

TinyM0

用户使用手册 AN01010101 V1.00

Date: 2010/02/20

用户使用手册

类别	内容
关键词	TinyM0、TKScope CK100 ICE、软件模板
摘要	TinyM0 用户使用手册

TinyM0 用户使用手册

修订历史

版本	日期	原因
V1.00	2010/02/20	创建文档

销售与服务网络(一)

广州周立功单片机发展有限公司

地址: 广州市天河北路 689 号光大银行大厦 12 楼 F4 邮编: 510630 电话: (020)38730916 38730917 38730972 38730976 38730977 传真: (020)38730925 网址: <u>www.zlgmcu.com</u>

广州专卖店

地址: 广州市天河区新赛格电子城 203-204 室 电话: (020)87578634 87569917 传真: (020)87578842

北京周立功

地址:北京市海淀区知春路 113 号银网中心 A 座 1207-1208 室 (中发电子市场斜对面) 电话: (010)62536178 62536179 82628073 传真: (010)82614433

杭州周立功

地址: 杭州市天目山路 217 号江南电子大厦 502 室 电话: (0571) 28139611 28139612 28139613 28139615 28139616 28139618 传真: (0571) 28139621

深圳周立功

地址:深圳市深南中路 2070 号电子科技大厦 C 座 4 地址:武汉市洪山区广埠屯珞瑜路 158 号 12128 室(华 楼D室 电话: (0755)83781788 (5线) 传真: (0755)83793285

上海周立功

地址: 上海市北京东路 668 号科技京城东座 7E 室 电话: (021)53083452 53083453 53083496 传真: (021)53083491

南京周立功

地址:南京市珠江路 280 号珠江大厦 2006 室 电话: (025)83613221 83613271 83603500 传真: (025)83613271

重庆周立功

地址:重庆市石桥铺科园一路二号大西洋国际大厦 (赛格电子市场) 1611 室 电话: (023)68796438 68796439 传真: (023)68796439

成都周立功

地址:成都市一环路南二段1号数码同人港401室(磨 子桥立交西北角) 电话: (028)85439836 85437446 传真: (028)85437896

武汉周立功

中电脑数码市场) 电话: (027)87168497 87168297 87168397 传真: (027)87163755

西安办事处

地址:西安市长安北路 54 号太平洋大厦 1201 室 电话: (029)87881296 83063000 87881295 传真: (029)87880865

销售与服务网络(二)

广州致远电子有限公司

 地址:
 广州市天河区车陂路黄洲工业区3栋2楼

 邮编:
 510660

 传真:
 (020)38601859

 网址:
 www.embedtools.com
 (嵌入式系统事业部)

 www.embedcontrol.com
 (工控网络事业部)

 www.ecardsys.com
 (楼宇自动化事业部)

技术支持:

CAN-bus:

电话: (020)22644381 22644382 22644253 邮箱: <u>can.support@embedcontrol.com</u>

MiniARM:

电话: (020)28872684 28267813 邮箱: <u>miniarm.support@embedtools.com</u>

无线通讯:

电话: (020) 22644386 邮箱: <u>wireless@embedcontrol.com</u>

编程器:

电话: (020)22644371 邮箱: programmer@embedtools.com

ARM 嵌入式系统:

电话: (020)28872347 28872377 22644383 22644384 邮箱: <u>arm.support@zlgmcu.com</u>

销售:

电话: (020)22644249 22644399 22644372 22644261 28872524 28872342 28872349 28872569 28872573 38601786

维修:

电话: (020)22644245

产品数据手册

iCAN 及数据采集:

电话: (020)28872344 22644373 邮箱: <u>ican@embedcontrol.com</u>

以太网:

楼宇自动化:

电话: (020)22644380 22644385 邮箱: <u>ethernet.support@embedcontrol.com</u>

串行通讯: 电话: (020)28267800 22644385 邮箱: <u>serial@embedcontrol.com</u>

分析仪器: 电话: (020)22644375 28872624 28872345 邮箱: <u>tools@embedtools.com</u>

电话: (020)22644376 22644389 28267806 邮箱: <u>mjs.support@ecardsys.com</u> <u>mifare.support@zlgmcu.com</u>

目 录

1. Tinyl	M0 开发	工具概述	1
2. 仿真	器使用	说明	2
2.1	调ì	式工具简介	2
2.2	ТК	Scope CK100 ICE使用说明	2
	2.2.1	安装TKScope CK100 ICE驱动	2
	2.2.2	TKScope CK100 ICE驱动安装	5
	2.2.3	TKScope CK100 ICE在KEIL中的设置	7
3. Keil	莫板使用]说明	.15
3.1	模材	反说明	15
3.2	前月	后台模板中的中断设置方法	15

1. TinyM0 开发工具概述

TinyM0 是ZLG公司为企业用户、电子工程师和高校师生设计推出的一款基于Cortex-M0 内核的开发板,核心控制器基于NXP公司最新推出的LPC1100 系列芯片,该款开发板应用灵活简单,在短时间内工程师即可轻松掌握,是学习、开发Cortex-M0 的不二之选。TinyM0 开发工具实物如图 1.1所示。

图 1.1 TinyM0 开发工具实物图

TinyM0 开发工具特点:

1. 应用灵活

如图 1 所示, TinyM0 由 TKScope CK100 ICE 和 TinyM0 核心板两部分组成,通过邮票 孔连接。TinyM0 可以整体使用,也可断开独立使用,用法极为灵活便捷。

2. 集成仿真器

TinyM0 集成了 USB 下载仿真器,支持目前市场上的 KEIL、IAR 和 TKStudio 集成开发环境。开发板断开后 TKScope CK100 ICE 可以作为通用调试仿真开发工具。

3. 配套核心板

TinyM0 核心板电路为 LPC111x 芯片的最小系统,硬件支持 2.54mm 间距的标准排针。 用户可以将 TinyM0 核心板配套自己的底板使用,进行产品开发。

4. 支持多款芯片

TinyM0全面支持 NXP LPC1100 系列 LQFP48 引脚封装的芯片和 LPC1300 系列 LQFP48 引脚封装的芯片,用户可以根据自己所设计产品的要求随时更换核心控制器。

2. 仿真器使用说明

2.1 调试工具简介

TinyM0开发工具集成的USB下载仿真器——TKScope CK100 ICE 是广州致远电子有限 公司 2009 年最新推出的一款板载级 ARM 仿真器,该仿真器体积小,使用灵活、简便,嵌 入到 ARM 开发板中更加方便用户调试。

TKScope CK100 ICE 仿真器主要特性:

- 支持 Cortex-M0 内核;
- 支持 Thumb 模式,支持 SWD 仿真模式;
- 支持片外 Flash 在线编程与仿真;
- 用户可以添加自定义的 Flash 编程算法;
- JTAG 时钟最高可达 1.2MHz, 且 JTAG 时钟在允许范围内可任意调整;
- 与主流 IDE 环境无缝嵌接,如 IAR、Keil、TKStudio 等。

在使用 TKScope CK100 ICE 时,只需要使用一根 MINI USB 通讯电缆将 TKScope CK100 ICE 与电脑相连即可,方便简单。

2.2 TKScope CK100 ICE使用说明

2.2.1 安装TKScope CK100 ICE驱动

TKScope CK100 ICE 使用之前必须安装驱动程序, 否则, 无法正常工作!TKScope CK100 ICE 的驱动程序与 TKScope 系列 CK100 仿真器的驱动程序是相同的。

注:初次使用 TKScope CK100 ICE 需要安装驱动。

双击TKScopeSetup_ARM.EXE,系统弹出如图 2.1所示的对话框,按照图 2.2~图 2.5提示 进行安装即可。

Setup TKScope ARM V1.00	×
Welcome to TKScope	TKSaara®
Release 7/2009	ТКЗСОре
This SETUP program installs:	
TKScope ARM V1.00	
This SETUP program may be used to upda However, you should make a backup copy	te a previous product installation. v before proceeding.
It is recommended that you exit all Windows	s programs before continuing with SETUP.
Follow the instructions to complete the prod	duct installation.
- TKScope Setup	
	<pre><< Back Next >> Cancel</pre>

图 2.1 安装 TKScope CK100 ICE 的驱动

图 2.2 安装 TinyM0 ICE 的驱动

用户如果使用 Keil RealView MDK 开发环境,必须把驱动安装到 Keil RealView MDK 目录下;使用其它开发环境,驱动安装路径可任意选择。

本文示例Keil RealView MDK开发环境安装在D:\Program Files\Keil路径下。所以, TKScope CK100 ICE的驱动安装路径为D:\Program Files\Keil,如图 2.3所示。

etup TKScope ARM V1.00	
Folder Selection	TKCassa®
Select the folder where SETUP will install files.	I KScope [®]
TKScope SETUP will install in the following folder	я.
To install to this folder, press 'Next'. To install to a	a different folder, press 'Browse' and select another
folder.	
Destination Folder	
Destination Folder D:\Program Files\KEIL	Browse
Destination Folder D:\Program Files\KEIL 如果使用KEIL编译环境,必须和KEI	B <u>r</u> owse…
Destination Folder D:\Program Files\KEIL 如果使用KEIL编译环境,必须和KEI	Browse IL的路径保持一致
Destination Folder D: Program Files KEIL 如果使用KEIL编译环境,必须和KEI TKScope Setup	Browse… IL的路径保持一致

图 2.3 路径选择

图 2.4 用户信息

Setup TKScope ARM V1.00	×
TKScope Setup completed	TKScope [®]
TKScope Setup has performed all requested operation	ons successfully.
— TKScope Setup ————	< Back Finish Cancel

图 2.5 安装完成

至此,TKScope CK100 ICE 仿真器所需的驱动全部安装完成。

在安装目录下(本文示例为D:\Program Files\Keil\TKScope),可以看到各个环境下的.dll 驱动文件,如图 2.6所示。

<u>TinyM0</u> 用户使用手册

图 2.6 驱动安装目录文件

各个驱动文件的所属类型以及应用的开发环境,请详见安装目录下的readme.txt文件(本 文示例图 2.6中)。

表 2.1列举出与ARM相关的驱动文件,如若驱动文件有所增减或变动,以readme.txt文件为准。

表 2.1 驱动文件列表

驱动名称	驱动类型	应用环境
UL2ARM_TKSCP_DRV_ARM_for_AGDI.dll	ARM	在 Keil Uvsion4/Uvsion3/Uvsion2 下的驱动
TKSCP_DRV_ARM_for_IAR_v4.dll	ARM	在 IAR V4 版本下的驱动
TKSCP_DRV_ARM_for_IAR_v5.dll	ARM	在 IAR V5 版本下的驱动
TKSCP_DRV_for_RDI.dll	ARM	在 SDT/AXD 下的驱动,以及其它 RDI 协议

2.2.2 TKScope CK100 ICE驱动安装

TKScope CK100 ICE 通过 USB 接口与计算机连接,支持热插拔。开发板上电后仿真器 【EMU Run】指示灯闪烁一次,在驱动安装成功、TKScope CK100 ICE 及 USB 电缆硬件连 接无误后【EMU Run】指示灯常亮。在程序下载及调试等过程中【EMU Run】指示灯不断 闪烁。

开发板上电后,第一次使用会在PC机屏幕右下脚提示"发现新硬件"信息,如图 2.7所示。

选择图 2.8中的【从列表或指定位置安装(高级)】选项,然后点击【下一步】,此时系 统会弹出如图 2.9所示的对话框。

图 2.7 发现新硬件

找到新的硬件向导 次迎使用找到新硬件向导 这个向导帮助您安装软件: 这个向导帮助您安装软件: ZHIYUAN TKScope CK100 ジ 和累您的硬件带有安装 CD 或软盘,请现在将 其私人。 您期望向导做什么?	
	欢迎使用找到新硬件向导
	这个向导帮助您安装软件:
	ZHIYUAN TKScope CK100
	如果您的硬件带有安装 CD 或软盘,请现在将 其插入。
	您期望向导做什么?
	◎ 自动安装软件(推荐)(王)
	③从列表或指定位置安装(高级)(S)
	要继续,请单击"下一步"。
	< 上一步 (下一步 (2) > 取消

图 2.8 从列表或指定位置安装

点击中的【浏览】选项,进入如图 2.9所示的界面。按照TKScope CK100 ICE驱动安装的路径找到驱动文件(本文示例为 D:\Program Files\Keil\TKScope\Driver\CK100 Driver\WinXP),然后点击【确定】。

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
	径和可移动媒体。会安装找
TKScope K Driver	C 浏览 (8) ows 不能保证您所选择的驱
要查看任何子文件夹,请单击上面的 + 号。 确定 取消	

图 2.9 选择存放 "CK100_Driver" 文件路径

驱动安装完毕,系统会弹出如图 2.10所示的对话框,提示用户已经完成驱动的安装。此时,点击【完成】即可。至此,驱动程序安装完毕。

图 2.10 安装完成

系统正确安装驱动后,可以通过查看设备管理器看到当前的硬件设备。使用鼠标右键点击【我的电脑】,选择【属性】,点击【设备管理器】,进入如图 2.11所示的界面。此时,可以在【通用串行总线控制器】一栏内看到系统识别到的新安装的硬件设备。

图 2.11 正确的安装新硬件结果

如果系统没有安装新硬件的驱动或驱动安装不正确,USB 设备就无法正常使用。无法 使用的 USB 设备需要重新安装驱动程序。点击鼠标右键,选择【更新驱动程序】选项,按 照上述的过程重新安装驱动程序直到正确为止。

具体操作步骤可以参见"CK100 仿真器用户使用指南.pdf"文档。

2.2.3 TKScope CK100 ICE在KEIL中的设置

连接 USB 电缆,查看开发板上标志为【EMU RUN】的 LED 灯是否持续点亮。如果【EMU

产品用户手册

RUN】持续点亮,则证明 USB 调试接口硬件电路正常。否则,停止测试,检查 USB 电缆是 否连接正确。

下面以最简单的 GPIO_BBEEP 工程文件演示。

1. 硬件连接

将 TinyM0 核心板上的 3.3V、GND 以及 P2.7 引脚分别与 EasyCortex M3—1300 开发板上的 3.3V、DGND 以及 BEEP 引脚相连。

注:用户也可以根据自己的底板设计自行连接,如果没有使用 P2.7 控制蜂鸣器,则用户需要在示例程序中略作改动。

2. 编译环境设置

如图 2.12所示, 打开GPIO_BEEP工程文件, 点击设置图标。按图 2.13~图 2.17进行操作。

图 2.12 打开工程文件

						设计	置.	
 ۲			LOAD	DebugInFlash	•	*	1	4

图 2.13 设置图标

Options for Target 'DebugInFlash'
Device Target Output Listing User C/C++ Asm Linker Debug Utilities
Database: Generic CPU Data Base Vendor: NXP (founded by Philips) Device: LPC1114x301 Toolset: ARM
ARM 32-bit Cortex-M0 Microcontroller with MPU, CPU clock up to 50MHz, 32KByte on-chip Flash R0M with In-System Programming (ISP) and In-Application Programming (IAP) via 12KByte On-Chip Bootloader, 8KByte { Nested Vectored Interrupt Controller, up to 2 SSP controllers, UART with full Modem Interface and R5485 Support, Fast Mode I2C-Bus, 4 Timers with 4 capture channels, Power Management Unit (PMU), Brownout detection, 12MHz internal RC os LPC1111x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1114x301 LPC1113x201 LPC1114x301 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1113x201 LPC1114x201 LPC1113x201 LPC1114x201 LPC114x201 LPC114x201 LPC114x201 LPC114x201 LPC114x201 LPC114x201 LPC114x201 LPC14x201 LPC14x201 LPC14x201 LPC14x20 LPC14x20 LPC14x20 LPC1
OK Cancel Defaults Help

TinyMO 用户使用手册

图 2.14 选择 LPC1114

Ice	Output Li	sting User	C/C++	Asm 1	Linker	Debug Ut	ilities	
P (founded by I	Philips) LPC11	14x301						
		Xtal (MHz)	12.0	Code	Generatio	n		
		Digit (current)	(*****		on Cross I	dadula Ontin	instinu	
Iperating system	n: None		~		se Clossa	noquie opum Ip	Dia Cuata	2
				00	se microL	ID	Big Endial	n
					se Link-11	me code der	leration	
Read/Only Mer	nory Areas	C 1-1	0	Read/	Write Mei	mory Areas	C	
erault orr-chip	Start	Size	Startup	derauit	orr-cnip	Start	Size	Noinit
ROM1	:		0		RAM1:			
ROM2	:		0		RAM2:			
ROM3	:				RAM3:			
on-chi	,				on-chip			
IROM1	0x0	0x8000	\odot		IRAM1:	0x1000000	0 0x2000	
IROM2	:		0		IRAM2:			
						-		

图 2.15 Target 选项设置

ice Tar	get Output Listing Use	C/C++ Asm	Linker	Debug Vtilities	
Use Men Make Make Don't Repo	nory Layout from Target Dialog RW Sections Position Indepen RO Sections Position Indepen Search Standard Libraries rt 'might fail' Conditions as Errors	dent lent <u>d</u> isable	<u>R</u> /O Base: R/ <u>W</u> Base Warnings:	0x00000000 0x10000000	
Scatter File	\cfg_file\Startup\InChip.sct				Edit
Scatter File <u>M</u> isc controls	.\cfg_file\Startup\InChip.sct				Edit

<u>TinyM0</u> 用户使用手册

图 2.16 Linker 选项设置

evice Target Output Listing User	C/C++ Asm Linker Debug Utilities
O Use <u>S</u> imulator Limit Speed to Real-Time	Settings 💽 Use: TKScope Debug for ARM 🔽 Settings
Load Application at Startup Run to Initialization File:	main() V Load Application at Startup V Run to main) Initialization File:
Restore Debug Session Settings Session Settings Session Settings Watchpoints PA Memory Display	Restore Debug Session Settings Preakpoints 了 Toolbox Watchpoints Memory Display 调试工具
CPU DLL: Parameter:	Driver DLL: Parameter:
SARMCM3.DLL	SARMCM3.DLL
Dialog DLL: Parameter:	Dialog DLL: Parameter:
DARMCM1.DLL	TARMCM1.DLL

图 2.17 Debug 选项设置

注:如果图 2.17中的use下拉列表中找不到"TKScope Debug for ARM"选项,说明没有 装TKScope驱动,则必须安装TKScope驱动,TKScope最新驱动必须和Keil (mdk400.exe或以 上版本)安装在同一个路径下面。具体安装步骤可以参见"CK100 仿真器用户使用指南.pdf" 文档。

在图 2.17基础之上,点击设置调试工具按钮,弹出对话框如图 2.18所示,再点击硬件选择按钮,弹出对话如图 2.19所示选择LPC1114下的CK100 后,点击确定。

硬件选择	· · · · · · · · · · · · · · · · · · ·	^
主要设置	(2)器件: LPC1114x301 (3)仿真器: CK100	
附加设置	(4) POD类型: 土実沿客	
程序烧写	(1) 缓冲代码. (2) 缓冲数据.	
初始化宏	 (3)小端。 (4)使用硬件复位。 (5)复位保持延时:50毫秒。 	
硬件自检	(6) 复位恢复延时: 500毫秒. (7) SYSRESETREQ复位.	
	(8) 自动停止.	~

TinvM0

广州致远电子有限公司

图 2.18 硬件选择

图 2.19 仿真器确认

在图 2.18中点击搜索。若弹出如图 2.20所示对话框,则证明硬件USB仿真硬件连接正确。

UL2ARE	TKSCP_DRV_AR	L_for_AGDI	
	搜索结果:		
	仿真器: 串行号: 版本号:	ARM CK100 268830473 V100	
	把搜索结果作为当	前配置保存吗?	
	是①	香 (1)	

图 2.20 搜索硬件

在图 2.18的基础上按图 2.21~图 2.25所示再顺次进行设置。

● 点击主要设置:

缓冲			
☑ 缓冲代码	☑ 缓冲数据]	
单步	1		
☑ 使用软件单步			
断点	_		
☑ 使用软件断点		□使用Flash断点	
大小端			
④小端		○大端	
时钟			
系统 35.0000	MHz	Jtag 1.2000 max 💌	MHz
时钟模式			
〇自动时钟	〇同步时钟	⊙ 固定时钟	
硬件复位			
▼ 系统复位	✓ Itag复位	50 ms,复位	2保持时间
		500 ms,复位	立恢复时间
操作策略			
内核复位		内核停止	
		白动伤山	(mm)
SYSRESETREQ复位	×	日本川学止。	~

图 2.21 主要设置

● 附加设置:

射加设置		X
仿真模式 ○ JTAG	⊙ SWD	
运行配置 □运行中刷新		
捕获 □ 捕获复位失去	星	

图 2.22 附加设置

● 程序烧写:

程选项		装载算法的	RAM
 ・ ・ ・	 ✓ 编程Flash ✓ 验证Flash ○ 代码相同跳过 	起始 0x	10000000 尺寸(0×00001000
程算法			
编程描述	器件类型	器件尺寸	地址范围
PC1100 IAP 32kB Flash	ONCHIP	0×000080000	0x00000000 - 0x00007FFF

图 2.23 程序烧写

● 初始化宏:

使用默认设置,不需要做更改。

● 硬件自检:

硬件自检	
*************************************	<u> </u>
1. WB: 02(FFD)3(FD)3(-3). ************************************	
	~
开始 新过	结束

图 2.24 硬件自检

提示: 在做如图 2.24所示硬件自检时,点击开始,如果看到"正确!硬件初始化成功。"先读取芯片 ID,再检测内存,此过程中可点击跳过按键。待检测完毕会出现如图 2.25所示后,点击结束。

检查硬件初始化			<u>^</u>
正确! 硬件初始	化成功.		
*************************************	*************************************	****	
588 / 100000. 正 警告!!! 当前测试	确! 复位成功, IDCODE = 0; 试操作项目被用户跳过.	×0BB11477.	
**************** 内部SRAM检查	******	*****	
内部SRAM检查	完成! 起始地址=0×100000	00, 字节数=0x2000.	

<u>TinyM0</u> 用户使用手册

图 2.25 硬件自检完毕

在如图 2.19所示窗口点击确认按钮。如图 2.26所示点击重新编译文件图标,等待程序编译完毕。

重新编译文件				
: 🏶 🖾 🖽		DebugInFlash	• 🔊	š 🔒 🖥

图 2.26 重新编译文件

在没有编译错误或者警告的情况下,如图 2.27所示点击Debug图标,启动调试,光标停止在int mian (void)处。若点击Debug图标出现如图 2.28所示异常,只需点击确定即可。

图 2.27 下载程序

图 2.28 32K 限制

如图 2.29点击【Run】全速运行,便可以听到蜂鸣器蜂鸣声。

图 2.29 运行程序

注: 其它例程的设置方法与上述方法相同。

产	品	用	户	手	册
---	---	---	---	---	---

3. Keil模板使用说明

3.1 模板说明

- TKScope 软件必须和 Keil 软件安装到相同目录下。
- 建议将例程拷到到根目录下进行操作,如果路径过深有可能找不到相关头文件。

● 建议客户按已提供工程模板为基础,修改 main.c 等文件编写程序。不建议重新建 立工程,设置较为繁琐。

3.2 前后台模板中的中断设置方法

本文以 UART0 中断函数的操作方法为例进行说明,其它外设的中断的操作方法类似, 需经过以下四个步骤:

(1) 在main.c中编写中断服务程序,如程序清单 3.1所示。

程序清单 3.1 U	ART0 中断服务函数编写
------------	---------------

void uart0Isr (void)			
{			
•••••			
}			

(2) 设置中的优先级以及使能UART0 中断,如程序清单 3.2所示。

程序清单 3.2 UART0 中断设置

•••••

.....

 $zyIsrSet(NVIC_UART, (unsigned \ long)uart0Isr, PRIO_ONE);$

(3) 在vector_table.c文件中声明UART0 中断服务程序,如程序清单 3.3所示。

程序清单 3.3 中断复位函数声明

extern void __main(void); extern void uart0Isr (void);

> (4) 在vector_cfg.h文件中,填写中断服务函数名称,到相应的中断向量表位置。如程序 清单 3.4所示。

程序清单 3.4 中断向量表填写

•••••		
#define	SSP0_IRQ_Handle	defaultVectorHandle
#define	UART_IRQ_Handle	uart0Isr