFT block.

Note: Only attribute properties of consequence are shown in Table 23. For a listing
of all attribute properties, see “Sample top-level Business Object (Msg BO)

Chapter 3. Business objects 49

definition” on page 51.

Table 23. Top-level business object structure

Name Type Key Required Application specific
info

UUID (MQSA
prepended)

String Yes No block=0;parse=no

Swift_01Header Swift_BasicHeader No Yes block=1;parse=fixlen
Swift_02Header Swift_ApplicationHeader No No block=2;parse=fixlen
Swift_03Header Swift_UserHeader No No block=3;parse=delim
Swift_Data Swift_Text No No block=4;parse=field
Swift_05Trailer String No No block=5;parse=no
Swift_BlockS (MQSA
appended)

String No No block=6;parse=no

The following rules apply to the top-level business object:
v The name of the top-level object must be constructed in the following way:

BOPrefix_MTMessageType

where:

BOPrefix = an attribute of the meta-object (MO). For further information on the
meta-object, see “Static meta-object” on page 29.

_MT = a constant string.

MessageType = an attribute of block 2 of the SWIFT message. For further
information, see All Things SWIFT: the SWIFT User Handbook

An example of a top-level business object name is Swift_MT502.
v UUID, prepended to the message by the MQSA, is represented with a String

attribute
v Blocks 1-4 are represented with single-cardinality containers
v Block 5 is a string attribute, and is not extracted from the message by the SWIFT

data handler.

Note: It is possible to create business objects for block 5 and block S using block 3
as a template.

See Table 22 for the attribute application-specific information.

Figure 6 shows a business object definition for a top-level business object of a
SWIFT message. This Msg BO definition was created in the WebSphere
development environment.

The application-specific information contains the block number and parsing
parameters for each attribute. For further information on attribute
application-specific text, see Table 22. The Swift_ attributes correspond to child
business objects discussed in the following sections. For a full specification of this
sample business object definition, see “Sample top-level Business Object (Msg BO)
definition” on page 51. Of special note is the type for the data block attribute,
Swift_MT502Data, which indicates SWIFT message type 502, an order to buy or sell.

50 Adapter for SWIFT User Guide

This attribute corresponds to a child object of the top-level Msg BO that represents
block 4 of the SWIFT message. The child object is a message data business object
(MsgData BO).

All SWIFT top-level business object definitions are identical to that shown in
Figure 6 with one exception: Block 4, shown as Swift_MT502Data, reflects the actual
data definition of a specific SWIFT message.

Note: To create a top-level business object definition for a SWIFT message, you
must start Business Object Designer and then create all the child objects first.

Sample top-level Business Object (Msg BO) definition
This section presents a sample definition of a top-level business object, or Msg BO,
for a SWIFT message of type MT502—an order to buy or sell.
[BusinessObjectDefinition]
Name = Swift_MT502
Version = 1.1.0

[Attribute]
Name = UUID
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=0;parse=no
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_01Header
Type = Swift_BasicHeader
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=1;parse=fixlen
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_02Header
Type = Swift_ApplicationHeader
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false

Figure 6. Definition for top-level business object of a SWIFT message

Chapter 3. Business objects 51

IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=2;parse=fixlen
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_03Header
Type = Swift_UserHeader
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=3;parse=delim
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT502Data
Type = Swift_MT502Data
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=4;parse=field
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_05Trailer
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=5;parse=no
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_BlockS
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=6;parse=no
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

52 Adapter for SWIFT User Guide

[Verb]
Name = Retrieve
[End]

Block 1 business object structure
The MsgBlck BO, Swift_BasicHeader, has the format and attributes shown in
Table 24. The SWIFT data handler converts each of the SWIFT fields in this block
into attributes in the Swift_BasicHeader business object. Note that there is no
attribute application-specific information for this business object.

Note: Only attribute properties of consequence are shown in Table 24. For a listing
of all attribute properties, see “Sample block 1 business object definition” on
page 54.

Table 24. Block 1 business object structure

Name Type Key Foreign
key

Required Cardinality Default Max
length

BlockIdentifier String Yes No Yes 1 1:a 2
ApplicationIdentifierString No No Yes 1 1
ServiceIdentifier String No No Yes 1 2
LTIdentifier String No No Yes 1 12
SessionNumber String No No Yes 1 4
SequenceNumber String No No No 1 4
a The BlockIdentifier attribute includes the delimiter ”:” as in “1:”.

See Table 22 for the attribute application-specific information.

Figure 7 shows a block 1 business object definition that has been manually created
in a WebSphere development environment. Each attribute name
(ApplicationIdentifier, ServiceIdentifier, and so on) corresponds to a field in
this SWIFT message block. For further information on this SWIFT message block,
see Appendix D, “SWIFT message structure”, on page 173, and All Things SWIFT:
the SWIFT User Handbook. Specify Type String for each named attribute. Note that
there is no attribute application-specific information for the components of this
business object.

Note: Be sure to specify the correct MaxLength values for the attribute names in
this fixed-length block business definition.

Chapter 3. Business objects 53

Note: To create a block 1 business object definition for a SWIFT message, start
Business Object Designer and then enter values for the attributes shown in
“Sample block 1 business object definition” on page 54.

Sample block 1 business object definition
This section presents a sample definition of a block 1 business object for a SWIFT
message of type MT502—an order to buy or sell.
[BusinessObjectDefinition]
Name = Swift_BasicHeader
Version = 1.1.0

[Attribute]
Name = BlockIdentifier
Type = String
Cardinality = 1
MaxLength = 2
IsKey = true
IsForeignKey = false
IsRequired = true
DefaultValue = 1:
IsRequiredServerBound = false
[End]
[Attribute]
Name = ApplicationIdentifier
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = ServiceIdentifier
Type = String
Cardinality = 1
MaxLength = 2
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = LTIdentifier
Type = String
Cardinality = 1
MaxLength = 12

Figure 7. Block 1 business object definition

54 Adapter for SWIFT User Guide

IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = SessionNumber
Type = String
Cardinality = 1
MaxLength = 4
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = SequenceNumber
Type = String
Cardinality = 1
MaxLength = 6
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

Block 2 business object structure
The block 2 MsgBlk BO, Swift_ApplicationHeader, has the format and attributes
shown in Table 25. The SWIFT data handler converts each of the SWIFT fields in
this block into attributes in the Swift_ApplicationHeader business object. Note that
there is no attribute application-specific information for this business object.

Note: Only attribute properties of consequence are shown in Table 25. For a listing
of all attribute properties, see “Sample block 2 business object definition” on
page 56.

Table 25. Block 2 business object structure

Name Type Key Required Cardinality Default Max
length

Block Identifier String No Yes 1 2:a 2
IOIdentifier String No Yes 1 1
MessageType String No Yes 1 3
I_ReceiverAddress String No Yes 1 12
I_MessagePriority String No Yes 1 1
I_DeliveryMonitoring String No No 1 1
I_ObsolescencePeriod String No No 1 3
O_InputTime String No Yes 1 4

Chapter 3. Business objects 55

Table 25. Block 2 business object structure (continued)

Name Type Key Required Cardinality Default Max
length

O_MessageInputReference String No Yes 1 28
O_OutputDate String No No 1 6
O_OutputMessagePriority String No No 1 6
a The BlockIdentifier attribute includes the delimiter ”:” as in “2:”.

The first three attributes in Table 25 are I/O attributes. Attributes that start with I_
are input attributes and are populated during SWIFT-to-business-object conversion.
Attributes that start with O_ are output attributes and are populated in
business-object-to-SWIFT conversions. The CxIgnore property must be set for
business-object-to-SWIFT conversions.

See Table 22 for the attribute application-specific information.

Figure 8 shows a block 2 business object definition that has been manually created
in a WebSphere development environment. Each attribute name (BlockIdentifier,
IOIdentifier, and so on) corresponds to a field in this SWIFT message block. The
definition shown is for the input attributes (I_) are populated during
SWIFT-to-business-object conversion. For further information on this SWIFT
message block, see Appendix D, “SWIFT message structure”, on page 173, and All
Things SWIFT: the SWIFT User Handbook. Specify type String for each named attribute.
Note that there is no attribute application-specific information for the components
of this business object.

Note: Be sure to specify the correct MaxLength values for the attribute names in
this fixed-length block business definition.

Note: To create a block 2 business object definition for a SWIFT message, start
Business Object Designer and then enter values for the attributes shown in
“Sample block 2 business object definition” on page 56.

Sample block 2 business object definition
This section presents a sample definition of a block 2 business object for a SWIFT
message of type MT502—an order to buy or sell.

Figure 8. Block 2 business object definition

56 Adapter for SWIFT User Guide

[BusinessObjectDefinition]
Name = Swift_ApplicationHeader
Version = 1.1.0

[Attribute]
Name = BlockIdentifier
Type = String
Cardinality = 1
MaxLength = 2
IsKey = false
IsForeignKey = false
IsRequired = true
DefaultValue = 2:
IsRequiredServerBound = false
[End]
[Attribute]
Name = IOIdentifier
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
DefaultValue = O
IsRequiredServerBound = false
[End]
[Attribute]
Name = MessageType
Type = String
Cardinality = 1
MaxLength = 3
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_InputTime
Type = String
Cardinality = 1
MaxLength = 4
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_MessageInputReference
Type = String
Cardinality = 1
MaxLength = 28
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_OutputDate
Type = String
Cardinality = 1
MaxLength = 6
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]

Chapter 3. Business objects 57

Name = O_OutputTime
Type = String
Cardinality = 1
MaxLength = 4
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_OutputMessagePriority
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_ReceiverAddress
Type = String
Cardinality = 1
MaxLength = 12
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_MessagePriority
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_DeliveryMonitoring
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_ObsolescencePeriod
Type = String
Cardinality = 1
MaxLength = 3
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false

58 Adapter for SWIFT User Guide

IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

Block 3 business object structure
The block 3 MsgBlk BO, Swift_UserHeader, has the format and attributes shown in
Table 26. Note that there is attribute application-specific information for this
business object: the Tag parameter. For Tag parameters see Table 22.

Note: Only attribute properties of consequence are shown in Table 26. For a listing
of all attribute properties, see “Sample block 3 business object definition” on
page 60.

Table 26. Block 3 business object structure

Name Type Key Foreign Required Cardinality Application
specific
information

Max length

Tag103 String Yes No No 1 Tag=103 6
Tag113 String No No No 1 Tag=113 6
Tag108 String No No No 1 Tag=108 6
Tag119 String No No No 1 Tag=119 6
Tag115 String No No No 1 Tag=115 6

Figure 9 shows a block 3 business object definition that has been manually created
in a WebSphere development environment. Each attribute name (Tag103, Tag113,
and so on,) corresponds to a field in this SWIFT message block. For further
information on this SWIFT message block, see Appendix D, “SWIFT message
structure”, on page 173, and All Things SWIFT: the SWIFT User Handbook. Specify
type String for each named attribute. Note that the application-specific information
for the components of this business object are SWIFT tags.

Note: To create a block 3 business object definition for a SWIFT message, start
Business Object Designer and then enter values for the attributes shown in
“Sample block 3 business object definition” on page 60.

Figure 9. Block 3 business object definition

Chapter 3. Business objects 59

Sample block 3 business object definition
This section presents a sample definition of a block 3 business object for a SWIFT
message of type MT502—an order to buy or sell.
[BusinessObjectDefinition]
Name = Swift_UserHeader
Version = 1.1.0

[Attribute]
Name = Tag103
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=103
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag113
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=113
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag108
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=108
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag119
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=119
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag115
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=115
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
Cardinality = 1

60 Adapter for SWIFT User Guide

MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

Block 4 business object structure
SWIFT block 4 contains the body of the SWIFT message. Block 4 is made up of
fields of message tags and their contents on the one hand, and on the other, of
sequences of message tags. This data content makes the block 4 business object
structure unlike that of blocks 1, 2, and 3. The block 4 business object is the
message data business object (MsgData BO).

Every tag and sequence in a SWIFT message is modeled as a child business object
of the MsgData BO. Accordingly, a MsgData BO has child objects of two types:
field business objects (MsgField BO) and sequence business objects (MsgSeq BO).
These business objects reflect how the SWIFT data is formatted in block 4. More
specifically, attributes in these business objects model the content (message tags
and their content) and order (sequence) that is specified in a SWIFT message
format specification. The sequence of the message tags is crucial if the business
object definition is to faithfully represent the SWIFT message. For further
information on MsgField BOs and MsgSeq BOs, see “Sequence and field business
objects” on page 66.

Figure 10 shows a portion of the format specification from the SWIFT Standards
Release Guide for MT502, an order to buy or sell.

Chapter 3. Business objects 61

Figure 11 shows the corresponding portion of a business object definition, which
reflects the structure of the message tags and sequences in the SWIFT message:
v The Status—M (mandatory) or O (optional)—field in the SWIFT message is

mapped to the Required property in the business object definition. For example,
the status of SWIFT Tag 98a (shown in Figure 10) is O or optional; Figure 11
shows the corresponding business object attribute, Preparation_DateTime (of
type Swift_Tag_98), for which the Required property is not checked.

v The Tag, Qualifier, and Content/Options fields from the SWIFT message are
mapped as attribute application-specific text in the business object definition. For
example, in the SWIFT message shown in Figure 10, Start of Block is Tag16R
with Content of GENL. The corresponding entry shown in Figure 11 is the
attribute Start_Of_Block of type Swift_Tag_16 with application-specific
information property parameters that identify the Tag, the Tag’s letter, and
Content (Tag=16;Letter=R;Content=GENL).

v Data formats are often indicated in the Content/Options field in a SWIFT
message. For example, Figure 10 shows the sender’s reference for “Mandatory
Sequence A General Information” as Tag20C, with a SEME qualifier and Content
consisting of data format instructions (:4!c[/4!c]). Figure 11 shows the
corresponding attribute application-specific text: only the Tag and Letter are
shown in the AppSpecInfo field (Tag=20;Letter=C). The SWIFT data handler also
parses the field’s data content—the formatting information (:4!c[/4!c]) is

Figure 10. SWIFT message type 502 format specification

62 Adapter for SWIFT User Guide

included in the business object definition in ways that support mapping between
ISO 7775 and ISO 15022 message formats.

v Repeating sequences in SWIFT messages are indicated by “---->” in the SWIFT
Format Specifications as shown in Figure 10. Nonrepeating sequences are
marked “-----|” . In the business object definition, a repeating sequence is
assigned cardinality n. For example, the repeating sequence Tag22F shown in
Figure 10 is mapped to the attribute Indicator of type Swift_Tag_22 with a
cardinality property of n.

MsgData BO format
The format of a MsgData BO is summarized in the sections below.

MsgData BO name: The naming convention for the MsgData BO representing
block 4 of a SWIFT message is as follows:

Swift_MT<message_type>Data

For example:
Name = Swift_MT502Data

MsgData BO attribute names: Each attribute of the MsgData BO represents one
of the following:
v a MsgSeq BO
v a MsgField BO

Accordingly, the attribute names are the same as those for MsgSeq BOs and
MsgField BOs. The naming convention for MsgField BO attributes is as follows:

Swift_<tag_number>_<position_in_the_SWIFT_message>

For example:
Name = Swift_94_1

Figure 11. Partial block 4 business object definition

Chapter 3. Business objects 63

The naming convention for MsgSeq BO attributes is as follows:
Swift_MT<message_type>_<SWIFT_sequence_name>

For example:
Name = Swift_MT502_B

For further information see “Sequence business object structure” on page 66 and
“Field business object definitions” on page 69.

MsgData BO attribute types: The type for MsgData attributes is as follows:

For MsgField BO attributes:
Swift_Tag_<tag_number>

For example:
Type = Swift_Tag_94

For MsgSeq BO attributes:
Swift_MT<message_type>_<SWIFT_sequence_name>

For example:
Type = Swift_MT502_B

MsgData BO attribute ContainedObjectVersion: The contained object version for
the MsgData BO as well as for the its MsgSeq BO attributes is 1.1.0. For example:
[Attribute]
Name = Swift_MT502_B
Type = Swift_MT502_B

...

ContainedObjectVersion = 1.1.0

...

[End]

Note: MsgField BO attributes are simple, and have no ContainedObjectVersion.

MsgData BO attribute relationship: The relationship attribute property for
MsgData BO and its MsgSeq BO attributes is Containment. For example:
[Attribute]
Name = Swift_MT502Data
Type = Swift_MT502Data

...

Relationship = Containment

...

[End]

MsgData BO attribute cardinality: The MsgData BO and its MsgSeq BO
attributes have a cardinality property of n. MsgField BO attributes that represent
repeating fields also have cardinality n. All others attributes have cardinality 1. For
example:

64 Adapter for SWIFT User Guide

[Attribute]
Name = Swift_16_1
Type = Swift_Tag_16

...

Cardinality = n

...

[End]

MsgData BO attribute IsKey: Each MsgData BO definition must contain at least
one attribute defined as the key attribute (IsKey = true). The rule is that the first
single cardinality attribute in each BO definition must be defined as key attribute.

For example:
[Attribute]
Name = Swift_16.1
Type = Swift_Tag_16

...

Cardinality = 1

IsKey = true

[End]

MsgData BO attribute AppSpecificInfo: In MsgData BO definitions, only
MsgField BO attributes have application-specific information; this property is
always null for MsgSeq BO attributes. The convention for application-specific
information for MsgField BO attributes is as follows:

Tag=nn;Letter=xx;Content=string

where nn is the SWIFT tag number of the field, xx is one or a list of supported
letter options for the tag, and string is the value of the qualifier for a non-generic
field as described in Table 22 on page 47. For example:
[Attribute]
Name = Swift_16_22
Type = Swift_Tag_16

...

AppSpecificInfo = Tag=16;Letter=S;Content=OTHRPRTY

...

[End]

When MsgField BO attributes appear in MsgSeq BOs and the application specific
information indicates:
...;Union=True

The MsgField child object—a TagUnion business object and its child objects,
TagLetterOption objects—will be populated instead of the DataField attribute. For
information on TagUnion business objects, see “Field business object definitions”
on page 69.

Chapter 3. Business objects 65

Sequence and field business objects
As noted above, the connector models sequences and tags in SWIFT messages as
sequence business objects (MsgSeq BO) and field business objects (MsgField BO),
respectively. Figure 12 illustrates the hierarchical relationship of these business
objects.

Figure 13 shows part of a definition for a SWIFT message (MT502) that illustrates a
sequence containing field and sequence attributes. The sequence attribute
Swift_MT02_B_Order_Details not only includes several attributes of type Tag (for
example, Swift_Tag_16, Swift_Tag_94), but also the subsequence
Swift_MT502_B1_Price. This subsequence is a repeating optional sequence, and its
properties reflect this (Required= no; Cardinality=n). Note that the sequences
contain no application-specific information.

Sequence business object structure
As shown in Figure 14, each sequence business object (MsgSeq BO) attribute
indicates one of the following:
v another MsgSeq BO, or subsequence

MsgData BO

MsgSeq attribute

MsgField attribute

MsgSeq attribute

MsgField BO

MsgSeq attribute

MsgField BO

MsgSeq BO

MsgField BO

MsgField BO

MsgField attribute

Figure 12. Field and sequence business objects in the (block 4) MsgData BO

Figure 13. A Sequence containing tag and subsequence attributes

66 Adapter for SWIFT User Guide

v a MsgField BO

There is no limit to the number of subsequences that a MsqSeq BO can nest.

Figure 15 shows another excerpt of a MsgSeq BO. In this excerpt, the Swift_Tag_
attributes represent MsgField BOs. The Swift_MT502_A1_Linkages attribute is for a
child object that is a subsequence MsgSeq BO.

The following rules apply to sequence business objects:
v A subsequence business object is an attribute of a particular sequence business

object type.
v A collection of more than one repeating field is treated as a subsequence.
v The application-specific information of a sequence attribute is always NULL.

For a sample sequence business object, see “Sample sequence business object
definition” on page 68.

MsgSeq BO

MsgSeq attribute

MsgField BO

MsgSeq BO
MsgField attribute

MsgField BO

Figure 14. Field and Subsequence Business Objects in the MsgSeq BO

Figure 15. Excerpt from a sequence business object (MsgSeq BO)

Chapter 3. Business objects 67

MsgSeq BO format
Like a MsgData BO, a MsgSeq BO consists of attributes that are either MsgSeq BOs
or MsgField BOs. For information on the format of these attributes, see “MsgData
BO format” on page 63.

Sample sequence business object definition
This section presents a sample definition of a MsgSeq BO for a SWIFT message of
type MT502—an order to buy or sell. The definition is of a Mandatory Sequence A
Order to Buy or Sell.
[BusinessObjectDefinition]
Name = Swift_MT502_A_General_Information
Version = 1.0.0

[Attribute]
Name = Start_Of_Block
Type = Swift_Tag_16
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=16;Letter=R;Content=GENL
IsRequiredServerBound = false
[End]
[Attribute]
Name = Senders_Reference
Type = Swift_Tag_20
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=20;Letter=C
IsRequiredServerBound = false
[End]
[Attribute]
Name = Function_Of_The_Message
Type = Swift_Tag_23
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=23;Letter=G
IsRequiredServerBound = false
[End]
[Attribute]
Name = Preparation_DateTime
Type = Swift_Tag_98
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=98;Letter=A|C
IsRequiredServerBound = false
[End]

68 Adapter for SWIFT User Guide

[Attribute]
Name = Indicator
Type = Swift_Tag_22
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = n
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=22;Letter=F
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT502_A1_Linkages
Type = Swift_MT502_A1_Linkages
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = n
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = End_Of_Block
Type = Swift_Tag_16
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=16;Letter=S;Content=GENL
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

Field business object definitions
WebSphere represents every SWIFT tag as a field business object (MsgField BO).
Each MsgField BO is modeled using the SWIFT generic field structure, even if the
field is non-generic. WebSphere uses two additional business object models to
represent the combination of letters and options used to represent and combine
SWIFT message components as subfields in business objects:
v Tag union business object (TagUnion BO) This is a child object of the MsgField

BO. A TagUnion BO contains all possible letter options for a specific tag, and is
not specific to a particular message type.

Chapter 3. Business objects 69

v Tag letter option business object (TagLetterOption BO) This is a letter option
child object of the TagUnion BO that defines the content of the subfield as well
as its format including delimiters.

MsgField BO format
As shown in Figure 16, each MsgField BO contains five attributes, including one
and only one TagUnion BO, with the data type shown in parentheses () below:

The content and order of all subfields other than the SWIFT Qualifier and Issuer
Code (IC) are captured in the child object of DataField, which is the TagUnion BO
and its child objects, TagLetterOption BOs. The attributes and business objects
shown in Figure 16 are discussed in the section below.

MsgField BO, TagUnion BO, and TagLetterOption BO names: The naming
convention for a MsgField BO is as follows:

Swift_Tag_<N>

where N stands for the message number. For example:
Name = Swift_Tag_22

The naming convention for a TagUnion BO is as follows:
Swift_Tag_Union_<tag_number>

where tag_number is the numeric representation of tag number. For example:
Name = Swift_Tag_Union_20

The naming convention for a TagLetterOption BO is as follows:
Swift_Tag_Union_<tag_number>_Opt_[<letter_option>]

where tag_number is the numeric representation of tag number and
[<letter_option>] is the letter option when a tag is associated with a letter. If the
tag has no letter associated with it, then the name ends at Opt.For example:

Name = Swift_Tag_Union_20_Opt_C

MsgField BO, TagUnion BO, and TagLetter BO Attribute names: The names of
the five attributes in a MsgField BO are as follows:
v Letter

v Qualifier

v IC

MsgField BO

TagUnion BO

TagLetterOption attribute

TagLetterOption BO

Letter attribute
Qualifier attribute
IC Attribute
Data Attribute
DataField Attribute

TagLetterOption BO

Figure 16. Attributes and business objects in the MsgField BO

70 Adapter for SWIFT User Guide

v Data

v DataField

The names of attributes in TagUnion BOs are as follows:
Swift_<tag_number>_[<letter_option>]

where tag_number is the numeric representation of the tag number and the square
brackets signify that the letter is appended only when it is associated with the tag.
For example:

Swift_20_C

The name of the attribute in TagLetterOption BOs is the concatenation of words in
the subfield name shown in the SWIFT format specification table. The first letter of
each word in the concatenated string is always capitalized, with subsequent letters
in the word appearing in lowercase, regardless of how the words are spelled in the
SWIFT format specification. Spaces and non-alphabetic symbols are left out of the
concatenated name. If a field has no subfield, the word Subfield is used as an
attribute name. For example, for the subfield “Proprietary Code” in 95R, the
corresponding attribute name in the definition of TagLetterOption BO
Swift_Tag_Union_95_Opt_R is as follows:

Name = ProprietaryCode

MsgField BO, TagUnion BO, and TagLetterOption BO attribute types: The type
for MsgField attributes is as follows:
v Letter (String)
v Qualifier (String)
v Issuer Code (String)
v Data (String)
v DataField (TagUnion_BO)

For example, in a MsgField BO definition, the type for a Swift_Tag_20 attribute
would be listed as follows:
[Attribute]
Name = DataField
Type = Swift_Tag_Union_20

The type for attributes in the TagUnion BO is the name of the TagLetterOption BO
child object. For example, in a TagUnion BO definition for Swift_Tag_Union_20, the
type for the TagLetterOption attribute is as follows:
[Attribute]
Name = Swift_20_C
Type = Swift_Tag_Union_20_Opt_C

The type for attributes in TagLetterOption BOs is always String.

MsgField BO, TagUnion BO, and TagLetterOption BO ContainedObjectVersion:
The contained object version for the MsgField BO, the TagUnion BO, and the
TagLetterOption BO is 1.1.0. For example:

as well as for the its MsgSeq BO attributes is 1.1.0. For example:
[Attribute]
Name = Swift_20_C
Type = Swift_Tag_Union_20_Opt_C

...

Chapter 3. Business objects 71

ContainedObjectVersion = 1.1.0

...
[End]

Note: MsgField BO attributes are simple, and have no ContainedObjectVersion.

MsgField BO, TagUnion BO, and TagLetterOption BO attribute cardinality: The
cardinality of attributes in TagUnion BOs and TagLetterOption BOs is always set to
1. For example:
[Attribute]
Name = Swift_20_C
Type = Swift_Tag_Union_20_Opt_C

...

Cardinality = 1

...

[End]

MsgField BO, TagUnion BO, and TagLetterOption BO attribute IsKey: In each
MsgField BO, the attribute Letter must be defined as the key attribute.

For example:
[Attribute]

Name = Letter
Type = String
IsKey = true

...

[End]

The first attribute of a TagUnionBO is defined as key.

The first attribute of TagLetterOption BO is defined as key.

TagLetterOption BO attribute AppSpecificInfo: The AppSpecificInfo attribute
definition of a TagLetterOption BO provides crucial SWIFT message formatting
information for business object subfields. The AppSpecificInfo attribute must
contain the following information:

Format=***;Delim=$$$

where
*** stands for the SWIFT subfield format specification, which excludes
delimiter information
$$$ stands for one or more letters that constitute the delimiter between the
current subfield and the next subfield.

When the delimiters are CrLf, the symbol string CrLf specifies that a carriage
return is immediately followed by a line feed.

For example, the AppSpecificInfo attribute for a TagLetterOption BO,
Swift_Tag_Union_95_Opt_C, might appear as follows:

72 Adapter for SWIFT User Guide

[Attribute]

Name = CountryCode
Type = String

...

AppSpecificInfo = Format=2!a;Delim=/

...

[End]

For a sample object and attribute definitions, see “Sample MsgField BO, TagUnion
BO, and TagLetterOption BO definitions” on page 73.

Sample MsgField BO, TagUnion BO, and TagLetterOption BO
definitions
This section presents a sample definition of a MsgField BO definition that
illustrates TagUnion and TagLetterOption attributes and objects.

The sample MsgField BO, Swift_Tag_21, is as follows:
[BusinessObjectDefinition]
Name = Swift_Tag_21
Version = 3.0.0

[Attribute]
Name = Letter
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Qualifier
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = IC
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Data
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

Chapter 3. Business objects 73

[Attribute]
Name = DataField
Type = Swift_Tag_Union_21
ContainedObjectVersion = 3.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Delete
[End]

[Verb]
Name = Retrieve
[End]

[Verb]
Name = Update
[End]

[End]

Note that the DataField attribute indicates a TagUnion BO, whose name is defined
by the Type attribute, Swift_Tag_Union_21. Here is that TagUnion BO, which lists
as attributes all the letter options for Swift_Tag_21.
[BusinessObjectDefinition]
Name = Swift_Tag_Union_21
Version = 1.1.0

[Attribute]
Name = Swift_21
Type = Swift_Tag_Union_21_Opt
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_A
Type = Swift_Tag_Union_21_Opt_A
ContainedObjectVersion = 1.0.0
Relationship = Containment

74 Adapter for SWIFT User Guide

Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_B
Type = Swift_Tag_Union_21_Opt_B
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_C
Type = Swift_Tag_Union_21_Opt_C
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_D
Type = Swift_Tag_Union_21_Opt_D
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_E
Type = Swift_Tag_Union_21_Opt_E
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_F
Type = Swift_Tag_Union_21_Opt_F
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0

Chapter 3. Business objects 75

IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_G
Type = Swift_Tag_Union_21_Opt_G
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_N
Type = Swift_Tag_Union_21_Opt_N
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_P
Type = Swift_Tag_Union_21_Opt_P
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_R
Type = Swift_Tag_Union_21_Opt_R
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

76 Adapter for SWIFT User Guide

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]

Note that IsKey = true for the first attribute in the TagUnion BO above, Swift_21.

The attribute Swift_21_A indicates a child object TagLetterOption BO. This child
object’s name is defined by the attribute’s Type attribute,
Swift_Tag_Union_21_Opt_A. Here is that TagLetterOption BO:
[BusinessObjectDefinition]
Name = Swift_Tag_Union_21_Opt_A
Version = 1.0.0

[Attribute]
Name = ReferenceOfTheIndividualAllocation
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Format=16x
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

Note that the only attribute of this TagLetterOption BO,
ReferenceOfTheIndividualAllocation, is a concatenation of the corresponding
SWIFT subfield name for this tag option, with the first letter of each word in
uppercase. The Qualifier and Issuer Code subfields are excluded from the attribute
of the TagLetterOption BOs. The IsKey property is also true for this attribute.

Note: A TagUnion BO contains both generic and non-generic fields. A non-generic
field has no subfields.

The TagLetterOption BO can represent simple and complex SWIFT field and
subfield formatting. Here is a business object definition for
Swift_Tag_Union_22_Opt, a TagLetterOption BO whose attributes and
application-specific information specify the subfield formatting for SWIFT Field 22,
a function for a Common Reference between a sender and receiver. Notice that the

Chapter 3. Business objects 77

AppSpecificInfo for Function specifies the format and the delimiter with which to
parse the data in the SWIFT message. CommonReference is the concatenation of the
subfield name. The AppSpecificInfo for CommonReference corresponds to that
shown in Figure 17.
[BusinessObjectDefinition]
Name = Swift_Tag_Union_22_Opt
Version = 1.0.0

[Attribute]
Name = Function
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Format=8a;Delim=/
IsRequiredServerBound = false
[End]

[Attribute]
Name = CommonReference
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Format=4!a2!c4!n4!a2!c
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]

78 Adapter for SWIFT User Guide

Figure 17. SWIFT field definition

Chapter 3. Business objects 79

80 Adapter for SWIFT User Guide

Chapter 4. ISO 7775 to ISO 15022 mapping
v “Production instruction meta-objects (PIMOs)”
v “Creating PIMOs” on page 88
v “Modifying PIMOs: Map summary” on page 96

The IBM WebSphere Business Adapter for SWIFT dynamically transforms a
business object representing an ISO 7775 SWIFT message into a business object
representing the corresponding ISO 15022 SWIFT message and vice versa. The
transformation is performed by a mapping engine. The mapping engine is
governed by a production instruction meta-object (PIMO). This chapter describes
PIMOs, how they map business object attributes, and how to create or modify a
PIMO.

Important: The adapter supports business object ISO 7775-15022 mapping for
SWIFT Category 5, Securities Markets, but only with the expanded
business object definitions available with this release and described in
Chapter 3, “Business objects”, on page 43, and only on Solaris
platforms. The mapping capability does not support transformation of
business objects released with 1.2 or earlier releases of the adapter for
SWIFT.

Production instruction meta-objects (PIMOs)
A PIMO is a hierarchical meta-object that supports the transformation of business
objects from one format to another. PIMOs specify not only the
attribute-to-attribute mapping but also the computation instructions required to
perform the transformation. The mapping and the computation instructions
constitute meta-data that is used by the mapping engine.

Map_objects.txt contains 20 PIMOs in their entirety. Each PIMO contains all of the
meta-data required to transform a business object representing an ISO 7775- or
15022-formatted SWIFT message to a business object representing the
corresponding ISO 15022- or 7775-formatted SWIFT message. For more on these
PIMOs and how to create or modify them, see “Creating PIMOs” on page 88.

PIMO structure and syntax
As Figure 18 shows, a simple PIMO has two mandatory child objects, Port and
Action, and an optional child object, Declaration.

© Copyright IBM Corp. 2002, 2003 81

The attribute structure is as follows:

Port This child object always contains an input port and output port.
v IPort The input port
v OPort The output port

Declaration This optional child object contains attributes that name local variables.

Action This attribute describes objects that contain compute instructions. The
instructions, which reside in the attribute’s application-specific information, are
used to process Declaration variables and Port objects. Action child objects
represent computational sub-tasks listed in the order of execution:
v Action1
v Action2
v ...
v Actionn

In fact, as shown in Figure 19, the PIMOs that are used to map SWIFT business
objects are hierarchical objects that contain many nested levels of PIMOs, each with
their own Port, Action, and Declaration objects as well as discrete mapping and
computing instructions. At every level, however, the Port, Action and Declaration
attributes exhibit the same syntax, structure, and function, which are described in
the sections below.

Note: A simple PIMO can have multiple nested levels of Port, Declaration, and
Action objects. A complex PIMO has more than one Port object on the same
level. The PIMOs available with this release are simple PIMOs.

Figure 18. Simple PIMO

82 Adapter for SWIFT User Guide

Port
The Port object type describes the specific transformation the mapping engine
undertakes and has the following naming syntax:
PimoName>_Port

In Figure 18, for example, the Port is of type Map_Swift_MT520_to_MT540_Port,
which names the transformation of a business object representing an ISO 7775
SWIFT message to an object representing an ISO 15022 SWIFT message.

Port contains as child objects IPort (input port) and OPort (output port). The types
of the IPort and OPort attributes describe the parameters to be mapped: an IPort is
used to pass an input parameter (for example, Swift_MT_520), and an OPort is used
to pass an output parameter (for example Swift_MT_540). The parameters are
passed by way of reference to their object types.

The IPort and OPort object may be a primitive type, such as int, float, or String,
or a business object, such as Swift_MT520. The computation instructions contained
in an Action child object refer to, and act on, these IPort and OPort object types.

Note: IPort and OPort cannot specify a meta-object as a type.

By convention, the Port and IPort attributes are marked as key (IsKey = true).

Declaration
The Declaration object type describes the objects to be transformed and has the
following naming syntax:
PimoName_Declaration

Figure 19. Excerpt of expanded PIMO

Chapter 4. ISO 7775 to ISO 15022 mapping 83

The attributes in Declaration child objects specify local variables for the computing
instructions that are detailed in Action objects for the Port. The attribute type
declares the type of variable.

Variables can be constant or variable. The keyword final in a Declaration object’s
AppSpecificInfo designates a constant variable. If a Declaration object’s
AppSpecificInfo is blank, the variable is not constant. In the PIMO excerpt shown
in Figure 20, for example, Qualifier and Letter are declared constant variables;
Var Boolean and the Map_Swift_Tag35E_to_70E_Declaration itself are variable.

By convention, the first variable in the Declaration object is marked as key (IsKey
= true).

Note: A Declaration object is optional; when Action objects require no local
variable, the Declaration attribute can be omitted. The data type of the
Declaration child object cannot be a meta-object.

Action
The Action object describes the computing instructions that the mapping engine
performs. The top-level Action object has the following naming syntax:
PimoName_Action

The computing instructions specified in Action objects act on the IPort and OPort
objects and use the variables specified in Declaration objects. For each Port and
Declaration, the Action objects aggregate, in sequential order, all of the computing
instructions for the map engine. No space or period is allowed in the Action type
names.

Actions can be one of the following types:
v Compute
v Delegate
v Native
v Scenario

Compute action: A Compute type indicates that the Action can be performed by a
simple operation. All compute type Actions use the keyword opCode to specify the

Figure 20. Declarations in a PIMO

84 Adapter for SWIFT User Guide

name of operation. The keyword Target designates the receiving party of the
operation. The syntax for a compute type Action is specified in its AppSpecificInfo
and is as follows:
opCode=<opCode>;target=<variable>;<parameters>

where opCode, variable, and parameters are described in Table 27.

Table 27. Compute action opCodes

opCode Example Description

+ type=compute;opCode=+;target=Var_B;Var_1;Var_2Addition. Var_2 is added to
Var_1 and the sum assigned to
the target, Var_B; applies to
string and numeric type
variables.

- type=compute;opCode=-
;target=Var_B;Var_1;Var_2

Subtraction. Var_2 is subtracted
from Var1 and the difference is
assigned to the target, Var_B.
Applies to numeric type
variables.

move type=compute;opCode=move;target=OPort;Var_1Copy the value of Var_1 to the
target, OPort. Applies to all
variable types.

index type=compute;opCode=
index;target=var_4;Var_1;Var_2;Var_3

Looks for first occurrence of
string Var_2 in the string Var_1,
starting at the position Var_3.

Returns Var_4 to the target,
OPort. Var_4 can be –1 if Var_2
is not found. Applies to string
variables only.

substring type=compute;opCode=
substring;target=result;sourceString;index1;index2

Assign target the result of the
sub-string of sourceString from
index1 to index2. When index2
exceeds the string length of
sourceString, index2 is deemed
the same length as that of
sourceString.

append type=compute;opCode=
append;target=result;source1String;index;source2String

Append source2String to
source1String at index. The
result is assigned to the target,
result.

size type=compute;opCode=
size;target=OPort;Var;

Assign target the length of
variable Var when Var is of type
String. When Var is of type
containment, assign target the
number of instances of Var.

Delegate action: Delegate Action is specified when more than one Compute
Action is required. A Delegate Action relies on nested PIMOs to complete the
Action, and in this sense is analogous to a function call. The syntax of a Delegate
Action object is specified in its AppSpecificInfo and is as follows:
type=delegate;<var1>;<var2>

where type indicates the Delegate Action type and var1 is passed to the IPort of a
child PIMO, and var2 is passed to the OPort of the child PIMO. The relative
position of the variables corresponds to the sequence of Ports in the invoked
PIMO. (The invoked PIMO is the PIMO to which Action is delegated.) Looping

Chapter 4. ISO 7775 to ISO 15022 mapping 85

occurs if one or both of the IPort and OPort objects in the invoked PIMO is of
cardinality n.The loop syntax of the delegation is as follows:
v If both the IPort and OPort objects in the invoked PIMO have cardinality n, then

for each instance of these Port objects, an object is created and passed on to the
invoked PIMO’s IPort and OPort. Looping occurs as many times as the number
of object instances, and delegation is passed by reference along with each
instance.

v If the IPort object in the invoked PIMO has cardinality n and the OPort object
does not have cardinality n, then for each instance of the IPort object, an object is
created and passed on to the IPort of the invoked PIMO along with a reference
to the type of the OPort object. Looping occurs as many times as the number of
IPort object instances, and delegation is passed by reference along with each
instance.

For example, in Figure 21, Action6 is of type Delegate. The computing tasks for
this action are too complex for specification using Compute Action. In fact, the
computing tasks require two levels of Delegate Action. The first Delegate Action is
to a nested PIMO, Map_Swift_MT520_A_to_MT540_A_Port. The Action of this Port is
also of type Delegate, with its variables passed to the IPort and OPort of
Map_Swift_Tag_20_to_20C_Port. The Action of this nested PIMO is of the compute
type, and the results are passed back up to the invoking PIMOs, just like a
function call.

Native action: Native Action is used to invoke components implemented in Java.
In particular, a Native Action object supports calls to the public static method of a
Java class, which allows you to develop more complicated processing functions in
Java. The syntax of a Native Action object is specified in its AppSpecificInfo and is
as follows:
type=nativeStatic;class=<className>;method=<methodName>;
target=return;var1;var2, varn

Figure 21. Delegate action in a PIMO

86 Adapter for SWIFT User Guide

where type indicates the Native Action type, className indicates the name of a
Java class, methodName indicates the name of the static Java method that provides
the functionality for the action, and the return value of the function call is passed
to the target variables as follows: var1 is passed to the first variable of the method,
and var2 will be passed to the second variable of the method, and so on.

Note: The order and type of variables in the method call must match the that of
the parameters in the method.

Scenario action: A Scenario Action is a construct that makes possible conditional
computing and branching in PIMOs.

A Scenario Action is a child object that consists of two to three attributes:

Scenario (Action Object)
v Scenario (attribute)
v TrueAction (attribute)
v FalseAction (attribute)

The Scenario attribute is always a boolean expression, and the TrueAction or
FalseAction (or both) attributes contain conditional computing instructions that are
processed after the boolean expression is evaluated.

The syntax of a Scenario Action object is specified in its AppSpecificInfo and is as
follows:
type=scenario

The syntax of a Scenario attribute is specified in its AppSpecificInfo and is as
follows:
Boolean_Expression

where Boolean_Expression corresponds to one of the entries in Figure 19.

Table 28. Scenario attribute boolean expressions

Boolean
symbol

Example Description

== IPort==LetterA Equal. When applied to string
type variables, equality means
that the lexical content of the
two strings is the same.

> Var_A>Var_B Greater than. When applied to
String type variables, string
length is compared.

>= Var_A>=Var_B Greater than or equal to. When
applied to String type variables,
string length is compared.

&& (IPort==LetterA)&& (IPort==LetterC) And
|| (IPort==LetterA)|| (IPort==LetterC) Or
< Less than. When applied to

String type variables, string
length is compared.

<= Less than or equal to. When
applied to String type variables,
string length is compared.

Chapter 4. ISO 7775 to ISO 15022 mapping 87

Note: PIMOs support parentheses in the Boolean expression.

A TrueAction attribute indicates the computing instruction that the map engine
will process if the Boolean expression (in the Scenario attribute) evaluates to true;
likewise, a FalseAction attribute indicates the action if the Boolean expression
evaluates to false. Actions specified in the TrueAction and FalseAction can be
Compute, Delegate and Native types, and follow the syntax of the Compute,
Delegate and Native type Actions, respectively.

For example, Figure 22 shows the attributes of a Scenario Action. If the IPort Object
is equal to Code_AVAL, then the computing instruction
type=compute;opCode=move;target=OPort;Qualifier_TAV1 will be processed by the
map engine.

Object references in actions: Actions make reference to other PIMO objects,
whether Port or Declaration objects. By convention, the application-specific
information of Action objects follows the path name convention that uses a period
to denote the attribute names at different levels in the hierarchy of the PIMO.

For example, consider an IPort of type Swift_Tag_20 (the type shown in
parentheses), which has the following hierarchy:

IPort (Swift_Tag_20)

v Letter (String)

v Qualifier (String)

v IC (String)

v Data (String)

v DataField (Swift_Tag_Union_20)

– Swift_20 (Swift_Tag_Union_20_Opt) Subfield (String)

– Swift_20_C (Swift_Tag_Union_20_Opt_C) Reference (String)

Then the reference to the Swift_20_C attribute is IPort.DataField.Swift_20_C.

Creating PIMOs
This section describes how to create a PIMO using Business Object Designer. Before
proceeding, review the previous sections of this chapter, and make sure you have
access to the Swift User HandBook and Business Object Designer, with which you should
be familiar. For more information, see the Business Object Development Guide. You should
also have access to Map_Objects.txt, which contains the PIMOs shipped with this
release as well as thousands of sub-maps and objects that may be of use.

Figure 22. Scenario action in a PIMO

88 Adapter for SWIFT User Guide

Note: The example used to illustrate the process of creating PIMOs is a sample
PIMO residing in Map_Objects.txt. For a closer look at any of the
screenshots presented below, launch Business Object Designer and open
Map_Swift_MT520_to_MT540 from your repository.

Getting started
1. Launch Business Object Designer.
2. Choose Server>Connect and login to your server.

This provides access to your repository. To load the repository, see Chapter 2,
“Configuring the connector”, on page 17 and the system installation guide for
your operating environment.

3. Choose File>New.
This displays the New Business Object Dialog.

4. Enter the Business Object name as follows:
Map_Swift_MT<SourceNN>_to_MT<DestinationNN>

where SourceNN is the SWIFT message type number that corresponds to the
business object you want to transform and DestinationNN is the SWIFT
message type number that corresponds to the destination business object. This
is the name of a new PIMO representing the mapping between the source
message type and the destination message type as shown in Figure 23.

5. Enter type=simple in the Application Specific Information field.

Defining port
1. Enter Port in the Attribute Name field as shown in Figure 24.

2. Right-click the Type field, and from the pop-up menu choose from available
port objects in your repository.
The type syntax for the Port is as follows:
PimoName_Port

Figure 23. Naming a new PIMO

Figure 24. Specifying a port object

Chapter 4. ISO 7775 to ISO 15022 mapping 89

In the example shown in Figure 24, the type is as follows:
Map_Swift_MT520_to_MT540_Port

3. In the Port attribute row, check the Key property and enter 1 in the Cardinality
field as shown in Figure 24.

Defining port child objects
The Port object must have two child objects, IPort and OPort, which correspond to
the business objects representing the source and destination SWIFT messages.
1. Select ObjectEventId under Port and, from the Edit menu, choose Insert Above.
2. Enter IPort and OPort as names of new attributes under the Port object.
3. Right click the IPort Type field, and from the pop-up menu choose the object

from those available in your repository.
The type syntax for the IPort is as follows:
Swift_<IPortSourceNN>

In the example shown in Figure 25 the IPort type is Swift_MT520.
4. Right click the OPort Type field, and from the pop-up menu choose the object

from those available in your repository.
In the example shown in Figure 25 the OPort type is Swift_MT540.

5. In the IPort attribute row, check the Key property and enter 1 in the Cardinality
field for both IPort and OPort as shown in Figure 25.

Defining declaration
A Declaration object at the top-level of a PIMO specifies high-level variables as
required by Action objects at this level. As shown in Figure 26, the Declaration
variable applies to the top-level Action object discussed below in “Defining action”
on page 91. Following the naming convention for a Declaration object, the type of
this variable is Map_Swift_MT520_to_MT540_Declaration.
1. Enter Declaration in the Name field under ObjectEventId.
2. Enter PimoName_Declaration in the Type field.

In the example, the Declaration type is Map_Swift_MT520_to_MT540_Declaration

3. Enter three attributes of type String with specifications as follows:
v MTNum A constant (enter final in the App Spec Info field) with the Key

property checked and a Default value of MT<DestinationNN>. In the
example, the default is the destination SWIFT message type, MT540.

v TargetMTNum A variable whose default value is the DestinationNN. In the
example, the default value is 540.

v SourceMTNum A variable whose default value is the SourceNN. In the
example, the default value is 520.

Figure 25. Specifying IPort and OPort objects

90 Adapter for SWIFT User Guide

For examples of sequence- and field-level Declarations, see “Representing sequence
objects” on page 91 and “Representing field objects” on page 93.

Defining action
To define the top-level Action Object for the PIMO:
1. Enter Action in the Name field under ObjectEventId.
2. Enter Map_Swift_MT<SourceNN>_to_MT<DestinationNN>Action in the Type field.

In the example, the Action type is Map_Swift_MT520_to_MT540_Action, as shown
in Figure 27.

To create all other Action objects for a PIMO mapping SWIFT MT520 to MT 540,
you must become familiar with the actual tag- and field-level maps for these
messages. This information is available in the SWIFT User Handbook, Category 5,
Securities Markets Message Usage Guidelines. The PIMO models the SWIFT tag and
field maps.

The sections below describe how to extract this information and create Action
objects that represent SWIFT sequences and fields.

Representing sequence objects
Review the maps in the SWIFT User Handbook, Category 5, Securities Markets Message
Usage Guidelines Appendix for SWIFT MT520 to MT 540 and identify the following:
v The number of sequences in the source message type (MT520)
v The number of sequences in the destination message type (MT 540)

Figure 26. Specifying a Declaration for a Top-Level PIMO

Figure 27. Specifying an action for a top-level PIMO

Chapter 4. ISO 7775 to ISO 15022 mapping 91

Use the following naming convention for representing a sequence in a PIMO:
Map_Swift_MT<SourceNN>_<X>_to_MT<DestinationNN>_<X>

where X stands for the sequence letter and is always in uppercase.

Note: PIMO sequence object names can also reflect two special cases:
v The source message tag has a sequence but the destination does not:

– Map_Swift_MT<SourceNN>_<X>_to_MT<DestinationNN>
v The destination message tag has a sequence but the source does not:

– Map_Swift_MT<SourceNN>_to_MT<DestinationNN>_<X>

As shown in Figure 28, the child objects representing some of the sequences make
use of Delegate Action because the mapping requires multiple Compute Action
objects.

When using Delegate Action, you must pass the IPort and OPort object paths. For
example, Figure 28 shows that mapping computations from Swift_MT520_A (the
child object of Swift_MT_520Data) to Swift_MT540_A (the child object of
Swift_MT_540Data). Accordingly, the naming convention is as follows:
IPort.<Source_Object_Path>
OPort.<Destination_Object_Path>

In the example, the corresponding entries are:
IPort.Swift_MT520Data.Swift_MT520_A
OPort.Swift_MT540Data.Swift_MT540_A

For each delegated sequence shown in Figure 28, you must define the Port,
Declaration, and Action objects for the parent. Declaration is mandatory at the

Figure 28. Specifying sequence objects with delegate action

92 Adapter for SWIFT User Guide

level of any Compute Action that refers to variables. Figure 29 shows how some of
the Action and sub-Action objects are defined.

Representing field objects
Just as SWIFT sequences can contain other sequences as well as field tags,
sequence objects in PIMOs make reference to sequence and field objects. Field
objects are child objects of sequence Action objects. This section describes how to
create field objects that map to other field objects via parent sequence Action
objects.

The previous section showed how to define sequence objects, including
Map_Swift_20_to_20C. Figure 30 shows how to create the PIMO entries that
correspond to the field and sub-field mapping for this sequence.

Note: The SWIFT User Handbook shows that no Code Words are required for the
Map_Swift_20_to_20C mapping.

Figure 29. Sub-action objects for a sequence object

Chapter 4. ISO 7775 to ISO 15022 mapping 93

As shown in Figure 30, you must specify Port (IPort and OPort) objects,
Declaration variables, and Actions for Field objects:

Port The type for IPort and OPort is the source and destination tag, stripped of tag
letters. In this case, they are the same, Swift_Tag_20. IPort, by convention is Key
(IsKey = true).

Declaration The tag letter variable is specified as Letter. In this example, the
default value is C. The keyword final designates this variable as a constant, and,
by convention, the first variable is Key (IsKey = true). Qual_<QUALIFIER>
represents the qualifier. (The qualifier is always in uppercase.) In the example the
default value is SEME.

Action The sub-Action objects are as follows:

Action1 type=compute;opCode=move;target=OPort.Letter;Letter The value of the
Letter variable is moved to the Letter attribute of OPort (which is Swift_Tag_20)

Action2 type=compute;opCode=move;target=OPort.Qualifier;Qualifier The value
of the Qualifier variable is moved to the Qualifier attribute of OPort (which is
Swift_Tag_20).

Action3
type=compute;opCode=move;target=OPort.DataField.Swift_20_C.Reference;
IPort.DataField.Swift_20.TransactionReferenceNumber The value of
IPort.DataField.Swift_20.TransactionReferenceNumber is moved to
OPort.DataField.Swift_20_C.Reference.

Figure 31 shows a field map that involves code word mapping and a Delegate
Action.

Figure 30. Field action objects for a sequence

94 Adapter for SWIFT User Guide

For Action3, the Delegate Action, you must define the Port (IPort and OPort)
Declaration, and sub-Action objects as shown in Figure 32.

Figure 31. Field mapping with code words

Figure 32. Code word declaration for a field map

Chapter 4. ISO 7775 to ISO 15022 mapping 95

The code words are declared and assigned constant default values. A Scenario
Action (Action6) specifies an equality boolean expression and a contingent
Compute Action to execute if the expression evaluates to false.

Modifying PIMOs: Map summary
The file Map_Objects.txt contains PIMOs for maps as follows:

From ISO 7775 to ISO 15022

v MT520 to MT540 Receive Free
v MT521 to MT541 Receive Payment Against
v MT522 to MT542 Deliver Free
v MT523 to MT543 Deliver Against Payment
v MT530 to MT544 Receive Free Confirmation
v MT531 to MT 545 Receive Against Payment Confirmation
v MT532 to MT546 Deliver Free Confirmation
v MT533 to MT547 Deliver Against Payment Confirmation
v MT571 to MT535 Statement of Holdings
v MT573 to MT537 Statement of Pending Transactions

From ISO 15022 to ISO 7775

v MT536 to MT572 Statement of Transactions
v MT540 to MT520 Receive Free
v MT541 to MT521 Receive Payment Against
v MT542 to MT522 Deliver Free
v MT543 to MT523 Deliver Against Payment
v MT544 to MT530 Receive Free Confirmation
v MT545 to MT 531 Receive Against Payment Confirmation
v MT546 to MT532 Deliver Free Confirmation
v MT547 to MT533 Deliver Against Payment Confirmation
v MT548 to MT534 Settlement Status and Processing Advice

If you need to modify one or more of these PIMOs:
v Review “Production instruction meta-objects (PIMOs)” on page 81 and “Creating

PIMOs” on page 88
v Find the PIMO you want to modify in the tables below, which summarize the

default values and mapping relationships for each PIMO

Note: Each table below shows the mapping relationships and default values for
the ISO 7775-to-15022 direction and for the reverse (ISO 15022-to-7775)
direction.

v Launch Business Object Designer and open the PIMO you wish to modify,
saving a backup copy of the unmodified original copy.

96 Adapter for SWIFT User Guide

MT520 to MT540 receive free
Table 29. MT520 to MT540 receive free

Data element MT520 MT540

Seq Field tag Seq Field tag Qualifier Comments
Delivery Date A 30 B 98a SETT MT540 default values:

98A
TRN A 20 A 20C SEME
Related Reference A 21 A1 20C RELA
Date and Place of Trade A 31P B B 98a 94B TRAD TRAD MT540 default values:

98A
Identification of Securities A 35B B 35B
Next Coupon A 35a B1 B1 98A 13a COUP COUP MT520->540: If the

incoming tag is 35a, it
is mapped to 98A; If
the incoming tag is 35c,
it is mapped to 13A.
For MT540->520: User
defines whether 98A is
mapped to 35D or 13A
to 35C.

Book Value A 33V B1 90a MRKT MT540 default values:
90B

Instructing Party A 82a E1 E1 95a 97a SAFE MT520 default values:
82D

MT540 default values:
95Q DEAG, 97A

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B SETT
Safekeeping Account B 83a C 97a SAFE MT520 default values:

83D

MT540 default values:
97A

Certificate Numbers B 35E C 13B CERT MT520 default values:
35E->70E (F)

Deliverer of Securities C 87a E1 E1 95a 97a DEAG SAFE MT520 default values:
87D

MT540 default values:
95Q, 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT520 default values:
88D

MT540 default values:
95Q, 97A

Deliverer’s Instructing
Party

C 85a E1 E1 95a 97a SELL SAFE MT520 default values:
85D

MT540 default values:
95Q, 97A

Registration Details C 77D E1 70a REGI MT540 default values:
70D

Declaration Details C 77R E1 70a DECL MT540 default values:
70E

Chapter 4. ISO 7775 to ISO 15022 mapping 97

Table 29. MT520 to MT540 receive free (continued)

Data element MT520 MT540

Seq Field tag Seq Field tag Qualifier Comments
Sender to Receiver
Information

C 72 B C 70E 13B SPRO CERT

Table 30. MT520 to MT540 code word mapping

MT520 MT540

Tag 72 (C) Tag 13B (C)

MSG579 CERT

Tag 35A Tag 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

SHS

UNT

WTS

MT521 to MT541 receive payment against
Table 31. MT521 to MT541 receive payment against

Data element MT521 MT541

Seq Field tag Seq Field tag Qualifier Comments

Settlement Date A 30 B 98a SETT MT541 default values:
98A

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of Trade A 31P B B 98a 94B TRAD TRAD MT541 default values:
98A

Identification of Securities A 35B B 35B

Next Coupon A 35a B1 B1 98A 13a COUP COUP MT521->541: If the
incoming tag is 35a, it is
mapped to 98A; If the
incoming tag is 35c, it is
mapped to 13A. For
MT541->521: User
defines whether 98A is
mapped to 35D or 13A
to 35C.

98 Adapter for SWIFT User Guide

Table 31. MT521 to MT541 receive payment against (continued)

Data element MT521 MT541

Seq Field tag Seq Field tag Qualifier Comments

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1 E1 95a 97a SAFE MT521 default values:
82D

MT541 default values:
95Q REAG, 97A

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B SETT

Safekeeping Account B 83a C 97a SAFE MT521 default values:
83D

MT541 default values:
97A

Certificate Numbers B 35E C 13B CERT 521.B.35E is mapped to
541.F.70E (with DECL as
qualifier) instead of to
541.C.13B

Deliverer of Securities C 87a E1 E1 95a 97a SAFE MT521 default values:
87D

MT541 default values:
95Q DEAG, 97A

(See Field Specs in
SWIFT UHB)

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT521 default values:
88D

MT541 default values:
95Q, 97A

Deliverer’s Instructing Party C 85a E1 E1 95a 97a SELL SAFE MT521 default values:
85D

MT541 default values:
95Q, 97A

Registration Details C 77D E1 70a REGI MT541 default values:
70D

Declaration Details C 77R E1 70a DECL MT541 default values:
70E

Account for Payment C 53a C 97a CASH MT521 default values:
53C

MT541 default values:
97A

Account with Institution C 57a E2 E2 95a 97A ACCW CASH MT521 default values:
57D

MT541 default values:
95Q

Chapter 4. ISO 7775 to ISO 15022 mapping 99

Table 31. MT521 to MT541 receive payment against (continued)

Data element MT521 MT541

Seq Field tag Seq Field tag Qualifier Comments

Beneficiary of Money C 58a E2 E2 95a 97A BENM CASH MT521 default values:
58D

MT541 default values:
95Q

Deal Price C 33T B 90a DEAL MT541 default values:
90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU MT521 default values:
34G

Taxes Added C 71E E3 19A MT 541 default values:
TRAX

(See Field Specs in
SWIFT UHB)

Broker’s Commission C 71F E3 19A MT 541 default values:
LOCO

(See Field Specs in
SWIFT UHB)

Other Charges or Fees C 71G E3 19A MT 541 default values:
CHAR

(See Field Specs in
SWIFT UHB)

Settlement Amount C 32B C E3 19A 19A SETT SETT

Account(s) for Charges C 71D E2 97A 70E CHAR DECL

Sender to Receiver
Information

C 72 B C 70E 13B SPRO CERT

Table 32. MT521 to MT541 code mapping

MT521 MT541

Old Tag: 72 (C) New Tag: 13B (C)

Old Code Qualifier

MSG579 CERT

Old Tag: 35A New Tag: 36B

Old Code Qualifier

FMT FAMT

100 Adapter for SWIFT User Guide

Table 32. MT521 to MT541 code mapping (continued)

MT521 MT541

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

MT522 to MT542 deliver free
Table 33. MT522 to MT542 deliver free

Data element MT522 MT542

Seq Field tag Seq Field tag Qualifier Comments

Delivery Date A 30 B 98a SETT

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of Trade A 31P B B 98a 94B TRAD TRAD MT542 default values:
98A

Identification of Securities A 35B B 35B -

Next Coupon A 35a B1 B1 98A 13a COUP COUP MT522->542: If the
incoming tag is 35a, it
is mapped to 98A; If
the incoming tag is
35c, it is mapped to
13A. For MT542->522:
User defines whether
98A is mapped to 35D
or 13A to 35C.

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1 E1 95a 97a SAFE MT522 default values:
82D

MT542 default values:
95Q DEAG, 97A SAFE

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B SETT

Chapter 4. ISO 7775 to ISO 15022 mapping 101

Table 33. MT522 to MT542 deliver free (continued)

Data element MT522 MT542

Seq Field tag Seq Field tag Qualifier Comments

Safekeeping Account B 83a C 97a SAFE MT522 default values:
83D

Default values for
MT542: 97A

Certificate Numbers B 35E C 13B CERT

Receiver of Securities C 87a E1 E1 95a 97a REAG SAFE MT522 default values:
87D

MT542 default values:
95Q, 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT522 default values:
88D

MT542 default values:
95Q, 97A

Registration Details C 77D E1 70a REGI MT542 default values:
70D

Declaration Details C 77R E1 70a DECL MT542 default values:
70E

Sender to Receiver
Information

C 72 B C 70E 13B SPRO CERT 13B CERT: not
implemented

Table 34. MT 522 to MT 542 code mapping

MT522 MT542

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

102 Adapter for SWIFT User Guide

MT523 to MT543 deliver against payment
Table 35. MT523 to MT543 deliver against payment

Data element MT523 MT543

Seq Field tag Seq Field tag Qualifier Comments

Settlement Date A 30 B 98a SETT

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of Trade A 31P B B 98a 94B TRAD TRAD MT543 default
values: 98A

Identification of Securities A 35B B 35B -

Next Coupon A 35a B1 B1 98A 13a COUP COUP MT523->543: If the
incoming tag is 35a,
it is mapped to 98A;
If the incoming tag is
35c, it is mapped to
13A. For
MT543->523: User
defines whether 98A
is mapped to 35D or
13A to 35C.

Book Value A 33V B1 90a MRKT MT543 default
values: 90B

Instructing Party A 82a E1 E1 95a 97a SAFE MT523 default
values: 82D

MT543 default
values: 95Q DEAG,
97A

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B SETT

Safekeeping Account B 83a C 97a SAFE MT523 default
values: 83D

MT543 default
values: 97A

Certificate Numbers B 35E C 13B CERT

Receiver of Securities C 87a E1 E1 95a 97a REAG SAFE MT523 default
values: 95Q

MT543 default
values: 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT523 default
values: 88D; MT543
default values: 95Q,
97A

Registration Details C 77D E1 70a REGI MT543 default
values: 70D

Declaration Details C 77R E1 70a DECL MT543 default
values: 70E

Chapter 4. ISO 7775 to ISO 15022 mapping 103

Table 35. MT523 to MT543 deliver against payment (continued)

Data element MT523 MT543

Seq Field tag Seq Field tag Qualifier Comments

Account for Payment C 53a C 97a CASH MT523 default
values: 53D

MT543 default
values: 97A

Account With Institution C 57a E2 E2 95a 97a ACCW CASH MT523 default
values: 57D

MT543 default
values: 95Q, 97R

Beneficiary of Money C 58a E2 E2 95a 97a BENM CASH MT523 default
values: 58D

MT543 default
values: 95Q, 97A

Deal Price C 33T B 90a DEAL MT543 default
values: 90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU

Taxes Deducted C 71E E3 19A MT543 default
values: TRAX

(See Field Specs in
SWIFT UHB)

Broker’s Commission C 71F E3 19A MT543 default
values: LOCO

(See Field Specs in
SWIFT UHB)

Other Charges or Fees C 71G E3 19A MT543 default
values: CHAR

(See Field Specs in
SWIFT UHB)

Settlement Amount C 32B C E3 19A 19A SETT SETT

Account(s) For Changes C 71D E2 70E DECL

Sender to Receiver
Information

C 72 B C 70E 13B SPRO CERT

Table 36. MT523 to MT543 code word mapping

MT523 MT543

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

104 Adapter for SWIFT User Guide

Table 36. MT523 to MT543 code word mapping (continued)

MT523 MT543

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

SHS

UNT

WTS

MT530 to MT544 receive free confirmation
Table 37. MT530 to MT544 receive free confirmation

Data element MT530 MT544

Seq Field tag Seq Field tag Qualifier Comments

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Delivery Date A 30 B 98a ESET

Identification of Securities A 35B B 35B

Next Coupon A 35a 35C B1 B1 98A 13a COUP COUP MT530->544: If the
incoming tag is 35a, it
is mapped to 98A; If
the incoming tag is
35c, it is mapped to
13A. For MT544->530:
User defines whether
98A is mapped to 35D
or 13A to 35C.

Book Value A 33V B1 90a MRKT SWIFT documentation
erroneously lists 35V
as MT530 tag.

Instructing Party A 82a E1 E1 95a 97a SAFE MT530 default values:
82D

MT544 default values:
95Q, 97A

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B ESTT

Chapter 4. ISO 7775 to ISO 15022 mapping 105

Table 37. MT530 to MT544 receive free confirmation (continued)

Data element MT530 MT544

Seq Field tag Seq Field tag Qualifier Comments

Safekeeping Account B 83a C 97a SAFE MT530 default values:
83D

MT544 default values:
97A

Certificate Numbers B 35E C 13B CERT

Deliverer of Securities C 87a E1 E1 95a 97a DEAG SAFE MT530 default values:
87D

MT544 default values:
95Q 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT530 default values:
88D

MT544 default values:
95Q, 97A

Deliverer’s Instructing
Party

C 85a E1 E1 95a 97a SELL SAFE MT530 default values:
85D

MT544 default values:
95Q, 97A

Registration Details C 77D E1 70a REGI MT544 default values:
70D

Declaration Details C 77R E1 70a DECL MT544 default values:
70E

Other Charges C 71C E3 19A MT544 default values:
CHAR

(See Field Specs in
SWIFT UHB)

Own Charges C 71B E3 19A MT544 default values:
CHAR

(See Field Specs in
SWIFT UHB)

Sender to Receiver
Information

C 72 B C1 70E 13B SPRO CERT

Table 38. MT530 to MT544 code word mapping

MT530 MT544

Old Tag: 72 (C) New Tag: 23G (A)

REVERSAL RVSL

Old Tag: 72 (C) New Tag: 22a (A) Qualifier PARS

PARTIAL PAIN

COMPLETE PARC

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

REGOPEN

106 Adapter for SWIFT User Guide

MT531 to MT 545 receive against payment confirmation
Table 39. MT531 to MT 545 confirmation of receive against payment

Data element MT531 MT545

Seq Field tag Seq Field tag Qualifier Comments

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Settlement Date A 30 B 98a ESET MT545 default values:
98A

Identification of Securities A 35B B 35B

Date and Place of Trade A 31P B B 98a 94B TRAD TRAD

Next Coupon A 35a 35C B1 B1 98A 13a COUP COUP MT531->545: If the
incoming tag is 35a, it
is mapped to 98A; If
the incoming tag is 35c,
it is mapped to 13A.
For MT545->531: User
defines whether 98A is
mapped to 35D or 13A
to 35C.

Book Value A 33V B1 90a MRKT SWIFT documentation
erroneously lists 35V as
MT531 tag.

Instructing Party A 82a E1 E1 95a 97a REAG SAFE MT531 default values:
82D

MT545 default values:
95Q, 97A

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE

Certificate Numbers B 35E C 13B CERT

Deliverer of Securities C 87a E1 E1 95a 97a DEAG SAFE MT531 default values:
87D

MT545 default values:
95Q, 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT531 default values:
88D

MT545 default values:
95Q, 97A

Deliverer’s Instructing Party C 85a E1 E1 95a 97a SELL SAFE MT531 default values:
85D

MT545 default values:
95Q, 97A

Registration Details C 77D E1 70a REGI MT545 default values:
70D

Declaration Details C 77R E1 70a DECL MT545 default values:
70E

Chapter 4. ISO 7775 to ISO 15022 mapping 107

Table 39. MT531 to MT 545 confirmation of receive against payment (continued)

Data element MT531 MT545

Seq Field tag Seq Field tag Qualifier Comments

Account for Payment C 53a C 97a CASH MT531 default values:
53C

MT545 default values:
97A

Account with Institution C 57a E2 E2 95a 97A ACCW CASH MT531 default values:
57D

MT545 default values:
95Q

Beneficiary of Money C 58a E2 E2 95a 97A BENM CASH MT531 default values:
58D

MT545 default values:
95Q

Special Concessions C 33S E3 19A SPCN

Deal Price C 33T B 90a DEAL MT545 default values:
90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU MT531 default values:
34G

Settlement Amount C 32B C E3 19A 19A ESTT ESTT

Other Charges C 71C E3 19A CHAR

Own Charges C 71B E3 19A CHAR

Exchange Rate C 36 E3 92B EXCH

Net Proceeds C 34A E3 19A POST

Sender to Receiver
Information

C 72 B C1 70E 13B SPRO CERT

Mapping of code words (MT 531 v> MT 545):
Table 40. MT531 to MT545 code word mapping

MT531 MT545

Old Tag: 72 (C) New Tag: 23G (A)

REVERSAL RVSL

Old Tag: 72 (C) New Tag: 22a (A) Qualifier PARS

PARTIAL PAIN

COMPLETE PARC

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT -

REGOPEN

108 Adapter for SWIFT User Guide

MT532 to MT 546 deliver free confirmation
Table 41. MT532 to MT 546 deliver free confirmation

Data element MT532 MT546

Seq Field tag Seq Field tag Qualifier Comments

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Delivery Date A 30 B 98a ESET MT546 default values:
98A

Identification of Securities A 35B B 35B -

Next Coupon A 35a B1 B1 98A 13a COUP COUP MT532->546: If the
incoming tag is 35a, it
is mapped to 98A; If
the incoming tag is
35c, it is mapped to
13A. For MT546->532:
User defines whether
98A is mapped to 35D
or 13A to 35C.

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1 E1 95a 97a SAFE MT532 default values:
82D

MT546 default values:
95Q DEAG, 97A SAFE

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE MT532 default values:
83D

MT546 default values:
97A

Certificate Numbers B 35E C 13B CERT

Receiver of Securities C 87a E1 E1 95a 97a REAG SAFE MT532 default values:
87D

MT546 default values:
95Q, 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT532 default values:
88D

MT546 default values:
95Q, 97A

Registration Details C 77D E1 70a REGI MT546 default values:
70D

Declaration Details C 77R E1 70a DECL MT546 default values:
70E

Chapter 4. ISO 7775 to ISO 15022 mapping 109

Table 41. MT532 to MT 546 deliver free confirmation (continued)

Data element MT532 MT546

Seq Field tag Seq Field tag Qualifier Comments

Other Charges C 71C E3 19A MT546 default values:
CHAR

(See Field Specs in
SWIFT UHB)

Own Charges C 71B E3 19A MT546 default values:
CHAR

(See Field Specs in
SWIFT UHB)

Sender to Receiver
Information

C 72 B C 70E 13B SPRO CERT

Table 42. MT532 to MT546 code word mapping

MT 532 MT546

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

MT533 to MT547 deliver against payment confirmation
Table 43. MT533 to MT547 deliver against payment confirmation

Data element MT533 MT547

Seq Field tag Seq Field tag Qualifier Comments

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Settlement Date A 30 B 98a ESET MT547 default
values: 98A

110 Adapter for SWIFT User Guide

Table 43. MT533 to MT547 deliver against payment confirmation (continued)

Data element MT533 MT547

Seq Field tag Seq Field tag Qualifier Comments

Date and Place of Trade A 31P B B 98a 94B TRAD TRAD

Identification of Securities A 35B B 35B -

Next Coupon A 35a 35C B1 B1 98A 13a COUP COUP MT533->547: If the
incoming tag is 35a,
it is mapped to 98A;
If the incoming tag is
35c, it is mapped to
13A. For
MT547->533: User
defines whether 98A
is mapped to 35D or
13A to 35C.

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1 E1 95a 97a MT533 default
values: 82D

MT547 default
values: 95Q DEAG,
97A SAFE

(See Field Specs in
SWIFT UHB)

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE MT533 default
values: 83D

MT547 default
values: 97A

Certificate Numbers B 35E C 13B CERT Note the Code level
mapping

Receiver of Securities C 87a E1 E1 95a 97a REAG SAFE MT533 default
values: 87D

MT547 default
values: 95Q, 97A

Beneficiary of Securities C 88a E1 E1 95a 97a BUYR SAFE MT533 default
values: 88D

MT547 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI

Declaration Details C 77R E1 70a DECL

Account for Payment C 53a C 97a CASH MT533 default
values: 53D

MT547 default
values: 97A

Chapter 4. ISO 7775 to ISO 15022 mapping 111

Table 43. MT533 to MT547 deliver against payment confirmation (continued)

Data element MT533 MT547

Seq Field tag Seq Field tag Qualifier Comments

Account With Institution C 57a E2 E2 95a 97a ACCW CASH MT533 default
values: 57D

MT547 default
values: 95Q, 97A

Beneficiary of Money C 58a E2 E2 95a 97a BENM CASH MT533 default
values: 58D

MT547 default
values: 95Q, 97A

Special Concessions C 33S E3 19A SPCN

Deal Price C 33T B 90a DEAL MT547 default
values: 90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU MT533 default
values: 34G

Settlement Amount C 32B C E3 19A 19A ESTT ESTT

Other Charge(s) C 71C E3 19A MT547 default
values: CHAR

(See Field Specs in
SWIFT UHB)

Own Charge(s) C 71B E3 19A MT547 default
values: CHAR

(See Field Specs in
SWIFT UHB)

Exchange Rate C 36 E3 92B EXCH

Net Proceeds C 34A E 19A POST

Sender to Receiver
Information

C 72 B C 70E 13B SPRO CERT

Table 44. MT533 to MT547 code word mapping

MT533 MT547

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

112 Adapter for SWIFT User Guide

Table 44. MT533 to MT547 code word mapping (continued)

MT533 MT547

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

MT534 to MT548 settlement status and processing advice
Table 45. MT534 to MT548 settlement status and processing advice

Data element MT534 MT548

Seq Field tag Seq Field tag Qualifier Comments

Transaction Reference
Number

---- 20 A 20C SEME

Related Reference ---- 21 A1 20C RELA

MT and Date of Original
Instruction

---- 11a A1 13A LINK Date of original
instruction can not be
specified anymore.

Settlement Date ---- 30 B 98a SETT

Date Problem Occurred ---- 31S ---- ----

Further Identification ---- 23 A2 25D MT548 default values:
SETT

(See Field Specs in
SWIFT UHB)

A2a 24B MT548 default values:
PEND

(See Field Specs in
SWIFT UHB)

B 22H REDE

Safekeeping Account ---- 83a B 97a SAFE MT534 default values:
83D

MT548 default values:
97A

Quantity of Securities ---- 35A B 36B SETT

Identification of Securities ---- 35B B 35B

Chapter 4. ISO 7775 to ISO 15022 mapping 113

Table 45. MT534 to MT548 settlement status and processing advice (continued)

Data element MT534 MT548

Seq Field tag Seq Field tag Qualifier Comments

Receiver/Deliverer of
Securities

---- 87a B1 95a REAG or
DEAG

MT534 default values:
87D

MT548 default values:
96A

B1 97a SAFE MT548 default values:
97A

Receiver/Deliverer’s
Instructing Party

---- 82a B1 95a MT534 default values:
8D

MT548 default values:
95A

(See Field Specs in
SWIFT UHB)

B1 97a SAFE MT548 default values:
97A

Narrative ---- 79 B 70E SPRO

Sender to Receiver
Information

---- 72 B 70E SPRO

Table 46. MT534 to MT548 code word mapping

MT534 MT548

Old Tag: 23 New Tag: 24B (A2a) Qualifier: PEND

COLLATER COLL

CPFUTURE CFUT

CPLACK CLAC

CPMONEY CMON

FUTURE FUTU

LACK LACK

MONEY MONY

REGOPEN REGO

MONSE LACK and MONY

NODEL NDEL

REFUS REFS

INCAD INCA

MT571 to MT535 statement of holdings
Table 47. MT571 to MT535 statement of holdings

Data element MT571 MT535

Seq Field tag Seq Field tag Qualifier Comments

Page Number/
Continuation Indicator

A 28 A 28E

114 Adapter for SWIFT User Guide

Table 47. MT571 to MT535 statement of holdings (continued)

Data element MT571 MT535

Seq Field tag Seq Field tag Qualifier Comments

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Safekeeping Account A 83a A 97a SAFE MT571 default values:
83D

MT535 default values:
97A

Statement Period A 67A A 98a STAT MT535 default values:
98A

Date Prepared A 30 A 98a PREP MT535 default values:
98C

Statement Basis A 26F A 22F STBA

Quantity of Securities B 35H B 93B AGGR

Quantity of Securities B1 60B B1 93C MT535 default values:
BORR

(See Field Specs in
SWIFT UHB)

Further Identification B1 23 B1 B1 93C 70C BORR SUBB The qualifier of the
balance field will
specify the status or
characteristic
Additional
information can be
given in the narrative

Sender to Receiver
Information

B1 72 B1a 70C SUBB

Identification of Securities B 35B B 35B

Price per Unit B 33B B 90a MT535 default values:
90B MRKT

(See Field Specs in
SWIFT UHB)

Accrued Interest B 34a B B 99A 19A DAAC ACRU

Exchange Rate B 36 B 92B EXCH

Value B 32H 19A HOLD

Sender to Receiver
Information

B 72 B 70E HOLD

Number of Repetitive Parts C 18A ---- ----

Final Value C 34E C 19A HOLP

Sender to Receiver
Information

B 72 B1 B1 B1 90a 98a
94B

PRIC PRIC MT535 default values:
90A MRKT, 98A

(See Field Specs in
SWIFT UHB)

Chapter 4. ISO 7775 to ISO 15022 mapping 115

Table 48. MT571 to MT535 code word mapping

Old tag: 26F (A) New tag: 22F (A) qualifier: STBA

ACTUA SETT

TRADE TRAD

CONTR ----

BOOKD ----

Old Tag: 23 (B1) New Tag: 93C (B1) All Qualifiers

NA NAVL

AD AVAL

Old Tag: 23 (B1) New Tag: 93C (B1)

REGIS REGO

DEPRJ ----

REGRJ ----

DENOM REGO

PLEDG COLI or COLO

MARGE COLI or COLO

COLLA COLI or COLO

LOAND LOAN

BORRO BORR

TRNSH TRAN

REINV PECA

DIVID PECA

SPLIT PECA

TENDE PECA

REDEM PECA

EXCHS PECA

AVAIL TAVI

MERGE PECA

LIQUI PECA

BANKR PECA

PENDD PEND

PENDR PENR

SEE72 ----

Old Tag: 72 (C) New Tag: 90a (B) All Qualifiers

DISCOUNT DISC

PREMIUM PREM

Old Tag: 72 (C) New Tag: 98a (B)

VALUDATE (date) PRIC

Old Tag: 72 (C) New Tag: 94B (B)

VALUDATE (source) PRIC

116 Adapter for SWIFT User Guide

MT572 to MT536 statement of transactions
Table 49. MT572 to MT536 statement of transactions

Data element MT572 MT536

Seq Field tag Seq Field tag Qualifier Comments

Page Number/
Continuation Indicator

A 28 A 28E

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Safekeeping Account A 83a A 97a SAFE MT572 default values:
83D

MT536 default values:
97A

Statement Period A 67A A 69a STAT MT536 default values:
69A

Date Prepared A 30 A 98a PREP MT536 default values:
98A

Identification of Securities B 35B B1 35B

Opening Balance B 60A B1 93B FIOP

Safekeeping Account B 83a ---- ---- The functionality of the
new message does not
allow you to specify
more than one
safekeeping account
per message (which is
specified in sequence
A)

Opening Balance B 60B ---- ----

Quantity of Securities B 35A B1a2 36B PSTA

Transaction Details B1a 66A B1a2 B1a2
B1a2 B1a2
B1a2

98a 22H
22F 22F
25D

ESET REDE
TRAN CAEV
and SETR
MOVE

MT536 default values:
98A High level
transaction type
Detailed transaction
type

Transaction Details B1a 66A B1a1 B1a1 20C 20C RELA PREV Account Owner’s
Reference Sender’s
Reference

Counterparty B1a 87a B1a2a
B1a2a

95a 97a DEAG and
REAG SAFE

MT572 default values:
87D

MT536 default values:
97A

Settlement Date B1a 30 B1a 98a SETT MT536 default values:
98A

Price Per Unit B1a 33B B1 90a MRKT MT536 default values:
90B

Accrued Interest B 34a B1a2 Blb2 99A 19A DAAC ACRU MT572 default values:
34G

Amount B 34a B1b 19A PSTA MT572 default values:
34G

Chapter 4. ISO 7775 to ISO 15022 mapping 117

Table 49. MT572 to MT536 statement of transactions (continued)

Data element MT572 MT536

Seq Field tag Seq Field tag Qualifier Comments

Sender to Receiver
Information

B1a 72 B1a2 B1a2
B1 B1

70E 22a 98a
94B

TRDE TRAN
PRIC PRIC

Closing Balance B 62B ---- ----

Closing Balance B 62A B1 93B FICL

Number of Repetitive
Parts

C 18A ---- ----

Sender to Receiver
Information

C 72 A B1a2 B1
B1

17B 22a 98a
94B

ACTI TRAN
PRIC PRIC

Table 50. MT572 to MT536 code word mapping

MT572 MT536

Old tag: 66A (B) New tag: 22H (B1b) qualifier: REDE

N RECE

T DELI

Old tag: 66A (B) New tag: 22F (B1b) qualifier: SETR

10 (correction) ----

11 (receipt for deposit) TRAD (trade)

12 (regular trade) TRAD (trade)

13 (forward trade) ----

14 (new issue) ----

16 (delivery) TRAD (trade)

27 (depository transfer) OWNE (external own account transfer)

28 (deposit transfer) OWNI (internal own account transfer)

29 (opening buy)

30 (opening sell)

31 (closing buy)

32 (closing sell)

34 (assigned)

Old tag: 66A (B) New tag: 22F (B1b1) qualifier: CAEV

17 (bonus securities) BONU (bonus issue)

18 (stock dividends) DVSE (stock dividend)

19 (split) SPLF (stock split)

20 (reverse split) SPLR (reverse stock split)

21 (exchange) EXOF (exchange offer) MRGR (merger)

22 (conversion) CONV (conversion)

EXWA (warrant exercise)

23 (redemption) BPUT (put redemption)

24 (new issue for conversion of
maturing debentures)

REDM (redemption

118 Adapter for SWIFT User Guide

Table 50. MT572 to MT536 code word mapping (continued)

MT572 MT536

25 (drawing by lot) DRAW (drawing)

26 (modification of identification of
security)

33 (exercise) EXWA (warrant exercise)

Old tag: 66A (B) New tag: 22F (B1b) qualifier: MOVE

35 (reversal) REVE

Old tag: 66A (B) New tag: 22F (B1b) all qualifiers

72 (see field 72) All other codes

Old tag: 72 (B,C) New tag: 22F (B1b) qualifier: TRAN

LOANDOUT BOLE

BORROWED BOLE

COLLATER COLL

Old tag: 72 (B,C) New tag: 98a (B)

VALUDATE (date) PRIC

Old tag: 72 (B) New tag: 94B (B)

VALUDATE (source) PRIC

Old tag: 72 (C) New tag: 17B (A) qualifier: ACTI

NOTRANS N

MT573 to MT537 statement of pending transactions
Table 51. MT573 to MT537 statement of pending transactions

Data element MT573 MT537

Seq Field tag Seq Field tag Qualifier Comments

Page Number/
Continuation
Indicator

A 28 A 28E

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA PREV

Safekeeping Account A 83a A 97a SAFE MT573 default values:
83A

MT537 default values:
97A

Statement Period A 67A A 98a STAT MT537 default values:
98A

Date Prepared A 30 A 98a PREP MT537 default values:
98C

Identification of
Securities

B,C 35B B2b 35B

Chapter 4. ISO 7775 to ISO 15022 mapping 119

Table 51. MT573 to MT537 statement of pending transactions (continued)

Data element MT573 MT537

Seq Field tag Seq Field tag Qualifier Comments

Safekeeping Account B,C 83a ---- ---- The functionality of the
new message does not
allow you to specify
more than one
safekeeping account per
message (which is
specified in sequence A)

Transaction Reference
Number

B,C 20 B2a 20C RELA

Further Identification B,C 23 B B1 25D 24B SETT MT537 default values:
24B PEND

(See Field Specs in
SWIFT UHB)

MT and Date of the
Original Instruction

B,C 11a B1 13A LINK MT573 default values:
11R

Related Reference B,C 21 B2a 20C RELA

Quantity of Securities B,C 35A B2b 36B PSTA

Settlement Date B,C 30 B2b 98a SETT

Settlement Amount B,C 32B B2b 19A PSTA

Counterparty B,C 87a B2b1
B2b1

95a 97a REAG or
DEAG SAFE

MT573 default values:
87D

MT537 default values:
95Q, 97A

Sender to Receiver
Information

B,C 72 B2b 70E TRDE

Sender to Receiver
Information

D 72 A 17B ACTI

Table 52. MT573 to MT537 code word mapping

MT573 MT537

Old tag: 23 (B,C) New tag: 24B (B1) qualifier: PEND

COLLATER COLL

CPFUTURE CFUT

CPLACK CLAC

CPMONEY CMON

FUTURE FUTU

INCAD INCA

LACK LACK

MONEY MONY

MONSE LACK and MONY

NODEL NDEL

REFUS REFS

120 Adapter for SWIFT User Guide

Table 52. MT573 to MT537 code word mapping (continued)

MT573 MT537

REGOPEN REGO ----

SEE72

Old tag: 23 (B,C) New tag: 24B (B1) qualifier: PENF

CERTD REGO

COLLATER COLL

CPLACK CLAC

CPMONEY CMON

FAIL ---- (see other codes)

INCAD INCA

LACK LACK

MONEY MONY

REGOPEN REGO

MONSE LACK and MONY

NODEL NDEL

REFUS REFS

Old tag: 23 (B,C) New message type: MT 548 new tag: 24B (A2a) qualifier: REJT

LATEI LATE

CPLAT LATE

MDATE MDAT

Old tag: 23 (B,C) New tag: 24B (B1), qualifier: NMAT

CUNMATCH NMAT

UNMATCH CMIS

DSECU DSEC

DDATE DDAT

DTRAN DTRA

DMONE DMON

DQUAN DQUA

Old tag: 72 (D) New tag: 17B (A)

Old Code Qualifier: ACTI

NOPENDGS N

Chapter 4. ISO 7775 to ISO 15022 mapping 121

122 Adapter for SWIFT User Guide

Chapter 5. SWIFT Data Handler
v “Configuring the SWIFT Data Handler”
v “Configuring the Data Handler Child Meta-Object”
v “Converting Business Objects to SWIFT Messages” on page 124
v “Converting SWIFT Messages to Business Objects” on page 125

The SWIFT data handler is a data-conversion module whose primary roles are to
convert business objects into SWIFT messages and SWIFT messages into business
objects. Both default top-level data-handler meta-objects (connector and server)
support the swift MIME type and therefore support use of the SWIFT data
handler.

This chapter describes how the SWIFT data handler processes SWIFT messages. It
also discusses how to configure the SWIFT data handler.

Configuring the SWIFT Data Handler
To configure a SWIFT data handler for use with the connector, you must do the
following:
v Make sure that the class name of the SWIFT data handler is specified in the

connector properties.
v Enter the appropriate values for the attributes of the SWIFT data handler child

meta-object.

Note: For the SWIFT data handler to function properly, you must also create or
modify business object definitions so that they support the data handler. For
more information, see “SWIFT field structure” on page 173.

Configuring the Connector Meta-Object
To configure the connector to interact with the SWIFT data handler, make sure that
the connector-specific property DataHandlerClassName has the value
com.crossworlds.DataHandlers.swift.SwiftDataHandler.

You must set the value of this property before running the connector. Doing so will
enable the connector to access the SWIFT data handler when converting SWIFT
messages to business objects and vice versa. For further information, see
“Connector-specific properties” on page 20.

Configuring the Data Handler Child Meta-Object
For the SWIFT data handler, WebSphere delivers the default meta-object
MO_DataHandler_Default. This meta-object specifies a child attribute of type
MO_DataHandler_Swift. Table 53 describes the attributes in the child meta-object,
MO_DataHandler_SWIFT.

© Copyright IBM Corp. 2002, 2003 123

Table 53. Child Meta-Object Attributes for the SWIFT Data Handler

Attribute Name Description Delivered Default Value

BOPrefix Prefix used by the default NameHandler class to build business
object names. The default value must be changed to match the
type of the business object. The attribute value is case-sensitive.

Swift

DefaultVerb The verb used when creating business objects. Create
ClassName Name of the data handler class to load for use with the specified

MIME type. The top-level data-handler meta-object has an
attribute whose name matches the specified MIME type and
whose type is the SWIFT child meta-object.

com.crossworlds.DataHandlers.swift.SwiftDataH

DummyKey Key attribute; not used by the data handler but required by the
integration broker.

1

The Delivered Default Value column in Table 53 lists the value that WebSphere
provides for the default value of the associated meta-object attribute. You must
ensure that all attributes in this child meta-object have a default value that is
appropriate for your system and your SWIFT message type. Also, make sure that
at least the ClassName and BOPrefix attributes have default values.

Note: Use Business Object Designer to assign default values to attributes in this
meta-object.

Business Object Requirements
The SWIFT data handler uses business object definitions when it converts business
objects or SWIFT messages. It performs the conversion using the structure of the
business object and its application-specific text. To ensure that business object
definitions conform to the requirements of the SWIFT data handler, follow the
guidelines described in Chapter 3, “Business objects”, on page 43.

Converting Business Objects to SWIFT Messages
To convert a business object to a SWIFT message, the SWIFT data handler loops
through the attributes in the top-level business object in sequential order. It
generates populated blocks of a SWIFT message recursively based on the order in
which attributes appear in the business object and its children.

Attributes without a block number, or with values unrecognized by the parser
properties, are ignored. Also ignored is block 0, the UUID header that is added by
the MQSA.

The parse=value application-specific information property is used to determine
how to format strings. This property parses the business object as follows:
v parse=no; The attribute MUST be of type String and is formatted as {block

number:attribute value}The block number is the value of the block=block value
application-specific text property.

v parse=fixlen; The attribute must be a single cardinality container. It is
formatted as {block number:attr0 value attr1 value....attrn value}where attrn value is
the attribute value of the nth attribute. All CxIgnore and CxBlank attributes are
IGNORED.

v parse=delim; The attribute must be a single cardinality container. It is
formatted as {block number:[Tag:attr1 data]...[Tag:attr1 data]}where: Tag is the
value of the Tag property of attribute application-specific text attrn data is the
value of the attribute. All CxIgnore and CxBlank attributes are IGNORED.

124 Adapter for SWIFT User Guide

v parse=field; This setting can be used only on Block 4 messages. Fields are
printed out in loop through non-CxIgnore and non-CxBlank attributes of the
business object.
– If appText == NULL and the attribute is a container, call printBO(childBO).

Handle multiple cardinality if required.
– If appText != NULL, call printFieldObj(), which handles multiple cardinality

and calls printFieldBO() to write out a tag.
v All fields are formatted as generic or non-generic fields. The tag number is

determined by the value of the Tag business object attribute. All non-CxIgnore
attributes of the tag business object are printed out. For more on generic or
non-generic fields, see Appendix D, “SWIFT message structure”, on page 173.

Converting SWIFT Messages to Business Objects
All SWIFT messages as well as compliance with SWIFT formats and syntax, are
validated by SWIFT before being processed by the SWIFT data handler. The SWIFT
data handler performs validation of business object structure and compliance only.

The SWIFT data handler extracts data from a SWIFT message and sets
corresponding attributes in a business object as follows:
1. The SWIFT parser is called to extract the first 4 blocks (UUID + blocks 1

through 3). For block 2, the SWIFT application header, only the input attributes
are extracted.

2. The SWIFT data handler is called to extract the name of the business object
from block 2 of the SWIFT message.

3. The SWIFT data handler creates an instance of the top-level object.
4. Based on the application-specific information parameters, the data handler

processes SWIFT message blocks. The blocks are parsed in one of four different
ways
v parse=no; The block data is treated as type String and not parsed out.
v parse=fixlen; The block data is parsed as a fixed-length structure, based on

the values of the maximum length attributes of the block business object.
v parse=delim; The block data is parsed as {n:data} delimited format.
v parse=field; This setting is used only on block 4 data. Fields are parsed as

generic and non-generic.
5. For block 4 data (parse=field;) the data handler either matches the field

returned from the parser to a tag business object attribute, or finds the
sequence business object that the field belongs to.
a. If the application specific information of the attribute is NULL, the child

business object is a sequence. The data handler checks if the first required
attribute of the child business object matches the field:
v If it does match, the data handler assigns the attribute multiple

cardinality and populates the sequence for the child business object.
v If it does not match, the data handler skips to the next attribute of the

parent business object.
b. If application-specific information is not NULL, the child is a tag business

object. If the field matches the application-specific information, it is handled
with the multiple cardinality and extracted, with the data handler setting
the letter and data attributes of the tag business object.

6. If a non-NULL field is returned, the field is written to a log and an exception is
thrown.

Chapter 5. SWIFT Data Handler 125

7. The data handler parses block 5 of the SWIFT message. The application-specific
information for this block is always block=5; parse=no and is of type String.
Block 5 is treated as a single string.

126 Adapter for SWIFT User Guide

Chapter 6. Troubleshooting

This chapter describes problems that you may encounter when starting up or
running the connector.

Startup problems

Problem Potential solution / explanation

The connector shuts down unexpectedly during
initialization and the following message is reported:
Exception in thread "main"
java.lang.NoClassDefFoundError:
javax/jms/JMSException...

Connector cannot find file jms.jar from the IBM
WebSphere MQ Java client libraries. Ensure that variable
MQSERIES_JAVA_LIB in start_connector.bat points to the
IBM WebSphere MQ Java client library folder.

The connector shuts down unexpectedly during
initialization and the following message is reported:
Exception in thread "main"
java.lang.NoClassDefFoundError:
com/ibm/mq/jms/MQConnectionFactory...

Connector cannot find file com.ibm.mqjms.jar in the IBM
WebSphere MQ Java client libraries. Ensure that variable
MQSERIES_JAVA_LIB in start_connector.bat points to the
IBM WebSphere MQ Java client library folder.

The connector shuts down unexpectedly during
initialization and the following message is reported:
Exception in thread "main"
java.lang.NoClassDefFoundError:
javax/naming/Referenceable...

Connector cannot find file jndi.jar from the IBM
WebSphere MQ Java client libraries. Ensure that variable
MQSERIES_JAVA_LIB in start_connector.bat points to the
IBM WebSphere MQ Java client library folder.

The connector shuts down unexpectedly during
initialization and the following exception is reported:
java.lang.UnsatisfiedLinkError: no mqjbnd01 in
shared library path

Connector cannot find a required runtime library
(mqjbnd01.dll [NT] or libmqjbnd01.so [Solaris]) from the
IBM WebSphere MQ Java client libraries. Ensure that
your path includes the IBM WebSphere MQ Java client
library folder.

The connector reports MQJMS2005: failed to create
MQQueueManager for ‘:’

Explicitly set values for the following properties:
HostName, Channel, and Port.

Event processing

Problem Potential solution / explanation

The connector delivers all messages with an MQRFH2
header.

To deliver messages with only the MQMD WebSphere
MQ header, append ?targetClient=1 to the name of
output queue URI. For example, if you output messages
to queue queue://my.queue.manager/OUT, change the URI
to queue://my.queue.manager/OUT?targetClient=1. See
Chapter 2, “Configuring the connector”, on page 17 for
more information.

The connector truncates all message formats to 8
characters upon delivery regardless of how the format
has been defined in the connector meta-object.

This is a limitation of the WebSphere MQ MQMD
message header and not the connector.

© Copyright IBM Corp. 2002, 2003 127

128 Adapter for SWIFT User Guide

Appendix A. Standard configuration properties for connectors
v “Configuring standard connector properties for WebSphere InterChange Server”

on page 130
v “Configuring standard connector properties for WebSphere MQ Integrator” on

page 142

Connectors have two types of configuration properties:
v Standard configuration properties
v Connector-specific configuration properties

This chapter describes standard configuration properties, applicable to all
connectors. For information about properties specific to the connector, see the
installing and configuring chapter of its adapter guide.

The connector uses the following order to determine a property’s value (where the
highest numbers override the value of those that precede):
1. Default
2. Repository (relevant only if InterChange Server is the integration broker)
3. Local configuration file
4. Command line

Note: In this document backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes and obey
the appropriate operating system-specific conventions.

New and deleted properties
The following are the standard properties that have been either added or deleted
in the 2.2 release of the adapters.
v New properties

CharacterEncoding
Local
JVMMinHeapSize
JVMMaxHeapSize
JVMMaxStackSize
WireFormat
MaxEventCapacity
DuplicateEventElimination
jms.NumConcurrentRequests
ContainerManagedEvents
jms.Messagebrokername (replaces jms.BrokerName)

v Deleted properties

RequestTransport
PingFrequency
TraceLevel
AgentProxyType

© Copyright IBM Corp. 2002, 2003 129

MaxThreadPoolSize
Anonymous Connections
GW Name
Agent URL
Listener Port
Certificate Location
LogFileName
TraceFileName
jms.BrokerName

Configuring standard connector properties for WebSphere InterChange
Server

This section describes standard configuration properties applicable to connectors
whose integration broker is WebSphere InterChange Server (ICS). Standard
configuration properties provide information that is used by a configurable
component of InterChange Server called the connector controller. Like the
connector framework, the code for the connector controller is common to all
connectors. However, you configure a separate instance of the controller for each
connector.

A connector, which consists of the connector framework and the
application-specific component, has been referred to historically as the connector
agent. When a standard configuration property refers to the agent, it is referring to
both the connector framework and the application-specific component.

For general information about how connectors work with InterChange Server, see
the Technical Introduction to IBM WebSphere InterChange Server.

Important: Not all properties are applicable to all connectors that use InterChange
Server. For information specific to an connector, see its adapter guide.

You configure connector properties from Connector Configurator, which you access
from System Manager.

Note: Connector Configurator and System Manager run only on the Windows
system. Even if you are running the connector on a UNIX system, you must
still have a Windows machine with these tools installed. Therefore, to set
connector properties for a connector that runs on UNIX, you must start up
System Manager on the Windows machine, connect to the UNIX
InterChange Server, and bring up Connector Configurator for the connector.

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a runtime session, the property’s update
semantics determine how and when the change takes effect. There are four
different types of update semantics for standard connector properties:
v Dynamic—The change takes effect immediately after it is saved.
v Component restart—The change takes effect only after the connector is stopped

and then restarted in System Manager. This does not require stopping and
restarting the application-specific component or InterChange Server.

v Server restart—The change takes effect only after you stop and restart the
application-specific component and InterChange Server.

130 Adapter for SWIFT User Guide

v Agent restart—The change takes effect only after you stop and restart the
application-specific component.

To determine the update semantics for a specific property, refer to the Update
Method column in the Connector Configurator window, or see the Update Method
column of the table below.

The following table provides a quick reference to the standard connector
configuration properties. You must set the values of some of these properties
before running the connector. See the sections that follow for explanations of the
properties.

Property Name Possible
values

Default
value

Update
method

Notes

AdminInQueue valid JMS queue name CONNECTORNAME /ADMININQUEUE

AdminOutQueue valid JMS queue name CONNECTORNAME/ADMINOUTQUEUE

AgentConnections 1-4 1 server restart multi-threaded
connector only

AgentTraceLevel 0-5 0 dynamic

ApplicationName application name the value that is specified for the
connector name

component
restart

value required

BrokerType ICS, WMQI ICS is required
if your broker
is ICS

CharacterEncoding ascii7, ascii8, SJIS,
Cp949, GBK, Big5,
Cp297,Cp273,Cp280,
Cp284,Cp037, Cp437

ascii7 component
restart

ConcurrentEventTriggeredFlows 1 to 32,767 no value component
restart

ContainerManagedEvents JMS or no value JMS guaranteed
event delivery

ControllerStoreAndForwardMode true or false true dynamic
ControllerTraceLevel 0-5 0 dynamic
DeliveryQueue CONNECTORNAME/DELIVERYQUEUE component

restart
JMS transport
only

DeliveryTransport MQ, IDL, or JMS IDL component
restart

FaultQueue CONNECTORNAME/FAULTQUEUE component
restart

DuplicateEventElimination True/False False component
restart

JMS transport
only,
Container
Managed
Events must
be <NONE>

JvmMaxHeapSize heap size in megabytes 128m component
restart

JvmMaxNativeHeapSize size of stack in kilobytes 128k component
restart

JvmMinHeapSize heap size in megabytes 1m component
restart

jms.MessageBrokerName If FactoryClassName is
IBM, use
crossworlds.queue.manager.
If FactoryClassName is
Sonic, use
localhost:2506.

crossworlds.queue.manager server restart JMS transport
only

Appendix A. Standard configuration properties for connectors 131

Property Name Possible
values

Default
value

Update
method

Notes

jms.FactoryClassName CxCommon.Messaging.
jms.IBMMQSeriesFactory
or CxCommon.Messaging.
jms.SonicMQFactory or
any Java class name

CxCommon.Messaging.
jms.IBMMQSeriesFactory

server restart JMS transport
only

jms.NumConcurrentRequests positive integer 10 component
restart

JMS transport
only

jms.Password Any valid password server restart JMS transport
only

jms.UserName Any valid name server restart JMS transport
only

Locale en_US , ja_JP, ko_KR,
zh_C, zh_T, fr_F, de_D,
it_I, es_E, pt_BR
Note: These are only a
subset of supported
locales.

en_US component
restart

LogAtInterchangeEnd true or false false component
restart

MaxEventCapacity 1-2147483647 2147483647 dynamic Repository
Directory
value must be
<REMOTE>

MessageFileName path/filename Connectorname.txt or
InterchangeSystem.txt

component
restart

MonitorQueue any valid queue name CONNECTORNAME/MONITORQUEUE component
restart

JMS transport
only, Duplicate
Event
Elimination
must be True

OADAutoRestartAgent true or false false dynamic
OADMaxNumRetry a positive number 1000 dynamic
OADRetryTimeInterval a positive number in

minutes
10 dynamic

PollEndTime HH:MM HH:MM component
restart

PollFrequency a positive integer in
milliseconds

no (to disable polling)
key (to poll only when
the letter p is entered in
the connector’s
Command Prompt
window)

10000 dynamic

PollQuantity 1-500 1 component
restart

Number of
items to poll
from
application

PollStartTime HH:MM(HH is 0-23, MM is
0-59)

HH:MM component
restart

RepositoryDirectory location where
repository is located

<REMOTE> component
restart

<REMOTE>
for ICS broker

RequestQueue valid JMS queue name CONNECTORNAME/REQUESTQUEUE component
restart

ResponseQueue valid JMS queue name CONNECTORNAME/RESPONSEQUEUE component
restart

RestartRetryCount 0-99 3 dynamic
RestartRetryInterval a sensible positive value in

minutes
1 dynamic

132 Adapter for SWIFT User Guide

Property Name Possible
values

Default
value

Update
method

Notes

SourceQueue valid MQSeries queue
name

CONNECTORNAME/SOURCEQUEUE component
restart

Valid only if
delivery
transport is
JMS and
Container
Managed
Events is
specified.

SynchronousRequestQueue CONNECTORNAME/
SYNCHRONOUSREQUESTQUEUE

component
restart

“SynchronousResponseQueue” on
page 148

CONNECTORNAME/
SYNCHRONOUSRESPONSEQUEUE

component
restart

SynchronousRequestTimeout 0 component
restart

“WireFormat” on page 149 CwXML, CwBO cwxml agent restart CwXML for
non-ICS
broker; CwBO
if Repository
Directory is
<REMOTE>

AdminInQueue
The queue that is used by the integration broker to send administrative messages
to the connector.

The default value is CONNECTORNAME/ADMININQUEUE.

AdminOutQueue
The queue that is used by the connector to send administrative messages to the
integration broker.

The default value is CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections
The AgentConnections property controls the number of IIOP connections opened
for request transport between an application-specific component and its connector
controller. By default, the value of this property is set to 1, which causes
InterChange Server to open a single IIOP connection.

This property enhances performance for a multi-threaded connector by allowing
multiple connections between the connector controller and application-specific
component. When there is a large request/response workload for a particular
connection, the IBM WebSphere administrator can increase this value to enhance
performance. Recommended values are in the range of 2 to 4. Increasing the value
of this property increases the scalability of the Visigenic software, which establishes
the IIOP connections. You must restart the application-specific component and the
server for a change in property value to take effect.

Important: If a connector is single-threaded, it cannot take advantage of the
multiple connections. Increasing the value of this property causes the
request transport to bottleneck at the application-specific component.
To determine whether a specific connector is single- or multi-threaded,
see the installing and configuring chapter of its adapter guide.

Appendix A. Standard configuration properties for connectors 133

AgentTraceLevel
Level of trace messages for the application-specific component. The default is 0.
The connector delivers all trace messages applicable at the tracing level set or
lower.

ApplicationName
Name that uniquely identifies the connector’s application. This name is used by
the system administrator to monitor the WebSphere business integration system
environment. This property must have a value before you can run the connector.

BrokerType
Identifies the integration broker type that you are using. If you are using an ICS
connector, this setting must be ICS.

CharacterEncoding
Specifies the character code set used to map from a character (such as a letter of
the alphabet, a numeric representation, or a punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. A C++ connector currently
uses the value ASCII for this property. If you previously configured the
value of this property to ascii7 or ascii8, you must reconfigure the
connector to use either ASCII or one of the other supported values. To
determine whether a specific connector is written in Java or C++, see the
installing and configuring chapter of its adapter guide.

Important: By default only a subset of supported character encodings display in
the drop list. To add other supported values to the drop list, you must
manually modify the \Data\Std\stdConnProps.xml file in the product
directory. For more information, see the appendix on Connector
Configurator.

Attention: Do not run a non-internationalized connector against InterChange
Server version 4.1.1 if you cannot guarantee that only ISO Latin-1 data will be
processed.

The default value is ascii.

ConcurrentEventTriggeredFlows
Determines how many business objects can be concurrently processed by the
connector controller for event delivery. Set the value of this attribute to the number
of business objects you want concurrently mapped and delivered. For example, set
the value of this property to 5 to cause five business objects to be concurrently
processed. The default value is 1.

Setting this property to a value greater than 1 allows a connector controller for a
source application to simultaneously map multiple event business objects, and to
simultaneously deliver them to multiple collaboration instances. Setting this
property to enable concurrent mapping of multiple business objects can speed
delivery of business objects to a collaboration, particularly if the business objects
use complex maps. Increasing the arrival rate of business objects to collaborations
can improve overall performance in the system.

134 Adapter for SWIFT User Guide

Note: To implement concurrent processing for an entire flow (from a source
application to a destination application) also requires that the collaboration
be configured to use multiple threads and that the destination application’s
application-specific component be able to process requests concurrently. To
configure the collaboration, set its Maximum number of concurrent events
property high enough to use multiple threads. For an application-specific
component to process requests concurrently, it must be either
multi-threaded, or be capable of using Connector Agent Parallelism and be
configured for multiple processes (setting the Parallel Process Degree
configuration property greater than 1).

Important: To determine whether a specific connector is single- or multi-threaded,
see the installing and configuring chapter of its adapter guide.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,
which is single-threaded and performed serially.

ContainerManagedEvents
Setting this property to JMS allows a JMS-enabled connector with a JMS event
store to provide guaranteed event delivery, in which an event is removed from the
source queue and placed on the destination queue as a single JMS transaction. This
property can also be set to no value.

Notes:

1. When ContainerManagedEvents is set to JMS, you must also configure the
following properties to enable guaranteed event delivery: PollQuantity = 1 to
500, SourceQueue = SOURCEQUEUE. In addition, you must configure a data
handler with the MimeType, DHClass, and DataHandlerConfigMOName
(optional) properties. To set those values, use the Data Handler tab of
Connector Configurator. The fields for the values under the Data Handler tab
will be displayed only if you have set ContainerManagedEvents to JMS.

2. When ContainerManagedEvents is set to JMS, the connector does not call its
pollForEvents() method, thereby disabling that method’s functionality.

The default value is JMS.

This property only appears if the DeliveryTransport property is set to the value
JMS.

ControllerStoreAndForwardMode
Sets the behavior of the connector controller after it detects that the destination
application-specific component is unavailable. If this property is set to true and the
destination application-specific component is unavailable when an event reaches
InterChange Server, the connector controller blocks the request to the
application-specific component. When the application-specific component becomes
operational, the controller forward the request to it.

Important: If the destination application’s application-specific component becomes
unavailable after the connector controller forwards a service call
request to it, the connector controller fails the request.

If this property is set to false, the connector controller begins failing all service
call requests as soon as it detects that the destination application-specific
component is unavailable.

Appendix A. Standard configuration properties for connectors 135

The default is true.

ControllerTraceLevel
Level of trace messages for the connector controller. The default is 0.

DeliveryQueue
The queue that is used by the connector to send business objects to the integration
broker.

The default value is DELIVERYQUEUE.

DeliveryTransport
Specifies the transport mechanism for the delivery of events. Possible values are MQ
for WebSphere MQ, IDL for CORBA IIOP, or JMS for Java Messaging Service.

If ICS is the broker type, the value of the DeliveryTransport property can be MQ,
IDL, or JMS, and the default is IDL.

If WMQI is the broker type, JMS is the only possible Delivery Transport value.

The connector sends service call requests and administrative messages over
CORBA IIOP if the value configured for the DeliveryTransport property is MQ or
IDL.

WebSphere MQ and IDL
Use WebSphere MQ rather than IDL for event delivery transport, unless you have
compelling reasons not to license and maintain two separate products. WebSphere
MQ offers the following advantages over IDL:
v Asynchronous communication – WebSphere MQ allows the application-specific

component to poll and persistently store events even when the server is not
available.

v Server side performance – WebSphere MQ provides faster performance on the
server side. In optimized mode, WebSphere MQ stores only the pointer to an
event in the repository database, while the actual event remains in the
WebSphere MQ queue. This saves the overhead of having to write potentially
large events to the repository database.

v Agent side performance – WebSphere MQ provides faster performance on the
application-specific component side. Using WebSphere MQ, the connector’s
polling thread picks up an event, places it in the connector’s queue, then picks
up the next event. This is faster than IDL, which requires the connector’s polling
thread to pick up an event, go over the network into the server process, store
the event persistently in the repository database, then pick up the next event.

JMS
Enables communication between the connector controller and client connector
framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as
″jms.MessageBrokerName,″ ″jms.FactoryClassName,″ ″jms.Password,″ and
″jms.UserName,″ display in Connector Configurator. The first two of these
properties are required for this transport.

Important: There may be a memory limitation if you use the JMS transport
mechanism for a connector in the following environment:

136 Adapter for SWIFT User Guide

v AIX 5.0
v WebSphere MQ 5.3.0.1
v InterChange Server (ICS) as the Integration broker

In this environment, you may experience difficulty starting the both the connector
controller (on the server side) and the connector (on the client side) due to memory
use within the WebSphere MQ client. If your installation uses less than 768M of
process heap size, IBM recommends that you set:
v The LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script resides in the \bin directory below the product directory. With a text
editor, add the following line as the first line in the CWSharedEnv.sh script:
export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *
256 MB). If the process memory grows more than this limit, page swapping can
occur, which can adversely affect the performance of your system.

v The IPCCBaseAddress property to a value of 11 or 12. For more information on
this property, see the System Installation Guide for UNIX.

Notes:

v If your installation uses more than 768M of process heap size, this resolution
would adversely affect product performance.

v If you run on AIX 4.3.3, you do not need to set the LDR_CNTRL environment
variable. However, you must set IPCCBaseAddress to a value of 11 or 12.

DuplicateEventElimination
Setting this property to true enables a JMS-enabled connector to ensure that
duplicate events are not delivered to the delivery queue. To make use of this
feature, during connector development a unique event identifier must be set as the
business object’s ObjectEventId attribute in the application specific code.

This property can also be set to false.

Note: When DuplicateEventElimination is set to true, you must also configure the
MonitorQueue property to enable guaranteed event delivery.

FaultQueue
If the connector experiences an error while processing a message then the
connector moves the message to the queue specified in this property, along with a
status indicator and a description of the problem.

The default value is CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize
The maximum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize
The maximum native stack size for the agent (in kilobytes). This property is
applicable only if the RepositoryDirectory value is <REMOTE>.

Appendix A. Standard configuration properties for connectors 137

The default value is 128k.

JvmMinHeapSize
The minimum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 1m.

jms.FactoryClassName
Specifies the class name to instantiate for a JMS provider. You must set this
connector property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName
Specifies the broker name to use for the JMS provider. You must set this connector
property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is crossworlds.queue.manager.

jms.NumConcurrentRequests
Specifies the maximum number of concurrent service call requests that can be sent
to a connector at the same time. Once that maximum is reached, new service calls
block and wait for another request to complete before proceeding.

The default value is 10.

jms.Password
Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

jms.UserName
Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

Locale
Specifies the language code, country or territory, and, optionally, the associated
character code set. The value of this property determines such cultural conventions
as collation and sort order of data, date and time formats, and the symbols used in
monetary specifications. For more information, see the overview chapter of the
connector guide for an internationalized connector.

A locale name has the following format:
ll_TT.codeset

where:

ll a two-character language code (usually in lower
case)

138 Adapter for SWIFT User Guide

TT a two-letter country or territory code (usually in
upper case)

codeset the name of the associated character code set; this
portion of the name is often optional.

The default is en_US.

Important: By default only a subset of supported locales display in the drop list.
To add other supported values to the drop list, you must manually
modify the \Data\Std\stdConnProps.xml file in the product directory.
For more information, see the appendix on Connector Configurator.

Attention: If the connector has not been internationalized, the only valid value
for this property is en_US. Do not run a non-internationalized C++ connector
against InterChange Server version 4.1.1 if you cannot guarantee that only ISO
Latin-1 data will be processed. To determine whether a specific connector has been
internationalized, see the installing and configuring chapter of its connector guide.

LogAtInterchangeEnd
Specifies whether to log errors to InterChange Server’s log destination, in addition
to the location specified in the LogFileName property. Logging to the server’s log
destination also turns on email notification, which generates email messages for
the MESSAGE_RECIPIENT specified in the InterchangeSystem.cfg file when errors or
fatal errors occur. As an example, when a connector loses its connection to its
application, if LogAtInterChangeEnd is set to true, an email message is sent to the
specified message recipient. The default is false.

MaxEventCapacity
The maximum number of events in the controller buffer. This property is used by
flow control and is applicable only if the value of the RepositoryDirectory property
is <REMOTE>.

The value can be a positive integer between 1 and 2147483647. The default value is
2147483647.

MessageFileName
The name of the connector message file. The standard location for the message file
is \connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location.

If a connector message file does not exist, the connector uses
InterchangeSystem.txt as the message file. This file is located in the product
directory.

Important: To determine whether a specific connector has its own message file, see
the installing and configuring chapter of its adapter guide.

OADAutoRestartAgent
Specifies whether the Object Activation Daemon (OAD) automatically attempts to
restart the application-specific component after an abnormal shutdown. The
properties “OADMaxNumRetry” on page 140 and “OADRetryTimeInterval” on
page 140 are related to this property. This property is required for automatic
restart.

Appendix A. Standard configuration properties for connectors 139

The default value is false.

OADMaxNumRetry
Specifies the maximum number of times that the OAD automatically attempts to
restart the application-specific component after an abnormal shutdown.

The default value is 1000.

OADRetryTimeInterval
Specifies the number of minutes of the retry time interval that the OAD
automatically attempts to restart the application-specific component after an
abnormal shutdown. If the application-specific component does not start within the
specified interval, the OAD repeats the attempt as many times as specified in
“OADMaxNumRetry”.

The default is 10.

PollEndTime
Time to stop polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

PollFrequency
The amount of time between polling actions. Set PollFrequency to one of the
following values:
v The number of milliseconds between polling actions.
v The word key, which causes the connector to poll only when you type the letter

p in the connector’s Command Prompt window. Enter the word in lowercase.
v The word no, which causes the connector not to poll. Enter the word in

lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. To
determine whether a specific connector does, see the installing and
configuring chapter of its adapter guide.

PollStartTime
The time to start polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

RequestQueue
The queue that is used by the integration broker to send business objects to the
connector.

The default value is REQUESTQUEUE.

140 Adapter for SWIFT User Guide

RepositoryDirectory
The location of the repository from which the connector reads the XML schema
documents that store the meta-data of business object definitions.

When the integration broker is ICS, this value must be set to <REMOTE> because
the connector uses the InterChange Server repository to obtain its
connector-definition information

ResponseQueue
Designates the JMS response queue, which delivers a response message from the
connector framework to the integration broker. When the integration broker is
InterChange Server, InterChange Server sends the request and waits for a response
message in the JMS response queue.

RestartRetryCount
Specifies the number of times the connector attempts to restart itself. When used
for a parallel connector, specifies the number of times the master connector
application-specific component attempts to restart the slave connector
application-specific component.

The default is 3.

RestartRetryInterval
Specifies the interval in minutes at which the connector attempts to restart itself.
When used for a parallel connector, specifies the interval at which the master
connector application-specific component attempts to restart the slave connector
application-specific component.

The default is 1.

SourceQueue
Designates the JMS source queue for the connector framework in support of
guaranteed event delivery for JMS-enabled connectors that use a JMS event store.
For further information, see “ContainerManagedEvents” on page 135.

The default value is SOURCEQUEUE.

SynchronousRequestQueue
Delivers request messages that require a synchronous response from the connector
framework to the broker. This queue is necessary only if the connector uses
synchronous execution. With synchronous execution, the connector framework
sends a message to the SynchronousRequestQueue and waits for a response back
from the broker on the SynchronousResponseQueue. The response message sent to
the connector bears a correlation ID that matches the ID of the original message.

SynchronousResponseQueue
Delivers response messages sent in reply to a synchronous request from the broker
to the connector framework. This queue is necessary only if the connector uses
synchronous execution.

Appendix A. Standard configuration properties for connectors 141

SynchronousRequestTimeout
Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified time then
the connector moves the original synchronous request message into the fault queue
along with an error message.

The default value is 0.

TraceFileName
The name of the file where the application-specific component writes trace
messages. Specify the filename in an absolute path. The default is STDOUT.

WireFormat
Message format on the transport.

Possible values are:
v CwXMLif the broker is not ICS.
v CwBOif the value of RepositoryDirectory is <REMOTE>.

Configuring standard connector properties for WebSphere MQ
Integrator

This section describes standard configuration properties applicable to adapters
whose integration broker is WebSphere MQ Integrator Broker. For information on
using WebSphere Integrator Broker, see the Implementation Guide for WebSphere MQ
Integrator Broker.

Important: Not all properties are applicable to all connectors that use WebSphere
MQ Integrator Broker. For information specific to a connector, see its
adapter user guide.

You configure connector properties from Connector Configurator.

Note: Connector Configurator runs only on the Windows system. Even if you are
running the connector on a UNIX system, you must still have a Windows
machine with this tool installed. Therefore, to set connector properties for a
connector that runs on UNIX, you must run Connector Configurator on the
Windows computer and copy the configuration files to the UNIX computer
using FTP or some other file transfer mechanism. For more information
about Connector Configurator, see Appendix B, ″Connector Configurator.″

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a runtime session, you must restart the
connector. Standard configuration properties provide information that is used by
the adapter framework and connector framework, and is common to all
connectors.

Standard connector properties
The following table provides a quick reference for standard connector
configuration properties. See the sections that follow for explanations of the
properties.

142 Adapter for SWIFT User Guide

Name Possible values Default value

AdminInQueue valid JMS queue name CONNECTORNAME/ADMININQUEUE
AdminOutQueue valid WebSphere MQ

queue name
CONNECTORNAME/ADMINOUTQUEUE

AgentTraceLevel 0-5 0
ApplicationName application name AppNameConnector
BrokerType WMQI WMQI
CharacterEncoding ASCII, SJIS, Cp949, GBK,

Big5, Cp297, Cp273,
Cp280, Cp284, Cp037,
Cp437
Note: These are only a
subset of supported
values.

ASCII

ContainerManagedEvents JMS or no value JMS
DeliveryQueue valid WebSphere MQ

queue name
CONNECTORNAME/DELIVERYQUEUE

DeliveryTransport JMS JMS
DuplicateEventElimination true, false
FaultQueue valid WebSphere MQ

queue name
CONNECTORNAME/FAULTQUEUE

jms.FactoryClassName CxCommon.Messaging.jms.
IBMMQSeriesFactory

jms.MessageBrokerName If FactoryClassName is
IBM, use
crossworlds.queue.manager.
If FactoryClassName is
Sonic, use
localhost:2506.

crossworlds.queue.manager

jms.NumConcurrentRequests 10
jms.Password
jms.UserName
Locale en_US , ja_JP, ko_KR,

zh_C, zh_T, fr_F, de_D,
it_I, es_E, pt_BR
Note: These are only a
subset of supported
locales.

en_US

MessageFileName path/filename InterchangeSystem.txt
PollEndTime HH:MM HH:MM
PollFrequency milliseconds/key/no 10000
PollStartTime HH:MM HH:MM
RepositoryDirectory path/directory name Note:

Typically you must
change this value from
the default to whatever
path and directory name
was actually used when
you installed the the
connector files.

C:\crossworlds\Repository

RequestQueue valid WebSphere MQ
queue name

CONNECTORNAME/REQUESTQUEUE

ResponseQueue RESPONSEQUEUE
RestartRetryCount 0-99 3
RestartRetryInterval an appropriate integer

indicating the number of
minutes between restart
attempts

1

Appendix A. Standard configuration properties for connectors 143

Name Possible values Default value

SourceQueue valid WebSphere MQ
queue name

CONNECTORNAME/SOURCEQUEUE

SynchronousRequestQueue valid WebSphere MQ
queue name

SynchronousResponseQueue valid WebSphere MQ
queue name

SynchronousTimeout an appropriate integer
indicating the number of
minutes the connector
waits for a response to a
synchronous request

0

WireFormat CwXML CwXML

AdminInQueue
The queue that is used by the integration broker to send administrative messages
to the connector.

The default value is CONNECTORNAME/ADMININQUEUE.

AdminOutQueue
The queue that is used by the connector to send administrative messages to the
integration broker.

AgentTraceLevel
Level of trace messages for the connector’s application-specific component. The
default is 0. The connector delivers all trace messages applicable at the tracing
level set or lower.

ApplicationName
Name that uniquely identifies the connection to the application. This name is used
by the system administrator to monitor the connector’s environment. When you
create a new connector definition, this property defaults to the name of the
connector; when you work with the definition for an IBM WebSphere-delivered
connector, the property is also likely to be set to the name of the connector. Set the
property to a value that suggests the program with which the connector is
interfacing, such as the name of an application, or something that identifies a file
system or website in the case of technology connectors.

BrokerType
This property is set to the value WMQI for connectors that are configured to use
WebSphere MQ Integrator Broker as the integration broker.

CharacterEncoding
Specifies the character code set used to map from a character (such as a letter of
the alphabet, a numeric representation, or a punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. A C++ connector currently
uses the value ASCII for this property. If you previously configured the
value of this property to ascii7 or ascii8, you must reconfigure the
connector to use either ASCII or one of the other supported values. To
determine whether a specific connector is written in Java or C++, see the
installing and configuring chapter of its adapter guide.

Important: By default only a subset of supported character encodings display in
the drop list. To add other supported values to the drop list, you must

144 Adapter for SWIFT User Guide

manually modify the \Data\Std\stdConnProps.xml file in the product
directory. For more information, see the appendix on Connector
Configurator.

Attention: Do not run a non-internationalized connector against InterChange
Server version 4.1.1 if you cannot guarantee that only ISO Latin-1 data will be
processed.

The default value is ascii.

ContainerManagedEvents
Setting this property to JMS enables a JMS-enabled connector with a JMS event
store to provide guaranteed event delivery, in which an event is removed from the
source queue and placed on the destination queue as a single JMS transaction. This
property can also be set to no value.

Notes:

1. When ContainerManagedEvents is set to JMS, you must also configure the
following properties to enable guaranteed event delivery: PollQuantity = 1 to
500, SourceQueue = SOURCEQUEUE. In addition, you must configure a data
handler with the MimeType, DHClass, and DataHandlerConfigMOName
(optional) properties.

2. When ContainerManagedEvents is set to JMS, the connector does not call its
pollForEvents() method, thereby disabling that method’s functionality.

The default value is JMS.

DeliveryQueue
The queue that is used by the connector to send business objects to the integration
broker.

The default value is CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport
Specifies the transport mechanism for the delivery of events. The property defaults
to the value JMS, indicating that the Java Messaging Service (JMS) is used for
communication with WebSphere MQ Integrator. This property must be set to JMS
when WebSphere MQ Integrator Broker is the integration broker. Otherwise, the
connector cannot start.

DuplicateEventElimination
Setting this property to true enables a JMS-enabled connector to ensure that
duplicate events are not delivered to the delivery queue. To make use of this
feature, during connector development a unique event identifier must be set as the
business object’s ObjectEventId attribute in the application specific code.

This property can also be set to false.

Note: When DuplicateEventElimination is set to true, you must also configure the
MonitorQueue property to enable guaranteed event delivery.

FaultQueue
If the connector experiences an error while processing a message then the
connector moves the message to the queue specified in this property, along with a
status indicator and a description of the problem.

The default value is CONNECTORNAME/FAULTQUEUE.

Appendix A. Standard configuration properties for connectors 145

jms.FactoryClassName
Specifies the class name to instantiate for a JMS provider.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName
Specifies the broker name to use for the JMS provider.

The default is crossworlds.queue.manager.

jms.NumConcurrentRequests
Specifies the maximum number of concurrent service call requests that can be sent
to a connector at the same time. Once that maximum is reached, new service calls
block and wait for another request to complete before proceeding.

The default value is 10.

jms.Password
Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

jms.UserName
Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

Locale
Specifies the language code, country or territory, and, optionally, the associated
character code set. The value of this property determines such cultural conventions
as collation and sort order of data, date and time formats, and the symbols used in
monetary specifications. For more information, see the overview chapter of the
connector guide for an internationalized connector.

A locale name has the following format:
ll_TT.codeset

where:

ll a two-character language code (usually in lower
case)

TT a two-letter country or territory code (usually in
upper case)

codeset the name of the associated character code set; this
portion of the name is often optional.

The default is en_US.

Important: By default only a subset of supported locales display in the drop list.
To add other supported values to the drop list, you must manually
modify the \Data\Std\stdConnProps.xml file in the product directory.

146 Adapter for SWIFT User Guide

Attention:

v WebSphere MQ Integrator supports only one locale at a time. Ensure that every
component of the installation (for example, all adapters, applications, and the
integration broker itself) is set to the same locale.

v If the connector has not been internationalized, the only valid value for this
property is en_US. Do not run a non-internationalized C++ connector against
InterChange Server version 4.1.1 if you cannot guarantee that only ISO Latin-1
data will be processed. To determine whether a specific connector has been
internationalized, see the installing and configuring chapter of its connector
guide.

MessageFileName
The name of the connector message file. The standard location for the message file
is \connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location. This property defaults to the
value InterchangeSystem.txt for new connector definitions and should be changed
to the name of the message file for the specific connector.

PollEndTime
Time to stop polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

PollFrequency
The amount of time between polling actions. Set the PollFrequency to one of the
following values:
v The number of milliseconds between polling actions.
v The word key, which causes the connector to poll only when you type the letter

p in the connector’s Command Prompt window. Enter the word in lowercase.
v The word no, which causes the connector not to poll. Enter the word in

lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. To
determine whether a specific connector does, see the installing and
configuring chapter of its adapter guide.

PollStartTime
The time to start polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

RepositoryDirectory
The path and name of the directory from which the connector reads the XML
schema documents that store the meta-data of business object definitions.

The default value is C:\crossworlds\repository. You must change this to the
directory path that you are using for the \repository directory for your connector.
Typically that path is established when you install the adapter product; for

Appendix A. Standard configuration properties for connectors 147

example, C:\WebSphereAdapters\repository. The value must be a directory path.
Do not use <REMOTE> as the RepositoryDirectory value for a connector that is
not using ICS as the broker.

RequestQueue
The queue that is used by the integration broker to send business objects to the
connector.

The default value is CONNECTORNAME/REQUESTQUEUE.

ResponseQueue
Designates the JMS response queue, which delivers a response message from the
connector framework to the integration broker.

RestartRetryCount
Specifies the number of times the connector attempts to restart itself. The default
value is 3, indicating that the connector tries to restart 3 times. For instance, if a
connector is unable to log in to an application it fails to start, but with this
property set to the value 3 the connector tries a total of three times to start. When
used in conjunction with the “RestartRetryInterval” property, this behavior enables
a connector to make several attempts at communicating with an application that
might not reliably have a connection available all the time.

RestartRetryInterval
Specifies the interval in minutes at which the connector attempts to restart itself.
The default value is 1, indicating that the connector waits 1 minute in between its
restart attempts.

SourceQueue
Designates the JMS source queue for the connector framework in support of
guaranteed event delivery for JMS-enabled connectors that use a JMS event store.
For further information, see “ContainerManagedEvents” on page 135.

The default is CONNECTORNAME/SOURCEQUEUE.

SynchronousRequestQueue
Delivers request messages that require a synchronous response from the connector
framework to WebSphere MQ Integrator Broker. This queue is necessary only if the
connector uses synchronous execution. With synchronous execution, the connector
framework sends a message to the SynchronousRequestQueue and waits for a
response back from WebSphere MQ Integrator Broker on the
SynchronousResponseQueue. The response message sent to the connector bears a
correlation ID that matches the ID of the original message.

SynchronousResponseQueue
Delivers response messages sent in reply to a synchronous request from
WebSphere MQ Integrator Broker to the connector framework. This queue is
necessary only if the connector uses synchronous execution.

SynchronousTimeout
Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified time then
the connector moves the original synchronous request message into the fault queue
along with an error message.

The default value is 0.

148 Adapter for SWIFT User Guide

WireFormat
The data format for messages exchanged by the connector. The default value CwXML
is the only valid value, and directs the connector to compose the messages in XML.

Appendix A. Standard configuration properties for connectors 149

150 Adapter for SWIFT User Guide

Appendix B. Connector Configurator

Before you can use a connector, you must create a connector configuration file that
sets the properties for the connector, designates the business objects and any
meta-objects that it supports, and sets logging and tracing values that the
connector will use at runtime. The configuration file may also contain properties
for the use of messaging and data handlers required by your connector.

Use Connector Configurator to create and modify the configuration file for your
connector. If a configuration file has previously been created for your connector,
you can use Connector Configurator to open the file and modify its settings. If no
configuration file has yet been created for your connector, you can use Connector
Configurator to both create the file and set its properties.

When you complete a connector configuration file, the file is saved as an XML
document. You will save the XML document either as a project in System Manager
(if ICS is your broker) or as a file with a *.cfg extension in a directory folder (if
WebSphere MQ Integrator Broker is your broker, or if you are using the file as a
local configuration file for ICS).

This appendix describes how to use Connector Configurator to:
v Create a connector-specific property template for configuring your connector
v Create a configuration file
v Set properties in a configuration file

Connector Configurator runs only in a Windows environment. If you are running
the connector itself in a UNIX environment, use Connector Configurator in the
Windows system in the network to modify the configuration file. Then copy the
file to your UNIX environment.

Note: Some properties in the connector configuration file use directory paths, and
these paths default to the Windows convention for directory paths. If you
use the connector configuration file in a UNIX environment, revise any
directory path constructs in the configuration properties to match the UNIX
convention for directory paths.

Using Connector Configurator in an internationalized environment
Connector Configurator is internationalized and handles character conversion
between the configuration file and the integration broker. Connector Configurator
uses native encoding. When it writes to the configuration file, it uses UTF-8
encoding.

Connector Configurator supports non-English characters in:
v All value fields
v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration
properties displays only a subset of supported values. To add other values to the
drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the
product directory.

© Copyright IBM Corp. 2002, 2003 151

For example, to add the locale en_GB to the list of values for the Locale property,
open the stdConnProps.xml file and add the line in boldface type below:
<Property name="Locale" isRequired="true" updateMethod="component restart">

<ValidType>String</ValidType>
<ValidValues>

<Value>ja_JP</Value>
<Value>ko_KR</Value>
<Value>zh_CN</Value>
<Value>zh_TW</Value>
<Value>fr_FR</Value>
<Value>de_DE</Value>
<Value>it_IT</Value>
<Value>es_ES</Value>
<Value>pt_BR</Value>
<Value>en_US</Value>
<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>
</ValidValues>

</Property>

Starting Connector Configurator
Connector Configurator can be started and run in either of two modes:
v Launched from System Manager
v Independent of System Manager (stand-alone mode)

Running Configurator from System Manager
When you run Connector Configurator in conjunction with System Manager, you
can
v Save connector configuration files (XML documents with the extension *.cfg) to a

directory that you specify, and
v Save connector configuration files as components of System Manager projects. If

you are using ICS as your broker, this is a mandatory step before you deploy
your configuration into the ICS.

Note: When you save a configuration file as a component of a System Manager
project, the file is stored in the designated project as an XML document file
with the extension *.con. It is not advisable to open the *.con file and edit it
directly; instead, make any changes by opening the component in System
Manager.

To run Connector Configurator with System Manager, do any of the following:
v In System Manager, right-click on the Connector folder of the Integration

Components Library (to create a new configuration), or right-click on a
connector configuration component within the Connector folder (to edit an
existing configuration), or

v From the System Manager menu, choose Tools>Connector Configurator, or
v With System Manager already running, from Start>Programs choose IBM

WebSphere InterChange Server>IBM WebSphere Business Integration
Toolset>Development>Connector Configurator.

For details about using projects in System Manager and deploying to InterChange
Server, see the Implementation Guide for WebSphere InterChange Server.

152 Adapter for SWIFT User Guide

Running Configurator independently of System Manager
When you run Connector Configurator without connecting to System Manager,
you can save a connector configuration file (an XML document with the extension
*.cfg) to a directory that you specify, but you cannot save or open a System
Manager project.

When you are creating a connector for use with a broker other than ICS, you do
not need to connect to System Manager at any point in order to use the file. If you
are creating a connector configuration for use with ICS as the broker, you may still
find it useful on occasion to run Connector Configurator independently, and then
connect to System Manager when you are ready to save the configuration file as a
component of a System Manager project.

Choosing your broker
Connector Configurator can be used to configure connectors either for use with
ICS as the broker, or with WebSphere MQ Integrator Broker (also referred to as
WMQI) as the broker.

Before you begin to configure the connector, you must choose the mode of
Connector Configurator that is appropriate for your broker. The mode that you
choose determines the properties that Connector Configurator will include in the
configuration file. Choosing a broker is a mandatory step when you begin the
process of creating a completely new configuration file. After a configuration file
has been created, you can optionally change the designated broker mode, using a
standard configuration property. (This makes it possible to use an existing
configuration file as a starting point for creating a configuration file that will be
used with a different broker. However, be aware that revising a configuration file
for use with a different broker typically involves changing other configuration
properties as well, and not just the broker mode property.)

To choose a broker when you create a new configuration file (mandatory):
v In the Connector Configurator home menu, choose File>New>Connector

Configuration. The New Connector Dialog displays.
v In the Integration Broker field, choose either WMQI connectivity (for WebSphere

Integrator Broker) or ICS connectivity, according to the broker you are using.
v Complete the remaining fields of the New Connector dialog, as described later

in this chapter for your specific broker.

To change your broker selection within an existing configuration file (optional):
v Open the existing configuration file in Connector Configurator.
v Select the Standard Properties tab.
v In the Broker Type field of the Standard Properties tab, choose the value that is

appropriate for your broker. If you change the existing value, the available tabs
and field selections of the properties screen will immediately refresh, to show
only those tabs and fields that appropriate for a configuration using the broker
you have selected.

After you have chosen your broker type, you can complete the remaining
Connector Configurator tasks for configuring your connector. When you save the
connector configuration file, Connector Configurator will save it in the broker
mode that you have already selected. The title bar of Connector Configurator
always displays the broker mode (such as ICS or WMQI) that Connector
Configurator is currently using.

Appendix B. Connector Configurator 153

After you have completed the configuration file and set its properties, it will need
to be deployed to the appropriate location for your connector.
v If you are using ICS as your broker, save the configuration in a System Manager

project, and use System Manager to load the file into InterChange Server.
v If you are using WebSphere MQ Integrator Broker as your broker, manually

copy the configuration file to its appropriate location, which must match exactly
the configuration file location specified in the startup file for your connector.

For further information about deployment, see the Implementation Guide for
WebSphere InterChange Server (for using the connector with ICS as the broker), or
the Implementation Guide for WebSphere MQ Integrator Broker (for using the connector
with MQ Integrator as the broker).

Using a connector-specific property template
To create a configuration file for your connector, you can start with a previously
created connector configuration file (*.cfg), a connector definition file (*.txt) or a
repository file (*.in or *.out), if any of these already exists for your connector. For
instructions on using such existing files, see “Using an existing file” on page 158.

If none of those files exist, or if they are too dissimilar to the configuration
requirements of your connector, you can start instead by creating a template for
the connector-specific properties of your connector. You’ll create properties in the
template, define general characteristics and values for those properties, and specify
any dependencies between the properties. Then you’ll save the template and use it
as the base for creating a new connector configuration file.

Creating a template of connector-specific properties
To create a template:
1. Choose File>New>Connector-Specific Property Template.
2. The Connector-Specific Property Template dialog appears, with the following

fields
v Name

Enter a unique name that identifies the connector, or type of connector, for
which this template will be used. You will see this name again when you
open the dialog for creating a new configuration file from a template.

v Find Template, and Template Name
The names of all currently available templates are displayed in the Template
Name display. Look for an existing template that would make a good
starting point for your new connector template (such as a template whose
property definitions are a subset of the properties used by your connector).
To see the connector-specific property definitions that are contained in any
template, select that template’s name in the Template Name display. A list of
the property definitions contained in that template will appear in the
Template Preview display.
If you do not see any template that displays the connector-specific properties
that are used by your connector, you will need to create one. Connector
Configurator provides a template named None, containing no property
definitions, as a default choice.
Choose a template from the Template Name display, enter that template
name in the Find Name field (or highlight your choice in Template Name),
and choose Next.

154 Adapter for SWIFT User Guide

Specifying general characteristics
The Properties - Connector-Specific Property Template dialog appears. The dialog
has tabs for General characteristics of the defined properties and for Value
restrictions. The General display has the following fields:
v Edit properties

Use the buttons provided (or right-click within the Edit properties display) to
add a new property to the template, to edit or delete an existing property, or to
add a child property to an existing property.
A child property is a property that is an attribute of another property--the
″parent″ property. The parent property can obtain values, or child properties, or
both. These property relationships are commonly referred to as ″hierarchical″
properties. Later, when you create a configuration file from these properties,
Connector Configurator will identify hierarchical property sets with a plus sign
in a box at the left of any parent property.

v Property type
Choose one of these property types: Boolean, String, Integer, or Time.

v Flags
You can set Standard Flags (IsRequired, IsDepracated, IsOverridden) or Custom
Flags (for Boolean operators) to apply to this property

After you have made selections for the general characteristics of the property,
choose the Value tab.

Specifying values
The Value tab enables you to set the maximum length, the maximum multiple
values, a default value, or a value range for the property. To do so:
1. Choose the Value tab. The display panel for Value replaces the display panel

for General.
2. Select the name of the property in the Edit properties display.
3. In the fields for Max Length and Max Multiple Values, make any necessary

changes. Note that the changes will not be accepted until and unless you also
open the Property Value dialog for the property, described in the next step.

4. Right-click the box in the left-hand corner of the Value display panel. A
Property Value dialog displays. Depending on the type of the property, the
dialog allows you to enter either a value, or both a value and range. Enter the
appropriate value or range, and click OK.

5. The Value panel refreshes to display any changes you made in Max Length and
Max Multiple Values, and it displays a table with three columns:
The Value column shows the value that you entered in the Property Value
dialog, and any previous values that you created.
The Default Value column allows you to designate any of the values as the
default.
The Value Range shows the range that you entered in the Property Value
dialog.
After a value has been created and appears in the grid, it can be edited from
within the table display. To make a change in an existing value in the table,
select an entire row by clicking on the row number. Then right-click in the
Value field and choose EditValue.

Appendix B. Connector Configurator 155

Setting dependencies
After you have finished making changes in both the General and the Value tabs,
choose Next. The Dependencies dialog appears.

A dependent property is a property that is included in the template and used in
the configuration file only if the value of another property meets a specific
condition. To designate a property as being dependent and set the condition upon
which it depends, do this:
1. In the Available Properties display, select the property that will be made

dependent.
2. In the Select Property field, use the drop-down menu to select the property that

will hold the conditional value.
3. In the Condition Operator field, choose one of the following:

== (equal to)
/= (not equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the
dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,
click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered
as an XML document, under \data\app in the\bin directory where you have
installed Connector Configurator.

Creating a configuration file from a connector-specific
template

After a connector-specific template has been created, you can use it to create a
configuration file:
1. Choose File > New>Connector Configuration.
2. The New Connector dialog appears, with the following fields:

v Name
Enter the name of the connector. Names are case-sensitive. The name you
enter must be unique, must end with the word “connector”, and must be
consistent with the file name for a connector that is installed on the system;
for example, enter PeopleSoftConnector if the connector file name is
PeopleSoft.jar.

Important: Connector Configurator does not check the spelling of the name
that you enter. You must ensure that the name is correct.

v System Connectivity
Choose ICS or choose WMQI (for WebSphere MQ Integrator Broker)
connectivity.

v Select Connector-Specific Property Template
Type the name of the template that has been designed for your connector.
The names of all available templates are displayed in the Template Name

156 Adapter for SWIFT User Guide

display. When you select a name in the Template Name display, the Property
Template Preview display shows the connector-specific properties that have
been defined in that template.
After you have chosen the template you want to use, choose OK.

3. A configuration screen will display for the connector that you are configuring.
The title bar of the configuration screen shows the broker that you are using
and the name that you have given to the connector. You can fill in all the field
values to complete the definition now, or you can save the file and complete
the fields later.
When you are using the configuration screen, you can, if you wish, add
additional connector-specific properties, as described under “Setting
application-configuration properties (ICS)” on page 160. Any such additions
become part of the configuration file that you are creating, but do not affect the
template that you used in creating the file.

4. To save the file, choose File > Save > to File or File > Save > Save to the project.
To save to a project, you must be using ICS as the broker, and System Manager
must be running. If you save as a file, the Save File Connector dialog displays.
Choose *.cfg as the file type, verify in the File Name field that the name is
spelled correctly and has the correct case, navigate to the directory where you
want to locate the file, and choose Save. The status display in the message
panel of Connector Configurator indicates that the configuration file was
successfully created.

Important: The directory path and name that you establish here must match
the connector configuration file path and name that you supply in
the startup file for the connector.

5. To complete the connector definition, enter values in the fields for each of the
tabs of the Connector Configurator window, as described for your broker later
in this chapter.

Using Connector Configurator with ICS as the broker
To use Connector Configurator to configure a connector that will be used with ICS,
first select ICS as the broker mode in which you are running Connector
Configurator, as described under“Choosing your broker” on page 153.

In a typical ICS implementation, the configuration file that you create with
Connector Configurator is not put into use until after you have deployed it to the
ICS server. You will perform that deployment (described in the Implementation
Guide for WebSphere InterChange Server) after you have finished using Connector
Configurator to complete the connector configuration file.

Completing a configuration file
This topic assumes that you already have a starting point for your connector
configuration, either from an existing file (a connector definitions file, a repository
file, or a *.cfg file) or from an existing project in System Manager. If you do not,
see “Creating a template of connector-specific properties” on page 154.

When you open a configuration file or a connector from a project, the Connector
Configurator window displays the configuration screen, with the attributes and
values that Connector Configurator finds in the connector definition file.

The title of the configuration screen displays the type of the broker and the name
of the connector as specified in the file. Make sure the title indicates the

Appendix B. Connector Configurator 157

appropriate type for your broker--either ICS or WebSphere MQ Integrator Broker
(for WMQI). If it does not, change the broker value before you configure the
connector. To do so:
1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value WMQI or ICS.
2. The Standard Properties tab refreshes to display properties associated with the

selected broker. When you save the file, you retain this broker selection. You
can save the file now or proceed to complete the remaining configuration
fields, as described in “Setting the configuration file properties (WebSphere MQ
Integrator Broker)” on page 164.

3. When you have finished making entries in the configuration fields, choose
File>Save>To Project or File>Save>To File.
If you are saving to file, choose *.cfg as the extension, choose the correct
location for the file and choose Save.
If multiple connector configurations are open, choose Save All to File to save all
of the configurations to file, or choose Save All to Project to save all ICS
connector configurations to a System Manager project.
Before it saves the file, Connector Configurator validates that values have been
set for all required Standard properties. If a required Standard property is
missing a value, Connector Configurator displays a message that the validation
failed. You must supply a value for the property in order to save the
configuration file.

Using an existing file
You may have an existing file available in one or more of the following formats:
v A connector definition file. This is a text file that lists properties and applicable

default values for a specific connector. Some connectors include such a file in a
\repository directory in their delivery package (the file typically has the
extension .txt; for example, CN_XML.txt for the XML connector).

v An ICS repository file. Definitions used in a previous ICS implementation of the
connector may be available to you in a repository file that was used in the
configuration of that connector. Such a file typically has the extension .in or
.out.

v A previous configuration file for the connector. Such a file typically has the
extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific
properties for your connector, the connector configuration file will not be complete
until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in
Connector Configurator, revise the configuration, and then save the file as a
configuration file (*.cfg file).

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:
1. In Connector Configurator, choose File > Open > From File.
2. In the Open File Connector dialog, choose one of the following file types to see

the available files:
v Configuration (*.cfg)
v ICS Repository (*.in, *.out)

Choose this option if a repository file was used to configure the connector in
an ICS environment. A repository file may include multiple connector
definitions, all of which will display when you open the file.

158 Adapter for SWIFT User Guide

v All files (*.*)
Choose this option if a *.txt file was delivered in the adapter package for
the connector, or if a definition file is available under another extension.

3. In the directory display, navigate to the appropriate connector definition file,
select it, and choose Open.

Using an existing System Manager project
Follow these steps to open a connector configuration from a System Manager
project:
1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.
2. Start Connector Configurator.
3. Choose File > Open > From Project.

Setting the configuration file properties (ICS)
The topics in this section apply if you are using InterChange Server as the
integration broker. If you are using WebSphere MQ Integrator Broker as the
integration broker, see “Setting the configuration file properties (WebSphere MQ
Integrator Broker)” on page 164. When you create and name a new connector
configuration file, or when you open an existing connector configuration file,
Connector Configurator displays a configuration screen with tabs for the categories
of required configuration values.

Connector Configurator requires values for properties in all of these categories:
1. Standard Properties
2. Connector-Specific Properties
3. Supported Business Objects
4. Associated Maps
5. Resources
6. Trace/Log File values
7. Messaging (where applicable)
8. Data handlers (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,
for configuration of data handlers that convert the data to business objects.

Important: Connector Configurator accepts property values in either English or
non-English character sets. However, the names of both standard and
connector-specific properties, and the names of supported business
objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:
v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the
same set of standard properties. These properties are described in Appendix A of
each adapter guide. You can change some but not all of these values.

v Application-configuration (application-specific) properties apply only to the
application-specific component of a connector, that is, the component that
interacts directly with the application. Each connector has application-specific
properties that are unique to its application. Some of these properties provide

Appendix B. Connector Configurator 159

default values and some do not; you can modify some of the default values. The
installation and configuration chapter of each adapter guide describes the
application-specific properties and the recommended values.

The fields for Standard Properties and Connector-Specific Properties are
color-coded to show which are configurable:
v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.
v A field with a white background indicates an application-specific property. These

properties vary according to specific needs of the application or connector. You
can change the value and delete these properties.

v Value fields are configurable.
v The Update Method field is informational and not configurable. This field

specifies the action required to activate a property whose value has changed.

Setting standard connector properties (ICS)
To change the value of a standard property:
1. Click in the field whose value you want to set.
2. Either enter a value, or choose from the drop-down menu if one appears.
3. After entering all values for the standard properties, you can do one of the

following:
v To discard the changes, preserve the original values, and exit Connector

Configurator, choose File > Exit (or close the window), and choose No when
prompted to save changes.

v To enter values for other categories in Connector Configurator, choose the tab
for the category. The values you enter for Standard Properties (or other
category) are retained when you move to the next category; when you close
the window, you are prompted to either save or discard the values that you
entered in all of the categories as a whole.

v To save the revised values, choose File > Exit (or close the window) and
choose Yes when prompted to save changes. Alternatively, choose Save > To
File from either the File menu or the toolbar.

Setting application-configuration properties (ICS)
For application-specific configuration properties, you can add or change property
names, configure values, delete a property, and encrypt a property:
1. Right click in the top-left portion of the grid. A pop-up menu bar will appear.

Select Add to add a property or Add Child to add a child property for a
property.

2. Enter a value for the property or child property.
3. To encrypt a property, click the Encrypt box.
4. Choose to save or discard changes, as described for Setting Standard Connector

Properties.

The Update Method displayed for each property indicates whether a component or
agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may
cause a connector to fail. Certain property names may be needed by
the connector to connect to an application or to run properly.

160 Adapter for SWIFT User Guide

Encryption for connector properties (ICS)
Application-specific properties can be encrypted by clicking the Encrypt check box
in the Edit Property window. To decrypt a value, click to clear the Encrypt check
box, enter the correct value in the Verification dialog box, and choose OK. If the
entered value is correct, the value is decrypted and displays. The adapter guide for
each connector contains a list and description of each property and its default
value.

If a property has multiple values, the Encrypt check box will appear for the first
value of the property. When you click the Encrypt check box, all values of the
property will encrypted. To decrypt multiple values of a property, click to clear the
Encrypt check box of the first value of the property, and then enter the correct
value of the first value in the Verification dialog box. If the input value is a match,
all multiple values will decrypt.

Update method (ICS)
When WebSphere MQ Integrator Broker is the integration broker, connector
properties are static. The Update Method is always Connector Restart. In other
words, for changes to take effect, you must restart the connector after saving the
revised connector configuration file.

Specifying supported business object definitions (ICS)
This topic assumes that you have already created or acquired the intended
business objects, created or acquired maps for them, and have saved both the
business object definitions and map definitions into System Manager projects.

Before you can make use of a connector (and before you can bind the connector
with a collaboration’s ports), you must make selections under the Supported
Business Objects tab to specify the business objects that the connector will use. You
must specify both generic business objects and corresponding application-specific
business objects, and you must specify associations for the maps between the
business objects.

Note: Some connectors require that certain business objects be specified as
supported in order to perform event notification or additional configuration
(using meta-objects) with their applications. For more information, see the
Connector Development Guide for C++ or the Connector Development Guide for
Java.

To specify that a business object definition is supported by the connector, or to
change the support settings for an existing business object definition, choose the
Supported Business Objects tab and use the following fields:

Business object name
These instructions assume that you started Business Object Designer with System
Manager running.

To designate that a business object definition is supported by the connector:
1. Click in an empty field of the Business Object Name list. A drop-down list

displays, showing all the business object definitions that exist in the System
Manager project.

2. Click on a business object to add it.
3. Set the Agent Support (described below) for the business object.

Appendix B. Connector Configurator 161

4. In the File menu of the Connector Configurator window, choose Save to Project.
The revised connector definition, including designated support for the added
business object definition, is saved to the project in System Manager.

To delete a business object from the supported list:
1. To select a business object field, click the number to the left of the business

object
2. From the Edit menu of the Connector Configurator window, choose Delete

Row. The business object is removed from the list display.
3. From the File menu, choose Save to Project.

Note that deleting a business object from the supported list does not affect the
code of the connector, nor does it remove the business object definition itself from
System Manager. It does, however, change the connector definition and make the
deleted business object unavailable for use in this implementation of this
connector.

Agent support
Indicating Agent Support for a business object means that the system will attempt
to use that business object for delivering data to an application via the connector
agent.

Typically, application-specific business objects for a connector are supported by
that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, put a
check in the Agent Support box. Note that the Connector Configurator window
does not validate your Agent Support selections.

Maximum transaction level
The maximum transaction level for a connector is the highest transaction level that
the connector supports.

For most connectors Best Effort is the only possible choice, because most
application APIs do not support the Stringent level.

You must restart the server for changes in transaction level to take effect.

Note: For this release, maximum transaction level of a connector is always Best
Effort.

Associated maps (ICS)
Each connector supports a list of business object definitions and their associated
maps that are currently active in InterChange Server. This list displays when you
select the Associated Maps tab.

The list of business objects contains the application-specific business object which
the agent supports and the corresponding generic object that the controller sends
to the subscribing collaboration. The association of a map determines which map
will be used to transform the application-specific business object to the generic
business object or the generic business object to the application-specific business
object.

162 Adapter for SWIFT User Guide

If you are using maps that are uniquely defined for specific source and destination
business objects, the maps will already be associated with their appropriate
business objects when you open the display, and you will not need (or be able) to
change them.

If more than one map is available for use by a supported business object, you will
need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:
v Business Object Name

These are the business objects supported by this connector, as designated in the
Supported Business Objects tab. If you designate additional business objects
under the Supported Business Objects tab, they will be reflected in this list after
you save the changes by choosing Save to Project from the File menu of the
Connector Configurator window.

v Associated Maps
The display shows all the maps that have been installed to the system for use
with the supported business objects of the connector. The source business object
for each map is shown to the left of the map name, in the Business Object Name
display.

v Explicit
In some cases, you may need to explicitly bind an associated map.
Explicit binding is required only when more than one map exists for a particular
supported business object. When InterChange Server boots, it tries to
automatically bind a map to each supported business object for each connector.
If more than one map takes as its input the same business object, the server
attempts to locate and bind one map that is the superset of the others. If there is
not a map that is the superset of the others, the server will not be able to bind
the business object to a single map, and you will need to set the binding
explicitly.
To explicitly bind a map:
1. In the Explicit column, place a check in the check box for the map you want

to bind.
2. Select the map that you intend to associate with the business object
3. In the File menu of the Connector Configurator window, choose Save to

Project.
4. Deploy the project to InterChange Server.
5. Reboot the InterChange Server for the changes to take effect.

Resources (ICS)
The Resource tab allows you to set a value that determines whether and to what
extent the connector agent will handle multiple processes concurrently using
connector agent parallelism. Not all connectors support this feature, and use of this
feature is not usually advised for connector agents that were designed in Java to be
multi-threaded, since it is usually more efficient to use multiple threads than
multiple processes.

Setting trace/log file values (ICS)
When you open a connector configuration file or a connector definition file,
Connector Configurator uses the logging and tracing values of that file as default
values. You can change those values in Connector Configurator.

Appendix B. Connector Configurator 163

To change the logging and tracing values:
1. Choose the Trace/Log Files tab.
2. For either logging or tracing, you can choose to write messages to one or both

of the following:
v To console (STDOUT): Writes logging or tracing messages to the STDOUT

display.
v To File: Writes logging or tracing messages to a file that you specify. To

specify the file, choose the directory button (ellipsis), navigate to the
preferred location, provide a file name, and choose Save. Logging or tracing
message are written to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file
extension that you prefer when you set their file names. For tracing
files, however, it is advisable to use the extension .trace rather than
.trc, to avoid confusion with other files that might reside on the
system. For logging files, .log and .txt are typical file extensions.

Configuring messaging
The messaging properties are available only if you have set MQ as the value of the
DeliveryTransport standard property and ICS as the broker type. These properties
affect how your connector will use queues.

Data handlers
The data handlers section is available for configuration only if you have designated
a value of JMS for DeliveryTransport and a value of JMS for
ContainerManagedEvents. See the descriptions under ContainerManagedEvents in
Appendix A, Standard Properties, for values to use for these properties. For
additional details, see the Connector Development Guide for C++or the Connector
Development Guide for Java.

Setting the configuration file properties (WebSphere MQ Integrator
Broker)

The topics in this section apply if you are using WebSphere MQ Integrator (also
referred to as WMQI) as the integration broker.

When you create and name a new connector configuration file, or when you open
an existing connector configuration file, Connector Configurator displays a
configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in all of these categories:
1. Standard Properties
2. Connector-Specific Properties
3. Supported Business Objects
4. Trace/Log File values
5. Data Handlers (where applicable)

Note: For connectors that use JMS messaging, an additional category may display,
for configuration of data handlers that convert the data to business objects.
For information about the values to use in the Data Handlers category, see
the Connector Development Guide for C++ or the Connector Development Guide
for Java.

164 Adapter for SWIFT User Guide

Important: Connector Configurator accepts property values in either English or
non-English character sets. However, the names of both standard and
connector-specific properties, and the names of supported business
objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:
v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the
same set of standard properties. These properties are described in Appendix A of
each adapter guide. You can change some but not all of these values.

v Application-configuration (application-specific) properties apply only to the
application-specific component of a connector, that is, the component that
interacts directly with the application. Each connector has application-specific
properties that are unique to its application. Some of these properties provide
default values and some do not; you can modify some of the default values. The
installation and configuration chapter of each adapter guide describes the
application-specific properties and the recommended values.

The fields for Standard Properties and Connector-Specific Properties are
color-coded to show which are configurable:
v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.
v A field with a white background indicates an application-specific property. These

properties vary according to specific needs of the application or connector. You
can change the value and delete these properties.

v Value fields are configurable.
v The Update Method field is informational and not configurable. This field

specifies the action required to activate a property whose value has changed.

Setting standard connector properties
To change the value of a standard property:
1. Click in the field whose value you want to set.
2. Either enter a value, or choose from the drop-down menu if one appears.
3. After entering all values for the standard properties, you can do one of the

following:
v To discard the changes, preserve the original values, and exit Connector

Configurator, choose File > Exit (or close the window), and choose No when
prompted to save changes.

v To enter values for other categories in Connector Configurator, choose the tab
for the category. The values you enter for Standard Properties (or other
category) are retained when you move to the next category; when you close
the window, you are prompted to either save or discard the values that you
entered in all of the categories as a whole.

v To save the revised values, choose File > Exit (or close the window) and
choose Yes when prompted to save changes. Alternatively, choose Save > To
File from either the File menu or the toolbar.

Setting application-configuration properties
For application-specific configuration properties, you can add or change property
names, configure values, delete a property, and encrypt a property:
1. Click in the field whose name or value you want to set.

Appendix B. Connector Configurator 165

2. Enter a name or value.
3. To encrypt a property, click the Encrypt box.
4. Choose to save or discard changes, as described for Setting Standard Connector

Properties.

The Update Method displayed for each property indicates whether a component or
agent restart is necessary to activatechanged values.

Important: Changing a preset application-specific connector property name may
cause a connector to fail. Certain property names may be needed by
the connector to connect to an application or to run properly.

Encryption for connector properties
Application-specific properties can be encrypted by clicking the Encrypt check box
in the Edit Property window. To decrypt a value, click to clear the Encrypt check
box, enter the correct value in the Verification dialog box, and choose OK. If the
entered value is correct, the value is decrypted and displays. The adapter guide for
each connector contains a list and description of each property and its default
value.

Update method
When WebSphere MQ Integrator Broker is the integration broker, connector
properties are static. The Update Method is always Agent Restart. In other words,
for changes to take effect, you must restart the connector agent after saving the
revised connector configuration file.

Specifying supported business object definitions
The procedures in this section assume that you have already created:
v Business object definitions
v MQ message set files (*.set files)

The *.set files contain message set IDs that Connector Configurator requires for
designating the connector’s supported business objects. See the Implementation
Guide for WebSphere MQ Integrator Broker for information about creating the MQ
message set files.

Each time that you add business object definitions to the system, you must use
Connector Configurator to designate those business objects as supported by the
connector.

Important: If the connector requires meta-objects, you must create message set files
for each of them and load them into Connector Configurator, in the
same manner as for business objects.

To specify supported business objects:
1. Select the Supported Business Objects tab and choose Load. The Open Message

Set ID File(s) dialog displays.
2. Navigate to the directory where you have placed the message set file for the

connector and select the appropriate message set file (*.set) or files.
3. Choose Open. The Business Object Name field displays the business object

names contained in the *.set file; the numeric message set ID for each business
object is listed in its corresponding Message Set ID field. Do not change the
message set IDs. These names and numeric IDs are saved when you save the
configuration file.

166 Adapter for SWIFT User Guide

4. When you add business objects to the configuration, you must load their
message set files. If you attempt to load a message set that contains a business
object name that already exists in the configuration, or if you attempt to load a
message set file that contains a duplicate business object name, Connector
Configurator detects the duplicate and displays the Load Results dialog. The
dialog shows the business object name or names for which there are duplicates.
For each duplicate name shown, click in the Message Set ID field, and choose
the Message Set ID that you wish to use.

Setting trace/log file values
When you open a connector configuration file or a connector definition file,
Connector Configurator uses the logging and tracing values of that file as default
values. You can change those values in Connector Configurator.

To change the logging and tracing values:
1. Choose the Trace/Log Files tab.
2. For either logging or tracing, you can choose to write messages to one or both

of the following:
v To console (STDOUT): Writes logging or tracing messages to the STDOUT

display.
v To File: Writes logging or tracing messages to a file that you specify. To

specify the file, choose the directory button (ellipsis), navigate to the
preferred location, provide a file name, and choose Save. Logging or tracing
message are written to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file
extension that you prefer when you set their file names. For tracing
files, however, it is advisable to use the extension .trace rather than
.trc, to avoid confusion with other files that might reside on the
system. For logging files, .log and .txt are typical file extensions.

Configuring data handlers
The data handlers section is available for configuration only if you have designated
a value of JMS for DeliveryTransport and a value of JMS for
ContainerManagedEvents. See the descriptions under ContainerManagedEvents in
Appendix A, Standard Properties, for values to use for these properties. For
additional details, see the Connector Development Guide for C++ or the Connector
Development Guide for Java

Using standard and connector-specific properties with Connector
Configurator

Connector configuration properties include both standard configuration properties
(the properties that all connectors have) and connector-specific properties
(properties that are needed by the connector for a specific application or
technology).

Because standard properties are used by all connectors, you do not need to define
those properties within your configuration file; Connector Configurator already has
those definitions, and it incorporates them into your configuration file as soon as
you create the file. For standard properties, your only task is to use Connector
Configurator to set the values of the properties.

Appendix B. Connector Configurator 167

For connector-specific properties, however, you will need to both define the
properties and set their values. Connector Configurator provides the interface for
performing both of these tasks.

Completing the configuration
After you have created a configuration file for a connector and modified it, make
sure that the connector can locate the configuration file when the connector starts
up. To do so, open the startup file used for the connector, and verify that the
location and file name used for the connector configuration file match exactly the
name you have given the file and the directory or path where you have placed it.

168 Adapter for SWIFT User Guide

Appendix C. Connector feature list

This appendix details the features supported by the connector. For descriptions of
these features, see “Appendix A: Connector Feature Checklist” in the Connector
Development Guide.

Business object request handling features
Table 54 details the business object request handling features supported by the
connector.

Table 54. Business object request handling features

Category Feature Support Notes

Create Create verb N/A Support is entirely dependent on application
receiving connector request.

Delete Delete verb N/A Support is entirely dependent on application
receiving connector request.

Logical delete N/A Support is entirely dependent on application
receiving connector request.

Exist Exist verb N/A Support is entirely dependent on application
receiving connector request.

Misc Attribute names Full
Business object names Full

Retrieve Ignore missing child object N/A Support is entirely dependent on application
receiving connector request.

RetrieveByContent Ignore missing child object N/A Support is entirely dependent on application
receiving connector request.

Multiple results N/A Support is entirely dependent on application
receiving connector request.

RetrieveByContent verb N/A The connector supports RetrieveByContent
verb in full when using synchronous
request/response.

Update After-image support N/A Support is entirely dependent on application
receiving connector request.

Delta support N/A Support is entirely dependent on application
receiving connector request.

KeepRelations N/A Support is entirely dependent on application
receiving connector request.

Verbs Retrieve verb N/A Support is entirely dependent on application
receiving connector request.

Subverb support Partial Depends on data handler chosen for the
connector.

Verb stability Full

Event notification features
Table 55 details the event notification features supported by the connector.

Table 55. Event notification features

Category Feature Support Notes

Connector Properties Event distribution No
PollQuantity Full

© Copyright IBM Corp. 2002, 2003 169

Table 55. Event notification features (continued)

Category Feature Support Notes

Event Table Event status values N/A
Object key N/A
Object name N/A
Priority Full Connector retrieves messages based on the

priority specified in their message header
(range 0-9). See WebSphere MQ documentation
for more information.

Misc. Archiving Full Connector can deliver copies of messages to
different queues depending on whether the
message was unsubscribed, was successfully
processed, or resulted in errors.

CDK method
gotApplEvent

Full

Delta event notification No
Event sequence Full
Future event processing No
In-Progress event recovery Full
Physical delete event N/A Support is entirely dependent on application

receiving connector request.
RetrieveAll N/A Support is entirely dependent on application

receiving connector request.
Smart filtering No
Verb stability N/A

General features
Table 56 details the general features supported by the connector.

Table 56. General features

Category Feature Support Notes

Business Object
Attributes

Foreign key No

Foreign Key attribute
property

N/A Support is entirely dependent on application
receiving connector request.

Key No
Max Length Partial May be used by the data handler chosen for

the connector.
Meta-data-driven design Full
Required No

Connection Lost Connection lost on poll Full
Connection lost on request
processing

Full

Connection lost while idle No
Connector Properties ApplicationPassword Full

ApplicationUserName Full
UseDefaults Partial Depends on the data handler established for

the connector.
Message Tracing General messaging Full

generateMsg() Full
Trace level 0 Full
Trace level 1 Full
Trace level 2 Full
Trace level 3 Full

170 Adapter for SWIFT User Guide

Table 56. General features (continued)

Category Feature Support Notes

Trace level 4 Full
Trace level 5 Full

Misc. CDK method LogMsg Full
Java Package Names Full
Logging messages Full
NT service compliance Full
Transaction support Full

Special Value CxBlank processing Partial Depends on the data handler chosen for the
connector

CxIgnore processing N/A Support is entirely dependent on application
receiving connector request.

Appendix C. Connector feature list 171

172 Adapter for SWIFT User Guide

Appendix D. SWIFT message structure
v “SWIFT message types”
v “SWIFT field structure”
v “SWIFT message block structure” on page 175

This appendix describes SWIFT message structure.

SWIFT message types
SWIFT messages consist of five blocks of data including three headers, message
content, and a trailer. Message types are crucial to identifying content.

All SWIFT messages include the literal “MT” (Message Type). This is followed by a
3-digit number that denotes the message type, category, and group. Consider the
following example, which is an order to buy or sell via a third party:

MT502 The first digit (5) represents the category. A category denotes
messages that relate to particular financial instruments or services
such as Precious Metals, Syndications, or Travelers Checks. The
category denoted by 5 is Securities Markets.

The second digit (0) represents a group of related parts in a
transaction life cycle. The group indicated by 0 is a Financial
Institution Transfer.

The third digit (2) is the type that denotes the specific message.
There are several hundred message types across the categories. The
type represented by 2 is a Third-Party Transfer.

Each message is assigned unique identifiers. A 4-digit session number is assigned
each time the user logs in. Each message is then assigned a 6-digit sequence
number. These are then combined to form an ISN (Input Sequence Number) from
the user’s computer to SWIFT or an OSN (Output Sequence Number) from SWIFT
to the user’s computer. It is important to remember that terminology is always
from the perspective of SWIFT and not the user.

The Logical Terminal Address (12 character BIC), Day, Session and Sequence
numbers combine to form the MIR (Message Input Reference) and MOR (Message
Output Reference), respectively.

For a full list of SWIFT message types, see All Things SWIFT: the SWIFT User
Handbook.

SWIFT field structure
This section discusses the SWIFT field structure. A field is a logical subdivision of
a message block A, which consists of a sequence of components with a starting
field tag and delimiters.

A field is always prefaced by a field tag that consists of two digits followed,
optionally, by an alphabetic character. The alphabetic character is referred to as an
option. For example, 16R is a tag (16) with an option (R) that indicates the start of

© Copyright IBM Corp. 2002, 2003 173

a block; 16S is a tag (16) with an option (S) that indicates the end of a block. A
field is always terminated by a field delimiter. The delimiter depends on the type
of field used in a message block.

There are two types of fields used in SWIFT messages: generic and non-generic.
The type of field used in a SWIFT message block is determined by the Message
Type. What follows is a discussion of these SWIFT field structures. For more on
generic and non-generic fields and how to distinguish between them, see Part III,
Chapter 3 of the SWIFT User Handbook

Note: The symbol CRLF shown below is a control character and represents carriage
return/line feed (0D0A in ASCII hex, 0D25 in EBCDIC hex).

Non-generic fields
The structure of non-generic fields in SWIFT message blocks is as follows:
:2!n[1a]: data content<CRLF>

where:

: = mandatory colon

2!n = numeric character, fixed length

[1a] = one optional alphabetic character, letter option

: = mandatory colon

data content = the data content, which is defined separately for every tag

<CRLF> = field delimiter

The following is an example of a non-generic field:

:20:1234<CRLF> :32A:...<CRLF>

Note: In some cases (such as with the tag 15A...n), the data content is optional.

Generic fields
The structure of generic fields in SWIFT messages is as follows:
:2!n1a::4!c’/’[8c]’/’data content

where

:2!n1a: = same format as non-generic fields, except that 1a is mandatory

: = mandatory second colon (required in all generic fields)

4!c = qualifier

’/’ = first delimiter

[8c] = issuer code or Data Source Scheme (DSS)

’/’ = second delimiter

174 Adapter for SWIFT User Guide

data content = See Part III, Chapter 3 of the SWIFT User Handbook for the format
definition

Note: Non-generic fields and generic fields cannot share the same field tag letter
option letter. In order to distinguish between them easily, a colon is defined
as the first character of the column Component Sequence. Generic fields are
defined in the same section (Part III, Chapter 3 of the SWIFT User Handbook)
as the non-generic fields.

The following character restrictions apply to generic field data content:
v Second and subsequent lines within the data content must start with the

delimiter CRLF.
v Second and subsequent lines within the data content must never start with a

colon (:) or a hyphen (-).
v The data content must end with the delimiter CRLF.

SWIFT message block structure
The connector supports SWIFT Financial Application (FIN) messages. They have
the following structure:

{1: Basic Header Block} {2: Application Header Block} {3: User Header Block} {4: Text
Block or body} {5: Trailer Block}

These five SWIFT message blocks include header information, the body of the
message, and a trailer. All blocks have the same basic format:

{n:...}

The curly braces ({}) indicate the beginning and end of a block. n is the block
identifier, in this case a single integer between 1 and 5. Each block identifier is
associated with a particular part of the message. There is no carriage return or line
feed (CRLF) between blocks.

Blocks 3, 4, and 5 may contain sub-blocks or fields delimited by field tags. Block 3
is optional. Many applications, however, populate block 3 with a reference number
so that when SWIFT returns the acknowledgement, it can be used for reconciliation
purposes.

Note: For further information on SWIFT message blocks, see Chapter 2 of the
SWIFT User Handbook FIN System Messages Document.

{1: Basic Header Block}
The basic header block is fixed-length and continuous with no field delimiters. It
has the following format:
{1: F 01 BANKBEBB 2222 123456}
(a) (b) (c) (d) (e) (f)

a) 1: = Block ID (always 1)

b) Application ID as follows:
v F = FIN (financial application)
v A = GPA (general purpose application)
v L = GPA (for logins, and so on)

Appendix D. SWIFT message structure 175

c) Service ID as follows:
v 01 = FIN/GPA
v 21 = ACK/NAK

d) BANKBEBB = Logical terminal (LT) address. It is fixed at 12 characters; it
must not have X in position 9.

e) 2222 = Session number. It is generated by the user’s computer and is
padded with zeros.

f) 123456 = Sequence number that is generated by the user’s computer. It is
padded with zeros.

{2: Application Header Block}
There are two types of application headers: Input and Output. Both are
fixed-length and continuous with no field delimiters.

The input (to SWIFT) structure is as follows:
{2: I 100 BANKDEFFXXXX U 3 003}
(a) (b) (c) (d) (e) (f) (g)

a) 2: = Block ID (always 2)

b) I = Input

c) 100 = Message type

d) BANKDEFFXXXX = Receiver’s address with X in position 9/ It is padded with
Xs if no branch is required.

e) U = the message priority as follows:
v S = System
v N = Normal
v U = Urgent

f) 3 = Delivery monitoring field is as follows:
v 1 = Non delivery warning (MT010)
v 2 = Delivery notification (MT011)
v 3 = Both valid = U1 or U3, N2 or N

g) 003 = Obsolescence period. It specifies when a non-delivery notification is
generated as follows:
v Valid for U = 003 (15 minutes)
v Valid for N = 020 (100 minutes)

The output (from SWIFT) structure is as follows:
{2: O 100 1200 970103BANKBEBBAXXX2222123456 970103 1201 N}
(a) (b) (c) (d) (e) (f) (g) (h)

a) 2: = Block ID (always 2)

b) O = Output

c) 100 = Message type

d) 1200 = Input time with respect to the sender

e) The Message Input Reference (MIR), including input date, with Sender’s
address

f) 970103 = Output date with respect to Receiver

176 Adapter for SWIFT User Guide

g) 1201 = Output time with respect to Receiver

h) N = Message priority as follows:
v S = System
v N = Normal
v U = Urgent

{3: User Header Block}
This is an optional block and has the following structure:
{3: {113:xxxx} {108:abcdefgh12345678} }
(a) (b) (c)

a) 3: = Block ID (always 3)

b) 113:xxxx = Optional banking priority code

c) This is the Message User Reference (MUR) used by applications for
reconciliation with ACK.

Note: Other tags exist for this block. They include tags (such as 119, which can
contain the code ISITC on an MT521) that may force additional code word
and formatting rules to validate the body of the message as laid down by
ISITC (Industry Standardization for Institutional Trade Communication). For
further information, see All Things SWIFT: the SWIFT User Handbook.

{4: Text Block or body}
This block is where the actual message content is specified and is what most users
see. Generally the other blocks are stripped off before presentation. The format,
which is variable length and requires use of CRLF as a field delimiter, is as
follows:
{4:CRLF
:20:PAYREFTB54302 CRLF
:32A:970103BEF1000000,CRLF
:50:CUSTOMER NAME CRLF
AND ADDRESS CRLF
:59:/123-456-789 CRLF
BENEFICIARY NAME CRLF
AND ADDRESS CRLF
-}

The symbol CRLF is a mandatory delimiter in block 4.

The example above is of type MT100 (Customer Transfer) with only the mandatory
fields completed. It is an example of the format of an ISO7775 message structure.
Block 4 fields must be in the order specified for the message type in the
appropriate volume of the SWIFT User Handbook.

Note: The ISO7775 message standard is gradually being replaced by the newer
data dictionary standard ISO15022. Among other things, the new message
standard makes possible generic fields for block 4 of a SWIFT message
structure. For further information, see “SWIFT field structure” on page 173.

The content of the text block is a collection of fields. For more on SWIFT fields, see
“SWIFT field structure” on page 173. Sometimes, the fields are logically grouped
into sequences. Sequences can be mandatory or optional, and can repeat.
Sequences also can be divided into subsequences. In addition, single fields and
groups of consecutive fields can repeat. For example, sequences such as those in

Appendix D. SWIFT message structure 177

the SWIFT Tags 16R and 16S may have beginning and ending fields. Other
sequences, such as Tag 15, have only a beginning field. In yet other message types,
no specific tags mark the start or end of a field sequence.

The format of block 4 field tags is:

:nna:

nn = Numbers

a = Optional letter, which may be present on selected tags

For example:

:20: = Transaction reference number

:58A: = Beneficiary bank

The length of a field is as follows:

nn = Maximum length

nn! = Fixed-length

nn-nn = Minimum and maximum length

nn * nn = Maimum number of lines times maximum line length

The format of the data is as follows:

n = Digits

d = Digits with decimal comma

h = Uppercase hexadecimal

a = Uppercase letters

c = Uppercase alphanumeric

e = Space

x = SWIFT character set

y = Uppercase level A ISO 9735 characters

z = SWIFT extended character set

Some fields are defined as optional. If optional fields are not required in a specific
message, do not include them because blank fields are not allowed in the message.

/,word = Characters “as is”

[...] = Brackets indicate an optional element

For example:

178 Adapter for SWIFT User Guide

4!c[/30x] This is a fixed 4 uppercase alphanumeric, optionally followed by a
slash and up to 30 SWIFT characters.

ISIN1!e12!c This is a code word followed by a space and a 12 fixed uppercase
alphanumeric.

Note: In some message types, certain fields are defined as conditional. For
example, when a certain field is present, another field may change from
optional to mandatory or forbidden. Certain fields may contain sub-fields, in
which case there is no CRLF between them. Validation is not supported.

Certain fields have different formats that depend on the option that is chosen. The
option is designated by a letter after the tag number, for example:

:32A:000718GBP1000000,00 Value Date, ISO Currency, and Amount

:32B:GBP1000000,00 ISO Currency and Amount

Note: The SWIFT standards for amount formats are: no thousand separators are
allowed (10,000 is not allowed, but 10000 is allowed); use a comma (not a
decimal point) for a decimal separator (1000,45 = one thousand and
forty-five hundredths).

:58A:NWBKGB2L Beneficiary SWIFT address

:58D:NatWest Bank Beneficiary full name and address
Head Office

London

{5: Trailer Block}
A message always ends in a trailer with the following format:

{5: {MAC:12345678}{CHK:123456789ABC}

This block is for SWIFT system use and contains a number of fields that are
denoted by keywords such as the following:

MAC Message Authentication Code calculated based on the entire contents of the
message using a key that has been exchanged with the destination and a
secret algorithm. Found on message categories 1,2,4,5,7,8, most 6s and 304.

CHK Checksum calculated for all message types.

PDE Possible Duplicate Emission added if user thinks the same message was
sent previously

DLM Added by SWIFT if an urgent message (U) has not been delivered within
15 minutes, or a normal message (N) within 100 minutes.

Appendix D. SWIFT message structure 179

180 Adapter for SWIFT User Guide

Appendix E. Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM RTP Laboratory
3039 Cornwallis Road
P.O. BOX 12195

© Copyright IBM Corp. 2002, 2003 181

Raleigh, NC 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Programming interface information
Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

182 Adapter for SWIFT User Guide

IBM
the IBM logo
AIX
CrossWorlds
DB2
DB2 Universal Database
MQIntegrator
MQSeries
Tivoli
WebSphere

Lotus, Domino, Lotus Notes, and Notes Mail are trademarks of the Lotus
Development Corporation in the United States, other countries, or both.Microsoft,
Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

IBM WebSphere InterChange Server V4.2, IBM WebSphere Business Integration
Toolset V4.2, IBM WebSphere Business Integration Adapters V2.2, IBM WebSphere
Business Integration Collaborations V4.2.

Appendix E. Notices 183

184 Adapter for SWIFT User Guide

����

Printed in U.S.A.

	Integration broker compatibility
	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 1.6.x
	New in release 1.5.x
	New in release 1.4.x
	New in release 1.3.x
	New in release 1.2.x
	New in release 1.1.x

	Chapter 1. Overview
	Connector architecture
	Connector for SWIFT
	SWIFT data handler and mapping engine
	WebSphere MQ
	MQSA
	SWIFTAlliance Access

	Application-connector communication method
	Message request
	Event delivery

	Event handling
	Retrieval
	Recovery
	Archiving

	Guaranteed event delivery
	Business object requests
	Business object mapping
	Message processing
	Create
	Retrieve

	Error handling
	Application timeout
	Unsubscribed business object
	Data handler conversion

	Tracing

	Chapter 2. Configuring the connector
	Prerequisites
	Prerequisite software

	Installing the connector
	Installing on a UNIX system
	Installing on a Windows system

	Connector configuration
	Standard connector properties
	Connector-specific properties

	Enabling guaranteed event delivery
	Guaranteed event delivery for connectors with JMS event stores

	Queue Uniform Resource Identifiers (URI)
	Meta-object attributes configuration
	Static meta-object
	Dynamic child meta-object

	Startup file configuration
	Windows
	UNIX

	Startup

	Chapter 3. Business objects
	Connector business object requirements
	Business object hierarchy
	Business object attribute properties
	Application-specific text at the attribute level

	Overview of SWIFT message structure
	Overview of business objects for SWIFT
	SWIFT message and business object data mapping
	Top-level business object structure
	Block 1 business object structure
	Block 2 business object structure
	Block 3 business object structure
	Block 4 business object structure
	Sequence and field business objects

	Chapter 4. ISO 7775 to ISO 15022 mapping
	Production instruction meta-objects (PIMOs)
	PIMO structure and syntax

	Creating PIMOs
	Getting started
	Defining port
	Defining declaration
	Defining action

	Modifying PIMOs: Map summary
	MT520 to MT540 receive free
	MT521 to MT541 receive payment against
	MT522 to MT542 deliver free
	MT523 to MT543 deliver against payment
	MT530 to MT544 receive free confirmation
	MT531 to MT 545 receive against payment confirmation
	MT532 to MT 546 deliver free confirmation
	MT533 to MT547 deliver against payment confirmation
	MT534 to MT548 settlement status and processing advice
	MT571 to MT535 statement of holdings
	MT572 to MT536 statement of transactions
	MT573 to MT537 statement of pending transactions

	Chapter 5. SWIFT Data Handler
	Configuring the SWIFT Data Handler
	Configuring the Connector Meta-Object
	Configuring the Data Handler Child Meta-Object

	Business Object Requirements
	Converting Business Objects to SWIFT Messages
	Converting SWIFT Messages to Business Objects

	Chapter 6. Troubleshooting
	Startup problems
	Event processing

	Appendix A. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties for WebSphere InterChange Server
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	TraceFileName
	WireFormat

	Configuring standard connector properties for WebSphere MQ Integrator
	Standard connector properties

	Appendix B. Connector Configurator
	Using Connector Configurator in an internationalized environment
	Starting Connector Configurator
	Running Configurator from System Manager
	Running Configurator independently of System Manager

	Choosing your broker
	Using a connector-specific property template
	Creating a template of connector-specific properties
	Specifying general characteristics
	Specifying values
	Setting dependencies
	Creating a configuration file from a connector-specific template

	Using Connector Configurator with ICS as the broker
	Completing a configuration file
	Using an existing System Manager project

	Setting the configuration file properties (ICS)
	Setting standard connector properties (ICS)
	Setting application-configuration properties (ICS)
	Specifying supported business object definitions (ICS)
	Associated maps (ICS)
	Resources (ICS)
	Setting trace/log file values (ICS)
	Configuring messaging
	Data handlers

	Setting the configuration file properties (WebSphere MQ Integrator Broker)
	Setting standard connector properties
	Setting application-configuration properties
	Specifying supported business object definitions
	Setting trace/log file values
	Configuring data handlers

	Using standard and connector-specific properties with Connector Configurator
	Completing the configuration

	Appendix C. Connector feature list
	Business object request handling features
	Event notification features
	General features

	Appendix D. SWIFT message structure
	SWIFT message types
	SWIFT field structure
	Non-generic fields
	Generic fields

	SWIFT message block structure
	{1: Basic Header Block}
	{2: Application Header Block}
	{3: User Header Block}
	{4: Text Block or body}
	{5: Trailer Block}

	Appendix E. Notices
	Programming interface information
	Trademarks and service marks

