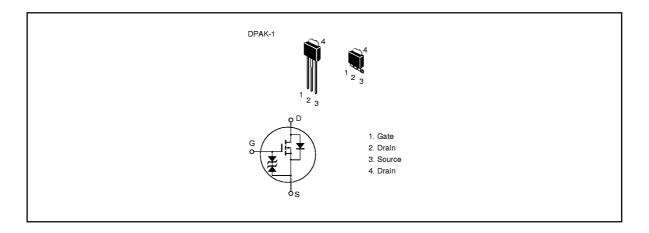
Silicon P-Channel MOS FET

HITACHI

November 1996


Application

High speed power switching

Features

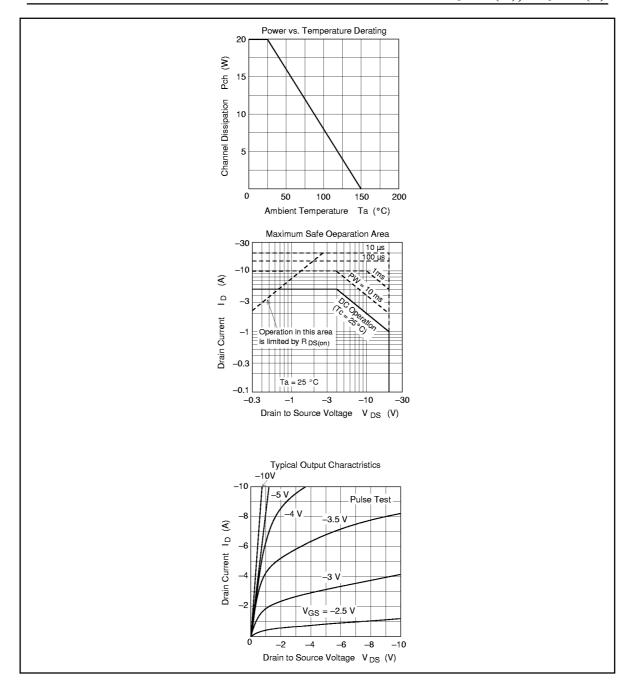
- Low on-resistance
- High speed switching
- Low drive current
- 4 V gate drive device can be driven from 5 V source
- Suitable for switching regulator, DC-DC converter

Outline

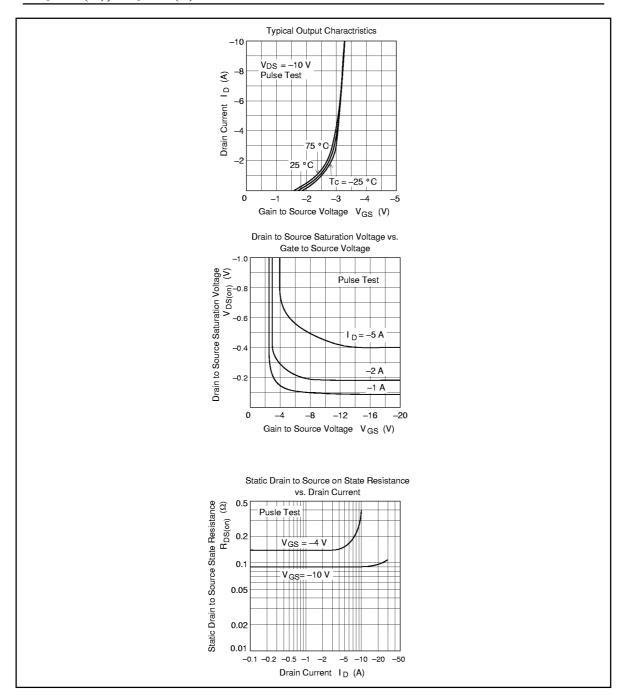
Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	–20	V
Gate to source voltage	V _{gss}	±20	V
Drain current	I _D	- 5	A
Drain peak current	+1 D(pulse)	– 20	A
Body to drain diode reverse drain current	I _{DR}	- 5	A
Channel dissipation	Pch*2	20	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes 1. PW \leq 10 μ s, duty cycle \leq 1%


2. Value at $T_c = 25$ °C

Electrical Characteristics ($Ta = 25^{\circ}C$)


Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	V _{(BR)DSS}	-20	_		V	$I_{D} = -10 \text{ mA}, \ V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	±20	_	_	V	$I_{_{G}} = \pm 100 \ \mu A, \ V_{_{DS}} = 0$
Gate to source leak current	I _{gss}	_	_	±10	μΑ	$V_{gs} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	-100	μА	$V_{DS} = -16 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{\text{GS(off)}}$	-1.0	_	-2.25	٧	$I_{D} = -1 \text{ mA}, V_{DS} = -10 \text{ V}$
Static drain to source on state	R _{DS(on)}	_	0.09	0.13	Ω	$I_D = -3 \text{ A}, \ V_{GS} = -10 \ V^{*1}$
resistance		_	0.14	0.19	Ω	$I_D = -3 \text{ A}, V_{GS} = -4 \text{ V}^{*1}$
Forward transfer admittance	y _{fs}	3.5	5.5	_	S	$I_{D} = -3 \text{ A}, \ V_{DS} = -10 \ V^{*1}$
Input capacitance	Ciss	_	580	_	pF	$V_{DS} = -10 \text{ V}, V_{GS} = 0,$
Output capacitance	Coss	_	520	_	pF	f = 1 MHz
Reverse transfer capacitance	Crss	_	215	_	pF	_
Turn-on delay time	t _{d(on)}	_	10	_	ns	$I_{D} = -3 \text{ A}, V_{GS} = -10 \text{ V},$
Rise time	t,	_	60	_	ns	$R_L = 3.3 \Omega$
Turn-off delay time	t _{d(off)}	_	75	_	ns	_
Fall time	t _f	_	75	_	ns	_
Body to drain diode forward voltage	V _{DF}	_	-1.1	_	V	$I_F = -5 \text{ A}, V_{GS} = 0$
Body to drain diode reverse recovery time	t,,		65		μs	$I_{F} = -5 \text{ A}, V_{GS} = 0,$ $di_{F}/dt = 50 \text{ A}/\mu\text{s}$

Note 1. Pulse test

