

User Guide for FEB-L026 Evaluation Board

Universal Line Voltage LED Ballast

Featured Fairchild Product: FL7732

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

1

Table of Contents

1. Introduction	
1.1. General Description of FL7732	
1.2. Features	
1.3. Internal Block Diagram	
2. Specifications for Evaluation Board	
2.1. Evaluation Board	6
2.2. Printed Circuit Board	7
2.3. Schematic of the Evaluation Board.	
2.4. Bill of Materials	9
2.5. Transformer Design	
3. Performance of Evaluation Board	
3.1. Startup	
3.2. Operation Waveforms	
3.3. Constant-Current Regulation	
3.4. Short- / Open-LED Protections	
3.5. Power Factor	
3.6. PF & THD	
3.7. Operating Temperature	
3.8. EMI	
4. Revision History	

This user guide supports the evaluation kit for the FL7732. It should be used in conjunction with the FL7732 datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at www.fairchildsemi.com.

1. Introduction

This document describes the proposed solution for universal line voltage LED ballast using the FL7732 Primary-Side Regulator (PSR) single-stage controller. The input voltage range is $90V_{RMS} - 265V_{RMS}$ and there is one DC output with a constant current of 700mA at $24V_{MAX}$. This document contains general description of FL7732, the power supply specification, schematic, bill of materials, and the typical operating characteristics.

1.1. General Description of FL7732

The FL7732 is an active Power Factor Correction (PFC) controller using single-stage flyback topology. Primary-side regulation and single-stage topology reduce external components, such as input bulk capacitor and feedback circuitry, and minimize cost. To improve power factor and THD, constant on-time control is utilized with an internal error amplifier and a low bandwidth compensator. Precise constant-current control regulates accurate output current, independent of input voltage and output voltage. Operating frequency is proportionally changed by output voltage to guarantee DCM operation with high efficiency and simple design. FL7732 provides open-LED, short-LED, and over-temperature protections.

1.2. Features

- Cost-Effective Solution: No Input Bulk Capacitor or Feedback Circuitry
- Power Factor Correction
- Accurate Constant-Current (CC) Control, Independent Online Voltage, Output Voltage, and Magnetizing Inductance Variation
- Linear Frequency Control Improves Efficiency and Simplifies Design
- Open-LED Protection
- Short-LED Protection
- Cycle-by-Cycle Current Limiting
- Over-Temperature Protection with Auto Restart
- Low Startup Current: 20μA
- Low Operating Current: 5mA
- V_{DD} Under-Voltage Lockout (UVLO)
- Gate Output Maximum Voltage Clamped at 18V
- SOP-8

1.3. Internal Block Diagram

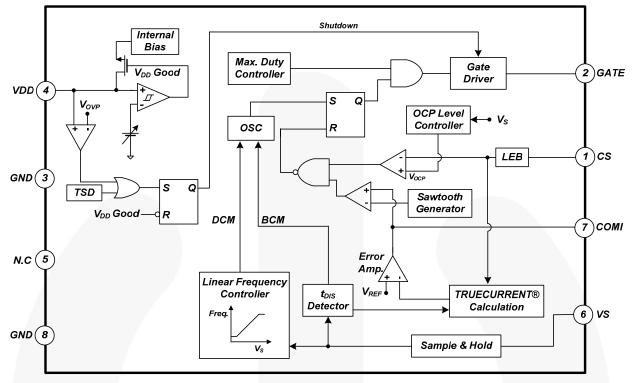


Figure 1. Block Diagram of FL7732

2. Specifications for Evaluation Board

Description		Symbol	Value	Comments
		V _{IN.MIN}	90V	Minimum Input Voltage
	Voltage	V _{IN.MAX}	265V	Maximum Input Voltage
Input		V _{IN.NOMINAL}	110V/220V	Nominal Input Voltage
	Frequency	f _{IN}	60Hz/50Hz	Line Frequency
		V _{OUT.MIN}	11V	Minimum Output Voltage
	Voltage	V _{OUT.MAX}	28V	Maximum Output Voltage
0		V _{OUT.NOMINAL}	24V	Nominal Output Voltage
Output		I _{OUT.NOMINAL}	700mA	Nominal Output Current
	Current	CC Deviation	< ±2.94%	Line Input Voltage Change: 90~265V _{AC}
		CC Deviation	< ±2.88%	Output Voltage Change: 11~28V
		Eff _{90VAC}	86.45%	Efficiency at 90V _{AC} Line Input Voltage
		Eff _{120VAC} 88.45% Ef		Efficiency at 120V _{AC} Line Input Voltage
	ficiency	Eff _{140VAC} 88.76% Efficiency at 140V _{AC}		Efficiency at 140V _{AC} Line Input Voltage
	Efficiency	Eff _{180VAC} 89.03% Efficiency at 180V _{AC} Line		Efficiency at 180V _{AC} Line Input Voltage
		Eff _{220VAC} 88.77% Efficiency at 220V _{AC} L		Efficiency at 220V _{AC} Line Input Voltage
		Eff _{265VAC}	Eff _{265VAC} 87.87% Efficiency at 265V _{AC} Line	
		PF/THD _{90VAC}	0.984/15.29%	PF/THD at 90V _{AC} Line Input Voltage
		PF/THD _{120VAC}	0.986/14.27%	PF/THD at 120V _{AC} Line Input Voltage
	PF/THD	PF/THD _{140VAC}	0.984/13.61%	PF/THD at 140V _{AC} Line Input Voltage
		PF/THD _{180VAC}	0.978/14.12%	PF/THD at 180V _{AC} Line Input Voltage
		PF/THD _{230VAC}	0.955/17.69%	PF/THD at 230V _{AC} Line Input Voltage
		PF/THD _{265VAC}	0.936/19.91%	PF/THD at 265V _{AC} Line Input Voltage
	FL7732	T _{FL7732}	54.7°C	Open-Frame Condition (T _A = 25°C) FL7732 Temperature
Temperature	Primary MOSFET	T _{MOSFET}	63.0°C	Primary MOSFET Temperature
	Secondary Diode	T _{DIODE}	70.5°C	Secondary Diode Temperature
	Transformer	TTRANSFORMER	59.7°C	Transformer Temperature

Table 1. Specifications for LED Lighting Lamp

All data of the evaluation board were measured under a condition where the board was enclosed in a case and external temperature was around 25°C.

2.1. Evaluation Board

Figure 2. Top View (Dimensions:79mm (L) x 30mm (W) x 20mm (H))

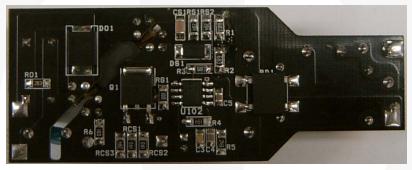


Figure 3. Bottom Views (Dimensions:79mm (L) x 30mm (W) x 20mm (H))

2.2. Printed Circuit Board

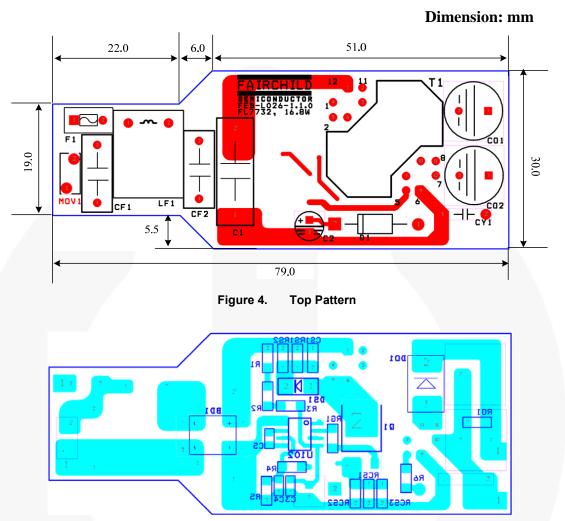
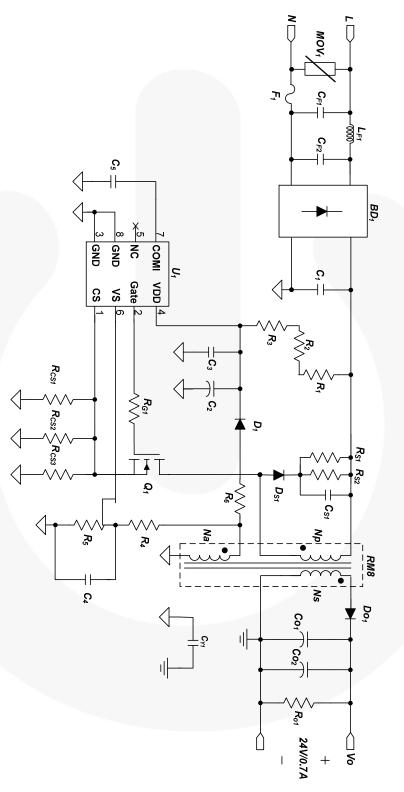



Figure 5. Bottom Pattern

2.3. Schematic of the Evaluation Board

2.4. Bill of Materials

ltem No.	Part Reference	Part Number	Qty.	Description	Manufacturer
1	BD1	DF06S	1	1.5A/600V Bridge Diode	Fairchild Semiconductor
2	CF1	MPX AC275V 104K	1	104/AC275V X-Capacitor	Carli
3	CF2	MPX AC275V 473K	1	473/AC275V X-Capacitor	Carli
4	CS1	C1206C103KDRACTU	1	103/1kV SMD Capacitor 3216	Kemet
5	CY1	SCFz2E472M10BW	1	472/250V Y-Capacitor	Samwha
6	Co1, Co2	KMG 470µF/35V	2	470µF/35V Electrolytic Capacitor	Samyoung
7	C1	MPE 630V104K 14S	1	104/630V MPE Film Capacitor	Sungho
8	C2	KMG 22µF/50V	1	22µF/35V Electrolytic Capacitor	Samyoung
9	C3	C0805C104K5RACTU	1	104/50V SMD Capacitor 2012	Kemet
10	C4	C0805C200J5GACTU	1	200/50V SMD Capacitor 2012	Kemet
11	C5	C0805C225Z3VACTU	1	225/25V SMD Capacitor 2012	Kemet
12	DS1	RS1M	1	1000V/1A Ultra-Fast Recovery Diode	Fairchild Semiconductor
13	Do1	ES3D	1	200V/3A, Fast Rectifier	Fairchild Semiconductor
14	D1	1N4003	1	200V/1A, General Purpose Rectifier	Fairchild Semiconductor
15	F1	SS-5-1A	1	250V/1A Fuse	Bussmann
16	LF1	R10402KT00	1	4mH Inductor, 10Ø	Bosung
17	MOV1	SVC 471 D-07A	1	Metal Oxide Varistor	Samwha
18	Q1	FDD5N60NZ	1	600V/4A, N-Channel MOSFET	Fairchild Semiconductor
19	RG1, R6	RC1206JR-0710L	2	10Ω SMD Resistor 3216	Yageo
20	RS1, RS2	RC1206JR-07100KL	2	100kΩ SMD Resistor 3216	Yageo
21	Rcs1, Rcs2	RC1206JR-071RL	2	1Ω SMD Resistor 3216	Yageo
22	Rcs3	RC1206JR-072R4L	1	2.4Ω SMD Resistor 3216	Yageo
23	Ro1	RC1206JR-0720KL	1	20KΩ SMD Resistor 3216	Yageo
24	R4	RC1206JR-07150KL	1	150KΩ SMD Resistor 3216	Yageo
25	R1, R2, R3	RC1206JR-0768KL	3	68KΩ SMD Resistor 3216	Yageo
26	R5	RC1206JR-0724KL	1	24KΩ SMD Resistor 3216	Yageo
27	T1	RM8 Core	1	12-Pin, Transformer	TDK
28	U1	FL7732M_F116	1	Main PSR Controller	Fairchild Semiconductor

2.5. Transformer Design

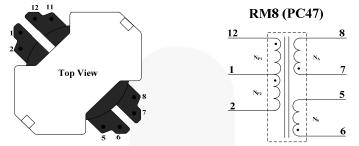


Figure 7. T

Transformer Bobbin Structure and Pin Configuration



Figure 8. Transformer Winding Structure

Table 2.	Winding	Specifications
----------	---------	----------------

No.	Winding	Pin (S \rightarrow F)	Wire	Turns	Winding Method				
1	N _{P1}	12 → 1	0.25φ	30 Ts	Solenoid Winding				
2		Insulation: Polyester Tape t = 0.025mm, 3-Layer							
3	Ns	7 → 8	0.5φ (TIW)	20 Ts	Solenoid Winding				
4		Insulation: Po	olyester Tape t = 0	.025mm, 3-La	ayer				
5	N _{P2}	1 → 2	0.25φ	30 Ts	Solenoid Winding				
6		Insulation: Po	olyester Tape t = 0	.025mm, 3-La	ayer				
7	N_A $6 \rightarrow 5$		0.25φ	15 Ts	Solenoid Winding				
8		Insulation: Polyester Tape t = 0.025mm, 3-Layer							

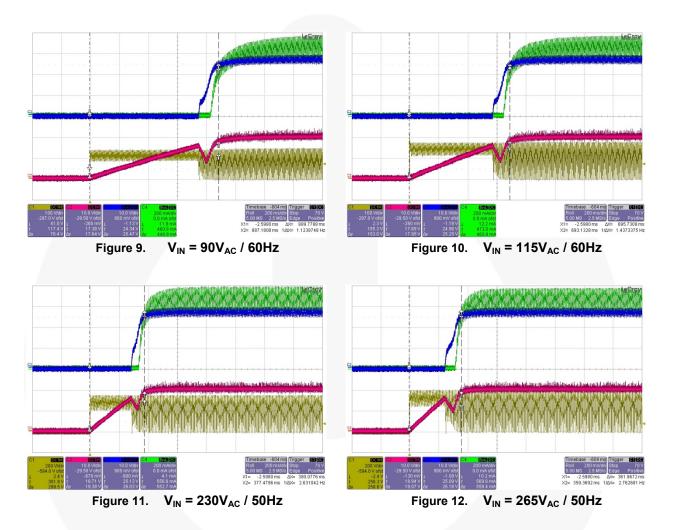
Table 3. Electrical Characteristics

	Pin	Specifications	Remark
Inductance	12–2	750µH ±10%	60kHz, 1V
Leakage	12–2	6µH	60kHz, 1V Short All Output Pins

3. Performance of Evaluation Board

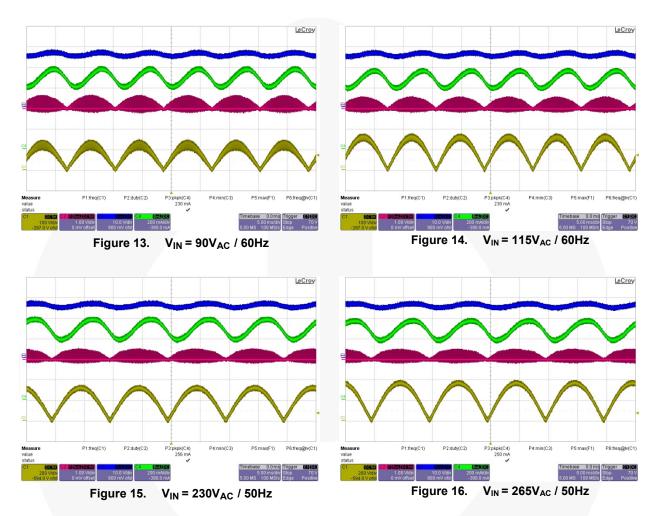
Table 4. Test Condition & Equipments

Ambient Temperature	T _A = 25°C
Test Equipment	AC Power Source: PCR500L by Kikusui Power Analyzer: PZ4000000 by Yokogawa Electronic Load: PLZ303WH by KIKUSUI Multi Meter: 2002 by KEITHLEY, 45 by FLUKE Oscilloscope: 104Xi by LeCroy Thermometer: Thermal CAM SC640 by FLIR SYSTEMS LED: EHP-AX08EL/GT01H-P03 (3W) by Everlight



3.1. Startup

Startup time is 890ms ($V_{IN} = 90V_{AC}$) ~ 362ms ($V_{IN} = 265V_{AC}$). The results were measured by using 7-LED load. Startup Time at 7-LED (25V/700mA); C1 [V_{DD}], C2 [V_{IN}], C3 [V_{OUT}], C4 [I_{OUT}].



3.2. Operation Waveforms

Output current ripple is under 250mAp-p with a rated output current of 700mA. Operation Waveforms at 7-LED (25V/700mA); C1 $[V_{CS}]$, C2 $[V_{IN}]$, C3 $[V_{OUT}]$, C4 $[I_{OUT}]$.

3.3. Constant-Current Regulation

Constant current deviation in the wide output voltage range from 11V to 28V is less than 2.88% at each line input voltage. Line regulation at the rated output voltage (24V) is less than 2.80%. The results were measured using E-load [CR Mode].

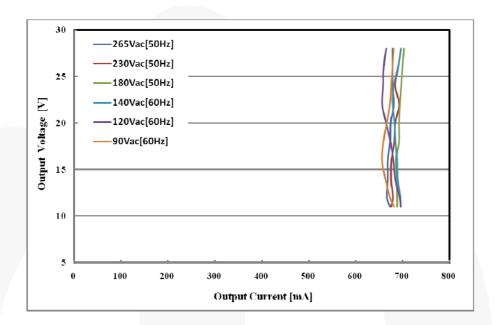
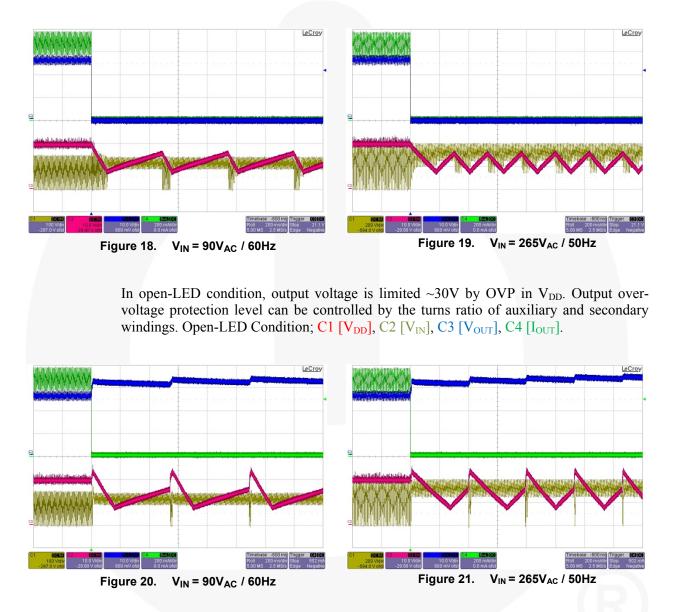


Figure 17. Constant-Current Regulation, Measured by E-Load [CR Mode]

Table 5.	Constant-Curre	nt Regulation by	Output Voltage	Change (11~28V)
----------	----------------	------------------	----------------	-----------------

Input Voltage	Min. Current [mA]	Max. Current [mA]	Tolerance
90V _{AC} [60Hz]	656	682	±1.94%
120V _{AC} [60Hz]	657	696	±2.88%
140V _{AC} [60Hz]	679	696	±1.24%
180V _{AC} [50Hz]	685	703	±1.30%
230V _{AC} [50Hz]	675	696	±1.53%
265V _{AC} [50Hz]	666	681	±1.11%

Table 6.	Constant-Current Regulation by Line Voltage Change (90~265V _{AC})
----------	---


Output Voltage	90V _{AC} [60Hz]	120V _{AC} [60Hz]	140V _{AC} [60Hz]	180V _{AC} [50Hz]	220V _{AC} [50Hz]	265V _{AC} [50Hz]	Tolerance
26V	678mA	660mA	681mA	700mA	690mA	678mA	±2.94%
24V	676mA	659mA	679mA	697mA	684mA	678mA	±2.80%
22V	673mA	657mA	683mA	694mA	692mA	681mA	±2.74%

3.4. Short- / Open-LED Protections

In short-LED condition, OCP level is reduced from 0.7V to 0.2V because FL7732 lowers OCP level when V_S voltage is less than 0.4V during output diode conduction time. The results were measured by using actual LED load. Short-LED Condition; C1 [V_{DD}], C2 [V_{IN}], C3 [V_{OUT}], C4 [I_{OUT}].

3.5. Power Factor

System efficiency is $86.45\% \sim 89.03\%$ in $90 \sim 265V_{AC}$ input voltage range. The results were measured at 30 minutes after startup by using 7-LED.

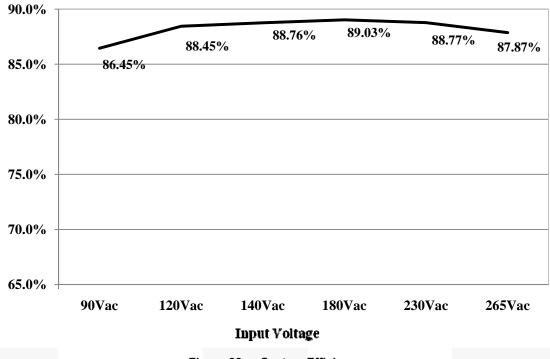
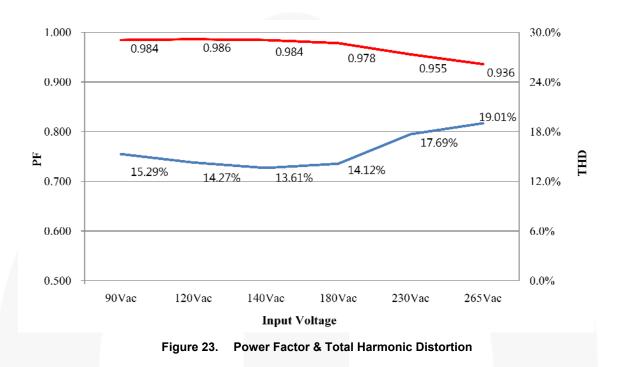


Figure 22. System Efficiency

Table 7. System Efficiency


Input Voltage	Input Power [W]	Output Current [A]	Output Voltage [V]	Output Power [W]	Efficiency
90V _{AC} [60Hz]	18.91	0.678	24.10	16.35	86.45%
120V _{AC} [60Hz]	18.02	0.663	24.04	15.94	88.45%
140V _{AC} [60Hz]	18.78	0.687	24.27	16.67	88.76%
180V _{AC} [50Hz]	19.31	0.704	24.43	17.19	89.03%
220V _{AC} [50Hz]	18.99	0.693	24.34	16.86	88.77%
265V _{AC} [50Hz]	19.05	0.689	24.28	16.74	87.87%

3.6. PF & THD

FL7732 shows excellent THD performance. THD is much less than 30% specification. The results were measured at 30 minutes after startup.

Table 8. PF & THD

Input Voltage	Output Current	Output Voltage	Power Factor	THD
90V _{AC} [60Hz]	0.678A	24.10V	0.98	15.29%
120V _{AC} [60Hz]	0.663A	24.04V	0.99	14.27%
140V _{AC} [60Hz]	0.687A	24.27V	0.98	13.61%
180V _{AC} [50Hz]	0.704A	24.43V	0.98	14.12%
230V _{AC} [50Hz]	0.693A	24.34V	0.96	17.69%
265V _{AC} [50Hz]	0.689A	24.28V	0.94	19.01%

3.7. Operating Temperature

Temperature of the all components on this board is less than 71 $^{\circ}$ C. The results were measured at 30 minutes after startup.

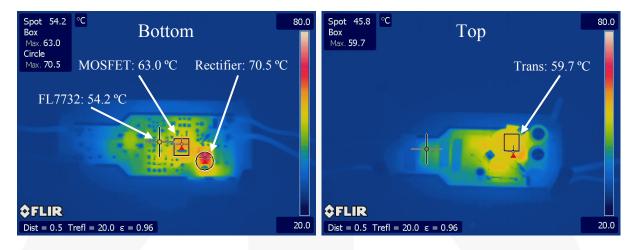
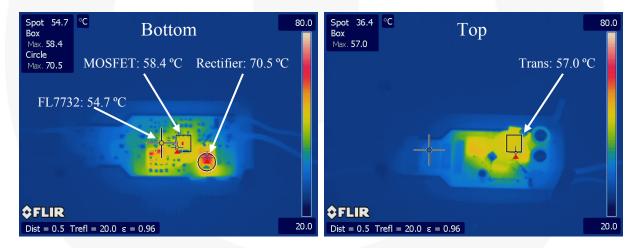
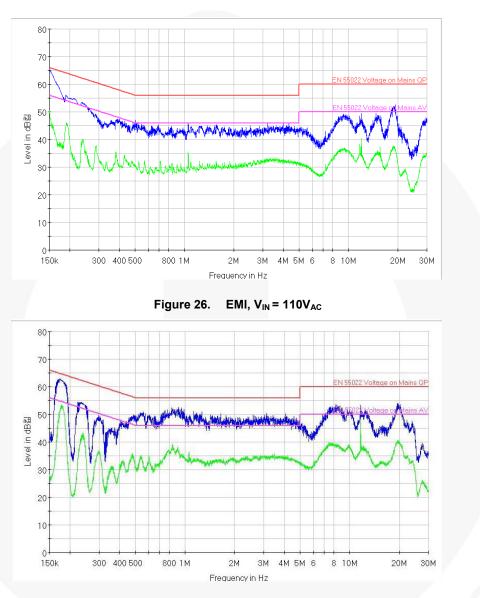
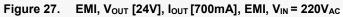



Figure 24. Board Temperature - VIN[90VAC], IOUT[700mA]





3.8. EMI

The all measurement was conducted in observance of EN55022 criteria. The results were measured at 30 minutes after startup by using actual LED load.

4. Revision History

Rev.	Date	Description	
1.0.0	April 2012	Initial Release	
1.1.0	June 2012	Manufacturer & Part number are added in BOM FL7732 is changed to FL7732MY_F116 (no frequency hopping) PF/THD at 50Hz is added EMI test result is updated	

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.