

User Guide for FEB_L015 Evaluation Board

Universal Input 8.4W LED Ballast Controller

Featured Fairchild Product: FL103M

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

Table of Contents

1.	Introduction	. 3
	 1.1. Description 1.2. Features 1.3. Internal Block Diagram 	3
2.	General Specification for Evaluation Board	. 5
	2.1. Photographs of the Evaluation Board2.2. Printed Circuit Board2.3. Schematic	7 8
3.	Bill of Materials	. 9
4.	Transformer and Winding Specifications	10
5.	Test Conditions & Test Equipment	11
6.	Performance of Evaluation Board	12
	 6.1. Input Power at Minimum Load Condition 6.2. Startup Time 6.3. Input Current 6.4. Output Ripple & Noise 6.5. Short-Circuit Protection (SCP) 6.6. Voltage & Current Stress on MOSFET 6.7. Voltage & Current Stress on Secondary Rectifier 6.8. Constant Current Tolerance Using Electric Load (CR) 6.9. Constant Current Tolerance Using Electric Load (CV) 6.10. Constant Current Tolerance Using LED Load 6.11. Efficiency 6.12. Temperature 6.13. EMI 	13 14 15 16 17 20 23 24 25 26 27
7.	Revision History	30

This user guide supports the evaluation kit for the FL103M. It should be used in conjunction with the FL103M datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at <u>www.fairchildsemi.com</u>.

1. Introduction

This document describes the proposed solution for an universal input 8.4W LED ballast using the FL103M PSR controller and the FQU2N60C QFET[®]. The input voltage range is $85V_{RMS} - 265V_{RMS}$ and there is one DC output with a constant current of 350mA at $24V_{MAX}$. This document contains a general description of FL103M, the power supply specification, schematic, bill of materials, and the typical operating characteristics.

1.1. Description

This third-generation Primary-Side-Regulation (PSR) and highly integrated PWM controller provides features to enhance the performance of LED illumination.

The proprietary topology, TRUECURRENTTM, enables precise CC regulation and simplified circuit design for LED illumination applications. The result is lower-cost and smaller LED lighting compared to a conventional design or a linear transformer.

To minimize standby power consumption, the proprietary Green Mode provides off-time modulation to linearly decrease PWM frequency under light-load conditions. Green Mode assists the power supply in meeting the power conservation requirements.

By using the FL103, LED illumination can be implemented with few external components and minimized cost.

1.2. Features

- Low Standby Power: < 30mW</p>
- High-Voltage Startup
- Few External Components
- Constant-Voltage (CV) and Constant-Current (CC) Control without Secondary-Feedback Circuitry
- Green-Mode: Linearly-Decreasing PWM Frequency
- Fixed PWM Frequency at 50kHz and 33kHz, Frequency Hopping to Solve EMI Problems
- Peak-Current-Mode Control in CV Mode
- Cycle-by-Cycle Current Limiting
- V_{DD} Over-Voltage Protection (OVP)
- V_{DD} Under-Voltage Lockout (UVLO)
- Adjustable Brownout Detector
- Gate Output Maximum Voltage Clamped at 15V
- Thermal Shutdown (TSD) Protection
- Available in the 8-Lead SOIC Package

1.3. Internal Block Diagram

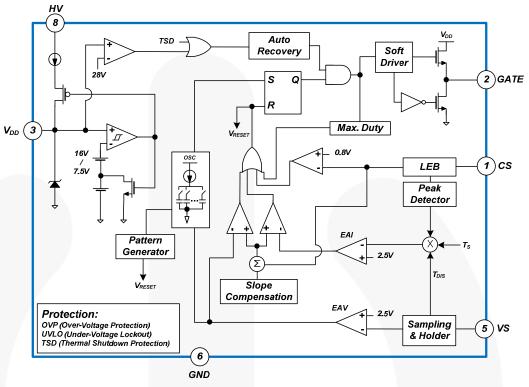


Figure 1. Block Diagram

2. General Specification for Evaluation Board

All data of the evaluation board were measured under a condition where the board was enclosed in a case and external temperature was around 25°C.

Table 1. Evaluation Board Specifications for LED Lighting Bulb

Main Co	FL103M	
Innut	Frequency Range	50Hz ~ 60Hz
Input	Voltage Range	85V _{AC} ~ 265V _{AC}
	Power	< 8.4W
Output	Voltage	< 24V
	Current	Тур. 0.35А
Efficiency	Efficiency < 8	
Conduction EMI	Meet Margin of EN55022	2 conducted EMI: > 7dBuV
Board Dimensions	53mm x 25mm (N	eck: 15mm x 15mm)

2.1. Photographs of the Evaluation Board

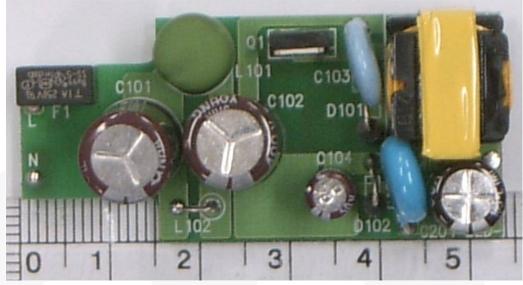


Figure 2. Top View

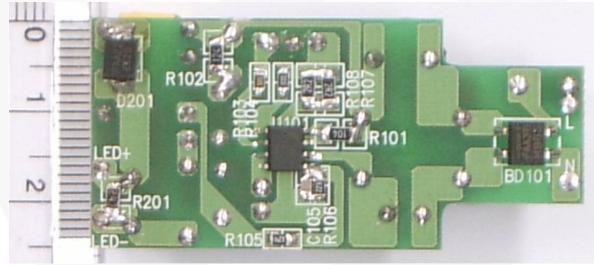
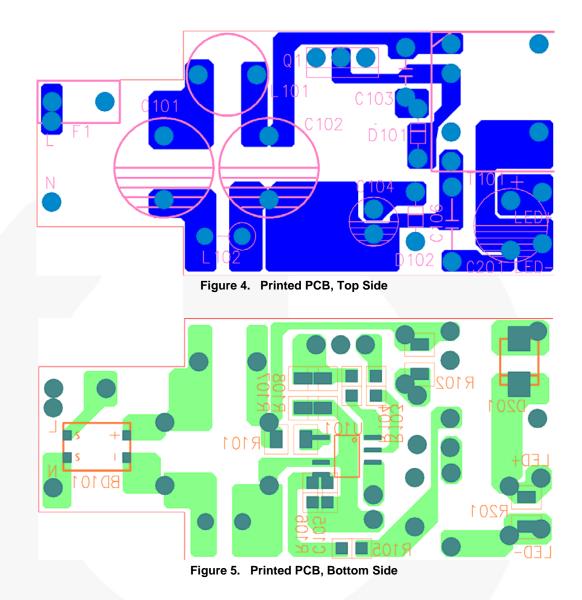
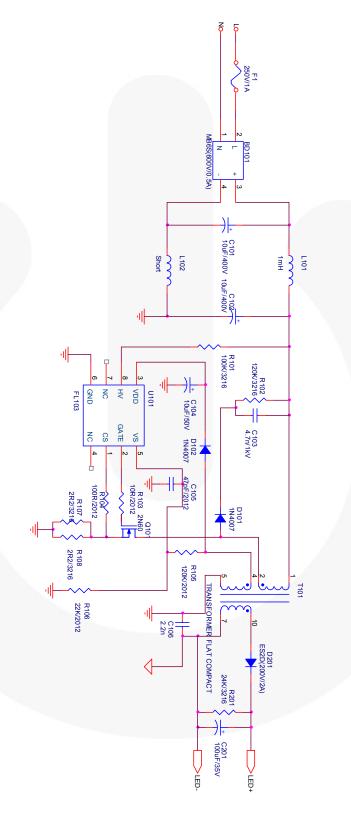



Figure 3. Bottom View


2.2. Printed Circuit Board

2.3. Schematic

3. Bill of Materials

Table 2. Bill of Materials

ltem No.	Part Reference	Part Number	Qty.	Description	Manufacturer
1	U101	FL103M	1	Controller, SOP-8	Fairchild Semiconductor
2	Q101	FQU2N60C	1	600V/2A MOSFET, I-PAK,	Fairchild
3	T101	EE1614S	1	Transformer, Lm = 1.13mH	TDK
4	F1	SS-5-1A	1	250V/1A Fuse	Bussmann
5	L101	R08102KT00	2	1mH Filter Inductor, 8Φ	Bosung
6	L102	Short	0	Short	
7	BD101	MB6S	1	600V/0.5A Bridge Rectifier, SOIC-4	Fairchild Semiconductor
8	D101, D102	1N4007	2	1kV/1A Rectifier, DO-41	Fairchild Semiconductor
9	D201	ES2D	1	200V/2A Fast Rectifier, SMB/DO-214AA	Fairchild Semiconductor
10	C101, C102	KMG 10µF/400V	2	Electrolytic Capacitor, 105°C	Samyoung
11	C103	3A472K	1	4.7nF/1kV Ceramic Capacitor	Samwha
12	C104	KMG 10µF/50V	1	Electrolytic Capacitor, 105°C	Samyoung
13	C105	C0805C470J5GACTU	1	47pF/50V SMD Capacitor 2012	Kemet
14	C106	SCFz2E472M10BW	1	472/250V Y-Capacitor	Samwha
15	C201	WB 100µF/35V	1	Ultra-Low Impedance Electrolytic Capacitor, 105°C	Samwha
16	R101	RC1206JR-07100KL	1	100KΩ SMD Resistor 3216	Yageo
17	R102	RC1206JR-07120KL	1	120KΩ SMD Resistor 3216	Yageo
18	R103	RC0805JR-0710RL	1	10Ω SMD Resistor 2012	Yageo
19	R104	RC0805JR-07100RL	1	100Ω SMD Resistor 2012	Yageo
20	R105	RC0805JR-07120KL	1	120KΩ SMD Resistor 2012	Yageo
21	R106	RC0805JR-0722KL	1	22KΩ SMD Resistor 2012	Yageo
22	R107, R108	RC1206JR-072R2L	2	2.2Ω SMD Resistor 3216	Yageo
23	R201	RC1206JR-0724KL	1	24KΩ SMD Resistor 3216	Yageo

4. Transformer and Winding Specifications

- Core: EE1614S (PC-40)
- Bobbin: 10 Pins

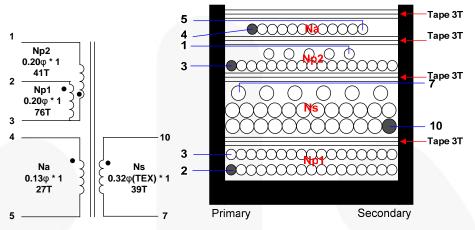


Figure 7. Transformer Specifications & Construction

Table 3. Winding Specific	ations
---------------------------	--------

No.	Winding	Pin (S → F)	Wire	Turns	Winding Method
1	Np1	2 → 3	0.20 Φ * 1	76	Solenoid Winding
2	Insulation: Polyester Tape t = 0.05 mm, 3-Layer				
3	Ns 10 → 7 0.32 Φ (TEX) * 1 39 Sole			Solenoid Winding	
4	Insulation: Polyester Tape t = 0.05 mm, 3-Layer				
5	Np2	3 → 1	0.20 Φ * 1	41	Solenoid Winding
6	Insulation: Polyester Tape t = 0.05 mm, 3-Layer				
7	Na	$4 \rightarrow 5$	0.13 Φ * 1	27	Center Solenoid Winding
8	Outer Insulation: Polyester Tape t = 0.05 mm, 3-Layer				

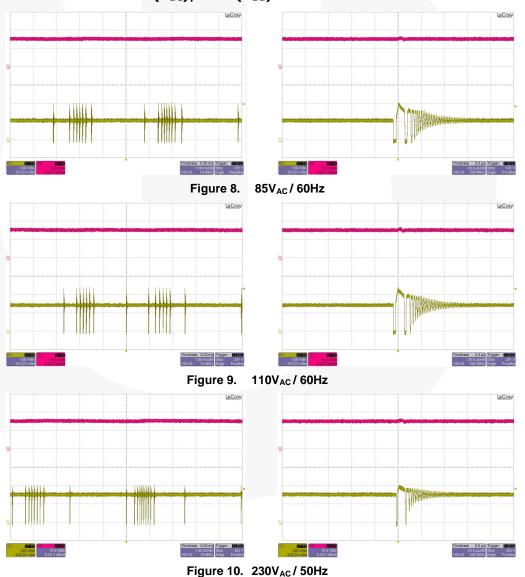
 Table 4.
 Electrical Characteristics

	Pin	Specification	Remark
Inductance	4 - 5	1.13mH ±7%	1kHz, 1V
Leakage	4 - 5	Max. 20µH	Short All Output Pins

5. Test Conditions & Test Equipment

Table 5. Test Conditions & Test Equipment

Evaluation Board #	FEBL015
Test Date	
Test Temperature	
Test Equipments	AC Power Source: ES2000S by PSTATIONES Power Analyzer: DZ4000 by YOKOGAWA Electronic Load: PLZ303WH by KIKUSUI Automatic Power Tester: ATS3000 by BOB Multimeter: 2002 by KEITHLEY Oscilloscope: 104Xi by LeCroy EMI Test Receiver: ESCS30 by ROHDE & SCHWARZ Two-Line V-Network: ENV216 by ROHDE & SCHWARZ Thermometer: Therma CAM SC640 by FLIR SYSTEMS LED: EHP-AX08EL/GT01H-P03(3W) by Everlight

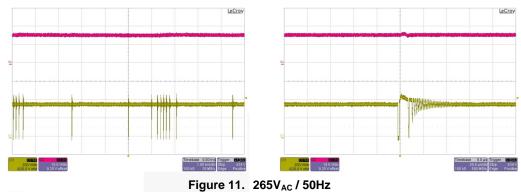

Performance of Evaluation Board 6.

Input Power at Minimum Load Condition 6.1.

Test Condition: Measure the input power and output voltage at open load.

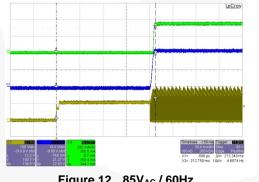
Table 6. Test Results

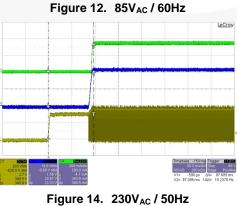
Input Voltage	Input Power	Output Voltage	Remark
85V _{AC} / 60Hz	0.092W	26.62V	
110V _{AC} / 60Hz	0.094W	26.63V	< 0.3W
230V _{AC} / 50Hz	0.101W	26.64V	< 0.3VV
265V _{AC} / 50Hz	0.091W	26.27V	

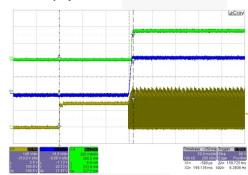


Waveforms: Yellow (V_{DS}), Red (V_{DD})

Waveforms: Yellow (V_{DS}), Red (V_{DD})


6.2. Startup Time


Test Condition: Connect seven LEDs and measure the time interval between AC plug-in and stable output.


Table 7. Test Results

Input Voltage	Turn-On Time
85V _{AC} / 60Hz	213ms
110V _{AC} / 60Hz	160ms
230V _{AC} / 50Hz	98ms
265V _{AC} / 50Hz	96ms

Waveform: Yellow (V_{DS}), Blue (V₀), Green (I₀)

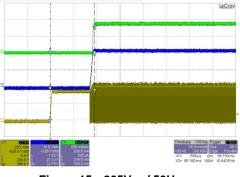


Figure 15. 265V_{AC} / 50Hz

6.3. Input Current

Test Condition: Connect seven LEDs and measure the AC input current.

-	~		D 14
I able	δ.	lest	Result

Input Voltage	Input Current
85V _{AC} / 60Hz	185mA
110V _{AC} / 60Hz	155mA
230V _{AC} / 50Hz	98mA
265V _{AC} / 50Hz	92mA

Waveform: Yellow (VDs), Red (VDD), Green (Io)

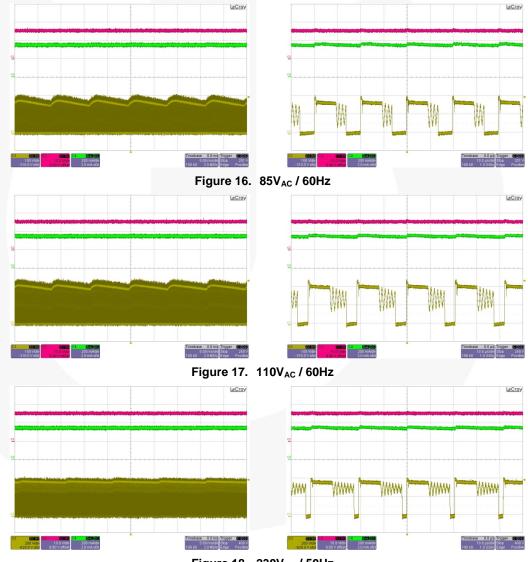
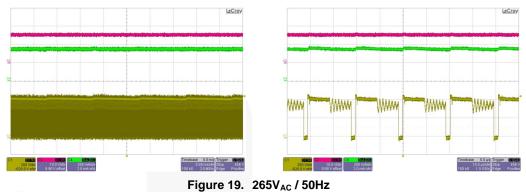
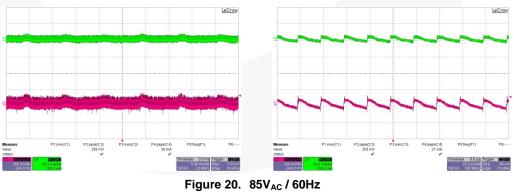



Figure 18. 230V_{AC} / 50Hz

Waveform: Yellow (V_{DS}), Red (V_{DD}), Green (I₀)


6.4. Output Ripple & Noise

Test Condition: Connect seven LEDs. Ripple and noise are measured by using 20MHz bandwidth limited oscilloscope with a $10\mu F$ / 50V capacitor paralleled with a high-frequency $0.1\mu F$ capacitor across each output.

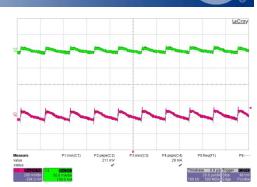
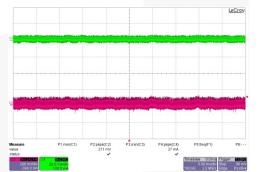

	Diamla Course	Valtara Dinula	Oursent Dissula
Input Voltage Ripple Sourc		Voltage Ripple	Current Ripple
85V _{AC} / 60Hz	AC Source	256mV _{P-P}	30mA _{P-P}
OSVAC / OUHZ	Main Frequency	205mV _{P-P}	27mA _{P-P}
110\/ / 60H-	AC Source	218mV _{P-P}	29mA _{P-P}
110V _{AC} / 60Hz	Main Frequency	211mV _{P-P}	29mA _{P-P}
230V _{AC} / 50Hz —	AC Source	211mV _{P-P}	27mA _{P-P}
	Main Frequency	205mV _{P-P}	29mA _{P-P}
265\/ / 50H7	AC Source	224mV _{P-P}	30mA _{P-P}
265V _{AC} / 50Hz	Main Frequency	198mV _{P-P}	27mA _{P-P}

Table 9. Test Result

Waveforms: Red (V₀), Green (I₀)



ww.fairchilds

Figure 21. 110V_{AC} / 60Hz

LeCroy

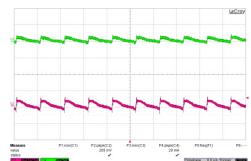
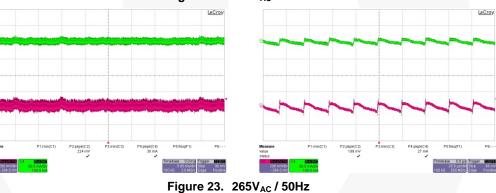
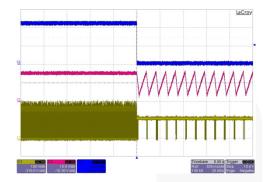



Figure 22. 230V_{AC} / 50Hz

6.5. Short-Circuit Protection (SCP)

Test Condition: Connect seven LEDs and measure input power on short circuit in "Hiccup" Mode operation.

Table	10.	Test F	Results


Input Voltage	Input Power at SCP
85V _{AC} / 60Hz	0.116W
110V _{AC} / 60Hz	0.180W
230V _{AC} / 50Hz	0.426W
265V _{AC} / 50Hz	0.520W

5

Waveforms: Yellow (V_{DS}), Red (V_{DD}), Green (V₀)

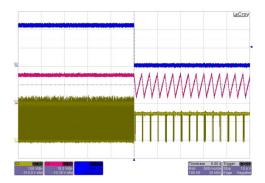


Figure 24. 230V_{AC} / 60Hz

Figure 25. 110V_{AC} / 60Hz

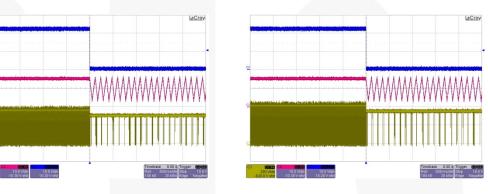
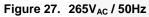



Figure 26. 230V_{AC} / 50Hz

6.6. Voltage & Current Stress on MOSFET

Test Condition: Connect seven LEDs and measure the voltage and current stress on the MOSFET.

		85V _{AC} / 60Hz	110V _{AC} / 60Hz	230V _{AC} / 50Hz	265V _{AC} / 50Hz
Power	V	217V	247V	430V	478V
On	I	590mA	590mA	590mA	590mA
Normal	V	221V	257V	443V	481V
Normal	I	606mA	590mA	606mA	590mA
Short	V	136V	171V	348V	402V
Circuit	I	290mA	290mA	380mA	460mA
Power	V	137V	137V	152V	152V
Off	I	580mA	580mA	580mA	580mA

Table	11.	Test	Results
Iabio			11000110

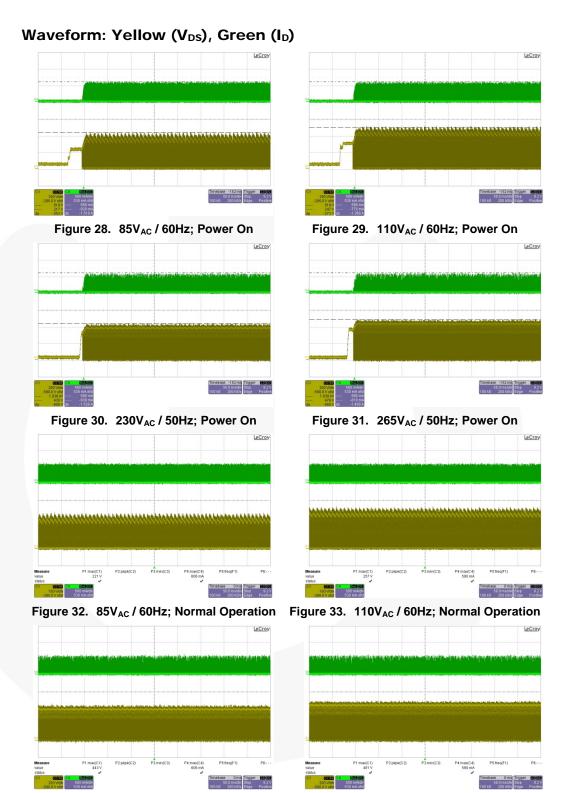


Figure 34. 230V_{AC} / 50Hz; Normal Operation Figure 35. 265V_{AC} / 50Hz; Normal Operation

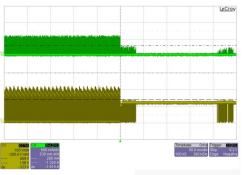


Figure 36. 85V_{AC} / 60Hz; Short Circuit

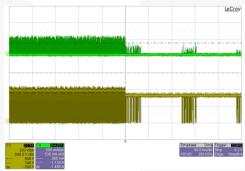


Figure 38. 230V_{AC} / 50Hz; Short Circuit

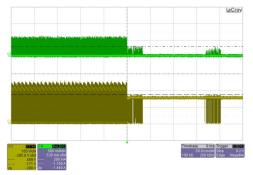


Figure 37. 110V_{AC} / 60Hz; Short Circuit

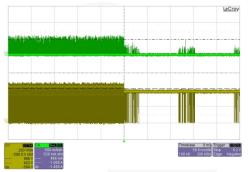


Figure 39. 265V_{AC} / 50Hz; Short Circuit

Figure 41. 110V_{AC} / 60Hz; Power Off

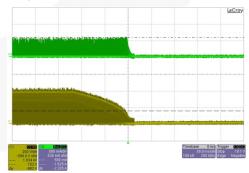


Figure 43. $265V_{AC}$ / 50Hz; Power Off

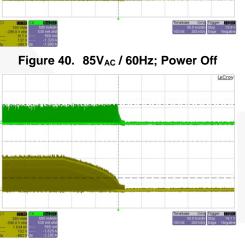
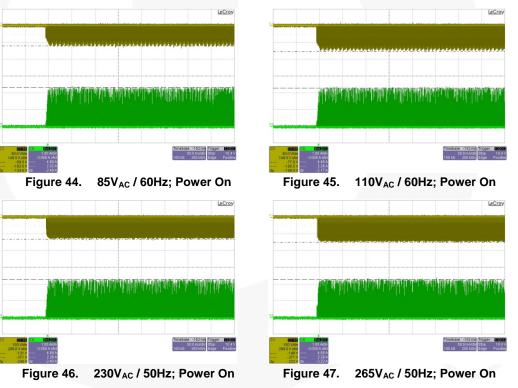
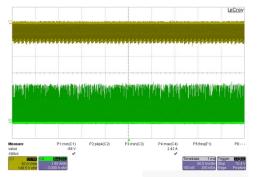


Figure 42. $230V_{AC}$ / 50Hz; Power Off


6.7. Voltage & Current Stress on Secondary Rectifier

Test Condition: Connect seven LEDs and measure the voltage and current stress on the secondary rectifier.

		85V _{AC} / 60Hz	110V _{AC} / 60Hz	230V _{AC} / 50Hz	265V _{AC} / 50Hz
Power	V	59.5V	77.0V	131.0V	149.0V
On	Ι	2.48A	2.28A	2.28A	2.28A
Normal	V	68V	79V	136V	161V
Normai	Ι	2.42A	2.39A	2.36A	2.39A
Short	V	79.5V	97.0V	170.0V	176.0V
Circuit	I	1.12A	1.16A	1.37A	1.42A
Power	V	38V	38V	45V	45V
Off		2.34A	2.34A	2.34A	2.34A


Table 12. Test Results

Waveform: Yellow (VAK), Green (IAK)

Waveform: Yellow (VAK), Green (IAK)

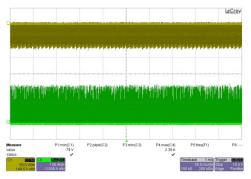


Figure 48. 85V_{AC} / 60Hz; Normal Operation

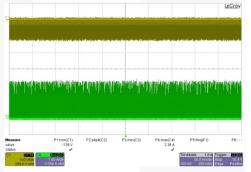


Figure 49. 110V_{AC} / 60Hz; Normal Operation

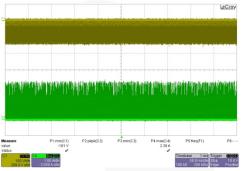


Figure 50. 230V_{AC} / 50Hz; Normal Operation Figure 51. 265V_{AC} / 50Hz; Normal Operation

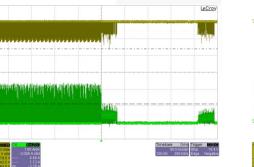


Figure 52. 85V_{AC} / 60Hz; Short Circuit

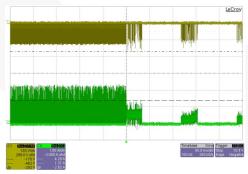
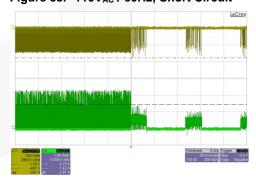
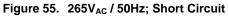




Figure 54. 230V_{AC} / 50Hz; Short Circuit

Figure 53. 110V_{AC} / 60Hz; Short Circuit

© 2012 Fairchild Semiconductor Corporation

Waveform: Yellow (VAK), Green (IAK)

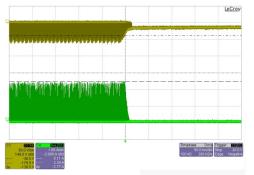


Figure 56. 85V_{AC} / 60Hz; Power Off

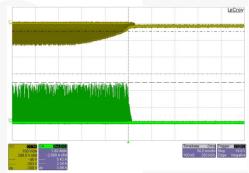


Figure 58. 230V_{AC} / 50Hz; Power Off

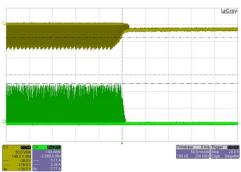


Figure 57. 110V_{AC} / 60Hz; Power Off

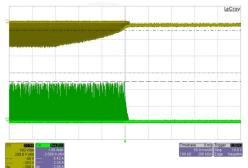


Figure 59. 265V_{AC} / 50Hz; Power Off

6.8. Constant Current Tolerance Using Electric Load (CR)

Test Condition: Aging five seconds at minimum load and measure the output current and output voltage. Each load / one second interval. Load is CR mode of electric load.

Input Voltage	Minimum Current	Maximum Current	Tolerance	Remark
85V _{AC} / 60Hz	346mA	350mA	1.14%	
110V _{AC} / 60Hz	346mA	348mA	0.57%	
230V _{AC} / 50Hz	343mA	350mA	2.00%	< 10%
265V _{AC} / 50Hz	343mA	349mA	1.72%	
Total	343mA	350mA	2.00%	

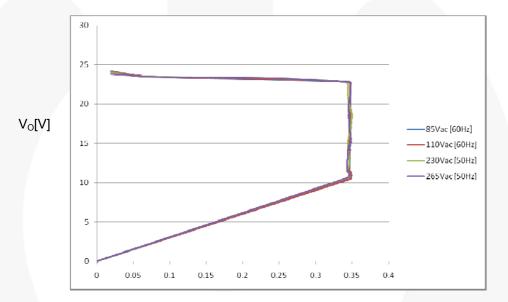
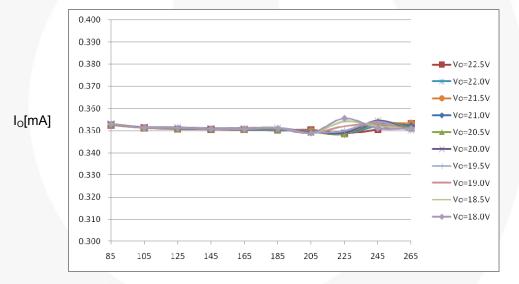


Figure 60. CC / CV Curve



6.9. Constant Current Tolerance Using Electric Load (CV)

Test Condition: Fixed output voltage and variable input voltage. Measure output current. load is CV Mode of electric load.

V _o [V]	Min. Current	Max. Current	Tolerance	Remark
22.5	349mA	353mA	1.19%	
22.0	349mA	353mA	1.27%	
21.5	349mA	353mA	1.33%	
21.0	348mA	354mA	1.44%	
20.5	349mA	353mA	1.61%	
20.0	349mA	355mA	1.55%	< 10%
19.5	349mA	354mA	1.41%	
19.0	349mA	353mA	1.22%	
18.5	349mA	354mA	1.47%	
18.0	349mA	356mA	1.86%	
Total	348mA	356mA	2.02%	

Table 14. Deviation by Input Voltage

 $V_{\text{IN}}[V_{\text{AC}}]$ Figure 61. Deviation Curve

6.10. Constant Current Toleration Using LED Load

Test Condition: Age five minutes at $85V_{AC}$ and measure the output current and output voltage. Load is LED.

Table 15. Deviation by Input Voltage

LEDs	Minimum Current	Maximum Current	Tolerance	Remark
7-LED	343mA	347mA	1.27%	
6-LED	343mA	348mA	1.52%	< 10%
5-LED	342mA	349mA	2.01%	< 10 %
4-LED	347mA	350mA	1.06%	

Table 16. Deviation by All Conditions (LEDs & Input Voltage)

Input Voltage	Minimum Current	Maximum Current	Tolerance
85V _{AC}	346mA	349mA	0.92%
105V _{AC}	345mA	348mA	1.03%
125V _{AC}	345mA	348mA	1.06%
145V _{AC}	345mA	348mA	0.86%
165V _{AC}	344mA	348mA	0.89%
185V _{AC}	342mA	350mA	2.34%
205V _{AC}	343mA	349mA	1.78%
225V _{AC}	343mA	348mA	1.55%
245V _{AC}	344mA	347mA	0.78%
265V _{AC}	345mA	349mA	1.18%
Total	342mA	350mA	2.34%

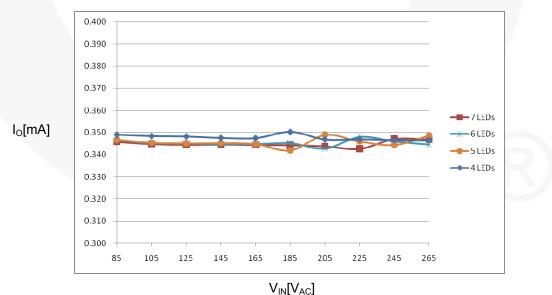


Figure 62. Deviation Curve

6.11. Efficiency

Test Condition: Connect seven LEDs and measure the input and output power after 30 minutes aging.

Table 17. Test Results

Input Voltage	Input Power	Output Power	Efficiency
85V _{AC} / 60Hz	8.781W	7.460W	84.96%
110V _{AC} / 60Hz	8.626W	7.440W	86.24%
230V _{AC} / 50Hz	8.464W	7.372W	87.10%
265V _{AC} / 50Hz	8.617W	7.490W	86.92%

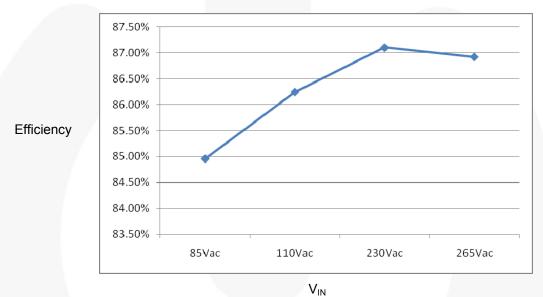


Figure 63. Efficiency Curve

6.12. Temperature

Test Condition: Connect seven LEDs and measure the saturated temperature.

Table	18.	Test	Results
Iabic	10.	ICOL	Negung

	85V _{AC} / 60Hz	265V _{AC} / 50Hz	Remark
MOSFET	50.8°C	48.4°C	Top-Side Circle
Transformer	50.7°C	51.5°C	Top-Side Box
RCD Snubber	50.2°C	49.0°C	Top-Side Spot
FL103M	45.9°C	42.8°C	Bottom-Side Circle
Secondary Rectifier	59.2°C	58.9°C	Top-Side Box
Current-Sense Resistors	39.9°C	39.5°C	Bottom-Side Spot

Temperature Photos

49.0

Transformer

(51.5°C)

Dist = 0.5 Trefl = 20.0 ε = 0.96

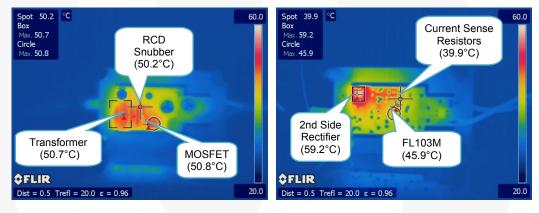
Spot Box

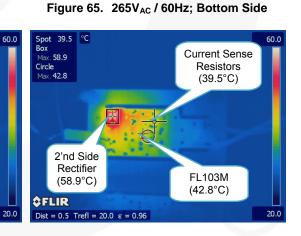
Circle

Max. 51.5

Max. 48.4

\$FLIR




Figure 64. 85V_{AC} / 60Hz; Top Side

RCD Snubber

(49.0°C)

MOSFET

(48.4°C)

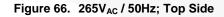
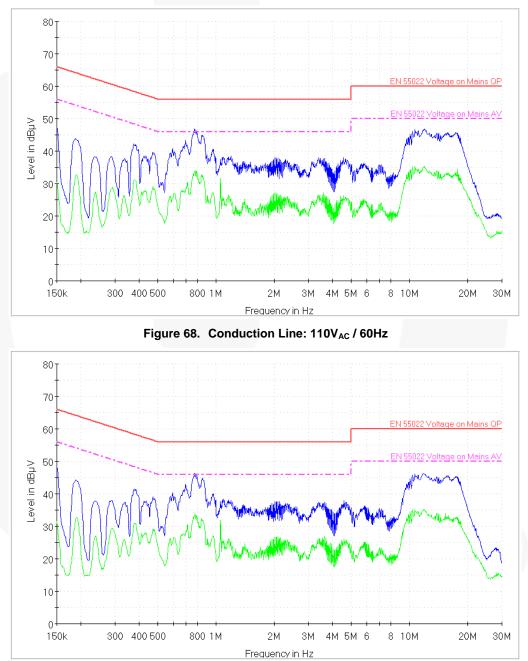


Figure 67. 265V_{AC} / 50Hz; Bottom Side



6.13. EMI

Test Conditions:

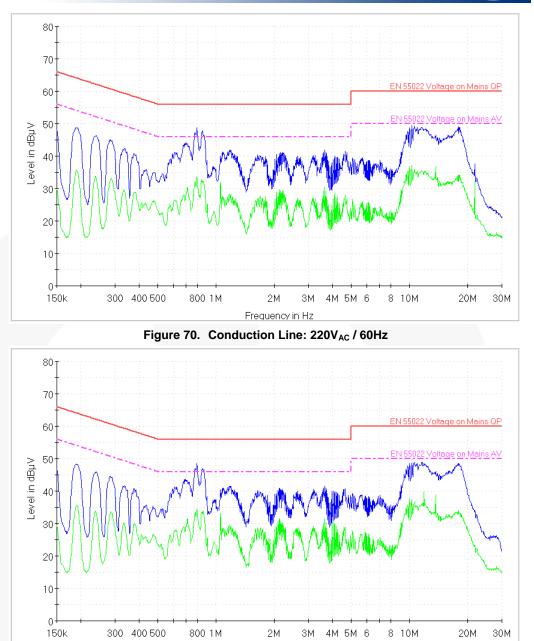

- Frequency Subrange: 150kHz 30MHz,
- Measuring: QuasiPeak; Average
- Load is 7 LEDs

Figure 69. Conduction Neutral: $110V_{AC}\,/\,60Hz$

Frequency in Hz
Figure 71. Conduction Neutral: 220V_{AC} / 60Hz

7. Revision History

Rev.	Date	Description
1.0.0	June 2011	Initial Release
1.0.1	July 2011	Reduced PCB Type & Size: Square \rightarrow Bulb, 62 x 41 mm ² \rightarrow 53 x 25 mm ²
1.0.2	May 2012	Update Block Diagram & BOM

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is combited to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

EXPORT COMPLIANCE STATEMENT

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.

U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.