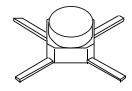


0.5–12 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-10136

Features


- Low Noise Figure: 0.5 dB Typical at 4 GHz
- Low Bias: $V_{DS} = 2V, I_{DS} = 20 \text{ mA}$
- High Associated Gain: 13.0 dB Typical at 4 GHz
- **High Output Power:** 20.0 dBm Typical P_{1 dB} at 4 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and Reel Packaging Option Available^[1]

Description

The ATF-10136 is a high performance gallium arsenide Schottky-barriergate field effect transistor housed in a cost effective microstrip package. Its premium noise figure makes this device appropriate for use in the first stage of low noise amplifiers operating in the 0.5-12 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF _O	Optimum Noise Figure: $V_{DS} = 2 V$, $I_{DS} = 25 mA$	f = 2.0 GHz f = 4.0 GHz f = 6.0 GHz	dB dB dB		0.4 0.5 0.8	0.6
G _A	Gain @ NF ₀ ; $V_{DS} = 2 V$, $I_{DS} = 25 mA$	f = 2.0 GHz f = 4.0 GHz f = 6.0 GHz	dB dB dB	12.0	16.5 13.0 11.0	
$P_{1 dB}$	Power Output @ 1 dB Gain Compression $V_{DS} = 4 V, I_{DS} = 70 \text{ mA}$	f = 4.0 GHz	dBm		20.0	
G_{1dB}	1 dB Compressed Gain: $V_{\rm DS}$ = 4 V, $I_{\rm DS}$ = 70 mA	f = 4.0 GHz	dB		12.0	
g _m	Transconductance: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mmho	70	140	
I _{DSS}	Saturated Drain Current: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mA	70	130	180
V _P	Pinchoff Voltage: $V_{DS} = 2 V$, $I_{DS} = 1 mA$		V	-4.0	-1.3	-0.5
Noto						

Electrical Specifications, $T_A = 25^{\circ}C$

Note:

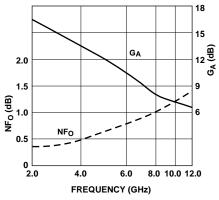
1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors."

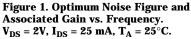
Symbol	Parameter	Units	Absolute Maximum ^[1]		
V_{DS}	Drain-Source Voltage	V	+5		
V _{GS}	Gate-Source Voltage	V	-4		
V _{GD}	Gate-Drain Voltage	V	-7		
I_{DS}	Drain Current	mA	I _{DSS}		
P _T	Power Dissipation ^[2,3]	mW	430		
$T_{\rm CH}$	Channel Temperature	°C	175		
T _{STG}	Storage Temperature ^[4]	°C	-65to+175		
Thermal Resistance: $\theta_{ic} = 350^{\circ}\text{C/W}; T_{CH} = 150^{\circ}\text{C}$					

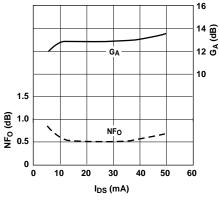
ATF-10136 Absolute Maximum Ratings

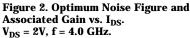
Thermal Resistance:	$\theta_{jc} = 350^{\circ}C/W; T_{CH} = 150^{\circ}C$
Liquid Crystal Measurement:	1 μm Spot Size ^[5]

Part Number Ordering Information


Part Number	Devices Per Reel	Reel Size		
ATF-10136-TR1	1000	7"		
ATF-10136-STR	10	STRIP		


For more information, see "Tape and Reel Packaging for Semiconductor Devices."


ATF-10136 Noise Parameters: $V_{DS} = 2 V$, $I_{DS} = 25 mA$


Freq.	NFo	Γα	D /50	
GHz	dB	Mag	Ang	R _N /50
0.5	0.35	0.93	12	0.80
1.0	0.4	0.85	24	0.70
2.0	0.4	0.70	47	0.46
4.0	0.5	0.39	126	0.36
6.0	0.8	0.36	-170	0.12
8.0	1.1	0.45	-100	0.38

ATF-10136 Typical Performance, T_A = 25°C

Notes:1. Permanent damage may occur if

- any of these limits are exceeded.
- 2. $T_{\text{CASE TEMPERATURE}} = 25^{\circ}\text{C}.$
- 3. Derate at 2.9 mW/°C for $T_{CASE} > 25$ °C.
- 4. Storage above $+150^{\circ}$ C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175° C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See APPLICATIONS PRIMER IIIA for more information.

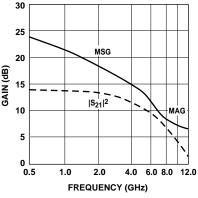
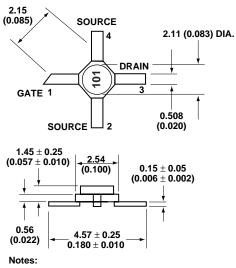



Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS} = 2$ V, $I_{DS} = 25$ mA.

Freq.	S	11	S ₂₁		S ₁₂			\mathbf{S}_{22}		
MHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-18	14.5	5.32	163	-34.0	.020	78	.35	-9
1.0	.93	-33	14.3	5.19	147	-28.4	.038	67	.36	-19
2.0	.79	-66	13.3	4.64	113	-22.6	.074	59	.30	-31
3.0	.64	-94	12.2	4.07	87	-19.2	.110	44	.27	-42
4.0	.54	-120	11.1	3.60	61	-17.3	.137	31	.22	-49
5.0	.47	-155	10.1	3.20	37	-15.5	.167	13	.16	-54
6.0	.45	162	9.2	2.88	13	-14.3	.193	-2	.08	-17
7.0	.50	120	8.0	2.51	-10	-13.9	.203	-19	.16	45
8.0	.60	87	6.4	2.09	-32	-13.6	.210	-36	.32	48
9.0	.68	61	4.9	1.75	-51	-13.6	.209	-46	.44	38
10.0	.73	42	3.6	1.52	-66	-13.7	.207	-58	.51	34
11.0	.77	26	2.0	1.26	-82	-13.8	.205	-73	.54	27
12.0	.80	14	1.0	1.12	-97	-14.0	.200	-82	.54	15

Typical Scattering Parameters, Common Source, $Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{DS} = 2 V$, $I_{DS} = 25 mA$

36 micro-X Package Dimensions

1. Dimensions are in millimeters (inches) 2. Tolerances: in $.xxx = \pm 0.005$

mm .xx = ± 0.13