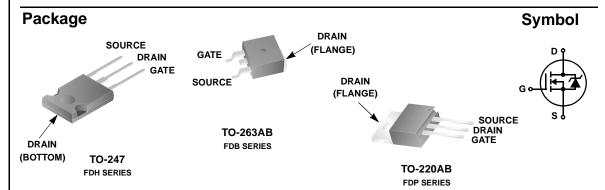


August 2003

FDH15N50 / FDP15N50 / FDB15N50

15A, 500V, 0.38 Ohm, N-Channel SMPS Power MOSFET


Applications

Switch Mode Power Supplies(SMPS), such as

- PFC Boost
- Two-Switch Forward Converter
- · Single Switch Forward Converter
- · Flyback Converter
- Buck Converter
- · High Speed Switching

Features

- ullet Low Gate Charge $\mathbf{Q}_{\mathbf{g}}$ results in Simple Drive Requirement
- Improved Gate, Avalanche and High Reapplied dv/dt Ruggedness
- Reduced r_{DS(ON)}
- Reduced Miller Capacitance and Low Input Capacitance
- Improved Switching Speed with Low EMI
- 175°C Rated Junction Temperature

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	500	V
V _{GS}	Gate to Source Voltage	±30	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	15	Α
I _D	Continuous ($T_C = 100^{\circ}C$, $V_{GS} = 10V$)	11	А
	Pulsed ¹	60	А
<u> </u>	Power dissipation	300	W
P _D Derate above 25°C	2	W/°C	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C
	Soldering Temperature for 10 seconds	300 (1.6mm from case)	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	0.50	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient (TO-247)	40	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient (TO-220, TO-263)	62	°C/W

Package Marking and Ordering Information

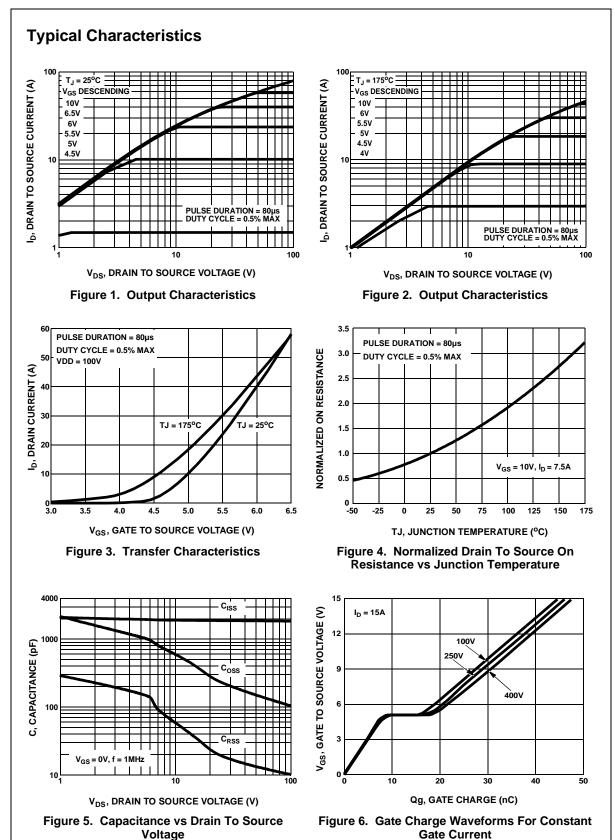
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDH15N50	FDH15N50	TO-247	Tube	-	30
FDP15N50	FDP15N50	TO-220	Tube	-	50
FDB15N50	FDB15N50	TO-263	330mm	24mm	800

Electrical Characteristics T_J = 25°C (unless otherwise noted)

Symbol	Parameter	Test Con	ditions	Min	Тур	Max	Units
Statics							
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_G$	is = 0V	500	-	-	V
ΔB _{VDSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	Reference to 2 ID = 1mA	25°C,	-	0.58	-	V/°C
r _{DS(ON)}	Drain to Source On-Resistance	$V_{GS} = 10V, I_D = 7.5A$		-	0.33	0.38	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D =$	= 250µA	2.0	3.4	4.0	V
1	Zara Cata Valtaga Drain Current	$V_{DS} = 500V$	$T_C = 25^{\circ}C$	-	-	25	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 30V$	•	-	-	±100	nA

Dynamics

9 _{fs}	Forward Transconductance	$V_{DD} = 10V, I_D = 7.5A$	10	-	-	S
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 10V,	-	33	41	nC
Q_{gs}	Gate to Source Gate Charge	$V_{DS} = 400V,$	-	7.2	10	nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 15A	-	12	16	nC
t _{d(ON)}	Turn-On Delay Time	$V_{DD} = 250V,$ $I_{D} = 15A,$ $R_{G} = 6.2\Omega,$ $R_{D} = 17\Omega$	-	9	-	ns
t _r	Rise Time		-	5.4	-	ns
t _{d(OFF)}	Turn-Off Delay Time		-	26	-	ns
t _f	Fall Time		-	5	-	ns
C _{ISS}	Input Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz	-	1850	-	pF
C _{OSS}	Output Capacitance		-	230	-	pF
C _{RSS}	Reverse Transfer Capacitance	71 - 1141112	-	16	-	pF


Avalanche Characteristics

E _{AS}	Single Pulse Avalanche Energy ²	760	-	-	mJ
I _{AR}	Avalanche Current	-	-	15	Α

Drain-Source Diode Characteristics

I _S	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse	-	-	15	Α
I _{SM}	Pulsed Source Current ¹ (Body Diode)	integral reverse p-n junction diode.	-	-	60	Α
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 15A	-	0.86	1.2	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 15A$, $di_{SD}/dt = 100A/\mu s$	-	470	730	ns
Q_{RR}	Reverse Recovered Charge	$I_{SD} = 15A$, $di_{SD}/dt = 100A/\mu s$	-	5	6.6	μC

1: Repetitive rating; pulse width limited by maximum junction temperature 2: Starting T_J = 25°C, L = 7.0mH, I_{AS} = 15A

Typical Characteristics 100 ____ SOURCE TO DRAIN CURRENT (A) ID, DRAIN CURRENT (A) $T_J = 175^{\circ}C$ T₁ = 25°C OPERATION IN THIS AREA DC LIMITED BY RDS(ON) <u>S</u> 0.1 0.6 0.7 0.9 1.0 V_{SD}, SOURCE TO DRAIN VOLTAGE (V) V_{DS}, DRAIN TO SOURCE VOLTAGE (V) Figure 7. Body Diode Forward Voltage vs Body Figure 8. Maximum Safe Operating Area **Diode Current** 16 AS, AVALANCHE CURRENT (A) If R \neq 0 $t_{AV} = (L/R) ln[(l_{AS}*R)/(1.3*RATED BV_{DSS})]$ I_D, DRAIN CURRENT (A) 10 STARTING T_{.1} = 25°C | ||||| 125 150 175 0.01 T_C, CASE TEMPERATURE (°C) t_{AV}, TIME IN AVALANCHE (ms) Figure 9. Maximum Drain Current vs Case Figure 10. Unclamped Inductive Switching **Temperature** Capability $Z_{\theta JC}$, NORMALIZED THERMAL RESPONSE 10⁰ 0.50 0.20 0.10 DUTY FACTOR, $D = t_1/t_2$ PEAK $T_J = (PD X Z_{\theta JC} X R_{\theta JC})$ 10⁻² 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10¹ 100

 $t_{\text{1}}, \, \text{RECTANGULAR PULSE DURATION (s)}$ Figure 11. Normalized Transient Thermal Impedance, Junction to Case

Test Circuits and Waveforms

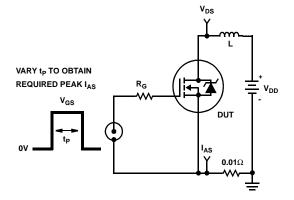


Figure 12. Unclamped Energy Test Circuit

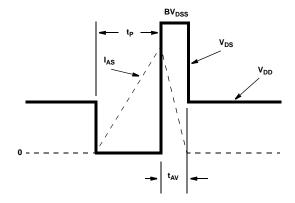


Figure 13. Unclamped Energy Waveforms

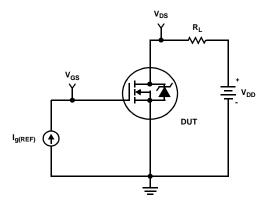


Figure 14. Gate Charge Test Circuit

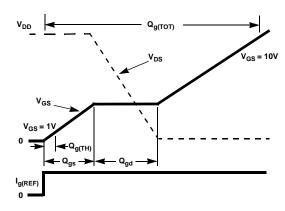


Figure 15. Gate Charge Waveforms

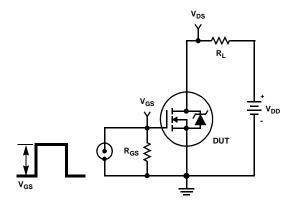


Figure 16. Switching Time Test Circuit

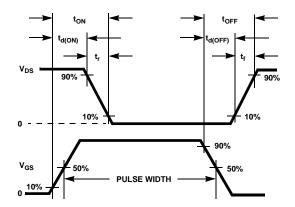


Figure 17. Switching Time Waveform

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet Series™	ISOPLANAR™	POPTM	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic [®]
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I^2C^{TM}	OCX^{TM}	RapidConfigure™	UHC™
Across the board	. Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franchise™		OPTOLOGIC [®]	SILENT SWITCHER®	VCX TM
Programmable A	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.