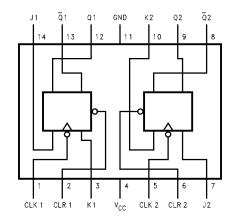
FAIRCHILD

SEMICONDUCTOR

DM7473 Dual Master-Slave J-K Flip-Flops with Clear and Complementary Outputs

General Description


This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops after a complete clock pulse. While the clock is LOW the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is HIGH the J and K inputs are disabled. On the

Ordering Code:

Order Number	Package Number	Package Description
DM7473N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

inputs.

Connection Diagram

	Package Description								
ו-L	-Line Package (PDIP), JEDEC MS-001, 0.300 Wide								
I	Function Table								
	Inputs Outputs								
	CLR	CLK	J	к	Q	Ø			
	L	х	Х	Х	L	Н			

negative transition of the clock, the data from the master is transferred to the slave. The logic states of the J and K

inputs must not be allowed to change while the clock is

HIGH. Data transfers to the outputs on the falling edge of

the clock pulse. A LOW logic level on the clear input will

reset the outputs regardless of the logic states of the other

	L	Х	Х	Х	L	Н		
	Н	л	L	L	Q ₀	\overline{Q}_0		
	Н	л	н	L	н	L		
	Н	л	L	н	L	н		
	Н	л	н	н	Τος	ggle		
F	H = HIGH Logic Level							

L = LOW Logic Level

X = Either LOW or HIGH Logic Level

Positive pulse data. the J and K inputs must be held constant while the clock is HIGH. Data is transferred to the outputs on the falling edge of the clock pulse.

 Q_0 = The output logic level before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each HIGH level clock pulse.

© 2000 Fairchild Semiconductor Corporation DS006525

www.fairchildsemi.com

DM7473

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Pa	rameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{ОН}	HIGH Level Output Current				-0.4	mA
l _{OL}	LOW Level Output Current				16	mA
f _{CLK}	Clock Frequency (Note 3)		0		15	MHz
t _W	Pulse Width	Clock HIGH	20			
	(Note 3)	Clock LOW	47			ns
		Clear LOW	25			
t _{SU}	Input Setup Time (Note 2)(Note 3)		0↑			ns
н	Input Hold Time (Note 2)(Note 3)		0↓			ns
T _A	Free Air Operating Temperature		0		70	°C

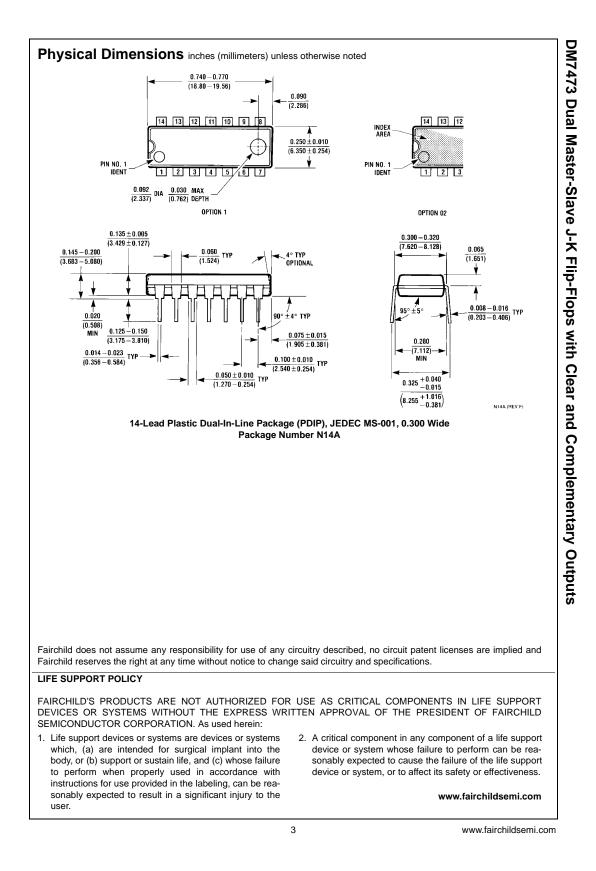
Note 2: The symbol (\uparrow, \downarrow) indicates the edge of the clock pulse is used for reference: (\uparrow) for rising edge, (\downarrow) for falling edge.

Note 3: T_A = 25°C and V_{CC} = 5V.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units		
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-1.5	V		
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max	2.4	2.4		v			
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		3.4		v			
V _{OL}	LOW Level V _{CC} = Min, I _{OL} = Max			0.2	0.4	v			
	Output Voltage	V _{IH} = Min, V _{IL} = Max			0.2	0.4	v		
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA		
IIH	HIGH Level	V _{CC} = Max	J, K			40			
	Input Current	$V_{I} = 2.4V$	Clock			80	μΑ		
			Clear			80			
IIL	LOW Level Input	V _{CC} = Max	J, K			-1.6			
	Current	$V_I = 0.4V$	Clock			-3.2	mA		
			Clear			-3.2			
los	Short Circuit Output Current	V _{CC} = Max (Note 5)		-18		-55	mA		
I _{CC}	Supply Current	V _{CC} = Max, (Note 6)			18	34	mA		

Note 4: All typicals are at V_{CC} = 5V, $T_A = 25^{\circ}C$.


Note 5: Not more than one output should be shorted at a time.

Note 6: With all outputs OPEN, I_{CC} is measured with the Q and Q outputs HIGH in turn. At the time of measurement the clock input grounded.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	From (Input)	$R_L = 400\Omega$,	C _L = 15 pF	Units
	i arameter	To (Output)	Min	Max	Unita
f _{MAX}	Maximum Clock Frequency		15		MHz
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to Q		25	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or \overline{Q}		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or \overline{Q}		25	ns

www.fairchildsemi.com

